Brown, Christopher J; O'Connor, Mary I; Poloczanska, Elvira S; Schoeman, David S; Buckley, Lauren B; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Pandolfi, John M; Parmesan, Camille; Richardson, Anthony J
2016-04-01
Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes. © 2015 John Wiley & Sons Ltd.
75 FR 3387 - Outer Continental Shelf Air Regulations Consistency Update for Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... Explanation of Proposed Changes'' identifies changes and rational for each change made in the rules. These... change made to part 55, with a rational for each change. Response: The changes to the regulations are explained above. This comment requesting that the rational for each change be explained is beyond the scope...
Climate change: believing and seeing implies adapting.
Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc
2012-01-01
Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.
Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R.; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.
2015-01-01
The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized. PMID:26601276
Afschrift, Maarten; De Groote, Friedl; Verschueren, Sabine; Jonkers, Ilse
2018-01-01
The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal function explains forest responses to global change
Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine
2009-01-01
Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...
Modeling rate sensitivity of exercise transient responses to limb motion.
Yamashiro, Stanley M; Kato, Takahide
2014-10-01
Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume. Copyright © 2014 the American Physiological Society.
Linking native and invader traits explains native spider population responses to plant invasion
Jennifer N. Smith; Douglas J. Emlen; Dean E. Pearson
2016-01-01
Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to...
Kim, Kwan-Suk; Seibert, Jacob T; Edea, Zewde; Graves, Kody L; Kim, Eui-Soo; Keating, Aileen F; Baumgard, Lance H; Ross, Jason W; Rothschild, Max F
2018-06-04
Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.
ERIC Educational Resources Information Center
Anyanwu, Raymond; Le Grange, Lesley; Beets, Peter
2015-01-01
One of the universal responses to tackling global climate change is teaching climate change concepts at all levels of formal education. This response requires, among other things, teachers who are fully literate about climate change science, so that they can explain the concepts underlying the causes, impacts and solutions of climate change as…
Taylor, Richard J; Sanders, Dajo; Myers, Tony; Abt, Grant; Taylor, Celia A; Akubat, Ibrahim
2018-02-01
To identify the dose-response relationship between measures of training load (TL) and changes in aerobic fitness in academy rugby union players. Training data from 10 academy rugby union players were collected during a 6-wk in-season period. Participants completed a lactate-threshold test that was used to assess VO 2 max, velocity at VO 2 max, velocity at 2 mmol/L (lactate threshold), and velocity at 4 mmol/L (onset of lactate accumulation; vOBLA) as measures of aerobic fitness. Internal-TL measures calculated were Banister training impulse (bTRIMP), Edwards TRIMP, Lucia TRIMP, individualized TRIMP (iTRIMP), and session RPE (sRPE). External-TL measures calculated were total distance, PlayerLoad™, high-speed distance >15 km/h, very-high-speed distance >18 km/h, and individualized high-speed distance based on each player's vOBLA. A second-order-regression (quadratic) analysis found that bTRIMP (R 2 = .78, P = .005) explained 78% of the variance and iTRIMP (R 2 = .55, P = .063) explained 55% of the variance in changes in VO 2 max. All other HR-based internal-TL measures and sRPE explained less than 40% of variance with fitness changes. External TL explained less than 42% of variance with fitness changes. In rugby players, bTRIMP and iTRIMP display a curvilinear dose-response relationship with changes in maximal aerobic fitness.
Michael B. Walters; John L. Willis; Kurt W. Gottschalk
2014-01-01
Tree species distributions and diversity could be explained by rank changes in performance over multiple spatiotemporal resource gradients, i.e., resource partitioning. For 14 species planted in 45 harvest gap and closed canopy locations in a mesic northern hardwood forest community, Michigan, USA, we asked the following questions: (i) are species growth responses to...
What Climate Sensitivity Index Is Most Useful for Projections?
NASA Astrophysics Data System (ADS)
Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy
2018-02-01
Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.
Changes in Tree Quality in Response to Defoliation
Jack C. Schultz; Ian T. Baldwin
1983-01-01
Plant chemistry alone fails to explain why most trees escape defoliation most of the time. Chemical variation in space and time, acting to enhance the effectiveness of natural enemies, may be the key. Changes and increasing variation in direct response to insect attack ("induction") may be particularly important for irruptive pests.
Dankelman, J; Stassen, H G; Spaan, J A
1990-03-01
In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.
Gornish, Elise S; Miller, Thomas E
2015-01-01
Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.
Zhang, Yunfeng; Paik, Jaehyon; Pirolli, Peter
2015-04-01
Animals routinely adapt to changes in the environment in order to survive. Though reinforcement learning may play a role in such adaptation, it is not clear that it is the only mechanism involved, as it is not well suited to producing rapid, relatively immediate changes in strategies in response to environmental changes. This research proposes that counterfactual reasoning might be an additional mechanism that facilitates change detection. An experiment is conducted in which a task state changes over time and the participants had to detect the changes in order to perform well and gain monetary rewards. A cognitive model is constructed that incorporates reinforcement learning with counterfactual reasoning to help quickly adjust the utility of task strategies in response to changes. The results show that the model can accurately explain human data and that counterfactual reasoning is key to reproducing the various effects observed in this change detection paradigm. Copyright © 2015 Cognitive Science Society, Inc.
Gallegos-Cabriales, Esther C; Rivera-Castillo, Alicia; González-Cantú, Arnulfo; Gómez-Meza, Marco Vinicio; Villarreal-Pérez, Jesús Zacarías
2018-01-01
Objectives: Type 2 diabetes mellitus studies focus on metabolic indicators and different self-reported lifestyle or care behaviors. Self-reported instruments involve conscious process therefore responses might not reflect reality. Meanwhile implicit responses involve automatic, unconscious processes underlying social judgments and behavior. No studies have explored the combined influence of both metabolic indicators and implicit responses on lifestyle practices in type 2 diabetes mellitus patients. The purpose was to investigate the explained variance of socio-demographic, metabolic, anthropometric, clinical, psychosocial, cognitive, and lifestyle variables on glycemic status and on the ability to adapt to changing demands in people with and without type 2 diabetes mellitus in Monterrey, Mexico. Methods: Adults with (n = 30, mean age 46.90 years old, 33.33% male) and without (n = 32, mean age: 41.69 years old, 21.87% male) type 2 diabetes mellitus were studied. Glycemic status was assessed using Bio-Rad D-10 Hemoglobin A1c Program, which uses ion-exchange high-performance chromatography. Stroop 2 test was used to assess the ability to changing demands. Results: In participants with type 2 diabetes mellitus, less years of education, negative self-actualization, and higher levels of cholesterol and triglycerides explained more than 50% of the variance in glycemic status. In participants without type 2 diabetes mellitus, the variance (38.7%) was explained by total cholesterol, metabolic syndrome, high-density lipoprotein, and self-actualization scores; the latter in opposite direction. The ability to adapt to changing demands was explained by total cholesterol, malondialdehyde, insulin resistance, and triglycerides. In participants without type 2 diabetes mellitus, the contributing variables were metabolic syndrome and nutrition scores. Conclusion: Results showed significant effect on at least one of the following variables (socio-demographic, metabolic, or lifestyle subscale) on glycemic status in people with and without type 2 diabetes mellitus. The ability to adapt to changing demands was explained by metabolic variables but only in participants without type 2 diabetes mellitus. Preference for unhealthy behaviors (implicit or automatic responses) outweighs healthy lifestyle practices in people with and without type 2 diabetes mellitus. PMID:29760917
Salazar-González, Bertha Cecilia; Gallegos-Cabriales, Esther C; Rivera-Castillo, Alicia; González-Cantú, Arnulfo; Gómez-Meza, Marco Vinicio; Villarreal-Pérez, Jesús Zacarías
2018-01-01
Type 2 diabetes mellitus studies focus on metabolic indicators and different self-reported lifestyle or care behaviors. Self-reported instruments involve conscious process therefore responses might not reflect reality. Meanwhile implicit responses involve automatic, unconscious processes underlying social judgments and behavior. No studies have explored the combined influence of both metabolic indicators and implicit responses on lifestyle practices in type 2 diabetes mellitus patients. The purpose was to investigate the explained variance of socio-demographic, metabolic, anthropometric, clinical, psychosocial, cognitive, and lifestyle variables on glycemic status and on the ability to adapt to changing demands in people with and without type 2 diabetes mellitus in Monterrey, Mexico. Adults with (n = 30, mean age 46.90 years old, 33.33% male) and without (n = 32, mean age: 41.69 years old, 21.87% male) type 2 diabetes mellitus were studied. Glycemic status was assessed using Bio-Rad D-10 Hemoglobin A1c Program, which uses ion-exchange high-performance chromatography. Stroop 2 test was used to assess the ability to changing demands. In participants with type 2 diabetes mellitus, less years of education, negative self-actualization, and higher levels of cholesterol and triglycerides explained more than 50% of the variance in glycemic status. In participants without type 2 diabetes mellitus, the variance (38.7%) was explained by total cholesterol, metabolic syndrome, high-density lipoprotein, and self-actualization scores; the latter in opposite direction. The ability to adapt to changing demands was explained by total cholesterol, malondialdehyde, insulin resistance, and triglycerides. In participants without type 2 diabetes mellitus, the contributing variables were metabolic syndrome and nutrition scores. Results showed significant effect on at least one of the following variables (socio-demographic, metabolic, or lifestyle subscale) on glycemic status in people with and without type 2 diabetes mellitus. The ability to adapt to changing demands was explained by metabolic variables but only in participants without type 2 diabetes mellitus. Preference for unhealthy behaviors (implicit or automatic responses) outweighs healthy lifestyle practices in people with and without type 2 diabetes mellitus.
Paavonen, Vesa; Luoto, Kaisa; Koivukangas, Antti; Lassila, Antero; Leinonen, Esa; Kampman, Olli
2016-11-30
There is limited knowledge on the relationship between temperament and character profiles and substance abuse comorbidity in depressed patients. We recruited 127 depressed patients without alcohol use problems (non-AUP) and 89 depressed patients with alcohol use problems (AUP). We assessed all patients using the Temperament and Character Inventory (TCI-R) at baseline and after 6 weeks of treatment. Using univariate general linear models (GLMs), we analyzed differences in TCI-R between AUP and non-AUP. GLMs were also used in analyzing the associations between TCI-R changes and antidepressive treatment responses measured with changes in Montgomery Åsberg Depression Rating Scale score (ΔMADRS). Alcohol use explained independently significant proportions of the variation in Novelty Seeking, Self-Directedness, and Persistence. Reward Dependence score change explained 14.1% of the ΔMADRS in AUP, but was non-significant in non-AUP. Character score changes in Self-Directedness and Self-Transcendence explained together 14.1% of ΔMADRS in non-AUP, whereas they were all non-significant in AUP. AUP compared with non-AUP patients had lower Self-Directedness and Persistence and higher Novelty Seeking scores. Detected changes in Reward Dependence and lower Self-Directedness in AUP patients could be reflective of different biological mechanisms associated with depressive symptomatology in alcohol abuse. Changes in character are associated with acute treatment response in non-AUP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Systems Perspective on Responses to Climate Change
The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...
NASA Astrophysics Data System (ADS)
Tomelleri, E.; Forkel, M.; Fuchs, R.; Jung, M.; Mahecha, M. D.; Reichstein, M.; Weber, U.
2012-12-01
The objective of this study is to provide a complete quantitative assessment of the annual to decadal variability, hotspots of changes and the temporal magnitude of regional trends and variability for the main drivers of carbon cycle like climate and land use and their responses for Europe. For this purpose we used an harmonized climatic data set (ERA Interim and WATCH) and an historical land-use change reconstruction (HILDAv1, Fuchs in prep.). Both the data sets cover the period 1900-2010 and have a 0.25 deg spatial resolution. As driver response we used two different empirically up-scaled GPP fields: the first (MTE) obtained by the application of model trees (Jung et al. 2009) and a second (LUE) based on a light use efficiency model (Tomelleri in prep.). Both the approaches are based on the up-scaling of Fluxnet observations. The response fields have monthly temporal resolution and are limited to the period 1982-2011. We estimated break-points in time series of driver and response variables based on the method of Bai and Perron (2003) to identify changes in trends. This method was implemented in Verbesselt et al. 2010 and applied by deJong et al. 2011 to detect phenological and abrupt changes and trends in vegetation activity based on satellite-derived vegetation index time series. The analysis of drivers and responses allowed to identify the dominant factors driving the biosphere-atmosphere carbon exchange. The synchronous analysis of climatic drivers and land use change allowed us to explain most of the temporal and spatial variability showing that in the regions and time period where the most land use change occurred the climatic drivers are not sufficient to explain trends and oscillation in carbon cycling. The comparison of our analysis for the up-scaling methods shows some agreement: we found inconsistency in the spatial and temporal patterns in regions where the Fluxnet network is less dense. This can be explained by the conceptual difference in the up-scaling methods: while one is on pixel basis (MTE) the other (LUE) is up-scaling model parameters by bioclimatic regions. Our study shows the value of up-scaling methods for understanding the spatial-temporal variability of carbon cycling and how these are a valuable tool for spatial and temporal analysis. Furthermore, the use of climatic drivers and land-use change demonstrated the need of taking natural and anthropogenic drivers into consideration for explaining trends and oscillations. Possibly a further analysis including detailed management practices for forestry and agriculture would help in explaining the remaining variance. References: Bai, J., Perron, P.: Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 2003. Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2009. Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D.: Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment,114(1), 2010. de Jong, R., Verbesselt, J., Schaepman, M.E., Bruin, S.: Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology, 18, 2011.
ERIC Educational Resources Information Center
Johnson, David J.
2017-01-01
There is scarce literature explaining how leaders leverage the influence necessary to change universities. This study aimed to illuminate leadership practices that seek to make universities more responsive to, and responsible for, the needs and success of students. In doing so, this research explored practices that leaders used to align a…
Tanentzap, Andrew J; Lee, William G
2017-01-01
Abiotic filters have been found either to increase or reduce evolutionary relatedness in plant communities, making it difficult to generalize responses of this major feature of biodiversity to future environmental change. Here, we hypothesized that the responses of phylogenetic structure to environmental change ultimately depend on how species have evolved traits for tolerating the resulting abiotic changes. Working within ephemeral wetlands, we tested whether species were increasingly related as flooding duration intensified. We also identified the mechanisms underlying increased relatedness by measuring root aerenchyma volume (RAV), a trait which promotes waterlogging tolerance. We found that species-specific responses to flooding explained most of the variation in occurrence for 63 vascular plant species across 5170 plots. For a subset of 22 species, we attributed these responses to variation in RAV. Large RAV specifically increased occurrence when flooding lasted for longer time periods, because large RAV reduced above-ground biomass loss. As large RAV was evolutionarily conserved within obligate wetland species, communities were more phylogenetically related as flooding increased. Our study shows how reconstructing the evolutionary history of traits that influence the responses of species to environmental change can help to predict future patterns in phylogenetic structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Dennis, T. B. (Principal Investigator)
1980-01-01
The author has identified the following significant results. The most apparent contributors to the problem of poor temporal extension of LIST are the drastic changes in the brightness keys and an inadequate set of AI responses in Phase 3. The brightness trajectories change drastically from Phase 3 to the transition year (TY). Removing brightness channels from the discriminant does not completely correct the lack of extendability. Removing brightness increases the accuracy of the extension from Phase 3 to TY from 57.7 percent to 64.18 percent. The removal of the Al keys increases accuracy to 65.76 percent. Although the latter increase appears insignificant when compared to the first, the removal of only the Al keys increased accuracy to 63.58 percent. Proper weighting of the responses explains 73.8 percent of the ground truth labels but only 56.7 percent of the Al labels. By contrast, the TY responses which were weighted to explain the TY ground truth labels fared equally well, explaining 73.6 percent of those labels and 87.1 percent of the Al labels.
Explaining topic prevalence in answers to open-ended survey questions about climate change
NASA Astrophysics Data System (ADS)
Tvinnereim, Endre; Fløttum, Kjersti
2015-08-01
Citizens’ opinions are crucial for action on climate change, but are, owing to the complexity of the issue, diverse and potentially unformed. We contribute to the understanding of public views on climate change and to knowledge needed by decision-makers by using a new approach to analyse answers to the open survey question `what comes to mind when you hear the words `climate change’?’. We apply automated text analysis, specifically structural topic modelling, which induces distinct topics based on the relative frequencies of the words used in 2,115 responses. From these data, originating from the new, nationally representative Norwegian Citizen Panel, four distinct topics emerge: Weather/Ice, Future/Impact, Money/Consumption and Attribution. We find that Norwegians emphasize societal aspects of climate change more than do respondents in previous US and UK studies. Furthermore, variables that explain variation in closed questions, such as gender and education, yield different and surprising results when employed to explain variation in what respondents emphasize. Finally, the sharp distinction between scepticism and acceptance of conventional climate science, often seen in previous studies, blurs in many textual responses as scepticism frequently turns into ambivalence.
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry
2017-04-01
Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.
Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.
Smith, Jennifer N; Emlen, Douglas J; Pearson, Dean E
2016-01-01
Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.
Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion
Emlen, Douglas J.; Pearson, Dean E.
2016-01-01
Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations. PMID:27082240
Jacobs, Wouter; van de Veerdonk, Mariëlle C.; Trip, Pia; de Man, Frances; Heymans, Martijn W.; Marcus, Johannes T.; Kawut, Steven M.; Bogaard, Harm-Jan; Boonstra, Anco
2014-01-01
Background: Male sex is an independent predictor of worse survival in pulmonary arterial hypertension (PAH). This finding might be explained by more severe pulmonary vascular disease, worse right ventricular (RV) function, or different response to therapy. The aim of this study was to investigate the underlying cause of sex differences in survival in patients treated for PAH. Methods: This was a retrospective cohort study of 101 patients with PAH (82 idiopathic, 15 heritable, four anorexigen associated) who were diagnosed at VU University Medical Centre between February 1999 and January 2011 and underwent right-sided heart catheterization and cardiac MRI to assess RV function. Change in pulmonary vascular resistance (PVR) was taken as a measure of treatment response in the pulmonary vasculature, whereas change in RV ejection fraction (RVEF) was used to assess RV response to therapy. Results: PVR and RVEF were comparable between men and women at baseline; however, male patients had a worse transplant-free survival compared with female patients (P = .002). Although male and female patients showed a similar reduction in PVR after 1 year, RVEF improved in female patients, whereas it deteriorated in male patients. In a mediator analysis, after correcting for confounders, 39.0% of the difference in transplant-free survival between men and women was mediated through changes in RVEF after initiating PAH medical therapies. Conclusions: This study suggests that differences in RVEF response with initiation of medical therapy in idiopathic PAH explain a significant portion of the worse survival seen in men. PMID:24306900
Liu, Li-Min; Qi, Hua; Luo, Xin-Lan; Zhang, Xuan
2008-09-01
Some important phenomena and behaviors concerned with the coordination effect between vapor water loss through plant stomata and liquid water supply in SPAC were discussed in this paper. A large amount of research results showed that plants show isohydric behavior when the plant hydraulic and chemical signals cooperate to promote the stomatal regulation of leaf water potential. The feedback response of stomata to the change of environmental humidity could be used to explain the midday depression of stomatal conductance and photosynthesis under drought condition, and also, to interpret the correlation between stomatal conductance and hydraulic conductance. The feed-forward response of stomata to the change of environmental humidity could be used to explain the hysteresis response of stomatal conductance to leaf-atmosphere vapor pressure deficit. The strategy for getting the most of xylem transport requires the rapid stomatal responses to avoid excess cavitation and the corresponding mechanisms for reversal of cavitation in short time.
Decreases in beetle body size linked to climate change and warming temperatures.
Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina
2018-05-01
Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
Global Change in the Great Lakes: Scenarios.
ERIC Educational Resources Information Center
Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.
The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…
Kimbrel, Nathan A; Meyer, Eric C; Beckham, Jean C
2015-01-01
Lane et al.'s proposal that psychotherapeutic change comes about through memory reconsolidation is compelling; however, the model would be strengthened by the inclusion of predictions regarding additional factors that might influence treatment response, predictions for improving outcomes for non-responsive patients, and a discussion of how the proposed model might explain individual differences in vulnerability for mental health problems.
Marine assemblages respond rapidly to winter climate variability.
Morley, James W; Batt, Ryan D; Pinsky, Malin L
2017-07-01
Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.
W.B. Sutton; Y. Wang; C.J. Schweitzer; D.A. Steen
2014-01-01
Understanding the impacts of disturbances in forest ecosystems is essential for long-term biodiversity conservation. Many studies have evaluated wildlife responses to various disturbances but most generally do not use changes in microclimate features or crohabitat structure to explain these responses. We examined lizard responses to two common forest management...
EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS
Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...
ERIC Educational Resources Information Center
Sim, Woohyang
2016-01-01
Higher education in Saudi Arabia has garnered immense praise for its rapid expansion and developments in both quantity and quality. In response to this, the tertiary school enrollment in Saudi Arabia is rapidly rising. These achievements can be explained by changes in educational policies. However, studies regarding youth's awareness are scarce.…
NASA Astrophysics Data System (ADS)
Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.
2006-09-01
The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.
USDA-ARS?s Scientific Manuscript database
Emergent properties and cross-scale interactions are important in driving landscape-scale dynamics during a disturbance event, such as wildfire. We used these concepts related to changing pattern-process relationships across scales to explain ecological responses following disturbance that resulted ...
Thiel, Gerald; Rössler, Oliver G
2017-03-01
Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bai, Jie; Li, Longhui
2017-01-01
The Xinjiang Uyghur Autonomous Region of China has experienced significant land cover and climate change since the beginning of the 21st century. However, a reasonable simulation of evapotranspiration (ET) and its response to environmental factors are still unclear. For this study, to simulate ET and its response to climate and land cover change in Xinjiang, China from 2001 to 2012, we used the Common Land Model (CoLM) by adding irrigation effects for cropland and modifying root distributions and the root water uptake process for shrubland. Our results indicate that mean annual ET from 2001 to 2012 was 131.22 (±21.78) mm/year and demonstrated no significant trend (p = 0.12). The model simulation also indicates that climate change was capable of explaining 99% of inter-annual ET variability; land cover change only explained 1%. Land cover change caused by the expansion of croplands increased annual ET by 1.11 mm while climate change, mainly resulting from both decreased temperature and precipitation, reduced ET by 21.90 mm. Our results imply that climate change plays a dominant role in determining changes in ET, and also highlight the need for appropriate land-use strategies for managing water sources in dryland ecosystems within Xinjiang. PMID:28841645
Yuan, Xiuliang; Bai, Jie; Li, Longhui; Kurban, Alishir; De Maeyer, Philippe
2017-01-01
The Xinjiang Uyghur Autonomous Region of China has experienced significant land cover and climate change since the beginning of the 21st century. However, a reasonable simulation of evapotranspiration (ET) and its response to environmental factors are still unclear. For this study, to simulate ET and its response to climate and land cover change in Xinjiang, China from 2001 to 2012, we used the Common Land Model (CoLM) by adding irrigation effects for cropland and modifying root distributions and the root water uptake process for shrubland. Our results indicate that mean annual ET from 2001 to 2012 was 131.22 (±21.78) mm/year and demonstrated no significant trend (p = 0.12). The model simulation also indicates that climate change was capable of explaining 99% of inter-annual ET variability; land cover change only explained 1%. Land cover change caused by the expansion of croplands increased annual ET by 1.11 mm while climate change, mainly resulting from both decreased temperature and precipitation, reduced ET by 21.90 mm. Our results imply that climate change plays a dominant role in determining changes in ET, and also highlight the need for appropriate land-use strategies for managing water sources in dryland ecosystems within Xinjiang.
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.
Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.
2015-01-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.
Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C
2015-11-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Epigenetics meets endocrinology
Zhang, Xiang; Ho, Shuk-Mei
2014-01-01
Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125
A meta-analysis of responses of soil biota to global change.
Blankinship, Joseph C; Niklaus, Pascal A; Hungate, Bruce A
2011-03-01
Global environmental changes are expected to impact the abundance of plants and animals aboveground, but comparably little is known about the responses of belowground organisms. Using meta-analysis, we synthesized results from over 75 manipulative experiments in order to test for patterns in the effects of elevated CO(2), warming, and altered precipitation on the abundance of soil biota related to taxonomy, body size, feeding habits, ecosystem type, local climate, treatment magnitude and duration, and greenhouse CO(2) enrichment. We found that the positive effect size of elevated CO(2) on the abundance of soil biota diminished with time, whereas the negative effect size of warming and positive effect size of precipitation intensified with time. Trophic group, body size, and experimental approaches best explained the responses of soil biota to elevated CO(2), whereas local climate and ecosystem type best explained responses to warming and altered precipitation. The abundance of microflora and microfauna, and particularly detritivores, increased with elevated CO(2), indicative of microbial C limitation under ambient CO(2). However, the effects of CO(2) were smaller in field studies than in greenhouse studies and were not significant for higher trophic levels. Effects of warming did not depend on taxon or body size, but reduced abundances were more likely to occur at the colder and drier sites. Precipitation limited all taxa and trophic groups, particularly in forest ecosystems. Our meta-analysis suggests that the responses of soil biota to global change are predictable and unique for each global change factor.
Probabilistic prediction of barrier-island response to hurricanes
Plant, Nathaniel G.; Stockdon, Hilary F.
2012-01-01
Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.
Speed effects of deep brain stimulation for Parkinson's disease.
Klostermann, Fabian; Wahl, Michael; Marzinzik, Frank; Vesper, Jan; Sommer, Werner; Curio, Gabriel
2010-12-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) accelerates reaction time (RT) in patients with Parkinson's disease (PD), particularly in tasks in which decisions on the response side have to be made. This might indicate that DBS speeds up both motor and nonmotor operations. Therefore, we studied the extent to which modifications of different processing streams could explain changes of RT under subthalamic DBS. Ten PD patients on-DBS and off-DBS and 10 healthy subjects performed a choice-response task (CRT), requiring either right or left finger button presses. At the same time, EEG recordings were performed, so that RTs could be assessed together with lateralized readiness potentials (LRP), indicative of movement preparation. Additionally, an oddball task (OT) was run, in which right finger responses to target stimuli were recorded along with cognitive P300 responses. Generally, PD patients off-DBS had longer RTs than controls. Subthalamic DBS accelerated RT only in CRT. This could largely be explained by analog shortenings of LRP. No DBS-dependent changes were identified in OT, neither on the level of RT nor on the level of P300 latencies. It follows that RT accelerations under DBS of the STN are predominantly due to effects on the timing of motor instead of nonmotor processes. This starting point explains why DBS gains of response speed are low in tasks in which reactions are initiated from an advanced level of movement preparation (as in OT), and high whenever motor responses have to be raised from scratch (as in CRT). © 2010 Movement Disorder Society.
Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?
NASA Astrophysics Data System (ADS)
Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.
2017-06-01
Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.
Reform, change, and continuity in Finnish health care.
Häkkinen, Unto; Lehto, Juhani
2005-01-01
This article describes some essential aspects of the Finnish political and governmental system and the evolution of the basic institutional elements of the health care system. We examine the developments that gave rise to a series of health care reforms and reform proposals in the late 1980s and early 1990s and relate them to changes in health care expenditure, structure, and performance. Finally, we discuss the relationship between policy changes, reforms, and health system changes and the strength of neo-institutional theory in explaining both continuity and change. Much of the change in Finnish health care can be explained by institutional path dependency. The tradition of strong but small local authorities and the lack of legitimate democratic regional authorities as well as the coexistence of a dominant Beveridge-style health system with a marginal Bismarckian element explain the specific path of Finnish health care reform. Public responsibility for health care has been decentralized to smaller local authorities (known as municipalities) more than in any other country. Even an exceptionally deep economic recession in the early 1990s did not lead to systems change; rather, the economic imperative was met by the traditional centralized policy pattern. Some of the developments of the 1990s are, however, difficult to explain by institutional theory. Thus, there is a need for testing alternative theories as well.
Sonya K. Auer; David I. King
2014-01-01
Species are expected to move uphill or poleward in response to climate change, yet their distributions show idiosyncratic responses; many species are moving in the predicted direction, but others are not shifting at all or are shifting downhill or towards the equator. Fundamental questions remain about the causes of interspecific variation in range responses and...
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
ERIC Educational Resources Information Center
Campbell, Kim Sydow; Carmichael, Pierson; Naidoo, Jefrey S.
2015-01-01
Hostile challenges to planned organization change are common and challenging to deal with effectively. Little research has explained successful responses to such stakeholder hostility. To address this gap, we use the concept of readiness to characterize the content of hostile challenges. We also use rhetorical strategies based on speech act theory…
Nature, Humans, and the Coastal Zone.
ERIC Educational Resources Information Center
Walker, H. Jesse
1990-01-01
Considers the interface of humans and seacoasts over time. Explains how coastal zones are formed and human attempts to defend against sea level changes. Charts the percentage of major world cities that also are ports. Postulates how the greenhouse effect could influence sea level, examining potential human responses to changes in coastal zones.…
Climate Change Education for Sustainability in Brazil: A Status Report
ERIC Educational Resources Information Center
Trajber, Rachel; Mochizuki, Yoko
2015-01-01
This article maps and explains Brazil's policies, strategies, plans and initiatives related to Climate Change Education (CCE), in the overall context of Environmental Education (EE) and Education for Sustainable Development (ESD). The case of Brazil offers useful insights on how to enhance climate response through education because of its unique…
Glacial changes in warm pool climate dominated by shelf exposure and ice sheet albedo
NASA Astrophysics Data System (ADS)
Di Nezio, P. N.; Tierney, J. E.; Otto-Bliesner, B. L.; Timmermann, A.; Bhattacharya, T.; Brady, E. C.; Rosenbloom, N. A.
2017-12-01
The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool (IPWP) are unclear. We addressed this issue combining model simulations and paleoclimate reconstructions of the Last Glacial Maximum (LGM). Two drivers - the exposure of tropical shelves due to lower sea level and a monsoonal response to ice sheet albedo - explain the proxy-inferred patterns of hydroclimate change. Shelf exposure influences IPWP climate by weakening the ascending branch of the Walker circulation. This response is amplified by coupled interactions akin to the Bjerknes feedback involving a stronger sea-surface temperature (SST) gradient along the equatorial Indian Ocean (IO). Ice sheet albedo enhances the import of cold, dry air into the tropics, weakening the Afro-Asian monsoon system. This "ventilation" mechanism alters temperature contrasts between the Arabian Sea and surrounding land leading to further monsoon weakening. Additional simulations show that the altered SST patterns associated with these responses are essential for explaining the proxy-inferred changes. Together our results show that ice sheets are a first order driver of tropical climate on glacial-interglacial timescales. While glacial climates are not a straightforward analogue for the future, our finding of an active Bjerknes feedback deserves further attention in the context of future climate projections.
5 CFR 591.223 - When does OPM conduct COLA surveys?
Code of Federal Regulations, 2012 CFR
2012-01-01
... conducting interim surveys or implementing some other change in response to conditions caused by a natural disaster or similar emergency, provided OPM publishes a notice or rule in the Federal Register explaining...
5 CFR 591.223 - When does OPM conduct COLA surveys?
Code of Federal Regulations, 2010 CFR
2010-01-01
... conducting interim surveys or implementing some other change in response to conditions caused by a natural disaster or similar emergency, provided OPM publishes a notice or rule in the Federal Register explaining...
5 CFR 591.223 - When does OPM conduct COLA surveys?
Code of Federal Regulations, 2011 CFR
2011-01-01
... conducting interim surveys or implementing some other change in response to conditions caused by a natural disaster or similar emergency, provided OPM publishes a notice or rule in the Federal Register explaining...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Davis, Dr, Mary
Generalized and quantitative relationships between flow and ecology are pivotal to developing environmental flow standards based on socially acceptable ecological conditions. Informing management at regional scales requires compiling sufficient hydrologic and ecological sources of information, identifying information gaps, and creating a framework for hypothesis development and testing. We compiled studies of empirical and theoretical relationships between flow and ecology in the South Atlantic region (SAR) of the United States to evaluate their utility for the development of environmental flow standards. Using database searches, internet searches, and agency contacts, we gathered 186 sources of information that provided a qualitative or quantitativemore » relationship between flow and ecology within states encompassing the SAR. A total of 109 of the 186 sources had sufficient information to support quantitative analyses. Ecological responses to natural changes in flow magnitude, frequency, and duration were highly variable regardless of the direction and magnitude of changes in flow. In contrast, the majority of ecological responses to anthropogenic-induced flow alterations were negative. Fish consistently showed negative responses to anthropogenic flow alterations whereas other ecological groups showed somewhat variable responses (e.g. macroinvertebrates and riparian vegetation) and even positive responses (e.g. algae). Fish and organic matter had sufficient sample sizes to stratify natural flow-ecology relationships by specific flow categories (e.g. high flow, baseflows) or by region (e.g. coastal plain, uplands). After stratifying relationships, we found that significant correlations existed between changes in natural flow and ecological responses. In addition, a regression tree explained 57% of the variation in fish responses to anthropogenic and natural changes in flow. Because of some ambiguity in interpreting the directionality in ecological responses, we utilized ecological gains or losses, where each represents a benefit or reduction to ecosystem services, respectively. Variables explained 49% of the variation in ecological gains and losses for all ecological groups combined. Altogether, our results suggested that the source of flow change and the ecological group of interest played primary roles in determining the direction and magnitude of ecological responses. Furthermore, our results suggest that developing broadly generalized relationships between ecology and changes in flow at a regional scale is unlikely unless relationships are placed within meaningful contexts, such as environmental flow components or by geomorphic setting.« less
Developing Integrated Arts Curriculum in Hong Kong: Chaos Theory at Work?
ERIC Educational Resources Information Center
Wong, Marina
2013-01-01
This article reports the development of integrated arts curriculum in two Hong Kong secondary schools over a 9-year period. Initial findings display a range of individual responses to educational change that are both non-predictable and non-linear. Chaos theory is used to explain these varied responses in terms of bifurcations. The findings of…
Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.
2013-01-01
Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082
Seventh Grade Students' Conceptions of Global Warming and Climate Change
ERIC Educational Resources Information Center
Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn
2009-01-01
The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…
Proactive effects of memory in young and older adults: The role of change recollection
Wahlheim, Christopher N.
2015-01-01
Age-related deficits in episodic memory are sometimes attributed to older adults being more susceptible to proactive interference. These deficits have been explained by impaired abilities to inhibit competing information and to recollect target information. In the present article, I propose that a change recollection deficit also contributes to age differences in proactive interference. Change recollection occurs when individuals can remember how information changed across episodes, and this counteracts proactive interference by preserving the temporal order of information. Three experiments were conducted to determine whether older adults are less likely to counteract proactive interference by recollecting change. Paired-associate learning paradigms with two lists of word pairs included pairs that repeated across lists, pairs that only appeared in List 2 (control items), and pairs with cues that repeated and responses that changed across lists. Young and older adults’ abilities to detect changed pairs in List 2 and to later recollect those changes at test were measured, along with cued recall of the List 2 responses and confidence in recall performance. Change recollection produced proactive facilitation in the recall of changed pairs, whereas the failure to recollect change resulted in proactive interference. Confidence judgments were sensitive to these effects. The critical finding was that older adults recollected change less than did young adults, and this partially explained older adults’ greater susceptibility to proactive interference. These findings have theoretical implications, showing that a change recollection deficit contributes to age-related deficits in episodic memory. PMID:24710672
Proactive effects of memory in young and older adults: the role of change recollection.
Wahlheim, Christopher N
2014-08-01
Age-related deficits in episodic memory are sometimes attributed to older adults being more susceptible to proactive interference. These deficits have been explained by impaired abilities to inhibit competing information and to recollect target information. In the present article, I propose that a change recollection deficit also contributes to age differences in proactive interference. Change recollection occurs when individuals can remember how information changed across episodes, and this counteracts proactive interference by preserving the temporal order of information. Three experiments were conducted to determine whether older adults are less likely to counteract proactive interference by recollecting change. Paired-associate learning paradigms with two lists of word pairs included pairs that repeated across lists, pairs that only appeared in List 2 (control items), and pairs with cues that repeated and responses that changed across lists. Young and older adults' abilities to detect changed pairs in List 2 and to later recollect those changes at test were measured, along with cued recall of the List 2 responses and confidence in recall performance. Change recollection produced proactive facilitation in the recall of changed pairs, whereas the failure to recollect change resulted in proactive interference. Confidence judgments were sensitive to these effects. The critical finding was that older adults recollected change less than did young adults, and this partially explained older adults' greater susceptibility to proactive interference. These findings have theoretical implications, showing that a change recollection deficit contributes to age-related deficits in episodic memory.
Banfield, Jill; Beller, Harry
2018-05-23
Berkeley Lab Earth Scientists Jill Banfield and Harry Beller explain the Sustainable Systems SFA 2.0 project's research on metabolic potentialâor how metabolic lifestyles of microbial communities modulate in response to as well as influence environmental change.
Fast Adjustments of the Asian Summer Monsoon to Anthropogenic Aerosols
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang; Lee, Dong Eun
2018-01-01
Anthropogenic aerosols are a major factor contributing to human-induced climate change, particularly over the densely populated Asian monsoon region. Understanding the physical processes controlling the aerosol-induced changes in monsoon rainfall is essential for reducing the uncertainties in the future projections of the hydrological cycle. Here we use multiple coupled and atmospheric general circulation models to explore the physical mechanisms for the aerosol-driven monsoon changes on different time scales. We show that anthropogenic aerosols induce an overall reduction in monsoon rainfall and circulation, which can be largely explained by the fast adjustments over land north of 20∘N. This fast response occurs before changes in sea surface temperature (SST), largely driven by aerosol-cloud interactions. However, aerosol-induced SST feedbacks (slow response) cause substantial changes in the monsoon meridional circulation over the oceanic regions. Both the land-ocean asymmetry and meridional temperature gradient are key factors in determining the overall monsoon circulation response.
Olson, Kayla M; Augeri, Amanda L; Seip, Richard L; Tsongalis, Gregory J; Thompson, Paul D; Pescatello, Linda S
2012-05-01
An elevated systolic blood pressure (SBP) response to a graded maximal exercise stress test (GEST) may be a predictor of endothelial dysfunction and hypertension. We examined relationships among the GEST peak SBP response and indicators of endothelial function. Men (n=48, 43.7±1.4 yr) with high BP (145.1±1.5/85.5±1.1 mmHg) completed a GEST. Peak SBP was the highest SBP achieved during the GEST. Blood samples were taken for fasting glucose and insulin, nitric oxide (NO), and DNA. Endothelial nitric oxide synthase (NOS3, rs2070744) -786 T>C genotyping was determined by PCR. NOS3 genotypes were combined using a dominant model [TT (n=24); TC/CC (n=24)]. Brachial artery reactivity (BAR) was determined via ultrasound before, 1 min, and 3 min post occlusion and calculated as % change. Analysis of variance (ANOVA) tested changes in the peak SBP GEST response by NOS3 genotype. Multiple variable regression analyses examined relationships among the GEST peak SBP response and measures of endothelial function. %BAR change at 1 min (r(2)=0.093, p=0.020), glucose (r(2)=0.062, p=0.014), NOS3 -786 T>C (r(2)=0.040, p=0.024), NO (r(2)=0.037, p=0.064), and age (r(2)=0.009, p=0.014) explained 24.1% of the GEST peak SBP response (p=0.043). The GEST peak SBP change from baseline was 11.1±5.0 mmHg higher among those with the NOS3 C allele (92.4 mmHg+3.8) than the NOS3 TT genotype (81.3 mmHg+3.2) (p=0.03). Indicators of endothelial function appear to explain a clinically significant portion of the GEST peak SBP response. Further investigation is needed to unravel the mechanisms by which endothelial function influences the GEST peak SBP response. Published by Elsevier Ireland Ltd.
Matsumoto, N.; Roeloffs, E.A.
2003-01-01
28 coseismic groundwater level decreases have been observed at the Haibara well, Shizuoka prefecture, central Japan, from 1981 to 1997. These groundwater level changes cannot be explained as the poroelastic response to coseismic static strain. We use the atmospheric pressure and tidal responses of the well, rock properties measured on core samples from the same formation and pumping test results to characterize the hydraulic and mechanical properties of the aquifer. The responses of the Haibara well to the M2 Earth tide constituent and to atmospheric pressure have varied over time. In particular, increasing amplitude and decreasing phase lags were observed after the 1993 pumping test, as well as after earthquakes that caused coseismic water level changes. The tidal response, together with the surface load efficiency derived from the atmospheric pressure response, is used to estimate the mechanical properties of the aquifer. The largest amplitude of the M2 constituent, 2.2 mm, is small enough to imply that pore fluid in this system is approximately twice as compressible as water, possibly due to the presence of a small amount of exsolved gas. Diffusion of a coseismic pressure drop near the well could account for the observed time histories of the water level changes. The time histories of the water level drops are well matched by the decay of a coseismic pressure drop at least 80 m away from the well. Removal of a small amount of gas from the formation in that location might in turn explain the coseismic pressure drops.
ERIC Educational Resources Information Center
Carmel, Sara; And Others
1996-01-01
In 4 kibbutzim, 43 adults over 60 completed a questionnaire on sun-exposure protective behaviors before and 2 weeks and 4 months after a skin cancer intervention. Beliefs about skin cancer did not change, but beliefs about the value of health and internal health locus of control changed significantly. (SK)
Liberal Education and the American Dream, 1920-1950: Educators' Responses to Changing Times.
ERIC Educational Resources Information Center
Guyotte, Roland L.
Changes between 1920 and 1950 in the American idea of going to college, from an aspiration into a right, are described. The interplay among educational leaders during this period illuminates many of their uncertainties and concerns. One element in the debate is the centrality of liberal education as a normative concept to explain and prescribe for…
Response to Elvira Panaiotidi, "The Nature of Paradigms and Paradigm Shifts in Music Education"
ERIC Educational Resources Information Center
Rodriguez, Carlos Xavier
2005-01-01
Elvira Panaiotidi has delivered a very useful and appealing paper on the topic of how the music education community decides it is time to change the way it thinks and acts. Her primary focus is whether the concept of "paradigms" proposed by Thomas Kuhn in The Structure of Scientific Revolutions reasonably explains how change occurs in…
Hampson, Karen M.; Chin, Sem Sem; Mallen, Edward A. H.
2010-01-01
Dynamic correction of monochromatic aberrations of the eye is known to affect the accommodation response to a step change in stimulus vergence. We used an adaptive optics system to determine how the temporal location of the correction affects the response. The system consists of a Shack-Hartmann sensor sampling at 20 Hz and a 37-actuator piezoelectric deformable mirror. An extra sensing channel allows for an independent measure of the accommodation level of the eye. The accommodation response of four subjects was measured during a +/− 0.5 D step change in stimulus vergence whilst aberrations were corrected at various time locations. We found that continued correction of aberrations after the step change decreased the gain for disaccommodation, but increased the gain for accommodation. These results could be explained based on the initial lag of accommodation to the stimulus and changes in the level of aberrations before and after the stimulus step change. Future considerations for investigations of the effect of monochromatic aberrations on the dynamic accommodation response are discussed. PMID:21258515
Favorable climate change response explains non-native species' success in Thoreau's woods.
Willis, Charles G; Ruhfel, Brad R; Primack, Richard B; Miller-Rushing, Abraham J; Losos, Jonathan B; Davis, Charles C
2010-01-26
Invasive species have tremendous detrimental ecological and economic impacts. Climate change may exacerbate species invasions across communities if non-native species are better able to respond to climate changes than native species. Recent evidence indicates that species that respond to climate change by adjusting their phenology (i.e., the timing of seasonal activities, such as flowering) have historically increased in abundance. The extent to which non-native species success is similarly linked to a favorable climate change response, however, remains untested. We analyzed a dataset initiated by the conservationist Henry David Thoreau that documents the long-term phenological response of native and non-native plant species over the last 150 years from Concord, Massachusetts (USA). Our results demonstrate that non-native species, and invasive species in particular, have been far better able to respond to recent climate change by adjusting their flowering time. This demonstrates that climate change has likely played, and may continue to play, an important role in facilitating non-native species naturalization and invasion at the community level.
Beckmann, Björn C; Purse, Bethan V; Roy, David B; Roy, Helen E; Sutton, Peter G; Thomas, Chris D
2015-01-01
There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results' robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms, but results need to be interpreted with caution and may have limited predictive power.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.
Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold
2008-06-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs
Jankord, Ryan; Ganjam, Venkataseshu K.; Turk, James R.; Hamilton, Marc T.; Laughlin, M. Harold
2009-01-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo–pituitary–adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16–20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals. PMID:18461098
Theoretical Commitment and Implicit Knowledge: Why Anomalies do not Trigger Learning
NASA Astrophysics Data System (ADS)
Ohlsson, Stellan
A theory consists of a mental model, laws that specify parameters of the model and one or more explanatory schemas. Models represent by being isomorphic to real systems. To explain an event is to reenact its genesis by executing the relevant model in the mind's eye. Schemas capture recurring structural features of explanations. To subscribe to a theory is to be committed to explaining a particular class of events with that theory (and nothing else). Given theoretical commitment, an anomaly, i.e., an event that cannot be explained, is an occasion for theory change, but in the absence of commitment, the response is instead to exclude the anomalous event from the domain of application of the theory. Lay people and children hold their theories implicitly and hence without commitment. These observations imply that the analogy between scientist's theories and children's knowledge is valid, but that the analogy between theory change and learning is not.
Forest Owners' Response to Climate Change: University Education Trumps Value Profile.
Blennow, Kristina; Persson, Johannes; Persson, Erik; Hanewinkel, Marc
2016-01-01
Do forest owners' levels of education or value profiles explain their responses to climate change? The cultural cognition thesis (CCT) has cast serious doubt on the familiar and often criticized "knowledge deficit" model, which says that laypeople are less concerned about climate change because they lack scientific knowledge. Advocates of CCT maintain that citizens with the highest degrees of scientific literacy and numeracy are not the most concerned about climate change. Rather, this is the group in which cultural polarization is greatest, and thus individuals with more limited scientific literacy and numeracy are more concerned about climate change under certain circumstances than those with higher scientific literacy and numeracy. The CCT predicts that cultural and other values will trump the positive effects of education on some forest owners' attitudes to climate change. Here, using survey data collected in 2010 from 766 private forest owners in Sweden and Germany, we provide the first evidence that perceptions of climate change risk are uncorrelated with, or sometimes positively correlated with, education level and can be explained without reference to cultural or other values. We conclude that the recent claim that advanced scientific literacy and numeracy polarizes perceptions of climate change risk is unsupported by the forest owner data. In neither of the two countries was university education found to reduce the perception of risk from climate change. Indeed in most cases university education increased the perception of risk. Even more importantly, the effect of university education was not dependent on the individuals' value profile.
Student Attendance Accounting Manual.
ERIC Educational Resources Information Center
Freitas, Joseph M.
In response to state legislation authorizing procedures for changes in academic calendars and measurement of student workload in California community colleges, this manual from the Chancellor's Office provides guidelines for student attendance accounting. Chapter 1 explains general items such as the academic calendar, admissions policies, student…
Monetary Incentives and Organizational Change in Mexican Higher Education
ERIC Educational Resources Information Center
Moreno, Carlos Ivan
2012-01-01
This dissertation explores and explains the organizational responses of Mexican public state universities to an ambitious incentive-based policy created by the federal government in 2001: "The Integral Program for Institutional Strengthening" ("PIFI"). Drawing upon literature on organizational-environmental relationships and on…
Progress, decline, and the public uptake of climate science.
Rudiak-Gould, Peter
2014-02-01
Previous research has sought to explain public perception of climate change science in terms of individuals' "prior commitment" to such ideological stances as just-world belief, system justification, and liberalism/conservatism. One type of prior commitment that has received little formal attention in the literature is narratives of the moral trajectory of society. A theory of climate science uptake based on beliefs in societal progress or decline is more easily portable to non-Western settings; in a case study of global warming attitudes in the Marshall Islands, trajectory narratives indeed account for public belief, concern, blame, and response more aptly than existing theories, and accord well with qualitative analysis of Marshallese climate change discourse. In Western settings, progress/decline narratives may explain much of the variation in climate change attitudes previously accounted for by other ideological variables, promising a more penetrating explanation for the divergence of climate change attitudes within and between societies.
Neural basis of major depressive disorder: Beyond monoamine hypothesis.
Boku, Shuken; Nakagawa, Shin; Toda, Hiroyuki; Hishimoto, Akitoyo
2018-01-01
The monoamine hypothesis has been accepted as the most common hypothesis of major depressive disorder (MDD) for a long period because of its simplicity and understandability. Actually, most currently used antidepressants have been considered to act based on the monoamine hypothesis. However, an important problem of the monoamine hypothesis has been pointed out as follows: it fails to explain the latency of response to antidepressants. In addition, many patients with MDD have remained refractory to currently used antidepressants. Therefore, monoamine-alternate hypotheses are required to explain the latency of response to antidepressants. Such hypotheses have been expected to contribute to identifying hopeful new therapeutic targets for MDD. Past studies have revealed that the volume of the hippocampus is decreased in patients with MDD, which is likely caused by the failure of the hypothalamic-pituitary-adrenal axis and following elevation of glucocorticoids. Two hypotheses have been proposed to explain the volume of the hippocampus: (i) the neuroplasticity hypothesis; and (ii) the neurogenesis hypothesis. The neuroplasticity hypothesis explains how the hippocampal volume is decreased by the morphological changes of hippocampal neurons, such as the shortening length of dendrites and the decreased number and density of spines. The neurogenesis hypothesis explains how the hippocampal volume is decreased by the decrease of neurogenesis in the hippocampal dentate gyrus. These hypotheses are able to explain the latency of response to antidepressants. In this review, we first overview how the neuroplasticity and neurogenesis hypotheses have been developed. We then describe the details of these hypotheses. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.
Evolution and behavioural responses to human-induced rapid environmental change
Sih, Andrew; Ferrari, Maud C O; Harris, David J
2011-01-01
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work. PMID:25567979
Evolution and behavioural responses to human-induced rapid environmental change.
Sih, Andrew; Ferrari, Maud C O; Harris, David J
2011-03-01
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.
Responses of coral reef fishes to past climate changes are related to life-history traits.
Ottimofiore, Eduardo; Albouy, Camille; Leprieur, Fabien; Descombes, Patrice; Kulbicki, Michel; Mouillot, David; Parravicini, Valeriano; Pellissier, Loïc
2017-03-01
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species-specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.
A normalization model suggests that attention changes the weighting of inputs between visual areas
Cohen, Marlene R.
2017-01-01
Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501
A normalization model suggests that attention changes the weighting of inputs between visual areas.
Ruff, Douglas A; Cohen, Marlene R
2017-05-16
Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.
The role of storage dynamics in annual wheat prices
NASA Astrophysics Data System (ADS)
Schewe, Jacob; Otto, Christian; Frieler, Katja
2017-05-01
Identifying the drivers of global crop price fluctuations is essential for estimating the risks of unexpected weather-induced production shortfalls and for designing optimal response measures. Here we show that with a consistent representation of storage dynamics, a simple supply-demand model can explain most of the observed variations in wheat prices over the last 40 yr solely based on time series of annual production and long term demand trends. Even the most recent price peaks in 2007/08 and 2010/11 can be explained by additionally accounting for documented changes in countries’ trade policies and storage strategies, without the need for external drivers such as oil prices or speculation across different commodity or stock markets. This underlines the critical sensitivity of global prices to fluctuations in production. The consistent inclusion of storage into a dynamic supply-demand model closes an important gap when it comes to exploring potential responses to future crop yield variability under climate and land-use change.
The Role of Forcing and Internal Dynamics in explaining the 'Medieval Climate Anomaly'
NASA Technical Reports Server (NTRS)
Goossee, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Mann, Michael E.; Renssen, Hans; Shindell, Drew
2012-01-01
Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.
2017-01-01
Abstract The mammalian thalamocortical system generates intrinsic activity reflecting different states of excitability, arising from changes in the membrane potentials of underlying neuronal networks. Fluctuations between these states occur spontaneously, regularly, and frequently throughout awake periods and influence stimulus encoding, information processing, and neuronal and behavioral responses. Changes of pupil size have recently been identified as a reliable marker of underlying neuronal membrane potential and thus can encode associated network state changes in rodent cortex. This suggests that pupillometry, a ubiquitous measure of pupil dilation in cognitive neuroscience, could be used as an index for network state fluctuations also for human brain signals. Considering this variable may explain task-independent variance in neuronal and behavioral signals that were previously disregarded as noise. PMID:29379876
Massof, Robert W
2014-10-01
A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Placebo influences on dyskinesia in Parkinson's disease.
Goetz, Christopher G; Laska, Eugene; Hicking, Christine; Damier, Philippe; Müller, Thomas; Nutt, John; Warren Olanow, C; Rascol, Olivier; Russ, Hermann
2008-04-15
Clinical features that are prognostic indicators of placebo response among dyskinetic Parkinson's disease patients were determined. Placebo-associated improvements occur in Parkinsonism, but responses in dyskinesia have not been studied. Placebo data from two multicenter studies with identical design comparing sarizotan to placebo for treating dyskinesia were accessed. Sarizotan (2 mg/day) failed to improve dyskinesia compared with placebo, but both treatments improved dyskinesia compared with baseline. Stepwise regression identified baseline characteristics that influenced dyskinesia response to placebo, and these factors were entered into a logistic regression model to quantify their influence on placebo-related dyskinesia improvements and worsening. Because placebo-associated improvements in Parkinsonism have been attributed to heightened dopaminergic activity, we also examined the association between changes in Parkinsonism and dyskinesia. Four hundred eighty-four subjects received placebo treatment; 178 met criteria for placebo-associated dyskinesia improvement and 37 for dyskinesia worsening. Older age, lower baseline Parkinsonism score, and lower total daily levodopa doses were associated with placebo-associated improvement, whereas lower baseline dyskinesia score was associated with placebo-associated worsening. Placebo-associated dyskinesia changes were not correlated with Parkinsonism changes, and all effects in the sarizotan group were statistically explained by the placebo-effect regression model. Dyskinesias are affected by placebo treatment. The absence of correlation between placebo-induced changes in dyskinesia and Parkinsonism argues against a dopaminergic activation mechanism to explain placebo-associated improvements in dyskinesia. The magnitude and variance of placebo-related changes and the factors that influence them can be helpful in the design of future clinical trials of antidyskinetic agents. 2007 Movement Disorder Society
Placebo Influences on Dyskinesia in Parkinson's Disease
Goetz, Christopher G.; Laska, Eugene; Hicking, Christine; Damier, Philippe; Müller, Thomas; Nutt, John; Olanow, C. Warren; Rascol, Olivier; Russ, Hermann
2009-01-01
Clinical features that are prognostic indicators of placebo response among dyskinetic Parkinson's disease patients were determined. Placebo-associated improvements occur in Parkinsonism, but responses in dyskinesia have not been studied. Placebo data from two multicenter studies with identical design comparing sarizotan to placebo for treating dyskinesia were accessed. Sarizotan (2 mg/day) failed to improve dyskinesia compared with placebo, but both treatments improved dyskinesia compared with baseline. Stepwise regression identified baseline characteristics that influenced dyskinesia response to placebo, and these factors were entered into a logistic regression model to quantify their influence on placebo-related dyskinesia improvements and worsening. Because placebo-associated improvements in Parkinsonism have been attributed to heightened dopaminergic activity, we also examined the association between changes in Parkinsonism and dyskinesia. Four hundred eighty-four subjects received placebo treatment; 178 met criteria for placebo-associated dyskinesia improvement and 37 for dyskinesia worsening. Older age, lower baseline Parkinsonism score, and lower total daily levodopa doses were associated with placebo-associated improvement, whereas lower baseline dyskinesia score was associated with placebo-associated worsening. Placebo-associated dyskinesia changes were not correlated with Parkinsonism changes, and all effects in the sarizotan group were statistically explained by the placebo-effect regression model. Dyskinesias are affected by placebo treatment. The absence of correlation between placebo-induced changes in dyskinesia and Parkinsonism argues against a dopaminergic activation mechanism to explain placebo-associated improvements in dyskinesia. The magnitude and variance of placebo-related changes and the factors that influence them can be helpful in the design of future clinical trials of antidyskinetic agents. PMID:18175337
Attention-related changes in correlated neuronal activity arise from normalization mechanisms
Verhoef, Bram-Ernst; Maunsell, John H.R.
2017-01-01
Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943
The Intrinsic Temperature Sensitivity of Ecosystem Respiration as Explained by Thermodynamics
NASA Astrophysics Data System (ADS)
Woods, K. D.; Arcus, V. L.; Schipper, L. A.; Schwalm, C.
2016-12-01
Biological processes exhibit thermal optima; a range within which processes such as photosynthesis and respiration reach a maximum rate. The response of these processes to temperature is well observed in the field and lab experiments, but is poorly captured or explained by widely used Arrhenius equations and Q10 constants. Both Arrhenius and Q10-based explanations of respiration misleadingly project an exponential increase in rate with temperature and rely on concepts such as enzyme denaturation to explain decreases at higher temperatures. This explanation is problematic in that it ignores observed declines which are far below experimental observations of enzyme denaturation. Here, we present a novel theory which explains the intrinsic temperature dependence of plant, soil, and ecosystem respiration based on the thermodynamics of enzyme-catalysed reactions. MacroMolecular Rate Theory (MMRT) allows for the calculation of thermal optima for respiration and photosynthesis (an important input substrate for respiration), as well as for the calculation of the curvature of response which defines temperatures where changes in rates are maximal. To test this theory, we used the recently released FLUXNET2015 dataset which is comprised of 165 sites and 23 years of data. We accounted for the effect of water through partial correlation analysis and extracted the temperature signal of respiration and photosynthesis to fit MacroMolecular Rate Theory. Across ecosystems and biomes, photosynthesis and respiration rates maximized at 7-18oC and 15-27oC respectively. At 16-25oC, and 26-36oC rates photosynthesis and respiration declined. These points, and this method for explaining changes in these processes are important for understanding and predicting net ecosystem carbon gain or loss. They demonstrate temperatures where the sign and magnitude of carbon exchange undergoes important shifts, holding important implications for future carbon cycling.
Developmental Change in Social Responsibility during Adolescence: An Ecological Perspective
Wray-Lake, Laura; Syvertsen, Amy K.; Flanagan, Constance A.
2015-01-01
Social responsibility can be defined as a set of prosocial values representing personal commitments to contribute to community and society. Little is known about developmental change – and predictors of that change – in social responsibility during adolescence. The present study used an accelerated longitudinal research design to investigate the developmental trajectory of social responsibility values and ecological assets across family, school, community, and peer settings that predict these values. Data come from a three-year study of 3,683 U.S. adolescents enrolled in upper-level elementary, middle school, and high schools in rural, semi-urban, and urban communities. Social responsibility values significantly decreased from age 9 to 16 before leveling off in later adolescence. Family compassion messages and democratic climate, school solidarity, community connectedness, and trusted friendship positively predicted within-person change in adolescents’ social responsibility values. These findings held after accounting for other individual-level and demographic factors and provide support for the role of ecological assets in adolescents’ social responsibility development. In addition, fair society beliefs and volunteer experience had positive between- and within-person associations with social responsibility values. The manuscript discusses theoretical and practical implications of the conclusion that declines in ecological assets may partly explain age-related declines in social responsibility values. PMID:26619322
Developmental change in social responsibility during adolescence: An ecological perspective.
Wray-Lake, Laura; Syvertsen, Amy K; Flanagan, Constance A
2016-01-01
Social responsibility can be defined as a set of prosocial values representing personal commitments to contribute to community and society. Little is known about developmental change-and predictors of that change-in social responsibility during adolescence. The present study used an accelerated longitudinal research design to investigate the developmental trajectory of social responsibility values and ecological assets across family, school, community, and peer settings that predict these values. Data come from a 3-year study of 3,683 U.S. adolescents enrolled in upper-level elementary, middle, and high schools in rural, semiurban, and urban communities. Social responsibility values significantly decreased from age 9 to 16 before leveling off in later adolescence. Family compassion messages and democratic climate, school solidarity, community connectedness, and trusted friendship, positively predicted within-person change in adolescents' social responsibility values. These findings held after accounting for other individual-level and demographic factors and provide support for the role of ecological assets in adolescents' social responsibility development. In addition, fair society beliefs and volunteer experience had positive between- and within-person associations with social responsibility values. The manuscript discusses theoretical and practical implications of the conclusion that declines in ecological assets may partly explain age-related declines in social responsibility values. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
The Nature of Prejudice Revisited: Implications for Counseling Intervention.
ERIC Educational Resources Information Center
Ponterotto, Joseph G.
1991-01-01
Presents perspective on prejudice and counseling's role in prejudice prevention. Documents increasing race-based intergroup conflict; explaining conflict vis-a-vis racial identity theory, rapidly changing demographics, and Flight or Fight Response Theory of Racial Stress. Presents developmentally based interventions across elementary, high school,…
John M. Frank; William J. Massman; Brent E. Ewers; Laurie S. Huckaby; Jose F. Negron
2014-01-01
Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of...
Sex and race differences in young people's responsiveness to price and tobacco control policies
Chaloupka, F.; Pacula, R. L.
1999-01-01
OBJECTIVE—To determine if there are differences in young people's responsiveness to price and tobacco control policies for population subgroups and to examine whether or not these differences, if they exist, can explain sex and racial differences in trends in the prevalence of smoking in young people in the United States. DESIGN—Use cross-sectional and intertemporal variation in local and state tobacco control policies and prices to calculate demand responses to these policies using regression analysis techniques. SUBJECTS—A nationally representative sample of American eighth grade (ages 13-14 years), 10th grade (15-16 years) and 12th grade (17-18 years) students obtained from the 1992-1994 Monitoring the Future surveys. MAIN OUTCOME MEASURE—Thirty-day smoking prevalence. RESULTS—Young men are much more responsive to changes in the price of cigarettes than young women. The prevalence elasticity for young men is almost twice as large as that for young women. Smoking rates of young black men are significantly more responsive to changes in price than young white men. Significant differences in responsiveness to particular tobacco control policies also exist. These differences, however, explain relatively little of the differences in smoking prevalence among young population subgroups. CONCLUSIONS—Policymakers need to keep in mind that there is not a "one-size fits all" strategy for discouraging smoking among young people. Keywords: adolescents; tobacco control policies; price; sex differences; racial differences PMID:10629242
Dynamic accommodation responses following adaptation to defocus.
Cufflin, Matthew P; Mallen, Edward A H
2008-10-01
Adaptation to defocus is known to influence the subjective sensitivity to blur in both emmetropes and myopes. Blur is a major contributing factor in the closed-loop dynamic accommodation response. Previous investigations have examined the magnitude of the accommodation response following blur adaptation. We have investigated whether a period of blur adaptation influences the dynamic accommodation response to step and sinusoidal changes in target vergence. Eighteen subjects (six emmetropes, six early onset myopes, and six late onset myopes) underwent 30 min of adaptation to 0.00 D (control), +1.00 D or +3.00 D myopic defocus. Following this adaptation period, accommodation responses to a 2.00 D step change and 2.00 D sinusoidal change (0.2 Hz) in target vergence were recorded continuously using an autorefractor. Adaptation to defocus failed to influence accommodation latency times, but did influence response times to a step change in target vergence. Adaptation to both +1.00 and +3.00 D induced significant increases in response times (p = 0.002 and p = 0.012, respectively) and adaptation to +3.00 D increased the change in accommodation response magnitude (p = 0.014) for a 2.00 D step change in demand. Blur adaptation also significantly increased the peak-to-peak phase lag for accommodation responses to a sinusoidally oscillating target, although failed to influence the accommodation gain. These changes in accommodative response were equivalent across all refractive groups. Adaptation to a degraded stimulus causes an increased level of accommodation for dynamic targets moving towards an observer and increases response times and phase lags. It is suggested that the contrast constancy theory may explain these changes in dynamic behavior.
Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.
2016-01-01
Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213
Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.
Meeks, M K; Han, S; Tucker, A L; Rembold, C M
2008-01-01
Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.
Forest Owners' Response to Climate Change: University Education Trumps Value Profile
Persson, Erik; Hanewinkel, Marc
2016-01-01
Do forest owners’ levels of education or value profiles explain their responses to climate change? The cultural cognition thesis (CCT) has cast serious doubt on the familiar and often criticized "knowledge deficit" model, which says that laypeople are less concerned about climate change because they lack scientific knowledge. Advocates of CCT maintain that citizens with the highest degrees of scientific literacy and numeracy are not the most concerned about climate change. Rather, this is the group in which cultural polarization is greatest, and thus individuals with more limited scientific literacy and numeracy are more concerned about climate change under certain circumstances than those with higher scientific literacy and numeracy. The CCT predicts that cultural and other values will trump the positive effects of education on some forest owners' attitudes to climate change. Here, using survey data collected in 2010 from 766 private forest owners in Sweden and Germany, we provide the first evidence that perceptions of climate change risk are uncorrelated with, or sometimes positively correlated with, education level and can be explained without reference to cultural or other values. We conclude that the recent claim that advanced scientific literacy and numeracy polarizes perceptions of climate change risk is unsupported by the forest owner data. In neither of the two countries was university education found to reduce the perception of risk from climate change. Indeed in most cases university education increased the perception of risk. Even more importantly, the effect of university education was not dependent on the individuals' value profile. PMID:27223473
Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi
2015-06-01
Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Other fact sheets discuss the different types of information that are useful in explaining to property owners the importance of taking personal responsibility for fuels management on their land. However, for some property owners, new information is not enough-they may need more information in order to understand that change is necessary. This fact sheet discusses ways...
Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.
2014-01-01
Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. PMID:24466253
Climate change effects on soil microarthropod abundance and community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J
2011-01-01
Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but notmore » in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil microarthropod abundance and community composition may have important impacts on ecosystem functions, such as decomposition, under future climatic change.« less
Observations on Agricultural Policy, Policy Reform and Public Policy Education.
ERIC Educational Resources Information Center
Lee, John E., Jr.
The intervention of the United States government in agriculture in the 20th century is an explainable response to basic characteristics of agriculture: unpredictability, immobile resources, technological changes and disproportionate supply and demand factors. The concentration of large benefits among relatively few producers and diffusion of costs…
Restorative Justice: A Changing Community Response
ERIC Educational Resources Information Center
Ryan, Thomas G.; Ruddy, Sean
2015-01-01
Our purpose herein is to demonstrate how restorative justice continues to unfold globally and we explain how the use of a restorative justice ideology and intervention leads to a common alternative, not only in criminal justice institutions, but also within social agencies, such as elementary schools, and the related social support systems. We…
Rapid Penumbra and Lorentz Force Changes in an X1.0 Solar Flare
NASA Astrophysics Data System (ADS)
Xu, Zhe; Jiang, Yunchun; Yang, Jiayang; Yang, Bo; Bi, Yi
2016-03-01
We present observations of the violent changes in photospheric magnetic structures associated with an X1.1 flare, which occurred in a compact δ-configuration region in the following part of AR 11890 on 2013 November 8. In both central and peripheral penumbra regions of the small δ sunspot, these changes took place abruptly and permanently in the reverse direction during the flare: the inner/outer penumbra darkened/disappeared, where the magnetic fields became more horizontal/vertical. Particularly, the Lorentz force (LF) changes in the central/peripheral region had a downward/upward and inward direction, meaning that the local pressure from the upper atmosphere was enhanced/released. It indicates that the LF changes might be responsible for the penumbra changes. These observations can be well explained as the photospheric response to the coronal field reconstruction within the framework of the magnetic implosion theory and the back reaction model of flares.
Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments
Seaton, Daniel D; Krishnan, J
2016-01-01
Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131
Hygiene hypothesis and prevalence of glomerulonephritis.
Hurtado, Abdias; Johnson, Richard J
2005-08-01
The hygiene hypothesis was proposed to explain the marked increase in allergies that has been observed in industrialized (Westernized) societies. This hypothesis proposes that early and frequent exposure to bacterial and other antigens, such as is common in developing nations, leads to a normal Th1 response, but that better public hygiene and less infections observed in industrialized nations may lead to persistence of the Th2 phenotype and thereby increase our risk for developing allergies. Infection early in life with measles or hepatitis A virus, immunization with bacille Calmette-Guérin, certain gastrointestinal bacteria (lactobacillus), and environmental endotoxin exposure may protect individuals from developing allergy in adulthood. Paradoxically, infestation by parasites stimulates a Th2-cell response; however, the incidence of allergic disease is very low, perhaps due to the stimulation of T-regulatory lymphocytes that can downregulate Th1 and Th2 responses. Some types of human glomerulonephritis (GN) have Th1-predominant immune responses, including crescentic and membranoproliferative GN, whereas other types of GN have a predominant Th2 immune response, including membranous nephropathy, minimal change disease, and immunoglobulin A nephropathy. A review of the prevalence of specific GN shows that the higher prevalence of membranoproliferative GN in developing countries and the higher frequency of immunoglobulin A nephropathy and minimal change disease in industrialized countries could be explained by the hygiene hypothesis. We suggest that studies examining Th1/Th2 balance, particularly as it develops in childhood, should be performed to determine if early polarization of the immune response is responsible for the later development of specific forms of GN.
Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology
NASA Astrophysics Data System (ADS)
Olsen, Kirk N.
Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.
Iler, Amy M; Høye, Toke T; Inouye, David W; Schmidt, Niels M
2013-08-19
Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974-2011) and Zackenberg, Greenland (1996-2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.
Xue, Haili; Tang, Haiping
2018-01-01
Studying the responses of soil respiration ( R s ) to soil management changes is critical for enhancing our understanding of the global carbon cycle and has practical implications for grassland management. Therefore, the objectives of this study were (1) quantify daily and seasonal patterns of R s , (2) evaluate the influence of abiotic factors on R s , and (3) detect the effects of soil management changes on R s . We hypothesized that (1) most of daily and seasonal variation in R s could be explained by soil temperature ( T s ) and soil water content ( S w ), (2) soil management changes could significantly affect R s , and (3) soil management changes affected R s via the significant change in abiotic and biotic factors. In situ R s values were monitored in an agropastoral ecotone in Inner Mongolia, China, during the growing seasons in 2009 (August to October) and 2010 (May to October). The soil management changes sequences included free grazing grassland (FG), cropland (CL), grazing enclosure grassland (GE), and abandoned cultivated grassland (AC). During the growing season in 2010, cumulative R s for FG, CL, GE, and AC averaged 265.97, 344.74, 236.70, and 226.42 gC m -2 year -1 , respectively. The T s and S w significantly influenced R s and explained 66%-86% of the variability in daily R s . Monthly mean temperature and precipitation explained 78%-96% of the variability in monthly R s . The results clearly showed that R s was increased by 29% with the conversion of FG to CL and decreased by 35% and 11% with the conversion of CL to AC and FG to GE. The factors impacting the change in R s under different soil management changes sequences varied. Our results confirm the tested hypotheses. The increase in Q 1 0 and litter biomass induced by conversion of FG to GE could lead to increased R s if the climate warming. We suggest that after proper natural restoration period, grasslands should be utilized properly to decrease R s .
van Rooij, D; Hoekstra, P J; Bralten, J; Hakobjan, M; Oosterlaan, J; Franke, B; Rommelse, N; Buitelaar, J K; Hartman, C A
2015-11-01
Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms in two dopamine-related genes, the catechol-O-methyltransferase gene (COMT) and the dopamine transporter gene (SLC6A3 or DAT1), with the neural and behavioural correlates of response inhibition. Behavioural and neural measures of response inhibition were obtained in 185 adolescents with ADHD, 111 of their unaffected siblings and 124 healthy controls (mean age 16.9 years). We investigated the association of DAT1 and COMT variants on task performance and whole-brain neural activation during response inhibition in a hypothesis-free manner. Additionally, we attempted to explain variance in previously found ADHD effects on neural activation during response inhibition using these DAT1 and COMT polymorphisms. The whole-brain analyses demonstrated large-scale neural activation changes in the medial and lateral prefrontal, subcortical and parietal regions of the response inhibition network in relation to DAT1 and COMT polymorphisms. Although these neural activation changes were associated with different task performance measures, no relationship was found between DAT1 or COMT variants and ADHD, nor did variants in these genes explain variance in the effects of ADHD on neural activation. These results suggest that dopamine-related genes play a role in the neurobiology of response inhibition. The limited associations between gene polymorphisms and task performance further indicate the added value of neural measures in linking genetic factors and behavioural measures.
Wouters, E F; Polko, A H; Visser, B F
1989-01-01
The bronchodilating effect of 1 mg and 0.4 mg salbutamol on the impedance of the respiratory system was studied in 25 asthmatic subjects after histamine-induced bronchoconstriction. Histamine caused an increase of respiratory resistance (Rrs) at lower frequencies and a frequency dependence of Rrs. Respiratory reactance (Xrs) decreased at all frequencies after histamine challenge. These changes can be explained by peripheral airway obstruction. Impedance measurements performed 5 min after inhalation of 1 mg and 0.4 mg salbutamol showed a decrease of Rrs values at lower frequencies, a disappearance of the frequency dependence of Rrs, and a significant increase of Xrs values. No significant differences in absolute changes of Rrs and Xrs are observed between the salbutamol regimens. These changes after inhalation of salbutamol can be explained by supposing a predominant action on the peripheral airways.
A micromechanical model of rate and state friction: 2. Effect of shear and normal stress changes
NASA Astrophysics Data System (ADS)
Molinari, A.; Perfettini, H.
2017-04-01
In this paper we analyze the influence of shear and normal stress changes on frictional properties. This problem is fundamental as, for instance, sudden stress changes are naturally induced on active faults by nearby earthquakes. As any stress changes can be seen as resulting from a succession of infinitesimal stress steps, the role of sudden stress changes is crucial to our understanding of fault dynamics. Laboratory experiments carried out by Linker and Dieterich (1992) and Nagata et al. (2012), considering steps in normal and shear stress, respectively, show an instantaneous response of the state variable (a proxy for the evolution of contact surface in our model) to a sudden stress change. We interpret this response as being due to an (instantaneous) elastic response of the plastic and elastic contacts. We assume that the anelastic response of the plastic contacts is frozen during sudden stress changes. The contacts, which were driven by plasticity before the stress change, are elastically accommodated during the sudden variation of the load. On the contrary, when the loading is slowly varying, elastic deformation of plastic contacts can be neglected. Our model is able to explain the evolution law for the state variable reported by Linker and Dieterich (1992).
Salloum, R H; Sandridge, S; Patton, D J; Stillitano, G; Dawson, G; Niforatos, J; Santiago, L; Kaltenbach, J A
2016-01-01
In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.
Cho, Sun-Joo; Athay, Michele; Preacher, Kristopher J
2013-05-01
Even though many educational and psychological tests are known to be multidimensional, little research has been done to address how to measure individual differences in change within an item response theory framework. In this paper, we suggest a generalized explanatory longitudinal item response model to measure individual differences in change. New longitudinal models for multidimensional tests and existing models for unidimensional tests are presented within this framework and implemented with software developed for generalized linear models. In addition to the measurement of change, the longitudinal models we present can also be used to explain individual differences in change scores for person groups (e.g., learning disabled students versus non-learning disabled students) and to model differences in item difficulties across item groups (e.g., number operation, measurement, and representation item groups in a mathematics test). An empirical example illustrates the use of the various models for measuring individual differences in change when there are person groups and multiple skill domains which lead to multidimensionality at a time point. © 2012 The British Psychological Society.
Belda, Xavier; Rotllant, David; Fuentes, Silvia; Delgado, Raúl; Nadal, Roser; Armario, Antonio
2008-12-01
Exposure to some predominantly emotional (electric shock) and systemic (interleukin-1beta) stressors has been found to induce long-term sensitization of the hypothalamic-pituitary-adrenal (HPA) responsiveness to further superimposed stressors. Since exposure to immobilization on wooden boards (IMO) is a severe stressor and may have interest regarding putative animal models of post-traumatic stress disorders (PTSD), we have characterized long-lasting effects of a single exposure to IMO and other stressors on the HPA response to the same (homotypic) and to novel (heterotypic) stressors and the putative mechanisms involved. A single exposure to IMO caused a long-lasting reduction of peripheral and central responses of the HPA axis, likely to be mediated by some brain areas, such as the lateral septum and the medial amygdala. This desensitization is not explained by changes in negative glucocorticoid feedback, and, surprisingly, it is positively related to the intensity of the stressors. In contrast, the HPA response to heterotypic stressors (novel environments) was enhanced, with maximal sensitization on the day after IMO. Sensitization progressively vanished over the course of 1-2 weeks and was not modulated by IMO-induced corticosterone release. Moreover, it could not be explained by changes in the sensitivity of the HPA axis to fast or intermediate/delayed negative feedback, as evaluated 1 week after exposure to IMO, using shock as the heterotypic stressor. Long-lasting stress-induced behavioral changes reminiscent of enhanced anxiety and HPA sensitization are likely to be parallel but partially independent phenomena, the former being apparently not related to the intensity of stressors.
Schultz, Douglas H.; Balderston, Nicholas L.; Geiger, Jennifer A.; Helmstetter, Fred J.
2014-01-01
The nature of the relationship between explicit and implicit learning is a topic of considerable debate. In order to investigate this relationship we conducted two experiments on postconditioning revaluation of the unconditional stimulus (UCS) in human fear conditioning. In Experiment 1, the intensity of the UCS was decreased following acquisition for one group (devaluation) and held constant for another group (control). A subsequent test revealed that even though both groups exhibited similar levels of UCS expectancy, the devaluation group had significantly smaller conditional skin conductance responses. The devaluation effect was not explained by differences in the explicit estimates of UCS probability or explicit knowledge that the UCS intensity had changed. In Experiment 2, the value of the UCS was increased following acquisition for one group (inflation) and held constant for another group (control). Test performance revealed that UCS inflation did not alter expectancy ratings, but the inflation group exhibited larger learned skin conductance responses than the control group. The inflation effect was not explained by differences in the explicit estimates of UCS probability or explicit knowledge that the UCS intensity had changed. The SCR revaluation effect was not dependent on explicit memory processes in either experiment. In both experiments we found differences on an implicit measure of learning in the absence of changes in explicit measures. Together, the differences observed between expectancy measures and skin conductance support the idea that these responses might reflect different types of memory formed during the same training procedure and be supported by separate neural systems. PMID:23731073
Ferretti, Francesco; Osio, Giacomo C.; Jenkins, Chris J.; Rosenberg, Andrew A.; Lotze, Heike K.
2013-01-01
Sharks and rays' abundance can decline considerably with fishing. Community changes, however, are more complex because of species interactions, and variable vulnerability and exposure to fishing. We evaluated long-term changes in the elasmobranch community of the Adriatic Sea, a heavily exploited Mediterranean basin where top-predators have been strongly depleted historically, and fishing developed unevenly between the western and eastern side. Combining and standardizing catch data from five trawl surveys from 1948–2005, we estimated abundance trends and explained community changes using life histories, fish-market and effort data, and historical information. We identified a highly depleted elasmobranch community. Since 1948, catch rates have declined by >94% and 11 species ceased to be detected. The exploitation history and spatial gradients in fishing pressure explained most patterns in abundance and diversity, including the absence of strong compensatory increases. Ecological corridors and large-scale protected areas emerged as potential management options for elasmobranch conservation. PMID:23308344
Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...
2018-04-27
Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...
2017-11-30
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.
2018-05-01
Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.
2018-01-01
The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.
Idiosyncratic species effects confound size-based predictions of responses to climate change.
Twomey, Marion; Brodte, Eva; Jacob, Ute; Brose, Ulrich; Crowe, Tasman P; Emmerson, Mark C
2012-11-05
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
Petanović, Radmila; Kielkiewicz, Malgorzata
2010-07-01
This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite-plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.
Carriquí, Marc; Douthe, Cyril; Molins, Arántzazu; Flexas, Jaume
2018-05-10
Mesophyll conductance to CO 2 (g m ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine g m in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of g m to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO 2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of g m in response to variations of light and CO 2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO 2 , the values of g m estimated by chlorophyll fluorescence decreased under high CO 2 and increased at low CO 2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the g m estimated by analytical models based on anatomical parameters was constant under varying light and CO 2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast g m variations should be due to artifacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase). This article is protected by copyright. All rights reserved.
Venkataramani, PrasannaVenkhatesh; Gopal, Atul; Murthy, Aditya
2018-03-01
Although race models have been extensively used to study inhibitory control, the mechanisms that enable change of reach plans in the context of race models remain unexplored. We used a redirect task in which targets occasionally changed their locations to study the control of reaching movements during movement planning and execution phases. We tested nine different race model architectures that could explain the redirect behavior of reaching movements. We show that an independent GO-STOP-GO model that reflects a plan-abort-re-plan strategy involving non-interacting elements successfully explained the various behavioral measures such as the compensation function and the pattern of error response reaction times. By extending the same race model to the execution phase, we could explain the extent and the pattern of hypometric trials. Interestingly, the race model also provided evidence that redirecting a movement during planning and execution shared the same inhibitory mechanism. Taken together, this study demonstrates the applicability of an independent race model to understand the computational mechanisms underlying the control of reach movements. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model.
Farquhar, Graham D; Busch, Florian A
2017-04-01
Mitochondrial respiration often appears to be inhibited in the light when compared with measurements in the dark. This inhibition is inferred from the response of the net CO 2 assimilation rate (A) to absorbed irradiance (I), changing slope around the light compensation point (I c ). We suggest a model that provides a plausible mechanistic explanation of this 'Kok effect'. The model uses the mathematical description of photosynthesis developed by Farquhar, von Caemmerer and Berry; it involves no inhibition of respiration rate in the light. We also describe a fitting technique for quantifying the Kok effect at low I. Changes in the chloroplastic CO 2 partial pressure (C c ) can explain curvature of A vs I, its diminution in C 4 plants and at low oxygen concentrations or high carbon dioxide concentrations in C 3 plants, and effects of dark respiration rate and of temperature. It also explains the apparent inhibition of respiration in the light as inferred by the Laisk approach. While there are probably other sources of curvature in A vs I, variation in C c can largely explain the curvature at low irradiance, and suggests that interpretation of day respiration compared with dark respiration of leaves on the basis of the Kok effect needs reassessment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Old models explain new observations of butterfly movement at patch edges.
Crone, Elizabeth E; Schultz, Cheryl B
2008-07-01
Understanding movement in heterogeneous environments is central to predicting how landscape changes affect animal populations. Several recent studies point out an intriguing and distinctive looping behavior by butterflies at habitat patch edges and hypothesize that this behavior requires a new framework for analyzing animal movement. We show that this looping behavior could be caused by a longstanding movement model, biased correlated random walk, with bias toward habitat patches. The ability of this longstanding model to explain recent observations reinforces the point that butterflies respond to habitat heterogeneity and do not move randomly through heterogeneous environments. We discuss the implications of different movement models for predicting butterfly responses to landscape change, and our rationale for retaining longstanding movement models, rather than developing new modeling frameworks for looping behavior at patch edges.
ERIC Educational Resources Information Center
Stringfield, Sam
Current theorizing in education, as in industry, is largely devoted to explaining trial-and-error, failure-tolerant, low-reliability organizations. This article examines changing societal demands on education and argues that effective responses to those demands require new and different organizational structures. Schools must abandon industrial…
Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B
2014-10-01
The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Collins, S.
2010-07-01
Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.
NASA Astrophysics Data System (ADS)
Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.
2018-02-01
Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.
Hypothesis: conjugate vaccines may predispose children to autism spectrum disorders.
Richmand, Brian J
2011-12-01
The first conjugate vaccine was approved for use in the US in 1988 to protect infants and young children against the capsular bacteria Haemophilus influenzae type b (Hib). Since its introduction in the US, this vaccine has been approved in most developed countries, including Denmark and Israel where the vaccine was added to their national vaccine programs in 1993 and 1994, respectively. There have been marked increases in the reported prevalence of autism spectrum disorders (ASDs) among children in the US beginning with birth cohorts in the late 1980s and in Denmark and Israel starting approximately 4-5 years later. Although these increases may partly reflect ascertainment biases, an exogenous trigger could explain a significant portion of the reported increases in ASDs. It is hypothesized here that the introduction of the Hib conjugate vaccine in the US in 1988 and its subsequent introduction in Denmark and Israel could explain a substantial portion of the initial increases in ASDs in those countries. The continuation of the trend toward increased rates of ASDs could be further explained by increased usage of the vaccine, a change in 1990 in the recommended age of vaccination in the US from 15 to 2 months, increased immunogenicity of the vaccine through changes in its carrier protein, and the subsequent introduction of the conjugate vaccine for Streptococcus pneumoniae. Although conjugate vaccines have been highly effective in protecting infants and young children from the significant morbidity and mortality caused by Hib and S. pneumoniae, the potential effects of conjugate vaccines on neural development merit close examination. Conjugate vaccines fundamentally change the manner in which the immune systems of infants and young children function by deviating their immune responses to the targeted carbohydrate antigens from a state of hypo-responsiveness to a robust B2 B cell mediated response. This period of hypo-responsiveness to carbohydrate antigens coincides with the intense myelination process in infants and young children, and conjugate vaccines may have disrupted evolutionary forces that favored early brain development over the need to protect infants and young children from capsular bacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yalcin, Semra; Leroux, Shawn James
2018-04-14
Land-cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land-cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981-1985 and 2001-2005 are correlated with land-cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land-cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land-cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land-cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction. © 2018 John Wiley & Sons Ltd.
Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas
NASA Astrophysics Data System (ADS)
Case, M. F.; Staver, A. C.
2017-12-01
Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.
Response diversity of wild bees to overwintering temperatures.
Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja
2013-12-01
Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.
NASA Astrophysics Data System (ADS)
Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry
2017-01-01
Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.
Umbers, Kate D L
2011-09-01
Rapid, reversible colour change is unusual in animals, but is a feature of male chameleon grasshoppers (Kosciuscola tristis). Understanding what triggers this colour change is paramount to developing hypotheses explaining its evolutionary significance. In a series of manipulative experiments the author quantified the effects of temperature, and time of day, as well as internal body temperature, on the colour of male K. tristis. The results suggest that male chameleon grasshoppers change colour primarily in response to temperature and that the rate of colour change varies considerably, with the change from black to turquoise occurring up to 10 times faster than the reverse. Body temperature changed quickly (within 10min) in response to changes in ambient temperature, but colour change did not match this speed and thus colour is decoupled from internal temperature. This indicates that male colour change is driven primarily by ambient temperature but that their colour does not necessarily reflect current internal temperature. I propose several functional hypotheses for male colour change in K. tristis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Balotsky, Edward R
2005-01-01
The 1983 Tax Equity and Fiscal Responsibility Act (TEFRA) transformed acute care from a benevolent to malevolent environment. A dual-paradigm of resource dependency and institutional theories that balances isomorphic with economic variables has emerged to better explain hospital strategic response to the resultant constraint on resources than a traditional single paradigm approach. Using the population of non-rural, non-federal acute-care hospitals, strategic response from 1982 to 2001 is studied; distinct cost and service changes occur. Cost strategy is linked primarily to Medicare utilization, a resource dependence response. Service strategy favors high technology regardless of prospective payment diffusion, an institutional theory perspective. Strategic implications are discussed.
The relationship between interannual and long-term cloud feedbacks
Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; ...
2015-12-11
The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.
The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less
Adaptive responses reveal contemporary and future ecotypes in a desert shrub
Richardson, Bryce A.; Kitchen, Stanley G.; Pendleton, Rosemary L.; Pendleton, Burton K.; Germino, Matthew J.; Rehfeldt, Gerald E.; Meyer, Susan E.
2014-01-01
Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species–climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep clines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.
Adaptive responses reveal contemporary and future ecotypes in a desert shrub.
Richardson, Bryce A; Kitchen, Stanley G; Pendleton, Rosemary L; Pendleton, Burton K; Germino, Matthew J; Rehfeldt, Gerald E; Meyer, Susan E
2014-03-01
Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species-climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep dines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.
Gomez, Hernando; Ince, Can; De Backer, Daniel; Pickkers, Peter; Payen, Didier; Hotchkiss, John; Kellum, John A.
2014-01-01
Given that the leading clinical conditions associated with Acute kidney injury (AKI), namely, sepsis, major surgery, heart failure and hypovolemia, are all associated with shock, it is tempting to attribute all AKI to ischemia on the basis of macro-hemodynamic changes. However, an increasing body of evidence has suggested that in many patients, AKI can occur in the absence of overt signs of global renal hypoperfusion. Indeed, sepsis-induced AKI can occur in the setting of normal or even increased renal blood flow. Accordingly, renal injury may not be entirely explained solely on the basis of the classic paradigm of hypoperfusion, and thus other mechanisms must come into play. Herein, we put forward a “unifying theory” to explain the interplay between inflammation and oxidative stress, microvascular dysfunction, and the adaptive response of the tubular epithelial cell to the septic insult. We propose that this response is mostly adaptive in origin, that it is driven by mitochondria and that it ultimately results in and explains the clinical phenotype of sepsis induced AKI. PMID:24346647
CADETTI, L.; THORESON, W. B.; PICCOLINO, M.
2006-01-01
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to −40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors. PMID:15541900
Charman, Steve D; Wells, Gary L
2008-03-01
Real-world eyewitnesses are often asked whether their lineup responses were affected by various external influences, but it is unknown whether they can accurately answer these types of questions. The witness-report-of-influence mental-correction model is proposed to explain witnesses' reports of influence. Two experiments used a new paradigm (the actual/counterfactual paradigm) to examine eyewitnesses' abilities to report accurately on the influence of lineup manipulations. Eyewitnesses were administered either confirming feedback or no feedback (Experiment 1, n = 103), or a cautionary instruction or no cautionary instruction (Experiment 2, n = 114). Eyewitnesses then gave actual responses (retrospective confidence, view, and attention measures in Experiment 1; identification decision in Experiment 2) as well as counterfactual responses stating how they would have responded in the alternative condition. Results across both studies showed an asymmetric estimation of influence pattern: Eyewitnesses who received an influencing manipulation estimated significantly less of a change in their responses than eyewitnesses who did not receive an influencing manipulation. A 48-hr delay between actual and counterfactual responses did not moderate any effects. Results are explained by witnesses' implicit theories of influence. PsycINFO Database Record (c) 2008 APA, all rights reserved
Kumazawa, T; Nomura, T; Kurihara, K
1988-02-23
Various bitter substances were found to depolarize liposomes. The results obtained are as follows: (1) Changes in the membrane potential of azolectin liposomes in response to various bitter substances were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. All the bitter substances examined increased the fluorescence intensity of the liposome-dye suspension, which indicates that the substances depolarize the liposomes. There existed a good correlation between the minimum concentrations of the bitter substances to depolarize the liposomes and the taste thresholds in humans. (2) The effects of changed lipid composition of liposomes on the responses to various bitter substances vary greatly among bitter substances, suggesting that the receptor sites for bitter substances are multiple. The responses to N-C=S substances and sucrose octaacetate especially greatly depended on the lipid composition; these compounds depolarized only liposomes having certain lipid composition, while no or hyperpolarizing responses to these compounds were observed in other liposomes examined. This suggested that the difference in "taster" and "nontaster" for these substances can be explained in terms of difference in the lipid composition of taste receptor membranes. (3) It was confirmed that the membrane potential of the planar lipid bilayer is changed in response to bitter substances. The membrane potential changes in the planar lipid bilayer as well as in liposomes in response to the bitter substances occurred under the condition that there is no ion gradient across the membranes. These results suggested that the membrane potential changes in response to bitter substances stem from the phase boundary potential changes induced by adsorption of the substances on the hydrophobic region of the membranes.
Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent
2016-01-01
Space-for-time substitution-that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations-is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity.
Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent
2016-01-01
Background Space-for-time substitution—that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations—is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Hypothesis Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Methods Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. Results For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. Significance The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity. PMID:26959363
Your Rights: A Handbook for Native American Youth in Arizona.
ERIC Educational Resources Information Center
Dale, Michael; And Others
A handbook for Arizona Native Americans under 18 years old explains rights and responsibilities as young people, Native Americans, tribal members, and residents of Arizona. Rights are defined, ways of protecting rights outlined, and the fact that young people's rights are changing noted. Rights as a family member are discussed, as well as changes…
USDA-ARS?s Scientific Manuscript database
Trends in tree mortality have been linked to global scale environmental changes, such as extreme drought and heat stress, more frequent and intense fires, and increased episodic outbreaks of insects and pathogens. Finer scale studies have also focused on survival and mortality in response to physiol...
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi
2016-04-01
Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.
Personalities influence spatial responses to environmental fluctuations in wild fish.
Villegas-Ríos, David; Réale, Denis; Freitas, Carla; Moland, Even; Olsen, Esben M
2018-06-11
1.Although growing evidence supports the idea that animal personality can explain plasticity in response to changes in the social environment, it remains to be tested whether it can explain spatial responses of individuals in the face of natural environmental fluctuations. This is a major challenge in ecology and evolution as spatial dynamics link individual- and population-level processes. 2.In this study we investigated the potential of individual personalities to predict differences in fish behaviour in the wild. Specifically, our goal was to answer if individual differences in plasticity of space use to sea surface temperature could be explained by differences in personality along the reactive-proactive axis. 3.To address this question we first conducted repeated standard laboratory assays (i.e. open-field test, novel object test and mirror-stimulation test) to assess the personality type of 76 wild-caught Atlantic cod (Gadus morhua). Next, we released the fish back into the sea and monitored their spatial behaviour over large temporal (16 months) and spatial (a whole fjord) scales, using high-resolution acoustic tracking. 4. We demonstrate that 1) cod personality traits are structured into a proactive-reactive syndrome (proactive fish being more bold, exploratory and aggressive), 2) mean depth use of individuals is mainly driven by sea temperature and 3) personality is a significant predictor of home range changes in the wild, where reactive, but not proactive, individuals reduced their home range as sea temperature increased. 5. These findings expand our understanding of the ecological consequences of animal personality and the mechanisms shaping spatial dynamics of animals in nature. This article is protected by copyright. All rights reserved. © 2018 The Authors Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.
2014-01-01
Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low vulnerabilities), and was amplified when environmental production was increased. When standardized to mean changes in biomass within each scenario, scenarios when vulnerabilities were low and when fishing mortality was increased explained the most variation in biomass. Our findings suggested that approaches to balancing Ecopath models have relatively little effect on changes in biomass over time, especially when compared to assumptions about how mortality rates of prey change in response to changes in predator biomass. We concluded that when constructing food-web models using EwE, determining the effect of changes in predator biomass on mortality rates of prey should be prioritized over determining the best way to balance the model.
Fault Zone Permeability Decrease Following Large Earthquakes in a Hydrothermal System
NASA Astrophysics Data System (ADS)
Shi, Zheming; Zhang, Shouchuan; Yan, Rui; Wang, Guangcai
2018-02-01
Seismic wave shaking-induced permeability enhancement in the shallow crust has been widely observed. Permeability decrease, however, is seldom reported. In this study, we document coseismic discharge and temperature decrease in a hot spring following the 1996 Lijiang Mw 7.0 and the 2004 Mw 9.0 earthquakes in the Balazhang geothermal field. We use three different models to constrain the permeability change and the mechanism of coseismic discharge decrease, and we use an end-member mixing model for the coseismic temperature change. Our results show that the earthquake-induced permeability decrease in the fault zone reduced the recharge from deep hot water, which may be the mechanism that explains the coseismic discharge and temperature responses. The changes in the hot spring response reflect the dynamic changes in the hydrothermal system; in the future, the earthquake-induced permeability decrease should be considered when discussing controls on permeability.
Learning a Nonmediated Route for Response Selection in Task Switching
Schneider, Darryl W.; Logan, Gordon D.
2015-01-01
Two modes of response selection—a mediated route involving categorization and a nonmediated route involving instance-based memory retrieval—have been proposed to explain response congruency effects in task-switching situations. In the present study, we sought a better understanding of the development and characteristics of the nonmediated route. In two experiments involving training and transfer phases, we investigated practice effects at the level of individual target presentations, transfer effects associated with changing category–response mappings, target-specific effects from comparisons of old and new targets during transfer, and the percentage of early responses associated with task-nonspecific response selection (the target preceded the task cue on every trial). The training results suggested that the nonmediated route is quickly learned in the context of target–cue order and becomes increasingly involved in response selection with practice. The transfer results suggested that the target–response instances underlying the nonmediated route involve abstract response labels coding response congruency that can be rapidly remapped to alternative responses but not rewritten when category–response mappings change after practice. Implications for understanding the nonmediated route and its relationship with the mediated route are discussed. PMID:25663003
A revision of existing Karolinska Sleepiness Scale responses to light: A melanopic perspective.
Hommes, Vanja; Giménez, Marina C
2015-01-01
A new photometric measure of light intensity that takes into account the relatively large contribution of the ipRGCs to the non-image forming (NIF) system was recently proposed. We set out to revise publications reporting on alertness scores as measured by the Karolinska Sleepiness Scale (KSS) under different light conditions in order to assess the extendibility of the equivalent-melanopic function to NIF responses in humans. The KSS response (-Δ KSS) to the different light conditions used on previous studies, preferably including a comparison to a dim light condition, was assessed. Based on the light descriptions of the different studies, the equivalent melanopic lux (m-illuminance) was calculated. The -Δ KSS was plotted against photopic-illuminance and m-illuminance, and fitted to a sigmoidal function already shown to described KSS responses to different light intensities. The root mean-squared error and r(2) were used as criteria to explain the best-describing light unit measurement. Studies that compared only the influence of light under otherwise same conditions and in which participants were not totally sleep deprived were included. Our results show that the effects of light on KSS are better explained by a melanopic unit measurement than by photopic lux. The present analysis allowed for the construction of a melanopic alertness response curve. This curve needs to be validated with appropriate designs. Nonetheless, it may serve as starting point for the development of hypothesis of predictions on the relative changes in KSS under a given condition due to changes in light properties.
Pauw, Anton; Kahnt, Belinda; Kuhlmann, Michael; Michez, Denis; Montgomery, Graham A; Murray, Elizabeth; Danforth, Bryan N
2017-09-13
Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant-pollinator coevolution. © 2017 The Author(s).
Influence of Inflammation on Poststroke Plasticity
Kossut, Malgorzata
2013-01-01
Age-related brain injuries including stroke are a leading cause of morbidity and mental disability worldwide. Most patients who survive stroke experience some degree of recovery. The restoration of lost functions can be explained by neuronal plasticity, understood as brain ability to reorganize and remodel itself in response to changed environmental requirements. However, stroke triggers a cascade of events which may prevent the normal development of the plastic changes. One of them may be inflammatory response initiated immediately after stroke, which has been found to contribute to neuronal injury. Some recent evidence though has suggested that inflammatory reaction can be also neuroprotective. This paper attempts to discuss the influence of poststroke inflammatory response on brain plasticity and stroke outcome. We also describe the recent anti-inflammatory strategies that have been effective for recovery in experimental stroke. PMID:23533818
NASA Astrophysics Data System (ADS)
Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong
2016-03-01
Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.
Climate warming and land-use changes drive broad-scale floristic changes in Southern Sweden.
Tyler, Torbjörn; Herbertsson, Lina; Olsson, Pål Axel; Fröberg, Lars; Olsson, Kjell-Arne; Svensson, Åke; Olsson, Ola
2018-06-01
Land-use changes, pollution and climate warming during the 20th century have caused changes in biodiversity across the world. However, in many cases, the environmental drivers are poorly understood. To identify and rank the drivers currently causing broad-scale floristic changes in N Europe, we analysed data from two vascular plant surveys of 200 randomly selected 2.5 × 2.5 km grid-squares in Scania, southernmost Sweden, conducted 1989-2006 and 2008-2015, respectively, and related the change in frequency (performance) of the species to a wide range of species-specific plant traits. We chose traits representing all plausible drivers of recent floristic changes: climatic change (northern distribution limit, flowering time), land-use change (light requirement, response to grazing/mowing, response to soil disturbance), drainage (water requirement), acidification (pH optimum), nitrogen deposition and eutrophication (N requirement, N fixation ability, carnivory, parasitism, mycorrhizal associations), pollinator decline (mode of reproduction) and changes in CO 2 levels (photosynthetic pathway). Our results suggest that climate warming and changes in land-use were the main drivers of changes in the flora during the last decades. Climate warming appeared as the most influential driver, with northern distribution limit explaining 30%-60% of the variance in the GLMM models. However, the relative importance of the drivers differed among habitat types, with grassland species being affected the most by cessation of grazing/mowing and species of ruderal habitats by on-going concentration of both agriculture and human population to the most productive soils. For wetland species, only pH optimum was significantly related to species performance, possibly an effect of the increasing humification of acidic water bodies. An observed relative decline of mycorrhizal species may possibly be explained by decreasing nitrogen deposition resulting in less competition for phosphorus. We found no effect of shortage or decline of pollinating lepidopterans and bees. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
White, Warren B.; Cayan, Daniel R.; Lean, Judith
1998-09-01
We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.
Climate Change, Health, and Communication: A Primer.
Chadwick, Amy E
2016-01-01
Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.
Coleman, Jonathan R. I.; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L.; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Silverman, Wendy K.; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H.; Eley, Thalia C.
2016-01-01
Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re‐emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre‐ and post‐treatment and during the follow‐up period in the full sample and a subset with fear‐based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow‐up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear‐based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:27346075
Litter quality versus soil microbial community controls over decomposition: a quantitative analysis
Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.
2014-01-01
The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.
Whitaker, Jeanette; Ostle, Nicholas; Nottingham, Andrew T; Ccahuana, Adan; Salinas, Norma; Bardgett, Richard D; Meir, Patrick; McNamara, Niall P; Austin, Amy
2014-01-01
1. The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil-derived CO2 released to the atmosphere. 2. We studied tropical lowland, premontane and montane forest soils taken from along a 3200-m elevation gradient located in south-east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C-cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). 3. Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. 4. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram-positive relative to gram-negative bacteria explaining much of the model variance. 5. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate change on soil, these results challenge the assumption that different soil microbial communities will be ‘functionally equivalent’ as climate change progresses, and they emphasize the need for better ecological metrics of soil microbial communities to help predict C cycle responses to climate change in tropical biomes. PMID:25520527
Landrum, Peter F.; Fisher, Susan W.; Hwang, Haejo; Hickey, James P.
1999-01-01
Toxicities of ten organophosphorus (OP) insecticides were measured against midge larvae (Chironomus riparius) under varying temperature (11, 18, and 25°C) and pH (6, 7, and 8) conditions and with and without sediment. Toxicity usually increased with increasing temperature and was greater in the absence of sediment. No trend was found with varying pH. A series of unidimensional parameters and multidimensional models were used to describe the changes in toxicity. Log Kow was able to explain about 40–60% of the variability in response data for aqueous exposures while molecular volume and aqueous solubility were less predictive. Likewise, the linear solvation energy relationship (LSER) model only explained 40–70% of the response variability, suggesting that factors other than solubility were most important for producing the observed response. Molecular connectivity was the most useful for describing the variability in the response. In the absence of sediment, 1χv and 3κ were best able to describe the variation in response among all compounds at each pH (70–90%). In the presence of sediment, even molecular connectivity could not describe the variability until the partitioning potential to sediment was accounted for by assuming equilibrium partitioning. After correcting for partitioning, the same molecular connectivity terms as in the aqueous exposures described most of the variability, 61–87%, except for the 11°C data where correlations were not significant. Molecular connectivity was a better tool than LSER or the unidimensional variables to explain the steric fitness of OP insecticides which was crucial to the toxicity.
Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images
Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049
Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.
Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.
Chen, Sheng-Hung; Lai, Hsueh-Chou; Chiang, I-Ping; Su, Wen-Pang; Lin, Chia-Hsin; Kao, Jung-Ta; Chuang, Po-Heng; Hsu, Wei-Fan; Wang, Hung-Wei; Chen, Hung-Yao; Huang, Guan-Tarn; Peng, Cheng-Yuan
2018-01-01
To compare on-treatment and off-treatment parameters acquired using acoustic radiation force impulse elastography, the Fibrosis-4 (FIB-4) index, and aspartate aminotransferase-to-platelet ratio index (APRI) in patients with chronic hepatitis C (CHC). Patients received therapies based on pegylated interferon or direct-acting antiviral agents. The changes in paired patient parameters, including liver stiffness (LS) values, the FIB-4 index, and APRI, from baseline to sustained virologic response (SVR) visit (24 weeks after the end of treatment) were compared. Multiple regression models were used to identify significant factors that explained the correlations with LS, FIB-4, and APRI values and SVR. A total of 256 patients were included, of which 219 (85.5%) achieved SVR. The paired LS values declined significantly from baseline to SVR visit in all groups and subgroups except the nonresponder subgroup (n = 10). Body mass index (P = 0.0062) and baseline LS (P < 0.0001) were identified as independent factors that explained the LS declines. Likewise, the baseline FIB-4 (P < 0.0001) and APRI (P < 0.0001) values independently explained the declines in the FIB-4 index and APRI, respectively. Moreover, interleukin-28B polymorphisms, baseline LS, and rapid virologic response were identified as independent correlates with SVR. Paired LS measurements in patients treated for CHC exhibited significant declines comparable to those in FIB-4 and APRI values. These declines may have correlated with the resolution of necroinflammation. Baseline LS values predicted SVR.
Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy
2016-01-01
Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.
The evolutionary consequence of the individualistic response to climate change.
Stewart, J R
2009-12-01
The Quaternary fossil record has abundant evidence for ecologically nonanalogue communities made up of combinations of modern taxa not seen in sympatry today. A brief review of the literature detailing these nonanalogue communities is given with a discussion of their various proposed causes. The individualistic, Gleasonian, response of species to climate and environmental change is favoured by many. The degree to which communities are nonanalogue appears to increase with greater time depth, and this progressive process is a necessary outcome of the individualistic response of species to climate change through time. In addition, it is noted that populations within species, as well as the species as a whole, respond individualistically. This paper proposes that many elements of nonanalogue communities are extinct populations, which may explain their environmentally anomalous combinations. These extinct populations are, by definition, lineages without descendents. It is further proposed that the differential extinction of populations, as a result of continuous ecological reassembly, could amount to a significant evolutionary phenomenon.
On solar geoengineering and climate uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas; Kravitz, Benjamin S.; Rasch, Philip J.
2015-09-03
Uncertainty in the climate system response has been raised as a concern regarding solar geoengineering. Here we show that model projections of regional climate change outcomes may have greater agreement under solar geoengineering than with CO2 alone. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the inter-model spread across 12 climate models participating in the Geoengineering Model Intercomparison project (GeoMIP). The model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. That is, the intermodel spread in predictionsmore » of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. Furthermore, differences in efficacy explain most of the differences between models in their temperature response to an increase in CO2 that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks.« less
Species-specific responses of Late Quaternary megafauna to climate and humans
Lorenzen, Eline D.; Nogués-Bravo, David; Orlando, Ludovic; Weinstock, Jaco; Binladen, Jonas; Marske, Katharine A.; Ugan, Andrew; Borregaard, Michael K.; Gilbert, M. Thomas P.; Nielsen, Rasmus; Ho, Simon Y. W.; Goebel, Ted; Graf, Kelly E.; Byers, David; Stenderup, Jesper T.; Rasmussen, Morten; Campos, Paula F.; Leonard, Jennifer A.; Koepfli, Klaus-Peter; Froese, Duane; Zazula, Grant; Stafford, Thomas W.; Aaris-Sørensen, Kim; Batra, Persaram; Haywood, Alan M.; Singarayer, Joy S.; Valdes, Paul J.; Boeskorov, Gennady; Burns, James A.; Davydov, Sergey P.; Haile, James; Jenkins, Dennis L.; Kosintsev, Pavel; Kuznetsova, Tatyana; Lai, Xulong; Martin, Larry D.; McDonald, H. Gregory; Mol, Dick; Meldgaard, Morten; Munch, Kasper; Stephan, Elisabeth; Sablin, Mikhail; Sommer, Robert S.; Sipko, Taras; Scott, Eric; Suchard, Marc A.; Tikhonov, Alexei; Willerslev, Rane; Wayne, Robert K.; Cooper, Alan; Hofreiter, Michael; Sher, Andrei; Shapiro, Beth; Rahbek, Carsten; Willerslev, Eske
2014-01-01
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change. PMID:22048313
A model of color vision with a robot system
NASA Astrophysics Data System (ADS)
Wang, Haihui
2006-01-01
In this paper, we propose to generalize the saccade target method and state that perceptual stability in general arises by learning the effects one's actions have on sensor responses. The apparent visual stability of color percept across saccadic eye movements can be explained by positing that perception involves observing how sensory input changes in response to motor activities. The changes related to self-motion can be learned, and once learned, used to form stable percepts. The variation of sensor data in response to a motor act is therefore a requirement for stable perception rather than something that has to be compensated for in order to perceive a stable world. In this paper, we have provided a simple implementation of this sensory-motor contingency view of perceptual stability. We showed how a straightforward application of the temporal difference enhancement learning technique yielding color percepts that are stable across saccadic eye movements, even though the raw sensor input may change radically.
Probability and the changing shape of response distributions for orientation.
Anderson, Britt
2014-11-18
Spatial attention and feature-based attention are regarded as two independent mechanisms for biasing the processing of sensory stimuli. Feature attention is held to be a spatially invariant mechanism that advantages a single feature per sensory dimension. In contrast to the prediction of location independence, I found that participants were able to report the orientation of a briefly presented visual grating better for targets defined by high probability conjunctions of features and locations even when orientations and locations were individually uniform. The advantage for high-probability conjunctions was accompanied by changes in the shape of the response distributions. High-probability conjunctions had error distributions that were not normally distributed but demonstrated increased kurtosis. The increase in kurtosis could be explained as a change in the variances of the component tuning functions that comprise a population mixture. By changing the mixture distribution of orientation-tuned neurons, it is possible to change the shape of the discrimination function. This prompts the suggestion that attention may not "increase" the quality of perceptual processing in an absolute sense but rather prioritizes some stimuli over others. This results in an increased number of highly accurate responses to probable targets and, simultaneously, an increase in the number of very inaccurate responses. © 2014 ARVO.
How does a culture of health change? Lessons from the war on cigarettes.
Schudson, Michael; Baykurt, Burcu
2016-09-01
This paper focuses on one of the most dramatic changes in the culture of health in the U.S. since World War II: the reduction of adult cigarette smoking from close to half of the population to under 20 percent between the 1960s and the 1990s. What role does culture play in explaining this shift in smoking from socially accepted to socially stigmatized? After surveying how culture has been used to explain the decline in smoking in the fields of tobacco control and public health, we argue that existing concepts do not capture the complex transformation of smoking. We instead suggest a micro-sociological view which presumes that culture may change in response to spatially organized constraints, cajoling, and comradeship. By reviewing two major drivers of the transformation of smoking - the Surgeon General's Reports and the nonsmokers' rights movement - at this micro-sociological level, we show how culture works through social spaces and practices while institutionalizing collective or even legal pressures and constraints on behavior. This conclusion also seeks to explain the uneven adoption of non-smoking across classes, and to reflect on the utility of presuming that a uniform "culture" blankets a society. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Willmann, Rainer
In the Plio-Pleistocene freshwater gastropods of Kos, three different kinds of faunal responses to the changing environment can be referred to: 1) Varying species numbers as responses of the fauna as a whole, 2) evolutionary changes in shell morphology, and 3) non-hereditary modifications in shell colour as a reaction to varying salinity. Evolutionary changes in shell sculpture must be explained as an expression of adaption to certain environmental factors, which, however, are still unknown. Nevertheless, some extrinsic forces important for gastropod evolution can be determined. Separating mechanisms within the basin caused splitting of populations, and the populations separated from each other had different evolutionary trends (microgeographical differentiation, e.g. Mikrogoniochilus minutus). Micro-allopatry can also be observed in Rhodopyrgula rhodiensis from the Pliocene of Rhodes. Some more wide spread populations were split by the separation of the eastern Kos lake from inland waters in central Kos (Melanopsis gorceixi, Theodoxus doricus), and in the latter species they became reconnected, when there was subsequent contact between these waters. A similar development seems to have occurred in the Rhodian Viviparus rhodensis.
Prediction of episodic acidification in North-eastern USA: An empirical/mechanistic approach
Davies, T.D.; Tranter, M.; Wigington, P.J.; Eshleman, K.N.; Peters, N.E.; Van Sickle, J.; DeWalle, David R.; Murdoch, Peter S.
1999-01-01
Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variable. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess 'chemically new' and 'chemically old' water sources during acidification episodes.Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the Northeastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess `chemically new' and `chemically old' water sources during acidification episodes.
NASA Astrophysics Data System (ADS)
Xiao, Wupeng; Wang, Lei; Laws, Edward; Xie, Yuyuan; Chen, Jixin; Liu, Xin; Chen, Bingzhang; Huang, Bangqin
2018-03-01
A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key environmental factors, and we showed that variations of major phytoplankton groups in this system can be explained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient concentrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phytoplankton realized niches and their associated traits that we characterized in the present study could help to predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be incorporated into global biogeochemical models to anticipate shifts in community structure under future climate scenarios.
Wooliver, Rachel; Senior, John K.; Schweitzer, Jennifer A.; O'Reilly-Wapstra, Julianne M.; Langley, J. Adam; Chapman, Samantha K.; Bailey, Joseph K.
2014-01-01
A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world. PMID:25479056
Wooliver, Rachel; Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne M; Langley, J Adam; Chapman, Samantha K; Bailey, Joseph K
2014-01-01
A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world.
Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.
2015-01-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1
Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J
2015-09-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.
Individual differences in decision making by foraging hummingbirds.
Morgan, Kate V; Hurly, T Andrew; Healy, Susan D
2014-11-01
For both humans and animals preference for one option over others can be influenced by the context in which the options occur. In animals, changes in preference could be due to comparative decision-making or to changes in the energy state of the animal when making decisions. We investigated which of these possibilities better explained the response of wild hummingbirds to the addition of a decoy option to a set of two options by presenting Rufous hummingbirds (Selasphorus rufus) with a foraging experiment with two treatments. In each treatment the birds were presented with a binary choice between two options and a trinary choice with three options. In treatment one the binary choice was between a volume option and a concentration option, whereas in treatment two the same volume option was presented alongside an alternative concentration option. In the trinary choice, birds were presented with the same options as in the binary choice plus one of two inferior options. Birds changed their preferences when a poorer option was added to the choice set: birds increased their preference for the same option when in the presence of either decoy. Which option differed across individuals and the changes in preference were not readily explained by either energy maximisation or the decoy effect. The consistency in response within individuals, however, would suggest that the individual itself brings an extra dimension to context-dependent decision-making. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.
Biodiversity response to natural gradients of multiple stressors on continental margins
Sperling, Erik A.; Frieder, Christina A.; Levin, Lisa A.
2016-01-01
Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l−1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds. PMID:27122565
Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.
Nielsen, Søren B; Stephenson, Randell; Thomsen, Erik
2007-12-13
The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics.
NASA Astrophysics Data System (ADS)
Fay, P. A.; Jin, V.; Jackson, R. B.; Gill, R. A.; Way, D.; Polley, W.
2011-12-01
Climate change is likely to cause nonlinear responses in ecosystem function and threshold changes in species composition. Here we report aboveground net primary productivity (ANPP) responses to a continuous CO2 concentration gradient (250 to 500 μL L-1,) in experimental grassland communities on three soils differing in water holding capacity and other properties. Communities consisting of four C4 grasses, two C3 forbs, and one legume were established on a lowland clay (vertisol, n=32), an upland clay (mollisol, n=32), and an alluvial sand (alfisol, n=16). The communities were positioned in a stratified random design in the CO2 gradient for five growing seasons, and were irrigated to mimic the average growing season rainfall regime for the study site in Central Texas. ANPP increased with CO2 almost two-fold more on the upland clay and alluvial sand than on the lowland clay (p < 0.0001), because of strong linear responses to CO2 on these soils (R2 = 0.50 to 0.59, p < 0.002) compared to a saturating response to CO2 on the lowland clay (R2 = 0.48, p= 0.01). On the two more responsive soils, the mesic tallgrass Sorghastrum nutans replaced the more drought adapted mid-grass Bouteloua curtipendula at elevated CO2, while B. curtipendula largely replaced S. nutans at low CO2, especially on the upland clay. Evidence for a similar composition change was not found on the lowland clay. Thus, two soils displayed a threshold change in community composition that accounted for up to 57% of variation in ANPP for those soils. Variation in ANPP and species composition with CO2 were accompanied by linear increases in soil water content (SWC, 0 - 20 cm, volumetric), most strongly on the alluvial sand (R2 = 0.39, p < 0.009) and by weak decreases with CO2 in soil N. Structural equation models explained 34 to 52% of the variation in ANPP, and indicated that CO2 effects on ANPP on the upland clay were primarily explained by CO2 effects on species composition, and on the alluvial sand by CO2 effects on SWC. Responses to elevated CO2 in SWC, ANPP, and species composition were explained by reduced stomatal conductance and increased photosynthetic water use efficiency (WUE) in both grasses. In addition, S. nutans gained more in WUE at elevated CO2 than B. curtipendula, while B. curtipendula at elevated CO2 had lower light saturated photosynthetic capacity, quantum use efficiency, and dark respiration than S. nutans. Thus, at elevated CO2, shading by the taller S. nutans likely lowered B. curtipendula carbon assimilation and growth. We conclude that elevated CO2 strongly increased ANPP on upland clay and alluvial sand soils where there were also gains in soil moisture and threshold changes in species composition driven by physiological differences in the two dominant grass species. As a result, CO2 effects on ANPP will likely differ with soil type across the landscape.
Dirikx, Astrid; Gelders, Dave
2010-11-01
This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.
Different Neuroplasticity for Task Targets and Distractors
Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.
2011-01-01
Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective increases in response over a broad cortical locus that includes the representation of the task target, and selective suppression of responses to the task distractor within this locus. PMID:21297962
Thermodynamic and dynamic responses of the hydrological cycle to solar dimming
NASA Astrophysics Data System (ADS)
Smyth, Jane E.; Russotto, Rick D.; Storelvmo, Trude
2017-05-01
The fundamental role of the hydrological cycle in the global climate system motivates a thorough evaluation of its responses to climate change and mitigation. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinated international effort to assess the climate impacts of solar geoengineering, a proposal to counteract global warming with a reduction in incoming solar radiation. We assess the mechanisms underlying the rainfall response to a simplified simulation of such solar dimming (G1) in the suite of GeoMIP models and identify robust features. While solar geoengineering nearly restores preindustrial temperatures, the global hydrology is altered. Tropical precipitation changes dominate the response across the model suite, and these are driven primarily by shifts of the Hadley circulation cells. We report a damping of the seasonal migration of the Intertropical Convergence Zone (ITCZ) in G1, associated with preferential cooling of the summer hemisphere, and annual mean ITCZ shifts in some models that are correlated with the warming of one hemisphere relative to the other. Dynamical changes better explain the varying tropical rainfall anomalies between models than changes in relative humidity or the Clausius-Clapeyron scaling of precipitation minus evaporation (P - E), given that the relative humidity and temperature responses are robust across the suite. Strong reductions in relative humidity over vegetated land regions are likely related to the CO2 physiological response in plants. The uncertainty in the spatial distribution of tropical P - E changes highlights the need for cautious consideration and continued study before any implementation of solar geoengineering.
ERIC Educational Resources Information Center
Brown, Randel D.; Fjelstad, Per Even Tor
This paper records two different professors' thoughts and experiences as recipients of fellowships for school-university collaboration. The first recipient, after hearing about program models in education, is changing how he thinks about education and the possible mission of the university. In the paper, he explains that the collaborative project…
ERIC Educational Resources Information Center
St. John, Edward P.
This paper explores the need for a better understanding of the influences of prices and student aid on student enrollment and college budgets. The theory of net price has not been found to adequately explain changes in enrollment. Based on a critical review of recent research on student price response, this paper develops an alternative approach…
ERIC Educational Resources Information Center
Larochelle, Jeremy G.
2013-01-01
At a conference on environmental change in Latin America, Homero Aridjis, writer, environmental activist, and founder of the Grupo de los Cien, quoted Yeats when answering my question about the connection between his prolific literary work and untiring activism: "In dreams begin responsibility." He later explained that through writing…
The Cambridge History of the English Language. Volume IV: 1776-1997.
ERIC Educational Resources Information Center
Romaine, Suzanne, Ed.
The volume, which is part of a series providing a full account of the history of the English language, details the history of English from 1776 to 1997. An extensive introduction explains the changing socio-historic setting in which English has developed in response to a continuing background of diversity as it was transplanted to North America…
Grossman, Zvi; Singer, Alfred
1996-01-01
Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other. PMID:8962126
Mitrovich, Milan J.; Diffendorfer, Jay E.; Fisher, Robert N.
2009-01-01
Habitat fragmentation is a significant threat to biodiversity worldwide. Habitat loss and the isolation of habitat fragments disrupt biological communities, accelerate the extinction of populations, and often lead to the alteration of behavioral patterns typical of individuals in large, contiguous natural areas. We used radio-telemetry to study the space-use behavior of the Coachwhip, a larger-bodied, wide-ranging snake species threatened by habitat fragmentation, in fragmented and contiguous areas of coastal southern California. We tracked 24 individuals at three sites over two years. Movement patterns of Coachwhips changed in habitat fragments. As area available to the snakes was reduced, individuals faced increased crowding, had smaller home-range sizes, tolerated greater home-range overlap, and showed more concentrated movement activity and convoluted movement pathways. The behavioral response shown by Coachwhips suggests, on a regional level, area-effects alone cannot explain observed extinctions on habitat fragments but, instead, suggests changes in habitat configuration are more likely to explain the decline of this species. Ultimately, if "edge-exposure" is a common cause of decline, then isolated fragments, appropriately buffered to reduce emigration and edge effects, may support viable populations of fragmentation-sensitive species.
Chromatin remodeling: the interface between extrinsic cues and the genetic code?
Ezzat, Shereen
2008-10-01
The successful completion of the human genome project ushered a new era of hope and skepticism. However, the promise of finding the fundamental basis of human traits and diseases appears less than fulfilled. The original premise was that the DNA sequence of every gene would allow precise characterization of critical differences responsible for altered cellular functions. The characterization of intragenic mutations in cancers paved the way for early screening and the design of targeted therapies. However, it has also become evident that unmasking genetic codes alone cannot explain the diversity of disease phenotypes within a population. Further, classic genetics has not been able to explain the differences that have been observed among identical twins or even cloned animals. This new reality has re-ignited interest in the field of epigenetics. While traditionally defined as heritable changes that can alter gene expression without affecting the corresponding DNA sequence, this definition has come into question. The extent to which epigenetic change can also be acquired in response to chemical stimuli represents an exciting dimension in the "nature vs nurture" debate. In this review I will describe a series of studies in my laboratory that illustrate the significance of epigenetics and its potential clinical implications.
Altered Acer Rubrum Fecundity Induced By Chemical Climate Change
NASA Astrophysics Data System (ADS)
Deforest, J. L.; Peters, A.
2014-12-01
Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.
Microbial legacies alter decomposition in response to simulated global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia
Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less
Microbial legacies alter decomposition in response to simulated global change
Martiny, Jennifer B. H.; Martiny, Adam C.; Weihe, Claudia; ...
2016-10-14
Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungalmore » composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities.« less
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang
2012-10-22
We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.
Tree immunity: growing old without antibodies.
Tobias, Peri A; Guest, David I
2014-06-01
Perennial plants need to cope with changing environments and pathogens over their lifespan. Infections are compartmentalised by localised physiological responses, and multiple apical meristems enable repair and regrowth, but genes are another crucial component in the perception and response to pathogens. In this opinion article we suggest that the mechanism for dynamic pathogen-specific recognition in long-lived plants could be explained by extending our current understanding of plant defence genes. We propose that, in addition to physiological responses, tree defence uses a three-pronged genomic approach involving: (i) gene numbers, (ii) genomic architecture, and (iii) mutation loads accumulated over long lifespans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coupled dynamics of body mass and population growth in response to environmental change.
Ozgul, Arpat; Childs, Dylan Z; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Olson, Lucretia E; Tuljapurkar, Shripad; Coulson, Tim
2010-07-22
Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.
Coupled dynamics of body mass and population growth in response to environmental change
Ozgul, Arpat; Childs, Dylan Z.; Oli, Madan K.; Armitage, Kenneth B.; Blumstein, Daniel T.; Olson, Lucretia E.; Tuljapurkar, Shripad; Coulson, Tim
2017-01-01
Environmental change has altered the phenology, morphological traits and population dynamics of many species1,2. However, the links underlying these joint responses remain largely unknown due to a paucity of long-term data and the lack of an appropriate analytical framework3. Here, we investigate the link between phenotypic and demographic responses to environmental change using a novel methodology and an exceptional long-term (1976–2008) dataset from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses prior to hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change had comparable contributions to the observed dramatic increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments4,5. PMID:20651690
Linking Regional Satellite Observations with Coupled Human-Ecological Systems in Global Drylands
NASA Astrophysics Data System (ADS)
Hutchinson, C.; Reynolds, J. F.
2009-12-01
The African Sahel has attracted consistent attention since a series of droughts in the 1970s and 1980s caused widespread famine and land degradation (desertification). These events spawned international conventions and sustained development efforts to increase food security and reverse poverty for the local populations, and to arrest environmental degradation. Since 1985, several studies using satellite data have described a general “greening” in response to increased rainfall trends. However, some areas show more greening while others less greening than can be explained by precipitation alone (Glob. Env. Change 15- 2005). The debated question is how to explain the residual changes: management, policy, human adaptation, or something else? Placing results in an human-ecological framework could help answer this question. Providing a meaningful assessment will allow national and international agencies to evaluate the effectiveness of alternative approaches to poverty alleviation and environmental restoration in drylands at regional and global scales.
Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy
2018-02-01
The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO 2 , and to test how these responses are influenced by variations in tolerance to elevated CO 2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO 2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO 2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO 2 are crucial factors in determining the response of reef fish to changing ocean chemistry.
Fay, Philip A.; Newingham, Beth A.; Polley, H. Wayne; ...
2015-03-30
The Earth’s atmosphere will continue to be enriched with carbon dioxide (CO 2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO 2 enrichment in experiments in a mesicmore » grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO 2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85% of the increases in total community biomass under CO 2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland,where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO 2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO 2 enrichment. In conclusion, future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO 2 enrichment.« less
NASA Astrophysics Data System (ADS)
Chen, Jie; Xiao, Guoliang; Kuzyakov, Yakov; Jenerette, G. Darrel; Ma, Ying; Liu, Wei; Wang, Zhengfeng; Shen, Weijun
2017-05-01
The frequency of dry-season droughts and wet-season storms has been predicted to increase in subtropical areas in the coming decades. Since subtropical forest soils are significant sources of N2O and NO3-, it is important to understand the features and determinants of N transformation responses to the predicted precipitation changes. A precipitation manipulation field experiment was conducted in a subtropical forest to reduce dry-season precipitation and increase wet-season precipitation, with annual precipitation unchanged. Net N mineralization, net nitrification, N2O emission, nitrifying (bacterial and archaeal amoA) and denitrifying (nirK, nirS and nosZ) gene abundance, microbial biomass carbon (MBC), extractable organic carbon (EOC), NO3-, NH4+ and soil water content (SWC) were monitored to characterize and explain soil N transformation responses. Dry-season precipitation reduction decreased net nitrification and N mineralization rates by 13-20 %, while wet-season precipitation addition increased both rates by 50 %. More than 20 % of the total variation of net nitrification and N mineralization could be explained by microbial abundance and SWC. Notably, archaeal amoA abundance showed the strongest correlation with net N transformation rates (r ≥ 0.35), suggesting the critical role of archaeal amoA abundance in determining N transformations. Increased net nitrification in the wet season, together with large precipitation events, caused substantial NO3- losses via leaching. However, N2O emission decreased moderately in both dry and wet seasons due to changes in nosZ gene abundance, MBC, net nitrification and SWC (decreased by 10-21 %). We conclude that reducing dry-season precipitation and increasing wet-season precipitation affect soil N transformations through altering functional microbial abundance and MBC, which are further affected by changes in EOC and NH4+ availabilities.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.
2014-12-01
Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved prediction of terrestrial carbon balance. We will also present results of ongoing work to quantify fast and slow contributions to the relationship between evapotranspiration and precipitation across a precipitation gradient.
López-Doval, Julio C; Meirelles, Sergio Tadeu; Cardoso-Silva, Sheila; Moschini-Carlos, Viviane; Pompêo, Marcelo
2016-01-01
The Metropolitan Region of São Paulo (MRSP) is located in the Brazilian State of São Paulo and reservoirs in this region are vital for water supply and energy production. Changes in economic, social, and demographic trends produced pollution of water bodies, decreasing water quality for human uses and affecting freshwater populations. The presence of emerging pollutants, classical priority substances, nutrient excess and the interaction with tropical-climate conditions require periodic reviews of water policies and monitoring programs in order to detect and manage these threats in a global change scenario. The objective of this work is to determine whether the monitoring program of the São Paulo's Environmental Agency, is sufficient to explain the toxicological and biological responses observed in organisms in reservoirs of the MRSP, and whether it can identify the possible agents causing these responses. For that, we used publicly available data on water quality compiled by this agency in their routine monitoring program. A general overview of these data and a chemometric approach to analyze the responses of biotic indexes and toxicological bioassays, as a function of the physical and chemical parameters monitored, were performed. Data compiled showed temporal and geographical information gaps on variables measured. Toxicological responses have been observed in the reservoirs of the MRSP, together with a high incidence of impairments of the zooplankton community. This demonstrates the presence of stressors that affect the viability of organisms and populations. The statistical approach showed that the data compiled by the environmental agency are insufficient to identify and explain the factors causing the observed ecotoxicological responses and impairments in the zooplankton community, and are therefore insufficient to identify clear cause-effect relationships. Stressors different from those analyzed could be responsible for the observed responses. Copyright © 2015 Elsevier B.V. All rights reserved.
Siegmund, Gunter P; Blouin, Jean-Sébastien
2009-01-01
Recent studies have proposed that a high rate of acceleration onset, i.e. high jerk, during a low-speed vehicle collision increases the risk of whiplash injury by triggering inappropriate muscle responses and/or increasing peak head acceleration. Our goal was to test these proposed mechanisms at realistic jerk levels and then to determine how collision jerk affects the potential for whiplash injuries. Twenty-three seated volunteers (8 F, 15 M) were exposed to multiple experiments involving perturbations simulating the onset of a vehicle collision in eyes open and eyes closed conditions. In the first experiment, subjects experienced five forward and five rearward perturbations to look for the inappropriate muscle responses and ‘floppy’ head kinematics previously attributed to high jerk perturbations. In the second experiment, we independently varied the jerk (∼125 to 3 000 m s−3) and acceleration (∼0.65 to 2.6 g) of the perturbation to assess their effect on the electromyographic (EMG) responses of the sternocleidomastoid (SCM), scalene (SCAL) and cervical paraspinal (PARA) muscles and the kinematic responses of the head and neck. In the first experiment, we found neither inappropriate muscle responses nor floppy head kinematics when subjects had their eyes open, but observed two subjects with floppy head kinematics with eyes closed. In the second experiment, we found that about 70% of the variations in the SCM and SCAL responses and about 95% of the variations in head/neck kinematics were explained by changes in perturbation acceleration in both the eyes open and eyes closed conditions. Less than 2% of the variation in the muscle and kinematic responses was explained by changes in perturbation jerk and, where significant, response amplitudes diminished with increasing jerk. Based on these findings, collision jerk appears to have little or no role in the genesis of whiplash injuries in low-speed vehicle crashes. PMID:19237420
Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.
Flevaris, Anastasia V; Murray, Scott O
2015-09-02
Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.
Genetic predisposition scores associate with muscular strength, size, and trainability.
Thomaes, Tom; Thomis, Martine; Onkelinx, Steven; Goetschalckx, Kaatje; Fagard, Robert; Lambrechts, Diether; Vanhees, Luc
2013-08-01
The number of studies trying to identify genetic sequence variation related to muscular phenotypes has increased enormously. The aim of this study was to identify the role of a genetic predisposition score (GPS) based on earlier identified gene variants for different muscular endophenotypes to explain the individual differences in muscular fitness characteristics and the response to training in patients with coronary artery disease. Two hundred and sixty coronary artery disease patients followed a standard ambulatory, 3-month supervised training program for cardiac patients. Maximal knee extension strength (KES) and rectus femoris diameter were measured at baseline and after rehabilitation. Sixty-five single nucleotide polymorphisms (SNP) in 30 genes were selected based on genotype-phenotype association literature. Backward regression analysis revealed subsets of SNP associated with the different phenotypes. GPS were constructed for all sets of SNP by adding up the strength-increasing alleles. General linear models and multiple stepwise regression analysis were used to test the explained variance of the GPS in baseline and strength responses. Receiver operating characteristic curve analyses were performed to discriminate between high- and low-responder status. GPS were significantly associated with the rectus femoris diameter (P < 0.01) and its response (P < 0.0001), the isometric KES (P < 0.05) and its response (P < 0.01), the isokinetic KES at 60° · s (P < 0.05) and 180° · s (P < 0.001) and their responses to training (P < 0.0001), and the isokinetic KES endurance (P < 0.001) and its change after training (P < 0.0001). The GPS was shown as an independent determinant in baseline and response phenotypes with partial explained variance up to 23%. Receiver operating characteristic analysis showed a significant discriminating accuracy of the models, including the GPS for responses to training, with areas under the curve ranging from 0.62 to 0.85. GPS for muscular phenotypes showed to be associated with baseline KES, muscle diameter, and the response to training in cardiac rehabilitation patients.
Optical Probe of the Superconducting Normal Mixed State in a Magnetic Penetration Thermometer
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S. -J.; Nagler, P. C.; Smith, S. J.
2016-01-01
Using ultraviolet photon pulses, we have probed the internal behavior of a molybdenum-gold Magnetic Penetration Thermometer (MPT) that we designed for x-ray microcalorimetry. In this low-temperature detector, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons. We have previously described an approximate model that explains the high responsivity of the detector to temperature changes as a consequence of a Meissner transition of the molybdenum-gold film in the magnetic field applied by the superconducting circuit used to bias the detector. We compare measurements of MPT heat capacity and thermal conductance, derived from UV photon pulse data, to our model predictions for the thermodynamic properties of the sensor and for the electron cooling obtained by quasiparticle recombination. Our data on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.
Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less
Mao, Jinyuan; Vanderlelie, Jessica J; Perkins, Anthony V; Redman, Christopher WG; Ahmadi, Kourosh R; Rayman, Margaret P
2016-01-01
Background: Low selenium status in pregnancy has been associated with a number of adverse conditions. In nonpregnant populations, the selenium status or response to supplementation has been associated with polymorphisms in dimethylglycine dehydrogenase (DMGDH), selenoprotein P (SEPP1) and the glutathione peroxidases [cytosolic glutathione peroxidase (GPx1) and phospholipid glutathione peroxidase (GPx4)]. Objective: We hypothesized that, in pregnant women, these candidate polymorphisms would be associated with selenium status in early pregnancy, its longitudinal change, and the interindividual response to selenium supplementation at 60 μg/d. Design: With the use of stored samples and data from the United Kingdom Selenium in Pregnancy Intervention (SPRINT) study in 227 pregnant women, we carried out genetic-association studies, testing for associations between selenium status, its longitudinal change, and response to supplementation and common genetic variation in DMGDH (rs921943), SEPP1 (rs3877899 and rs7579), GPx1 (rs1050450) and GPx4 (rs713041). Selenium status was represented by the concentration of whole-blood selenium at 12 and 35 wk of gestation, the concentration of toenail selenium at 16 wk of gestation, and plasma glutathione peroxidase (GPx3) activity at 12 and 35 wk of gestation. Results: Our results showed that DMGDH rs921943 was significantly associated with the whole-blood selenium concentration at 12 wk of gestation (P = 0.032), which explained ≤2.0% of the variance. This association was replicated with the use of toenail selenium (P = 0.043). In unsupplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in whole-blood selenium from 12 to 35 wk of gestation (P = 0.005), which explained 8% of the variance. In supplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in GPx3 activity from 12 to 35 wk of gestation (P = 0.01), which explained 5.3% of the variance. Selenium status was not associated with GPx1, GPx4, or SEPP1 rs7579. Conclusions: In agreement with previous studies, we show that the genetic variant rs921943 in DMGDH is significantly associated with selenium status in United Kingdom pregnant women. Notably, our study shows that women who carry the SEPP1 rs3877899 A allele are better able to maintain selenium status during pregnancy, and their GPx3 activity increases more with supplementation, which suggests better protection from low selenium status. The SPRINT study was registered at www.isrctn.com as ISRCTN37927591. PMID:26675765
Whitney, Paul; Hinson, John M; Satterfield, Brieann C; Grant, Devon A; Honn, Kimberly A; Van Dongen, Hans P A
2017-11-22
Insufficient sleep is a global public health problem resulting in catastrophic accidents, increased mortality, and hundreds of billions of dollars in lost productivity. Yet the effect of sleep deprivation (SD) on decision making and performance is often underestimated by fatigued individuals and is only beginning to be understood by scientists. The deleterious impact of SD is frequently attributed to lapses in vigilant attention, but this account fails to explain many SD-related problems, such as loss of situational awareness and perseveration. Using a laboratory study protocol, we show that SD individuals can maintain information in the focus of attention and anticipate likely correct responses, but their use of such a top-down attentional strategy is less effective at preventing errors caused by competing responses. Moreover, when the task environment requires flexibility, performance under SD suffers dramatically. The impairment in flexible shifting of attentional control we observed is distinct from lapses in vigilant attention, as corroborated by the specificity of the influence of a genetic biomarker, the dopaminergic polymorphism DRD2 C957T. Reduced effectiveness of top-down attentional control under SD, especially when conditions require flexibility, helps to explain maladaptive performance that is not readily explained by lapses in vigilant attention.
Shape plasticity in response to water velocity in the freshwater blenny Salaria fluviatilis.
Laporte, M; Claude, J; Berrebi, P; Perret, P; Magnan, P
2016-03-01
A non-random association between an environmental factor and a given trait could be explained by directional selection (genetic determinism) and by phenotypic plasticity (environmental determinism). A previous study showed a significant relationship between morphology and water velocity in Salaria fluviatilis that conformed to functional expectations. The objective of this study was to test whether this relationship could be explained by phenotypic plasticity. Salaria fluviatilis from a Corsican stream were placed in four experimental channels with different water velocities (0, 10, 20 and 30 cm s(-1)) to test whether there was a morphological response associated with this environmental factor. After 28 days, fish shape changed in response to water velocity without any significant growth. Fish in higher water velocities exhibited a more slender body shape and longer anal and caudal fins. These results indicate a high degree of morphological plasticity in riverine populations of S. fluviatilis and suggest that the previous relationship between morphology and water velocity observed in the field may largely be due to an environmental determinism. © 2016 The Fisheries Society of the British Isles.
Current views on the mechanisms of immune responses to trauma and infection
Michalak, Grzegorz; Słotwiński, Robert
2015-01-01
According to the World Health Organization, post-traumatic mortality rates are still very high and show an increasing tendency. Disorders of innate immune response that may increase the risk of serious complications play a key role in the immunological system response to trauma and infection. The mechanism of these disorders is multifactorial and is still poorly understood. The changing concepts of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) early inflammatory response, presented in this work, have been extended to genetic studies. Overexpression of genes and increased production of immune response mediators are among the main causes of multiple organ dysfunction syndrome (MODS). Changes in gene expression detected early after injury precede the occurrence of subsequent complications with a typical clinical picture. Rapid depletion of energy resources leads to immunosuppression and persistent inflammation and immune suppression catabolism syndrome (PICS). Early diagnosis of immune disorders and appropriate nutritional therapy can significantly reduce the incidence of complications, length of hospital stay, and mortality. The study presents the development of knowledge and current views explaining the mechanisms of the immune response to trauma and infection. PMID:26557036
Extinction and Renewal of Conditioned Sexual Responses
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie
2014-01-01
Introduction Extinction involves an inhibitory form of new learning that is highly dependent on the context for expression. This is supported by phenomena such as renewal and spontaneous recovery, which may help explain the persistence of appetitive behavior, and related problems such as addictions. Research on these phenomena in the sexual domain is lacking, where it may help to explain the persistence of learned sexual responses. Method Men (n = 40) and women (n = 62) participated in a differential conditioning paradigm, with genital vibrotactile stimulation as US and neutral pictures as conditional stimuli (CSs). Dependent variables were genital and subjective sexual arousal, affect, US expectancy, and approach and avoid tendencies towards the CSs. Extinction and renewal of conditioned sexual responses were studied by context manipulation (AAA vs. ABA condition). Results No renewal effect of genital conditioned responding could be detected, but an obvious recovery of US expectancy following a context change after extinction (ABA) was demonstrated. Additionally, women demonstrated recovery of subjective affect and subjective sexual arousal. Participants in the ABA demonstrated more approach biases towards stimuli. Conclusions The findings support the context dependency of extinction and renewal of conditioned sexual responses in humans. This knowledge may have implications for the treatment of disturbances in sexual appetitive responses such as hypo- and hypersexuality. PMID:25170909
Extinction and renewal of conditioned sexual responses.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie
2014-01-01
Extinction involves an inhibitory form of new learning that is highly dependent on the context for expression. This is supported by phenomena such as renewal and spontaneous recovery, which may help explain the persistence of appetitive behavior, and related problems such as addictions. Research on these phenomena in the sexual domain is lacking, where it may help to explain the persistence of learned sexual responses. Men (n = 40) and women (n = 62) participated in a differential conditioning paradigm, with genital vibrotactile stimulation as US and neutral pictures as conditional stimuli (CSs). Dependent variables were genital and subjective sexual arousal, affect, US expectancy, and approach and avoid tendencies towards the CSs. Extinction and renewal of conditioned sexual responses were studied by context manipulation (AAA vs. ABA condition). No renewal effect of genital conditioned responding could be detected, but an obvious recovery of US expectancy following a context change after extinction (ABA) was demonstrated. Additionally, women demonstrated recovery of subjective affect and subjective sexual arousal. Participants in the ABA demonstrated more approach biases towards stimuli. The findings support the context dependency of extinction and renewal of conditioned sexual responses in humans. This knowledge may have implications for the treatment of disturbances in sexual appetitive responses such as hypo- and hypersexuality.
The dynamics of fresh fruit and vegetable pricing in the supermarket channel.
McLaughlin, Edward W
2004-09-01
This paper explains the major factors that contribute to the complicated price formation process, as several levels, of fresh fruit and vegetables in the US. Several factors are explored: marketing channels, market structure changes, pricing techniques and promotional impacts, retail responses to supply changes, and price versus value. The paper illustrates with recent examples and research findings that the fresh produce system is dynamic and that simplistic solutions to complex problems are not likely. The paper finishes by suggesting some areas for needed additional research.
Perring, Michael P; Bernhardt-Römermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L; De Lombaerde, Emiel; Carón, Maria Mercedes; Vellend, Mark; Brunet, Jörg; Chudomelová, Markéta; Decocq, Guillaume; Diekmann, Martin; Dirnböck, Thomas; Dörfler, Inken; Durak, Tomasz; De Frenne, Pieter; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J; Kopecký, Martin; Lenoir, Jonathan; Li, Daijiang; Máliš, František; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Świerkosz, Krzysztof; Van Calster, Hans; Vild, Ondřej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris
2018-04-01
The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. © 2017 John Wiley & Sons Ltd.
A hypothesis for delayed dynamic earthquake triggering
Parsons, T.
2005-01-01
It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.
Smoking and nonsmoking asthma: differences in clinical outcome and pathogenesis.
Fattahi, Fatemeh; Hylkema, Machteld N; Melgert, Barbro N; Timens, Wim; Postma, Dirkje S; ten Hacken, Nick H T
2011-02-01
Cigarette smoking in asthma is frequently present and is associated with worsening of symptoms, accelerated lung-function decline, a higher frequency of hospital admissions, a higher degree of asthma severity, poorer asthma control and reduced responsiveness to corticosteroids. Furthermore, it is associated with reduced numbers of eosinophils and higher numbers of mast cells in the submucosa of the airway wall. Airway remodeling is increased as evidenced by increased epithelial thickness and goblet cell hyperplasia in smoking asthmatics. The pathogenesis responsible for smoking-induced changes in airway inflammation and remodeling in asthma is complex and largely unknown. The underlying mechanism of reduced corticosteroid responsiveness is also unknown. This article discusses differences between smoking and nonsmoking asthmatics regarding the clinical expression of asthma, lung function, response to corticosteroids, airway inflammation and remodeling processes. Possible pathogenetic mechanisms that may explain the links between cigarette smoking and changes in the clinical expression of asthma will be discussed, as well as the beneficial effects of smoking cessation.
Sensory integration of a light touch reference in human standing balance.
Assländer, Lorenz; Smith, Craig P; Reynolds, Raymond F
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.
Sensory integration of a light touch reference in human standing balance
Smith, Craig P.; Reynolds, Raymond F.
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252
Functional traits help predict post-disturbance demography of tropical trees.
Flores, Olivier; Hérault, Bruno; Delcamp, Matthieu; Garnier, Éric; Gourlet-Fleury, Sylvie
2014-01-01
How tropical tree species respond to disturbance is a central issue of forest ecology, conservation and resource management. We define a hierarchical model to investigate how functional traits measured in control plots relate to the population change rate and to demographic rates for recruitment and mortality after disturbance by logging operations. Population change and demographic rates were quantified on a 12-year period after disturbance and related to seven functional traits measured in control plots. The model was calibrated using a Bayesian Network approach on 53 species surveyed in permanent forest plots (37.5 ha) at Paracou in French Guiana. The network analysis allowed us to highlight both direct and indirect relationships among predictive variables. Overall, 89% of interspecific variability in the population change rate after disturbance were explained by the two demographic rates, the recruitment rate being the most explicative variable. Three direct drivers explained 45% of the variability in recruitment rates, including leaf phosphorus concentration, with a positive effect, and seed size and wood density with negative effects. Mortality rates were explained by interspecific variability in maximum diameter only (25%). Wood density, leaf nitrogen concentration, maximum diameter and seed size were not explained by variables in the analysis and thus appear as independent drivers of post-disturbance demography. Relationships between functional traits and demographic parameters were consistent with results found in undisturbed forests. Functional traits measured in control conditions can thus help predict the fate of tropical tree species after disturbance. Indirect relationships also suggest how different processes interact to mediate species demographic response.
Mast, M. Alisa; Clow, David W.; Baron, Jill S.; Wetherbee, Gregory A.
2014-01-01
Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.
Effectiveness of Radiotherapy in Myxoid Sarcomas Is Associated With a Dense Vascular Pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vreeze, Ronald S.A. de; Jong, Daphne de; Haas, Rick L.
2008-12-01
Purpose: Surgery and adjuvant radiotherapy (RT) have long been the standard treatment for most deep-seated sarcomas; however, since the randomized trial from the National Cancer Institute of Canada, which described similar local control for pre- vs. postoperative RT, both modalities are now widely accepted. As a group, sarcomas are classified as radiation resistant. The subgroup of myxoid liposarcoma (MLS), a sarcoma with a typical vascular crow's feet pattern, is highly radiosensitive, but a mechanism for this phenomenon is unknown. Here we describe our results with preoperative RT and propose a mechanism explaining the high sensitivity based on the distinctive vascularizationmore » pattern of MLS. Methods and Materials: Between 2002 and 2006, 31 sarcoma patients, including 10 with MLS, underwent preoperative RT at our institute. Resected specimens were histologically evaluated, focusing on classification, grade, and vascularization patterns. Results: Twenty sarcomas showed more than 80% pathologic response after preoperative RT. A pathologic complete response was found in all 'pure' MLS specimens after preoperative RT (n = 8). There were no pathologic complete responses in the remaining sarcoma patients (n = 23), although 12 showed 80% to 90% pathologic response. In contrast to the remaining RT-resistant sarcomas, the highly responding specimens contained branching vasculature, partial thrombus formation and inflammation of medium sized arterioles, similar to the vascular changes in MLS. Conclusions: Both MLS and sarcomas with MLS-like vasculature are highly radiosensitive. Radiation sensitivity may be explained by changes in medium-sized arterioles, obstructing the specific crow's feet vascularization and inducing hypoxia with secondary tumor cell death.« less
Evidence that convergence rather than accommodation controls intermittent distance exotropia.
Horwood, Anna M; Riddell, Patricia M
2012-03-01
This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Nineteen distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2 m and 33 cm. Stimulus and response AC/A and CA/C ratios were calculated. Accommodation responses for near targets (p = 0.017) and response gains (p = 0.026) were greater in the exotropes than in the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p = 0.02), but significantly higher CA/C ratios (p = 0.02). All the exotropes, whether the angle changed most with lenses ('controlled by accommodation') or on occlusion ('controlled by fusion'), used binocular disparity not blur as their main cue to target distance. Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting overaccommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Evidence that convergence rather than accommodation controls intermittent distance exotropia
Horwood, Anna M; Riddell, Patricia M
2015-01-01
Purpose This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Methods 19 distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2m and 33cm. Stimulus and response AC/A and CA/C ratios were calculated. Results Accommodation responses for near targets (p=0.017) response gains (p=0.026) were greater in the exotropes than the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p=0.02), but significantly higher CA/C ratios (p=0.02). All the exotropes, whether the angle changed most with lenses (“controlled by accommodation”) or on occlusion (“controlled by fusion”), used binocular disparity not blur as their main cue to target distance. Conclusions Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting over-accommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. PMID:22280437
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2016-07-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm(2)/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m(2); moderate, ∼200 W/m(2)). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range -0.37 to -0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. Copyright © 2016 the American Physiological Society.
Notley, Sean R.; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu
2016-01-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm2/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m2; moderate, ∼200 W/m2). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range −0.37 to −0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. PMID:27125845
Cardiovascular regulatory response to lower body negative pressure following blood volume loss
NASA Technical Reports Server (NTRS)
Shimizu, M.; Ghista, D. N.; Sandler, H.
1979-01-01
An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.
Limited temperature response to the very large AD 1258 volcanic eruption
NASA Astrophysics Data System (ADS)
Timmreck, Claudia; Lorenz, Stephan J.; Crowley, Thomas J.; Kinne, Stefan; Raddatz, Thomas J.; Thomas, Manu A.; Jungclaus, Johann H.
2009-11-01
The large AD 1258 eruption had a stratospheric sulfate load approximately ten times greater than the 1991 Pinatubo eruption. Yet surface cooling was not substantially larger than for Pinatubo (˜0.4 K). We apply a comprehensive Earth System Model to demonstrate that the size of the aerosol particles needs to be included in simulations, especially to explain the climate response to large eruptions. The temperature response weakens because increased density of particles increases collision rate and therefore aerosol growth. Only aerosol particle sizes substantially larger than observed after the Pinatubo eruption yield temperature changes consistent with terrestrial Northern Hemisphere summer temperature reconstructions. These results challenge an oft-held assumption of volcanic impacts not only with respect to the immediate or longer-term temperature response, but also any ecosystem response, including extinctions.
Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study.
Crowther, Thomas W; Maynard, Daniel S; Leff, Jonathan W; Oldfield, Emily E; McCulley, Rebecca L; Fierer, Noah; Bradford, Mark A
2014-09-01
The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated. © 2014 John Wiley & Sons Ltd.
A decision-making model based on a spiking neural circuit and synaptic plasticity.
Wei, Hui; Bu, Yijie; Dai, Dawei
2017-10-01
To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.
Department of Homeland Security Summer Internship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Erika J.
2010-07-30
My time at Lawrence Livermore National Laboratory (LLNL) has been one of the most rewarding and exciting experiences of my life. When I first applied for a Department of Homeland Security (DHS) internship I was concerned that my major in Mass Communications and Emergency Management would not be suited for the hard science environment. Thankfully DHS and my mentor, Brooke Buddemeier, demonstrated that the skills and knowledge I possess are critical for the successful integration of good science into Homeland Security and emergency response, and allowed me the opportunity to work on an exciting project. This paper intends to givemore » an overview of my experiences while at LLNL, explain the project I have been a part of, explain my specific role within that project, discuss my achievements, explain how my internship has changed where I plan to take my career path, and, finally, discuss how I believe DHS can enhance their future internship programs.« less
Response to environmental change in rainbow trout selected for divergent stress coping styles.
Ruiz-Gomez, Maria de Lourdes; Huntingford, Felicity A; Øverli, Øyvind; Thörnqvist, Per-Ove; Höglund, Erik
2011-03-01
An extensive literature has documented differences in the way individual animals cope with environmental challenges and stressors. Two broad patterns of individual variability in behavioural and physiological stress responses are described as the proactive and reactive stress coping styles. In addition to variability in the stress response, contrasting coping styles may encompass a general difference in behavioural flexibility as opposed to routine formation in response to more subtle environmental changes and non-threatening novelties. In the present study two different manipulations, relocating food from a previously learned location, and introducing a novel object yielded contrasting responses in rainbow trout selected for high (HR) and low (LR) post stress plasma cortisol levels. No difference was seen in the rate of learning the original food location; however, proactive LR fish were markedly slower than reactive HR fish in altering their food seeking behaviour in response to relocated food. In contrast, LR fish largely ignored a novel object which disrupted feeding in HR fish. Hence, it appears that the two lines appraise environmental cues differently. This observation suggests that differences in responsiveness to environmental change are an integral component of heritable stress coping styles, which in this particular case, had opposite effects on foraging efficiency in different situations. Context dependent fitness effects may thus explain the persistence of stable divergence of this evolutionary widespread trait complex. 2010 Elsevier Inc. All rights reserved.
Westerman, Marjan J; The, Anne-Mei; Sprangers, Mirjam A G; Groen, Harry J M; van der Wal, Gerrit; Hak, Tony
2007-06-01
Response shift has gained increasing attention in the measurement of health-related quality of life (QoL) as it may explain counter-intuitive findings as a result of adaptation to deteriorating health. To search for response shift type explanations to account for counter-intuitive findings in QoL measurement. Qualitative investigation of the response behaviour of small-cell lung cancer (SCLC) patients (n = 23) in the measurement of fatigue with The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30) question 'were you tired'. Interviews were conducted at four points during 1st line chemotherapy: at the start of chemotherapy, 4 weeks later, at the end of chemotherapy, and 6 weeks later. Patients were asked to 'think aloud' when filling in the questionnaire. Fifteen patients showed discrepancies between their answer to the EORTC question 'were you tired' and their level of fatigue spontaneously reported during the interview. These patients chose the response options 'not at all' or 'a little' and explained their answers in various ways. In patients with and without discrepancies, we found indications of recalibration response shift (e.g. using a different comparison standard over time) and of change in perspective (e.g. change towards a more optimistic perspective). Patients in the discrepancy group reported spontaneously how they dealt with diagnosis and treatment, i.e. by adopting protective and assertive behaviour and by fighting the stigma. They distanced themselves from the image of the stereotypical cancer patient and presented themselves as not suffering and accepting fatigue as consequence of treatment. In addition to response shift, this study suggests that 'self-presentation' might be an important mechanism affecting QoL measurement, particularly during phases when a new equilibrium needs to be found.
The, Anne-Mei; Sprangers, Mirjam A. G.; Groen, Harry J. M.; van der Wal, Gerrit; Hak, Tony
2007-01-01
Background Response shift has gained increasing attention in the measurement of health-related quality of life (QoL) as it may explain counter-intuitive findings as a result of adaptation to deteriorating health. Objective To search for response shift type explanations to account for counter-intuitive findings in QoL measurement. Methods Qualitative investigation of the response behaviour of small-cell lung cancer (SCLC) patients (n = 23) in the measurement of fatigue with The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire (EORTC QLQ-C30) question ‘were you tired’. Interviews were conducted at four points during 1st line chemotherapy: at the start of chemotherapy, 4 weeks later, at the end of chemotherapy, and 6 weeks later. Patients were asked to ‘think aloud’ when filling in the questionnaire. Results Fifteen patients showed discrepancies between their answer to the EORTC question ‘were you tired’ and their level of fatigue spontaneously reported during the interview. These patients chose the response options ‘not at all’ or ‘a little’ and explained their answers in various ways. In patients with and without discrepancies, we found indications of recalibration response shift (e.g. using a different comparison standard over time) and of change in perspective (e.g. change towards a more optimistic perspective). Patients in the discrepancy group reported spontaneously how they dealt with diagnosis and treatment, i.e. by adopting protective and assertive behaviour and by fighting the stigma. They distanced themselves from the image of the stereotypical cancer patient and presented themselves as not suffering and accepting fatigue as consequence of treatment. Conclusion In addition to response shift, this study suggests that ‘self-presentation’ might be an important mechanism affecting QoL measurement, particularly during phases when a new equilibrium needs to be found. PMID:17450423
NASA Technical Reports Server (NTRS)
Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco;
2017-01-01
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
NASA Astrophysics Data System (ADS)
Yettella, Vineel; Kay, Jennifer E.
2017-09-01
The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.
Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...
2016-12-23
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qing; Iversen, Colleen M.; Riley, William J.
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?
Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy
2015-09-01
This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.
NASA Astrophysics Data System (ADS)
Maeda, Yuta; Kato, Aitaro; Yamanaka, Yoshiko
2017-02-01
Although phreatic eruptions are common volcanic phenomena that sometimes result in significant disasters, their dynamics are poorly understood. In this study, we address the dynamics of the phreatic eruption of Mount Ontake, Japan, in 2014 based on analyses of a tilt change observed immediately (450 s) before the eruption onset. We conducted two sets of analysis: a waveform inversion and a modified phase-space analysis. Our waveform inversion of the tilt signal points to a vertical tensile crack at a depth of 1100 m. Our modified phase-space analysis suggests that the tilt change was at first a linear function in time that then switched to exponential growth. We constructed simple analytical models to explain these temporal functions. The linear function was explained by the boiling of underground water controlled by a constant heat supply from a greater depth. The exponential function was explained by the decompression-induced boiling of water and the upward Darcy flow of the water vapor through a permeable region of small cracks that were newly created in response to ongoing boiling. We interpret that this region was intact prior to the start of the tilt change, and thus, it has acted as a permeability barrier for the upward migration of fluids; it was a breakage of this barrier that led to the eruption.
How sex and age affect immune responses, susceptibility to infections, and response to vaccination
Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix
2015-01-01
Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions. PMID:25720438
Nylund, Reetta; Leszczynski, Dariusz
2006-09-01
We have examined in vitro cell response to mobile phone radiation (900 MHz GSM signal) using two variants of human endothelial cell line: EA.hy926 and EA.hy926v1. Gene expression changes were examined in three experiments using cDNA Expression Arrays and protein expression changes were examined in ten experiments using 2-DE and PDQuest software. Obtained results show that gene and protein expression were altered, in both examined cell lines, in response to one hour mobile phone radiation exposure at an average specific absorption rate of 2.8 W/kg. However, the same genes and proteins were differently affected by the exposure in each of the cell lines. This suggests that the cell response to mobile phone radiation might be genome- and proteome-dependent. Therefore, it is likely that different types of cells and from different species might respond differently to mobile phone radiation or might have different sensitivity to this weak stimulus. Our findings might also explain, at least in part, the origin of discrepancies in replication studies between different laboratories.
Humoral (immunological) responses in female albino rats during rotating magnetic field exposures
NASA Astrophysics Data System (ADS)
Reid, K.; Falter, H.; Persinger, M. A.
1991-12-01
Experiments were designed to evaluate the primary and secondary humoral responses to a rotating magnetic field configuration, which is known to evoke significant biobehavioral changes. Ten days after inoculation with human serum albumin and 10 days before a booster, female rats were exposed to eigher a 0.5 Hz rotating magnetic field (RMF) or to room conditions (control). The lighting schedule was either continuous or involved a light-dark cycle (LD) of 12:12h. A third group of rats served as colony room controls. Group differences of low statistical significance were found when females were exposed to continuous lighting rather than the LD 12:12 light-dark cycle. However, the effects were considered trivial and not sufficient to explain the previously reported biobehavioral changes evoked by this field configuration.
Drew, Benjamin T; Smith, Toby O; Littlewood, Chris; Sturrock, Ben
2014-06-01
Previous reviews have highlighted the benefit of loaded therapeutic exercise in the treatment of tendinopathy. Changes in observable structural outcomes have been suggested as a possible explanation for this response to therapeutic exercise. However, the mechanism for the efficacy of therapeutic exercise remains unclear. To systematically review the relationship between the observable structural change and clinical outcomes following therapeutic exercise. An electronic search of AMED, CiNAHL, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PEDro and SPORTDiscus was undertaken from their inception to June 2012. Any study design that incorporated observable structural outcomes and clinical outcomes when assessing the effect of therapeutic exercise on participants with tendinopathy. Included studies were appraised for risk of bias using the tool developed by the Cochrane Back Review Group. Due to heterogeneity of studies, a qualitative synthesis was undertaken. Twenty articles describing 625 patients were included. Overall, there is a strong evidence to refute any observable structural change as an explanation for the response to therapeutic exercise when treated by eccentric exercise training. Moderate evidence does exist to support the response of heavy-slow resistance training (HSR). The available literature does not support observable structural change as an explanation for the response of therapeutic exercise except for some support from HSR. Future research should focus on indentifying other explanations including neural, biochemical and myogenic changes. Registered with PROSPERO, registration number CRD42011001638. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Novel competitors shape species' responses to climate change.
Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M
2015-09-24
Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.
NASA Astrophysics Data System (ADS)
Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan
2018-03-01
The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.
Roeloffs, E.; Quilty, E.
1997-01-01
Two of the four wells monitored near Parkfield, California, during 1985 showed water level rises beginning three days before the M4 6.1 Kettleman Hills earthquake. In one of these wells, the 3.0 cm rise was nearly unique in five years of water level data. However, in the other well, which showed a 3.8 cm rise, many other changes of comparable size have been observed. Both wells that did not display pre-earthquake rises tap partially confined aquifers that cannot sustain pressure changes due to tectonic strain having periods longer than several days. We evaluate the effect of partial aquifer confinement on the ability of these four wells to display water level changes in response to aquifer strain. Although the vertical hydraulic diffusivities cannot be determined uniquely, we can find a value of diffusivity for each site that is consistent with the site's tidal and barometric responses as well as with the rate of partial recovery of the coseismic water level drops. Furthermore, the diffusivity for one well is high enough to explain why the preseismic rise could not have been detected there. For the fourth well, the diffusivity is high enough to have reduced the size of the preseismic signal as much as 50%, although it should still have been detectable. Imperfect confinement cannot explain the persistent water level changes in the two partially confined aquifers, but it does show that they were not due to volume strain. The pre-earthquake water level rises may have been precursors to the Kettleman Hills earthquake. If so, they probably were not caused by accelerating slip over the part of the fault plane that ruptured in that earthquake because they are of opposite sign to the observed coseismic water level drops.
Nazaries, Loïc; Pan, Yao; Bodrossy, Levente; Baggs, Elizabeth M.; Millard, Peter; Murrell, J. Colin
2013-01-01
Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios. Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time. We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland. Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites. This change in function was linked to a niche-specific separation of microbial communities (methanotrophs). The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle. Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles. PMID:23624469
Regional signatures of plant response to drought and elevated temperature across a desert ecosystem
Munson, Seth M.; Muldavin, Esteban H.; Belnap, Jayne; Peters, Debra P.C.; Anderson, John P.; Reiser, M. Hildegard; Gallo, Kirsten; Melgoza-Castillo, Alicia; Herrick, Jeffrey E.; Christiansen, Tim A.
2013-01-01
The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified ‘‘climate pivot points’’ that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.
The effect of the rate of hydrostatic pressure depressurization on cells in culture.
Tworkoski, Ellen; Glucksberg, Matthew R; Johnson, Mark
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.
The effect of the rate of hydrostatic pressure depressurization on cells in culture
Tworkoski, Ellen; Glucksberg, Matthew R.
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings. PMID:29315329
The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature
Khachane, Amit; Dungait, Jennifer A. J.; Fraser, Fiona; Hopkins, David W.; Wookey, Philip A.; Singh, Brajesh K.; Freitag, Thomas E.; Hartley, Iain P.; Prosser, James I.
2016-01-01
Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited. PMID:27798702
Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I
2016-01-01
Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.
Kruikemeier, Sanne; Sezgin, Minem; Boerman, Sophie C
2016-06-01
This study examines the relationship between exposure to political personalized ads on Facebook and voters' responses toward those ads and studies the mediating role of the use of persuasion knowledge in this relationship. Results from an online experiment (N = 122) demonstrate that exposure to a personalized ad from a political party activates persuasion knowledge, which in turn leads to lower intentions to engage in electronic word of mouth, but only for those participants who recall seeing the Sponsored label. We found no effects on source trustworthiness. Adding a text explaining the practice of personalized advertising did not lead to higher levels of persuasion knowledge and did not change the responses toward the message.
Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing
Marsden, J F; Castellote, J; Day, B L
2002-01-01
Galvanic vestibular stimulation (GVS) evokes responses in muscles of both legs when bilateral stimuli are applied during normal stance. We have used this technique to assess whether asymmetrical standing alters the distribution of responses in the two legs. Subjects stood either asymmetrically with 75 % of their body weight on one leg or symmetrically with each leg taking 50 % of their body weight. The net response in each leg was taken from changes in ground reaction force measured from separate force plates under each foot. The net force profile consisted of a small initial force change that peaked at ∼200 ms followed by an oppositely directed larger component that peaked at ∼450 ms. We analysed the second force component since it was responsible for the kinematic response of lateral body sway and tilt towards the anode. In the horizontal plane, both legs produced lateral force responses that were in the same direction but larger in the leg ipsilateral to the cathodal ear. There were also vertical force responses that were of equal size in both legs but acted in opposite directions. When subjects stood asymmetrically the directions of the force responses remained the same but their magnitudes changed. The lateral force response became 2-3 times larger for the more loaded leg and the vertical forces increased 1.5 times on average for both legs. Control experiments showed that these changes could not be explained by either the consistent (< 5 deg) head tilt towards the side of the loaded leg or the changes in background muscle activity associated with the asymmetrical posture. We conclude that the redistribution of force responses in the two legs arises from a load-sensing mechanism. We suggest there is a central interaction between load-related afferent input from the periphery and descending motor signals from balance centres. PMID:12096073
Fritts, Andrea K.; Peterson, James T.; Wisniewski, Jason M.; Bringolf, Robert B.
2015-01-01
The development of effective nonlethal biomonitoring techniques is imperative for the preservation of imperiled freshwater mussel populations. Changes in hemolymph chemistry profiles and tissue glycogen are potential biomarkers for nonlethally monitoring stress in mussels. We sampled three species in the Flint River Basin over 2 years to evaluate how these hemolymph and tissue biomarkers responded to environmental changes. We used hierarchical linear models to evaluate the relationships between variation in the biomarkers and environmental factors and found that the responses of the hemolymph and tissue parameters were strongly related to stream discharge. Shifts in alanine aminotransferase and glycogen showed the largest relations with discharge at the time of sampling, while magnesium levels were most explained by the discharge for 5 days prior to sampling. Aspartate aminotransferase, bicarbonate, and calcium showed the strongest relations with mean discharge for 15 days prior to sampling. The modeling results indicated that biomarker responses varied substantially among individuals of different size, sex, and species and illustrated the value of hierarchical modeling techniques to account for the inherent complexity of aquatic ecosystems.
Roles and responsibilities of the nursing scholar.
Conard, Patricia L; Pape, Tess Theresa
2014-01-01
Scholarship is an important facet of the nursing profession. There are many components, virtues, and roles and responsibilities of a nursing scholar practicing in today's ever-changing health care environment. Scholarship was redefined by Boyer to include scholarly activities in addition to research. Boyer's Model of Scholarship includes four interrelated and overlapping domains of discovery, integration, application, and teaching. Each domain is explained with examples for the pediatric nurse scholar, which includes roles in academia as well as in the practice setting. Pediatric nurses are key to scholarship in nursing because they work to improve the care of children.
NASA Astrophysics Data System (ADS)
Frank, John Michael
Water and carbon cycles are important from ecosystem to global scales because of their feedbacks with climate change and natural disturbance. In order to quantify both primary and compensating responses in an ecosystem under disturbance, an approach that observes the ecosystem in its entirety is preferred. In recent decades, the eddy covariance technique has become ubiquitous in modern ecosystem studies because its fundamental measurement scale integrates across an ecosystem. Yet, across flux networks a trend towards energy imbalance has implicated a systematic bias in these measurements that has no mechanistic explanation. This dissertation concentrates on a historical transducer shadowing correction for sonic anemometers, the fundamental instrument in eddy covariance studies, and whether the omission of it can explain these underestimated ecosystem fluxes. It then focuses on the response of water and carbon processes in a subalpine spruce-fir forest in southeastern Wyoming, USA that experienced 80% forested basal area mortality following a spruce beetle outbreak. To evaluate an uncertainty in eddy covariance measurements, a novel experiment is devised to test the consistency to which an omnidirectional sonic anemometer can measure the three dimensions, to compare of the effect of different designs and different manufacturers to link an underestimate in vertical wind velocity to the lack of transducer shadowing correction, and to construct a Bayesian model to estimate the three dimensional shadowing correction required to fix the problem. Results show that at the 60% of ecosystem flux sites in North American that use this equipment, their ecosystem flux measurements are probably underestimated by 8-12%. During the growing season, the change in ecosystem processes due to disturbance are explained through the physiological response of dying spruce trees and their observed mortality. Evapotranspiration declines immediately following the attack because of hydraulic failure due to the spruce beetle associated blue-stain fungi. In response, impacted spruce trees regulate their stomatal conductance and ecosystem photosynthesis declines slightly. A few years later these trees die and ecosystem photosynthesis falls by 50%. During winter, a Bayesian analysis shows a fundamental preference for ecosystem sublimation to originate from the canopy, which in combination with the loss of canopy and limited ability to intercept fresh snowfall, has led to substantially less total sublimation because of the outbreak. Because the ecosystem’s response to disturbance can be explained through physiological processes at the organism scale, this work provides an opportunity to test hypotheses about bottom up approaches and offers new insights into hydrological and ecological models. The anemometer error investigation and Bayesian analyses provide new tools to examine ecological phenomena that are uncertain or where no standard of “truth” is available. By demonstrating an ecosystem response that can be explained by the dominate species, implementing a two source energy and canopy mass model to explain ecosystem sublimation, investigating a prevalent error in the majority of eddy covariance systems, and advancing statistical analysis from which all of these processes can be inferred, this work as a whole is applicable to nearly all terrestrial ecosystem studies.
Annual plants change in size over a century of observations.
Leger, Elizabeth A
2013-07-01
Studies have documented changes in animal body sizes over the last century, but very little is known about changes in plant sizes, even though reduced plant productivity is potentially responsible for declines in size of other organisms. Here, I ask whether warming trends in the Great Basin have affected plant size by measuring specimens preserved on herbarium sheets collected between 1893 and 2011. I asked how maximum and minimum temperatures, precipitation, and the Pacific Decadal Oscillation (PDO) in the year of collection affected plant height, leaf size, and flower number, and asked whether changes in climate resulted in decreasing sizes for seven annual forbs. Species had contrasting responses to climate factors, and would not necessarily be expected to respond in parallel to climatic shifts. There were generally positive relationships between plant size and increased minimum and maximum temperatures, which would have been predicted to lead to small increases in plant sizes over the observation period. While one species increased in size and flower number over the observation period, five of the seven species decreased in plant height, four of these decreased in leaf size, and one species also decreased in flower production. One species showed no change. The mechanisms behind these size changes are unknown, and the limited data available on these species (germination timing, area of occupancy, relative abundance) did not explain why some species shrank while others grew or did not change in size over time. These results show that multiple annual forbs are decreasing in size, but that even within the same functional group, species may have contrasting responses to similar environmental stimuli. Changes in plant size could have cascading effects on other members of these communities, and differential responses to directional change may change the composition of plant communities over time. © 2013 Blackwell Publishing Ltd.
Global patterns in endemism explained by past climatic change.
Jansson, Roland
2003-03-22
I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.
On the role of circulation changes in future Northern Hemisphere hydroclimate change
NASA Astrophysics Data System (ADS)
Seager, R.; Ting, M.; Simpson, I.; Shaw, T.
2015-12-01
The "dry-get-drier, wet-get-wetter", otherwise known as "rich-get-richer, poor-get-poorer" concept of the hydrological cycle response to rising greenhouse gases was a major advance in terms of perception of climate change in the research community and the winder public. It provides a good description of hydroclimate change in many regions but especially over the oceans. Here there is a clear divide between wet regions, with positive precipitation minus evaporation (P-E), and dry regions with negative P-E. However over land, long term P-E is either zero or positive and balanced by streamflow and it is not so simple to divide between wet and dry regions. What is more, the simple wet-get-wetter, dry-get-drier paradigm is based only on thermodynamics with rising humidity causing increased amplitude of moisture convergence and moisture divergence and, hence, larger variations in P-E. It is now being realized more and more that changes in atmospheric circulation can also drive changes in moisture convergence/divergence and that a full explanation of hydrological cycle change requires attention to circulation change. This will be illustrated with reference to North America and the Mediterranean region. In both case changes in the mean circulation are important drivers of regional hydroclimate change. Model-projected North American hydroclimate change in winter is strongly influenced by a lengthening of the zonal scale of intermediate-scale stationary waves forced by extratropical heating. Wetting at the west coast, drying in the interior southwest and wetting at the US east coast are stronger in models that have a climatological wave field that exaggerates these waves than in models that have more realistic amplitude wave fields. Intense Mediterranean region drying in both summer and winter is also explained in part by shifts towards regional high pressure that, as of now, have not been fully explained. In neither southwest North America nor the Mediterranean, despite the importance of storm systems in delivering moisture to the regions, is projected drying caused by reduced transient eddy moisture convergence. Instead thermodynamic drying and mean flow changes share the responsibility for shifting the regions to drier, more water-stressed, climates.
NASA Astrophysics Data System (ADS)
Bertin, Xavier; Chaumillon, Eric; Sottolichio, Aldo; Pedreros, Rodrigo
2005-06-01
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2-6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.
NASA Astrophysics Data System (ADS)
Koch, Boris P.; Ksionzek, Kerstin B.; Lechtenfeld, Oliver J.; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Geuer, Jana K.; Geibert, Walter
2017-05-01
Dittmar et al. proposed that mixing alone can explain our observed decrease in marine dissolved organic sulfur with age. However, their simple model lacks an explanation for the origin of sulfur-depleted organic matter in the deep ocean and cannot adequately reproduce our observed stoichiometric changes. Using radiocarbon age also implicitly models the preferential cycling of sulfur that they are disputing.
Lasky, J B; Moran, P R
1977-09-01
The response of single crystal and extruded ribbons of TLD-100 to 5-30 keV electrons was investigated. If annealing is done in a vacuum, the sensitivity of TLD-100 single crystals to these electrons and the resultant glow curve are essentially the same as when irradiation are carried out with 137Cs gamma rays. All discrepancies in sensitivity can then be accounted for by the higher LET of electrons. The commonly used 'standard annealing' at 400 degrees C for one hour produced a change in the glow curve shape and a loss in sensitivity in contrast to the vacuum anneal results. Diffusion of hydroxyl ions into the sample during air annealing is believed to be the primary cause for this change. These results explain the source of the 'dead layer' proposed to explain the variation with particle size of the luminescent efficiency of X-ray irradiated TLD-100 powder and the low TL efficiency from low energy electron irradiations. With the use of the vacuum annealing procedure, the same sensitivity and reproducibility can be achieved for the dosimetry of low energy electrons and other shallowly penetrating radiation as is currently achieved for the dosimetry of X-rays.
Paynter, Sally; Russell, David A
2002-10-01
Recently, the observation of pH-induced conformational changes of biomolecules supported on carboxymethyldextran (CMD)-coated surfaces measured using surface plasmon resonance (SPR) has been reported. However, it is apparent that the evidence reported in the literature is ambiguous. The research presented in this paper describes investigations to study the changing SPR signal of immobilized biomolecules as a function of varying pH, to provide a detailed understanding of the origin of the pH-induced changes in the SPR profile. SPR measurements were performed with cytochrome c, concanavalin A, and poly-L-lysine, biomolecules that exhibit diverse conformational responses to changing pH, covalently immobilized onto CMD-coated supports. These SPR measurements were supported by circular dichroism (CD) solution studies. The SPR profiles recorded were not consistent with the conformational transitions of the biomolecules as observed using CD. An alternative explanation for the observed shifts in SPR is proposed, which explains the SPR profiles in terms of electrostatic interaction effects between the immobilized biomolecules and the carboxymethyldextran matrix.
Population variability complicates the accurate detection of climate change responses.
McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin
2016-06-01
The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. © 2016 John Wiley & Sons Ltd.
Links between plant species’ spatial and temporal responses to a warming climate
Amano, Tatsuya; Freckleton, Robert P.; Queenborough, Simon A.; Doxford, Simon W.; Smithers, Richard J.; Sparks, Tim H.; Sutherland, William J.
2014-01-01
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology. PMID:24478304
Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks
Albergante, Luca; Blow, J Julian; Newman, Timothy J
2014-01-01
The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. DOI: http://dx.doi.org/10.7554/eLife.02863.001 PMID:25182846
Confidence Leak in Perceptual Decision Making.
Rahnev, Dobromir; Koizumi, Ai; McCurdy, Li Yan; D'Esposito, Mark; Lau, Hakwan
2015-11-01
People live in a continuous environment in which the visual scene changes on a slow timescale. It has been shown that to exploit such environmental stability, the brain creates a continuity field in which objects seen seconds ago influence the perception of current objects. What is unknown is whether a similar mechanism exists at the level of metacognitive representations. In three experiments, we demonstrated a robust intertask confidence leak-that is, confidence in one's response on a given task or trial influencing confidence on the following task or trial. This confidence leak could not be explained by response priming or attentional fluctuations. Better ability to modulate confidence leak predicted higher capacity for metacognition as well as greater gray matter volume in the prefrontal cortex. A model based on normative principles from Bayesian inference explained the results by postulating that observers subjectively estimate the perceptual signal strength in a stable environment. These results point to the existence of a novel metacognitive mechanism mediated by regions in the prefrontal cortex. © The Author(s) 2015.
Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks.
Albergante, Luca; Blow, J Julian; Newman, Timothy J
2014-09-02
The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. Copyright © 2014, Albergante et al.
Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan
2014-12-01
Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component.
Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.
1999-01-01
We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.
Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.
Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John
2014-07-21
The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.
Donner, D.M.; Ribic, C.A.; Probst, J.R.
2009-01-01
Forest planners must evaluate how spatiotemporal changes in habitat amount and configuration across the landscape as a result of timber management will affect species' persistence. However, there are few long-term programs available for evaluation. We investigated the response of male Kirtland's Warbler (Dendroica kirtlandii) to 26 years of changing patch and landscape structure during a large, 26-year forestry-habitat restoration program within the warbler's primary breeding range. We found that the average density of male Kirtland's Warblers was related to a different combination of patch and landscape attributes depending on the species' regional population level and habitat amounts on the landscape (early succession jack pine (Pinus banksiana) forests; 15-42% habitat cover). Specifically, patch age and habitat regeneration type were important at low male population and total habitat amounts, while patch age and distance to an occupied patch were important at relatively high population and habitat amounts. Patch age and size were more important at increasing population levels and an intermediate amount of habitat. The importance of patch age to average male density during all periods reflects the temporal buildup and decline of male numbers as habitat suitability within the patch changed with succession. Habitat selection (i.e., preference for wildfire-regenerated habitat) and availability may explain the importance of habitat type and patch size during lower population and habitat levels. The relationship between male density and distance when there was the most habitat on the landscape and the male population was large and still increasing may be explained by the widening spatial dispersion of the increasing male population at the regional scale. Because creating or preserving habitat is not a random process, management efforts would benefit from more investigations of managed population responses to changes in spatial structure that occur through habitat gain rather than habitat loss to further our empirical understanding of general principles of the fragmentation process and habitat cover threshold effects within dynamic landscapes.
Formation of dominant mode by evolution in biological systems
NASA Astrophysics Data System (ADS)
Furusawa, Chikara; Kaneko, Kunihiko
2018-04-01
A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G
2015-06-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.
Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V
2017-03-01
Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.
2015-01-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342
The emerging role of the client in the delivery of primary care to older Americans.
Counte, M A
1998-01-01
OBJECTIVE: To address the likely influences, on options faced by older clients, of specific changes in the delivery system and several possible responses to these changes and the changed options, by older persons in the aggregate. STUDY DESIGN: Four specific topics are discussed at length: (1) the probable altered role for the older healthcare client brought on by organizational changes; (2) findings from research on elderly health maintenance behavior and reasons for the increased importance of this issue; (3) the effectiveness of the conventional approach to explaining health services utilization in population studies; and (4) recommendations for future research into the direct or indirect influence of organizational changes in the primary healthcare system on the health-related decisions and behaviors of older persons. PMID:9618677
Empirical psychology, common sense, and Kant's empirical markers for moral responsibility.
Frierson, Patrick
2008-12-01
This paper explains the empirical markers by which Kant thinks that one can identify moral responsibility. After explaining the problem of discerning such markers within a Kantian framework I briefly explain Kant's empirical psychology. I then argue that Kant's empirical markers for moral responsibility--linked to higher faculties of cognition--are not sufficient conditions for moral responsibility, primarily because they are empirical characteristics subject to natural laws. Next. I argue that these markers are not necessary conditions of moral responsibility. Given Kant's transcendental idealism, even an entity that lacks these markers could be free and morally responsible, although as a matter of fact Kant thinks that none are. Given that they are neither necessary nor sufficient conditions, I discuss the status of Kant's claim that higher faculties are empirical markers of moral responsibility. Drawing on connections between Kant's ethical theory and 'common rational cognition' (4:393), I suggest that Kant's theory of empirical markers can be traced to ordinary common sense beliefs about responsibility. This suggestion helps explain both why empirical markers are important and what the limits of empirical psychology are within Kant's account of moral responsibility.
Alsop, Brent; Furukawa, Emi; Sowerby, Paula; Jensen, Stephanie; Moffat, Cara; Tripp, Gail
2016-08-01
Altered sensitivity to positive reinforcement has been hypothesized to contribute to the symptoms of attention-deficit hyperactivity disorder (ADHD). In this study, we evaluated the ability of children with and without ADHD to adapt their behavior to changing reinforcer availability. Of one hundred sixty-seven children, 97 diagnosed with ADHD completed a signal-detection task in which correct discriminations between two stimuli were associated with different frequencies of reinforcement. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. For a subset of participants, this was followed by trials for which no reinforcement was delivered, irrespective of performance. Children in both groups developed an initial bias toward the more frequently reinforced response alternative. When the response alternative associated with the higher rate of reinforcement switched, the children's response allocation (bias) followed suit, but this effect was significantly smaller for children with ADHD. When reinforcement was discontinued, only children in the control group modified their response pattern. Children with ADHD adjust their behavioral responses to changing reinforcer availability less than typically developing children, when reinforcement is intermittent and the association between an action and its consequences is uncertain. This may explain the difficulty children with ADHD have adapting their behavior to new situations, with different reinforcement contingencies, in daily life. © 2016 Association for Child and Adolescent Mental Health.
van der Jeugd, Henk P.; van de Pol, Martijn
2018-01-01
It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460
NASA Astrophysics Data System (ADS)
Jaramillo, Fernando; Cory, Neil; Arheimer, Berit; Laudon, Hjalmar; van der Velde, Ype; Hasper, Thomas B.; Teutschbein, Claudia; Uddling, Johan
2018-01-01
During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing an opposite effect. Additionally, changes in other forest attributes may also affect evapotranspiration. In this study, we aimed to detect the dominating effect(s) of forest change on evapotranspiration by studying changes in the ratio of actual evapotranspiration to precipitation, known as the evaporative ratio, during the period 1961-2012. We first used the Budyko framework of water and energy availability at the basin scale to study the hydroclimatic movements in Budyko space of 65 temperate and boreal basins during this period. We found that movements in Budyko space could not be explained by climatic changes in precipitation and potential evapotranspiration in 60 % of these basins, suggesting the existence of other dominant drivers of hydroclimatic change. In both the temperate and boreal basin groups studied, a negative climatic effect on the evaporative ratio was counteracted by a positive residual effect. The positive residual effect occurred along with increasing standing forest biomass in the temperate and boreal basin groups, increasing forest cover in the temperate basin group and no apparent changes in forest species composition in any group. From the three forest attributes, standing forest biomass was the one that could explain most of the variance of the residual effect in both basin groups. These results further suggest that the water-saving response to increasing CO2 in these forests is either negligible or overridden by the opposite effect of the increasing forest biomass. Thus, we conclude that increasing standing forest biomass is the dominant driver of long-term and large-scale evapotranspiration changes in Swedish forests.
Exploring the universal ecological responses to climate change in a univoltine butterfly.
Fenberg, Phillip B; Self, Angela; Stewart, John R; Wilson, Rebecca J; Brooks, Stephen J
2016-05-01
Animals with distinct life stages are often exposed to different temperatures during each stage. Thus, how temperature affects these life stages should be considered for broadly understanding the ecological consequences of climate warming on such species. For example, temperature variation during particular life stages may affect respective change in body size, phenology and geographic range, which have been identified as the "universal" ecological responses to climate change. While each of these responses has been separately documented across a number of species, it is not known whether each response occurs together within a species. The influence of temperature during particular life stages may help explain each of these ecological responses to climate change. Our goal was to determine if monthly temperature variation during particular life stages of a butterfly species can predict respective changes in body size and phenology. We also refer to the literature to assess if temperature variability during the adult stage influences range change over time. Using historical museum collections paired with monthly temperature records, we show that changes in body size and phenology of the univoltine butterfly, Hesperia comma, are partly dependent upon temporal variation in summer temperatures during key stages of their life cycle. June temperatures, which are likely to affect growth rate of the final larval instar, are important for predicting adult body size (for males only; showing a positive relationship with temperature). July temperatures, which are likely to influence the pupal stage, are important for predicting the timing of adult emergence (showing a negative relationship with temperature). Previous studies show that August temperatures, which act on the adult stage, are linked to range change. Our study highlights the importance of considering temperature variation during each life stage over historic time-scales for understanding intraspecific response to climate change. Range edge studies of ectothermic species that have annual life cycles, long time-series occurrence data, and associated temperature records (ideally at monthly resolutions) could be useful model systems for intraspecific tests of the universal ecological responses to climate change and for exploring interactive effects. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koven, C. D.; Chambers, J. Q.; Georgiou, K.
To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr −1 increasing CO 2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in carbon changes arising from initial conditions is dominated by model disagreement on turnover times, whereas inter-model spread in carbon changes from fractional changes to these terms is dominated by model disagreement on changes to productivity in response to both warming and CO 2 fertilization. However, the lack of changing turnover time control on carbon responses, for both live and dead carbon pools, in response to the imposed forcings may arise from a common lack of process representation behind changing turnover times (e.g., allocation and mortality for live carbon; permafrost, microbial dynamics, and mineral stabilization for dead carbon), rather than a true estimate of the importance of these processes.« less
Koven, C. D.; Chambers, J. Q.; Georgiou, K.; ...
2015-09-07
To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr −1 increasing CO 2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter-model spread in carbon changes arising from initial conditions is dominated by model disagreement on turnover times, whereas inter-model spread in carbon changes from fractional changes to these terms is dominated by model disagreement on changes to productivity in response to both warming and CO 2 fertilization. However, the lack of changing turnover time control on carbon responses, for both live and dead carbon pools, in response to the imposed forcings may arise from a common lack of process representation behind changing turnover times (e.g., allocation and mortality for live carbon; permafrost, microbial dynamics, and mineral stabilization for dead carbon), rather than a true estimate of the importance of these processes.« less
Joint control of terrestrial gross primary productivity by plant phenology and physiology
Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S.; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Olesen, Jørgen E.; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E.; Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Yan, Liming; Luo, Yiqi
2015-01-01
Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847
Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate.
De Jongh, Cindy M; Verberk, Maarten M; Withagen, Carien E T; Jacobs, John J L; Rustemeyer, Thomas; Kezic, Sanja
2006-06-01
Little is known about cytokines involved in chronic irritant contact dermatitis. Individual cytokine profiles might explain at least part of the differences in the individual response to irritation. Our objective was to investigate the relation between baseline stratum corneum (SC) cytokine levels and the skin response to a single and a repeated irritation test. This study also aimed to determine changes in SC cytokine levels after repeated irritation. Transepidermal water loss (TEWL) and erythema were measured in 20 volunteers after single 24-hr exposure to 1% sodium lauryl sulfate (SLS), and during and after repeated exposure to 0.1% SLS over a 3-week period. SC cytokine levels were measured from an unexposed skin site and from the repeatedly exposed site. Interleukin (IL)-1alpha decreased by 30% after repeated exposure, while IL-1RA increased 10-fold and IL-8 increased fourfold. Baseline IL-1RA and IL-8 values were predictors of TEWL and erythema after single exposure (r = 0.55-0.61). 6 subjects showed barrier recovery during repeated exposure. Baseline IL-1RA and IL-8 levels are likely to be indicators of higher skin irritability after single exposure to SLS. Barrier repair in some of the subjects might explain the lack of agreement between the TEWL response after single and repeated irritation.
OSMOTIC PROPERTIES OF HUMAN RED CELLS.
SAVITZ, D; SIDEL, V W; SOLOMON, A K
1964-09-01
The hematocrit method as a technique for determining red cell volume under anisotonic conditions has been reexamined and has been shown, with appropriate corrections for trapped plasma, to provide a true measure of cell volume. Cell volume changes in response to equilibration in anisotonic media were found to be much less than those predicted for an ideal osmometer; this anomalous behavior cannot be explained by solute leakage or by the changing osmotic coefficient of hemoglobin, but is quantitatively accounted for by the hypothesis that 20 per cent of intracellular water is bound to hemoglobin and is unavailable for participation in osmotic shifts.
Ansell, J D; McDougall, C M; Micklem, H S; Inchley, C J
1980-01-01
Antigen-dependent localization of 51Cr-labelled lymphocytes, and the subsequent uptake of IUdR into lymphoid organs has been studied as a function of age. Measures of cell localization indicated that while old age can alter the patterns of entry of lymphocytes into lymph nodes and spleen, these changes are variable and probably not sufficient alone to explain decreased primary antibody responses in old animals. Proliferation of cells, however, was consistently affected in both organs and this phenomenon is discussed in terms of abnormal T-cell function. PMID:7429546
Lester, Kathryn J; Coleman, Jonathan R I; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Silverman, Wendy K; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H; Eley, Thalia C
2017-03-01
Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow-up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear-based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Urbanisation impacts on storm runoff along a rural-urban gradient
NASA Astrophysics Data System (ADS)
Miller, James David; Hess, Tim
2017-09-01
Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.
Students' Development and Use of Models to Explain Electrostatic Interactions
NASA Astrophysics Data System (ADS)
Mayer, Kristin Elizabeth
The National Research Council (2012) recently published A Framework for K-12 Science Education that describes a vision for science classrooms where students engage in three dimensions--scientific and engineering practices, crosscutting concepts, and disciplinary core ideas--to explain phenomena or observations they can make about the universe around them. This vision of science instruction is a significant shift from current classroom instruction. This dissertation provides detailed examples of how students developed and used models to build causal explanations of phenomena. I co-taught classes that focused on having students develop and revise models of electric fields and atomic structure using a curriculum that was designed to align with the three-dimensional vision of learning. I developed case studies of eleven students from these classes. I analyzed the students' responses and interviewed the students throughout the school year. By comparing and contrasting the analysis across the analysis of students' interviews, I identified four themes: 1) students could apply their ideas to explain novel and abstract phenomena; 2) students struggled to connect changes in their atomic models to evidence, but ended up with dynamic models of atomic structure that they could apply to explain phenomena; 3) students developed models of atomic structure that they applied to explain phenomena, but they did not use models of electric fields in this way; and 4) too much focus on details interfered with students' ability to apply their models to explain new phenomena. This dissertation highlights the importance of focusing on phenomena in classrooms that aim at aligning with three-dimensional learning. Students struggled to focus on specific content and apply their ideas to explain phenomena at the same time. In order to apply ideas to new context, students had to shift their focus from recalling ideas to applying the ideas they do have. A focus on phenomena allowed students to show their understanding through applying their ideas to new context. During this transition, students struggled, and in particular, had a hard time using evidence from experiments to justify the changes they made to their models of atomic structure. While the changes students made looked unproductive at times, by the end of the semester, students had developed models of atomic structure that incorporated relationships among charged components that they could apply to explain complex phenomena. Asking students to explore and evaluate their own ideas supported their development of models that they could apply to explain new context they experience in their future.
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2017-05-01
What is the central question of this study? Can sex-related differences in cutaneous vascular and sudomotor responses be explained primarily by variations in the ratio between body surface area and mass during compensable exercise that elicits equivalent heat-loss requirements and mean body temperature changes across participants? What is the main finding and its importance? Mass-specific surface area was a significant determinant of vasomotor and sudomotor responses in men and women, explaining 10-48% of the individual thermoeffector variance. Nonetheless, after accounting for changes in mean body temperature and morphological differences, sex explained only 5% of that inter-individual variability. It was concluded that sex differences in thermoeffector function are morphologically dependent, but not sex dependent. Sex is sometimes thought to be an independent modulator of cutaneous vasomotor and sudomotor function during heat exposure. Nevertheless, it was hypothesized that, when assessed during compensable exercise that evoked equal heat-loss requirements across participants, sex differences in those thermoeffectors would be explained by variations in the ratio between body surface area and mass (specific surface area). To evaluate that possibility, vasomotor and sudomotor functions were assessed in 60 individuals (36 men and 24 women) with widely varying (overlapping) specific surface areas (range, 232.3-292.7 and 241.2-303.1 cm 2 kg -1 , respectively). Subjects completed two trials in compensable conditions (28°C, 36% relative humidity) involving rest (20 min) and steady-state cycling (45 min) at fixed, area-specific metabolic heat-production rates (light, ∼135 W m -2 ; moderate, ∼200 W m -2 ). Equivalent heat-loss requirements and mean body temperature changes were evoked across participants. Forearm blood flow and vascular conductance were positively related to specific surface area during light work in men (r = 0.67 and r = 0.66, respectively; both P < 0.05) and during both exercise intensities in women (light, r = 0.57 and r = 0.69; and moderate, r = 0.64 and r = 0.68; all P < 0.05). Whole-body and local sweat rates were negatively related to that ratio (correlation coefficient range, -0.33 to -0.62; all P < 0.05) during both work rates in men and women. Those relationships accounted for 10-48% of inter-individual thermoeffector variance (P < 0.05). Furthermore, after accounting for morphological differences, sex explained no more than 5% of that variability (P < 0.05). It was concluded that, when assessed during compensable exercise, sex differences in thermoeffector function were largely determined morphologically, rather than being sex dependent. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Optimal chemotactic responses in stochastic environments
Godány, Martin
2017-01-01
Although the “adaptive” strategy used by Escherichia coli has dominated our understanding of bacterial chemotaxis, the environmental conditions under which this strategy emerged is still poorly understood. In this work, we study the performance of various chemotactic strategies under a range of stochastic time- and space-varying attractant distributions in silico. We describe a novel “speculator” response in which the bacterium compare the current attractant concentration to the long-term average; if it is higher then they tumble persistently, while if it is lower than the average, bacteria swim away in search of more favorable conditions. We demonstrate how this response explains the experimental behavior of aerobically-grown Rhodobacter sphaeroides and that under spatially complex but slowly-changing nutrient conditions the speculator response is as effective as the adaptive strategy of E. coli. PMID:28644830
The critical dimensions of the response-reinforcer contingency.
Williams, B A.
2001-05-03
Two major dimensions of any contingency of reinforcement are the temporal relation between a response and its reinforcer, and the relative frequency of the reinforcer given the response versus when the response has not occurred. Previous data demonstrate that time, per se, is not sufficient to explain the effects of delay-of-reinforcement procedures; needed in addition is some account of the events occurring in the delay interval. Moreover, the effects of the same absolute time values vary greatly across situations, such that any notion of a standard delay-of-reinforcement gradient is simplistic. The effects of reinforcers occurring in the absence of a response depend critically upon the stimulus conditions paired with those reinforcers, in much the same manner as has been shown with Pavlovian contingency effects. However, it is unclear whether the underlying basis of such effects is response competition or changes in the calculus of causation.
Health behavior change: can genomics improve behavioral adherence?
McBride, Colleen M; Bryan, Angela D; Bray, Molly S; Swan, Gary E; Green, Eric D
2012-03-01
The National Human Genome Research Institute recommends pursuing "genomic information to improve behavior change interventions" as part of its strategic vision for genomics. The limited effectiveness of current behavior change strategies may be explained, in part, by their insensitivity to individual variation in adherence responses. The first step in evaluating whether genomics can inform customization of behavioral recommendations is evidence reviews to identify adherence macrophenotypes common across behaviors and individuals that have genetic underpinnings. Conceptual models of how biological, psychological, and environmental factors influence adherence also are needed. Researchers could routinely collect biospecimens and standardized adherence measurements of intervention participants to enable understanding of genetic and environmental influences on adherence, to guide intervention customization and prospective comparative effectiveness studies.
Fay, Philip A; Newingham, Beth A; Polley, H Wayne; Morgan, Jack A; LeCain, Daniel R; Nowak, Robert S; Smith, Stanley D
2015-03-30
The Earth's atmosphere will continue to be enriched with carbon dioxide (CO2) over the coming century. Carbon dioxide enrichment often reduces leaf transpiration, which in water-limited ecosystems may increase soil water content, change species abundances and increase the productivity of plant communities. The effect of increased soil water on community productivity and community change may be greater in ecosystems with lower precipitation, or on coarser-textured soils, but responses are likely absent in deserts. We tested correlations among yearly increases in soil water content, community change and community plant productivity responses to CO2 enrichment in experiments in a mesic grassland with fine- to coarse-textured soils, a semi-arid grassland and a xeric shrubland. We found no correlation between CO2-caused changes in soil water content and changes in biomass of dominant plant taxa or total community aboveground biomass in either grassland type or on any soil in the mesic grassland (P > 0.60). Instead, increases in dominant taxa biomass explained up to 85 % of the increases in total community biomass under CO2 enrichment. The effect of community change on community productivity was stronger in the semi-arid grassland than in the mesic grassland, where community biomass change on one soil was not correlated with the change in either the soil water content or the dominant taxa. No sustained increases in soil water content or community productivity and no change in dominant plant taxa occurred in the xeric shrubland. Thus, community change was a crucial driver of community productivity responses to CO2 enrichment in the grasslands, but effects of soil water change on productivity were not evident in yearly responses to CO2 enrichment. Future research is necessary to isolate and clarify the mechanisms controlling the temporal and spatial variations in the linkages among soil water, community change and plant productivity responses to CO2 enrichment. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.
2018-04-01
The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian-Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction in salinity can only be explained by increased run-off. High amounts of both terrestrial and marine organic fragments in the first anoxic layers suggest that high run-off, increased nutrient availability, possibly in combination with soil erosion, are responsible for the development of anoxia in the basin. Enhanced run-off could result from changes in the hydrological cycle during the late Permian extinction event, which is a likely consequence of global warming. In addition, vegetation destruction and soil erosion may also have resulted in enhanced run-off. Salinity stratification could potentially explain the development of anoxia in other shallow marine sites. The input of freshwater and related changes in coastal salinity could also have implications for the interpretation of oxygen isotope records and seawater temperature reconstructions at some sites.
Convergence and divergence, a concept for explaining drug actions.
Watanabe, Takehiko; Kamisaki, Yoshinori; Timmerman, Henk
2004-10-01
For the teaching and/or learning about drug actions and for the discovery and development of new drugs, it is important to understand how drugs act on living bodies. So far, there has been no clear description on the general principle of drug action in pharmacology textbooks. We propose two principles to depict the action mechanism of drugs. The first is that most, if not all, drugs act on proteins at the molecular level, that is, enzymes, receptors, ion channels, and transporters. The second is that a drug may cause divergent or convergent responses, resulting in changes of a physiological or pathological function of the human body. The concept of divergence and convergence can be used to explain the complex individuality of drug actions.
Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott
2016-01-01
In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.
Perceptual asymmetry in texture perception.
Williams, D; Julesz, B
1992-07-15
A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region
NASA Astrophysics Data System (ADS)
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Natural Changes in Brain Temperature Underlie Variations in Song Tempo during a Mating Behavior
Aronov, Dmitriy; Fee, Michale S.
2012-01-01
The song of a male zebra finch is a stereotyped motor sequence whose tempo varies with social context – whether or not the song is directed at a female bird – as well as with the time of day. The neural mechanisms underlying these changes in tempo are unknown. Here we show that brain temperature recorded in freely behaving male finches exhibits a global increase in response to the presentation of a female bird. This increase strongly correlates with, and largely explains, the faster tempo of songs directed at a female compared to songs produced in social isolation. Furthermore, we find that the observed diurnal variations in song tempo are also explained by natural variations in brain temperature. Our findings suggest that brain temperature is an important variable that can influence the dynamics of activity in neural circuits, as well as the temporal features of behaviors that some of these circuits generate. PMID:23112858
Olea, Pedro P.; Mateo-Tomás, Patricia; de Frutos, Ángel
2010-01-01
Background Hierarchical partitioning (HP) is an analytical method of multiple regression that identifies the most likely causal factors while alleviating multicollinearity problems. Its use is increasing in ecology and conservation by its usefulness for complementing multiple regression analysis. A public-domain software “hier.part package” has been developed for running HP in R software. Its authors highlight a “minor rounding error” for hierarchies constructed from >9 variables, however potential bias by using this module has not yet been examined. Knowing this bias is pivotal because, for example, the ranking obtained in HP is being used as a criterion for establishing priorities of conservation. Methodology/Principal Findings Using numerical simulations and two real examples, we assessed the robustness of this HP module in relation to the order the variables have in the analysis. Results indicated a considerable effect of the variable order on the amount of independent variance explained by predictors for models with >9 explanatory variables. For these models the nominal ranking of importance of the predictors changed with variable order, i.e. predictors declared important by its contribution in explaining the response variable frequently changed to be either most or less important with other variable orders. The probability of changing position of a variable was best explained by the difference in independent explanatory power between that variable and the previous one in the nominal ranking of importance. The lesser is this difference, the more likely is the change of position. Conclusions/Significance HP should be applied with caution when more than 9 explanatory variables are used to know ranking of covariate importance. The explained variance is not a useful parameter to use in models with more than 9 independent variables. The inconsistency in the results obtained by HP should be considered in future studies as well as in those already published. Some recommendations to improve the analysis with this HP module are given. PMID:20657734
Campbell, Kenneth S; Moss, Richard L
2000-01-01
Paired ramp stretches and releases (‘triangular length changes’, typically 0.04 ± 0.09L0 s−1; mean ±s.e.m.) were imposed on permeabilised rabbit psoas fibre segments under sarcomere length control. In actively contracting fibres, the tension response to stretch was biphasic; tension rose more rapidly during the first 0.005L0 of the imposed stretch than thereafter. Tension also dropped in a biphasic manner during shortening, and at the end of the length change was reduced below the steady state. If a second triangular length change was imposed shortly after the first, tension rose less sharply during the initial phase of lengthening, i.e. the stiffness of the muscle during the initial phase of the response was reduced in the second stretch. This is a thixotropic effect. If a third triangular length change was imposed on the muscle, the response was the same as that to the second. The time required to recover the original tension response was measured by varying the interval between triangular length changes. Recovery to steady state occurred at a rate of ∼1 s−1. The stiffness of the muscle during the initial phase of the response scaled with the developed tension in pCa (=−log10[Ca2+]) solutions ranging from 6.3 (minimal activation) to 4.5 (saturating effect). The relative thixotropic reduction in stiffness measured using paired length changes was independent of the pCa of the activating solution. The thixotropic behaviour of contracting skeletal muscle can be explained by a cross-bridge model of muscle contraction in which the number of attached cross-bridges is temporarily reduced following an imposed movement. PMID:10835052
Enhanced precipitation variability decreases grass- and increases shrub-productivity
Gherardi, Laureano A.; Sala, Osvaldo E.
2015-01-01
Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095
Furukawa, Emi; Shimabukuro, Shizuka; Alsop, Brent; Tripp, Gail
2017-09-25
Most research on motivational processes in attention deficit hyperactivity disorder (ADHD) has been undertaken in Western Europe and North America. The extent to which these findings apply to other cultural groups is unclear. The current study evaluated the behavioral sensitivity of Japanese children with and without ADHD to changing reward availability. Forty-one school-aged children, 19 diagnosed with DSM-IV ADHD, completed a signal-detection task in which correct discriminations between two stimuli were associated with different reinforcement frequencies. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. Both groups of children developed an initial bias toward the more frequently reinforced response alternative. When the reward contingencies switched the response allocation (bias) of the control group children followed suit. The response bias scores of the children with ADHD did not, suggesting impaired tracking of reward availability over time. Japanese children with ADHD adjust their behavioral responses to changing reinforcer availability less than their typically developing peers. This is not explained by poor attention to task or a lack of sensitivity to reward. The current results are consistent with altered sensitivity to changing reward contingencies identified in non-Japanese samples of children with ADHD. Irrespective of their country of origin, children with ADHD will likely benefit from behavioral expectations and reinforcement contingencies being made explicit together with high rates of reinforcement for appropriate behaviors.
Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus
Berger, Joel I.; Coomber, Ben; Wells, Tobias T.; Wallace, Mark N.; Palmer, Alan R.
2014-01-01
Tinnitus is often identified in animal models by using the gap prepulse inhibition of acoustic startle. Impaired gap detection following acoustic over-exposure (AOE) is thought to be caused by tinnitus “filling in” the gap, thus, reducing its salience. This presumably involves altered perception, and could conceivably be caused by changes at the level of the neocortex, i.e., cortical reorganization. Alternatively, reduced gap detection ability might reflect poorer temporal processing in the brainstem, caused by AOE; in which case, impaired gap detection would not be a reliable indicator of tinnitus. We tested the latter hypothesis by examining gap detection in inferior colliculus (IC) neurons following AOE. Seven of nine unilaterally noise-exposed guinea pigs exhibited behavioral evidence of tinnitus. In these tinnitus animals, neural gap detection thresholds (GDTs) in the IC significantly increased in response to broadband noise stimuli, but not to pure tones or narrow-band noise. In addition, when IC neurons were sub-divided according to temporal response profile (onset vs. sustained firing patterns), we found a significant increase in the proportion of onset-type responses after AOE. Importantly, however, GDTs were still considerably shorter than gap durations commonly used in objective behavioral tests for tinnitus. These data indicate that the neural changes observed in the IC are insufficient to explain deficits in behavioral gap detection that are commonly attributed to tinnitus. The subtle changes in IC neuron response profiles following AOE warrant further investigation. PMID:25346722
Time-dependent influence of sensorimotor set on automatic responses in perturbed stance
NASA Technical Reports Server (NTRS)
Chong, R. K.; Horak, F. B.; Woollacott, M. H.; Peterson, B. W. (Principal Investigator)
1999-01-01
These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.
Understanding the Warm Water Volume Precursor of ENSO Events and its Interdecadal Variation
NASA Astrophysics Data System (ADS)
Neske, S.; McGregor, S.
2018-02-01
A wind forced ocean model is used to decompose the equatorial Pacific warm water volume (WWV) between 1980 and 2016 into two components: the (i) adjusted wind response, which is found by letting the model evolve unforced for three months, and (ii) instantaneous wind response, which are the instantaneous WWV changes due to Ekman transports. Our results suggest that roughly half of WWV variability is only as predictable as the winds that drive the instantaneous change. Separate examinations of pre-2000 and post-2000 periods reveal (i) nearly equal importance of instantaneous and adjusted responses for the pre-2000 period and (ii) dominance of the instantaneous response during the post-2000 period, which is most apparent during the recharged phase. This increasing instantaneous contribution prominence explains the post-2000 reduction in WWV/El Niño-Southern Oscillation sea surface temperature lead times (from six to nine months pre-2000 down to three months post-2000) and is consistent with the reduction in post-2000 El Niño-Southern Oscillation prediction skill.
NASA Technical Reports Server (NTRS)
Kenyon, R. V.; Young, L. R.
1986-01-01
The four science crewmembers of Spacelab-1 were tested for postural control before and after a 10 day mission in weightlessness. Previous reports have shown changes in astronaut postural behavior following a return to earth's 1-g field. This study was designed to identify changes in EMG latency and amplitudes that might explain the instabilities observed post-flight. Erect posture was tested having the subject stand on a pneumatically driven posture platform which pitched rapidly and unexpectedly about the ankles causing dorsi- and plantarflexion. Electromyographic (EMG) activity from the tibialis anterior and the gastrocnemius-soleus muscles was measured during eyes open and eyes closed trials. The early (pre 500 ms) EMG response characteristics (latency, amplitude) in response to a disturbance in the posture of the subject were apparently unchanged by the 10 days of weightlessness. However, the late (post 500 ms) response showed higher amplitudes than was found pre-flight. General postural control was quantitatively measured pre- and post-flight by a 'sharpened Romberg Rails test'. This test showed decrements in standing stability with eyes closed for several days post-flight.
Madruga, Clarice; Xavier, Léder L; Achaval, Matilde; Sanvitto, Gilberto L; Lucion, Aldo B
2006-01-30
This study aimed at identifying the effects of neonatal handling (H) and maternal separation (MS) on two paradigms of fear, learned and innate, and on the tyrosine hydroxylase (TH) immunoreactive cells in adult life. Wistar rats were daily handled with a brief maternal separation, maternal separated for 3 h or left undisturbed during the first 10 days of life. Behavioural responses in the open-field (innate fear) and conditioned fear (learned fear) were evaluated. Moreover, a semi-quantitative analysis of TH immunoreactivity in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) was performed using optical densitometry and confirmed by planar measurements of neuronal density. Early handling decreased behaviour responses of innate and learned fear in adult life, while maternal separation had no significant long-lasting effect on these responses compared to the non-handled group. The behavioural effects of early handling could not be explained by changes in the density of midbrain dopaminergic cells, which were not affected by handling or maternal separation.
NASA Astrophysics Data System (ADS)
Valls, G.; Torrado, J.; Farro, I.; Bia, D.; Zócalo, Y.; Lluberas, S.; Craiem, D.; Armentano, Rl
2011-09-01
Ergometric exercise stress tests (EST) give important information about the cardiovascular (CV) response to increased demands. The expected EST-related changes in variables like blood pressure and heart rate are known, but those in the arterial biomechanics are controversial and incompletely characterized. In this context, this work aims were to characterize the regional and local arterial biomechanical behaviour in response to EST; to evaluate its temporal profile in the post-EST recovery phase; and to compare the biomechanical response of different to EST. Methods: In 16 non-trained healthy young subjects the carotid-femoral pulse wave velocity and the carotid, femoral and brachial arterial distensibility were non-invasively evaluated before (Rest) and after EST. Main results: The EST resulted in an early increase in the arterial stiffness, evidenced by both, regional and local parameters (pulse wave velocity increase and distensibility reduction). When analyzing conjunctly the different post-EST recovery stages there were quali-quantitative differences among the arterial local stiffness response to EST. The biomechanical changes could not be explained only by blood pressure variations.
Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja
2015-05-01
Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.
Beyond greening and browning: the need for an integrated understanding of Arctic change
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Huemmrich, K. F.; Hmimina, G.; Yu, R.
2017-12-01
Satellite records and field observations povide contradictory evidence for "greening" or "browning" of Arctic tundra. Large-scale observations of apparent greening have been based on satellite vegetation indices (e.g NDVI). However, a clear interpretation of these trends are confounded by changing snow cover and surface hydrology, both of which influence NDVI and are known to be changing independently of any direct vegetation response. Field studies have demonstrated greening in some areas, but not others, and have also documented changing permafrost depth, surface hydrology and snow cover. Together, these confounding factors can explain some of the contradictory evidence based regarding greening and browning. Given the multiple influences on Arctic NDVI, simple conclusions regarding greening and browning from satellite data alone can be incorrect; when these confounding factors are taken into account, some areas that show apparent greening in the satellite record appear to be undergoing productivity declines due to surface drying. These contradictory interpretations have profound implications for our understanding of changing surface energy balance, biogeochemistry, and surface-atmosphere feedbacks. To better address Arctic ecosystem responses to a changing climate, an integrated, multi-scale, multivariate approach that considers hydrology, permafrost, snow cover and vegetation is needed.
Prescott, Steven A.
1998-01-01
Repetitive stimulation often results in habituation of the elicited response. However, if the stimulus is sufficiently strong, habituation may be preceded by transient sensitization or even replaced by enduring sensitization. In 1970, Groves and Thompson formulated the dual-process theory of plasticity to explain these characteristic behavioral changes on the basis of competition between decremental plasticity (depression) and incremental plasticity (facilitation) occurring within the neural network. Data from both vertebrate and invertebrate systems are reviewed and indicate that the effects of depression and facilitation are not exclusively additive but, rather, that those processes interact in a complex manner. Serial ordering of induction of learning, in which a depressing locus precedes the modulatory system responsible for inducing facilitation, causes the facilitation to wane. The parallel and/or serial expression of depression and waning facilitation within the stimulus–response pathway culminates in the behavioral changes that characterize dual-process learning. A mathematical model is presented to formally express and extend understanding of the interactions between depression and facilitation. PMID:10489261
Lina Koyama; Knut Kielland
2011-01-01
A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the...
Climate Drivers of Blue Intensity from Two Eastern North American Conifers
NASA Astrophysics Data System (ADS)
Rayback, S. A.; Kilbride, J.; Pontius, J.; Tait, E.; Little, J.
2016-12-01
Gaining a comprehensive understanding of the climatic factors that drive tree radial growth over time is important in the context of global climate change. Herein, we explore minimum blue intensity (BI), a measure of lignin context in the latewood of tree rings, with the objective of developing BI chronologies for two eastern North American conifers to identify and explore climatic drivers and to compare BI-climate relationships to those of tree-ring widths (TRW). Using dendrochronological techniques, Tsuga canadensis and Picea rubens TRW and BI chronologies were developed at Abbey Pond (ABP) and The Cape National Research Area (CAPE), Vermont, USA, respectively. Climate drivers (1901-2010) were investigated using correlation and response function analyses and generalized linear mixed models. The ABP T. canadensis BI model explained the highest amount of variance (R2 = 0.350, adjR2=0.324) with September Tmin and June total percent cloudiness as predictors. The ABP T. canadensis TRW model explained 34% of the variance (R2 = 0.340, adjR2=0.328) with summer total precipitation and June PDSI as predictors. The CAPE P. rubens TRW and BI models explained 31% of the variance (R2 = 0.33, adjR2=0.310), based on p July Tmax, p August Tmean and fall Tmin as predictors, and 7% (R2 = 0.068, adjR2=0.060) based on Spring Tmin as the predictor, respectively. Moving window analyses confirm the moisture sensitivity of T. canadensis TRW and now BI and suggest an extension of the growing season. Similarly, P. rubens TRW responded consistently negative to high growing season temperatures, but TRW and BI benefited from a longer growing season. This study introduces two new BI chronologies, the first from northeastern North America, and highlights shifts underway in tree response to changing climate.
Sassa, Shinji; Watabe, Yoichi; Yang, Soonbo; Kuwae, Tomohiro
2011-01-01
The response of bivalves to their abiotic environment has been widely studied in relation to hydroenvironmental conditions, sediment types and sediment grain sizes. However, the possible role of varying geoenvironmental conditions in their habitats remains poorly understood. Here, we show that the hardness of the surficial intertidal sediments varies by a factor of 20–50 due to suction development and suction-induced void state changes in the essentially saturated states of intertidal flats and beaches. We investigated the response of two species of bivalves, Ruditapes philippinarum and Donax semigranosus, in the laboratory by simulating such prevailing geoenvironmental conditions in the field. The experimental results demonstrate that the bivalve responses depended strongly on the varying geoenvironmental conditions. Notably, both bivalves consistently shifted their burrowing modes, reducing the burrowing angle and burial depth, in response to increasing hardness, to compensate for the excessive energy required for burrowing, as explained by a proposed conceptual model. This burrowing mode adjustment was accompanied by two burrowing criteria below or above which the bivalves accomplished vertical burrowing or failed to burrow, respectively. The suitable and fatal conditions differed markedly with species and shell lengths. The acute sensitivities of the observed bivalve responses to geoenvironmental changes revealed two distinctive mechanisms accounting for the adult–juvenile spatial distributions of Ruditapes philippinarum and the behavioral adaptation to a rapidly changing geoenvironment of Donax semigranosus. The present results may provide a rational basis by which to understand the ensuing, and to predict future, bivalve responses to geoenvironmental changes in intertidal zones. PMID:21957474
Identifying external influences on global precipitation
Marvel, Kate; Bonfils, Céline
2013-01-01
Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities. PMID:24218561
Identifying external influences on global precipitation.
Marvel, Kate; Bonfils, Céline
2013-11-26
Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle ("thermodynamic" changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt ("dynamic" changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.
Landscape correlates of breeding bird richness across the United States mid-Atlantic region
Jones, K.B.; Neale, A.C.; Nash, M.S.; Riitters, K.H.; Wickham, J.D.; O'Neill, R. V.; Van Remortel, R. D.
2000-01-01
Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect freer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.Using a new set of landscape indicator data generated by the U.S. EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect finer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.
Molecular, cellular, and genetic basis of radiosensitivity at low doses: a case of inducible repair?
Skov, K A
1994-04-01
Many proteins are induced by ionizing radiation, and genes are activated. We still do not know which, if any, are responsible for IRR, or what leads to the adaptive response seen at still lower doses. Are these the same responses? Are they related to apoptosis, repair of potentially lethal damage and other responses? Does the cell have a whole battery of responses, depending on the dose? I suspect this is the case. Can the responses be explained more simply, as effects on regulators of cell cycle or induction of fidelity, or is there induction of repair? Are there still other explanations for the apparent protection? The initial slope of the survival curve which was addressed earlier (1) must take on new meaning given the hyperradiosensitive portion. Similarly, we may have to change our thinking with respect to the LQ description of survival data. It is not surprising that this workshop, held at such an early stage primarily to address the phenomenon of increased radioresistance, produced more questions than answers. Single-strand breaks may trigger resistance, but additional lesions or classes of damage may be relevant. Some physicists expect the damage caused to be linear with dose; the biologists suggest that the response is nonlinear (e.g. saturation of an enzyme, induction of repair, cell cycle effects) and there is room for biochemistry which could also vary with dose (e.g. consumption of a protector or a sensitizer). Some biophysicists would argue that the observed structures in survival curves might be explained by change in the target cross section such as a large change in DNA conformation caused by a very low dose. There is some reluctance in the radiobiology community to accept that cells may respond to ionizing radiation by inducing or activating protective mechanisms, although the cell exhibits defensive responses to many other detrimental stimuli. If "the heart of the matter is in the shape of the survival curve" as suggested by Dr. Elkind in his summary of the 1974 "low doses" conference (p. 385 in ref. 1), then we are fortunate indeed that there are now additional methods to attack the question directly of what is turned on or activated. It is anticipated that there will be many further developments within the year, to be presented at related sessions at larger meetings, and at a closely related meeting to be held in June 1994 in Montreal, entitled "Gene Induction and Adaptive Responses in Irradiated Cells: Mechanisms and Clinical Implications."
Prins, R G; Panter, J; Heinen, E; Griffin, S J; Ogilvie, D B
2016-06-01
Mechanisms linking changes to the environment with changes in physical activity are poorly understood. Insights into mechanisms of interventions can help strengthen causal attribution and improve understanding of divergent response patterns. We examined the causal pathways linking exposure to new transport infrastructure with changes in cycling to work. We used baseline (2009) and follow-up (2012) data (N=469) from the Commuting and Health in Cambridge natural experimental study (Cambridge, UK). Exposure to new infrastructure in the form of the Cambridgeshire Guided Busway was defined using residential proximity. Mediators studied were changes in perceptions of the route to work, theory of planned behaviour constructs and self-reported use of the new infrastructure. Outcomes were modelled as an increase, decrease or no change in weekly cycle commuting time. We used regression analyses to identify combinations of mediators forming potential pathways between exposure and outcome. We then tested these pathways in a path model and stratified analyses by baseline level of active commuting. We identified changes in perceptions of the route to work, and use of the cycle path, as potential mediators. Of these potential mediators, only use of the path significantly explained (85%) the effect of the infrastructure in increasing cycling. Path use also explained a decrease in cycling among more active commuters. The findings strengthen the causal argument that changing the environment led to changes in health-related behaviour via use of the new infrastructure, but also show how some commuters may have spent less time cycling as a result. Copyright © 2016. Published by Elsevier Inc.
Density effect on great tit (Parus major) clutch size intensifies in a polluted environment.
Eeva, Tapio; Lehikoinen, Esa
2013-12-01
Long-term data on a great tit (Parus major) population breeding in a metal-polluted zone around a copper-nickel smelter indicate that, against expectations, the clutch size of this species is decreasing even though metal emissions in the area have decreased considerably over the past two decades. Here, we document long-term population-level changes in the clutch size of P. major and explore if changes in population density, population numbers of competing species, timing of breeding, breeding habitat, or female age distribution can explain decreasing clutch sizes. Clutch size of P. major decreased by one egg in the polluted zone during the past 21 years, while there was no significant change in clutch size in the unpolluted reference zone over this time period. Density of P. major nests was similar in both environments but increased threefold during the study period in both areas (from 0.8 to 2.4 nest/ha). In the polluted zone, clutch size has decreased as a response to a considerable increase in population density, while a corresponding density change in the unpolluted zone did not have such an effect. The other factors studied did not explain the clutch size trend. Fledgling numbers in the polluted environment have been relatively low since the beginning of the study period, and they do not show a corresponding decrease to that noted for the clutch size over the same time period. Our study shows that responses of commonly measured life-history parameters to anthropogenic pollution depend on the structure of the breeding population. Interactions between pollution and intrinsic population characters should therefore be taken into account in environmental studies.
Climate controls photosynthetic capacity more than leaf nitrogen contents
NASA Astrophysics Data System (ADS)
Ali, A. A.; Xu, C.; McDowell, N. G.
2013-12-01
Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.
Reismann, Marc; Ghaffarpour, Nader; Luvall, Ethel; Jirmo, Adan; Radtke, Josephine; Claesson, Gösta; Wester, Tomas
2016-05-01
We have recently shown that the relative TLR4 expression on monocytes of low responding pediatric patients after OK-432 treatment is significantly reduced after stimulation with lipopolysaccharide (LPS) compared with high responding children. The aim of this study was to perform further analysis to explain this observation. Monocytes from children with high (HR, n = 5) and low response (LR, n = 6) after previous OK-432 treatment were stimulated with LPS for 20 h and analyzed with fluorescence-activated cell sorting (mean fluorescence intensity, MFI; level of significance P ≤ 0.05). Mean MFI after LPS stimulation was comparable in both groups (HR 1142 ± 652 units, LR 839 ± 427 units, P = 0.85). Significant changes after LPS stimulation are explained by higher pre-stimulation values in the LR group compared with the HR group (950 ± 718 vs. 477 ± 341, P = 0.25) with considerable differences of the mean expression changes after LPS stimulation (HR 665 ± 683 vs. LR -111 ± 605, P = 0.08). The previously shown reduced TLR4 upregulation on monocytes after LPS stimulation in the LR group compared with the HR group can be primarily explained by TLR preconditioning. This observation implies the use of absolute values with definite thresholds.
Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berhe, Asmeret A.; Suttle, K. Blake; Burton, Sarah D.
2012-09-03
Shifts in regional precipitation patterns will be a major component of global climate change. Rainfall will show greater and more variable changes in response to rising earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change. We studied the consequences of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change. Results show that increases in annual rainfall have important consequences for soilmore » C storage, but that the strength and even direction of these effects depend entirely on seasonal timing. Rainfall increases during the winter rainy season led to pronounced C loss from soil while rainfall increases after the typical rainy season increased soil C stocks. Analysis of mineral-OM associations reveals a powerful mechanism underlying this difference: increased winter rainfall vastly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35 percent of the variability in C storage in ambient control and spring-addition treatments, compared to less than 0.01 percent in the winter-addition treatment. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40 percent of the variability in C storage, respectively, in the control and spring-addition treatments compared to less than 5 percent in the -winter-addition treatment. Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. These results highlight the complexity inherent in biospheric feedbacks to the climate system, and the way that careful experimentation can penetrate that complexity to improve predictions of ecosystem and climatic change.« less
NASA Astrophysics Data System (ADS)
Tinner, Willy; Lotter, André F.
2006-03-01
During the past eight decades contrasting hypotheses have been put forward to explain the Holocene expansions of Fagus silvatica (beech) and Abies alba (fir) in Central Europe. The hypotheses can be referred to as: (1) climatic change; (2) migrational lag; (3) delay in population increase; (4) human disturbance; and (5) fire disturbance. High-resolution pollen and charcoal records from three sites in lowland Switzerland and southern Germany allow testing the human vs. fire-disturbance hypotheses by means of time-series analysis. Cross-correlations between pairs of pollen as well as between microscopic charcoal and pollen suggest that neither human nor fire disturbance substantially promoted the expansion of Fagus and Abies. We address the remaining hypotheses (climatic change, migrational lag, delay of population increase) by a combined interpretation of our data with independent climatic records and other evidence of past environmental dynamics (e.g. dynamic vegetation modelling) for southern Central Europe. Rapid population expansions in response to cooling and precipitation increase suggest that climatic change was the main forcing factor and that migrational lags were not effective since at least 8200 cal. yr ago. On the basis of this conclusion we propose an explanatory model for the Holocene expansion of Fagus and Abies in Central Europe: Both trees expanded stepwise across the continent during favourable 8200-type events, which were characterized by changes towards wetter and cooler conditions and corresponded to previously recognized Holocene cold phases in Central Europe as well as in the North Atlantic realm. Asynchronous expansions across continental Europe are explained by analogy to today's precipitation gradients resulting from orographic effects. Response lags of Fagus and Abies to climatic change reached a few decades at most, whereas population expansion in response to climatic change lasted for several centuries, probably as a consequence of intrinsic rates of population increase as well as competition with previously established forest communities. This model is in agreement with recent data from northern Central Europe, where large-scale expansion pulses of Fagus coincided with 8200-type events (e.g. 3800-3400 and 2750-2350 cal. BP). In addition to climatic change, human impact influenced the expansions of Fagus in northern Central Europe. We suggest that Abies expansions across Europe after 5000 cal. BP were inhibited by human and/or fire disturbance.
NASA Astrophysics Data System (ADS)
Rahman, Abdul Samad Abdul; Noor, Mohd Jamaludin Md; Ahmad, Juhaizad Bin; Sidek, Norbaya
2017-10-01
The concept of effective stress has been the principal concept in characterizing soil volume change behavior in soil mechanics, the settlement models developed using this concept have been empirical in nature. However, there remain certain unexplained soil volume change behaviors that cannot be explained using the effective stress concept, one such behaviour is the inundation settlement. Studies have begun to indicate the inevitable role of shear strength as a critical element to be incorporated in models to unravel the unexplained soil behaviours. One soil volume change model that applies the concept of effective stress and the shear strength interaction is the Rotational Multiple Yield Surface Framework (RMYSF) model. This model has been developed from the soil-strain behavior under anisotropic stress condition. Hence, the RMYSF actually measure the soil actual elasto-plastic response to stress rather than assuming it to be fully elastic or plastic as normally perceived by the industry. The frameworks measures the increase in the mobilize shear strength when the soil undergo anisotropic settlement.
Sung, Wookje; Woehler, Meredith L; Fagan, Jesse M; Grosser, Travis J; Floyd, Theresa M; Labianca, Giuseppe Joe
2017-06-01
The authors used pre-post merger data from 599 employees experiencing a major corporate merger to compare 3 conceptual models based on the logic of social identity theory (SIT) and exchange theory to explain employees' merger responses. At issue is how perceived change in employees' own jobs and roles (i.e., personal valence) and perceived change in their organization's status and merger appropriateness (i.e., organizational valence) affect their changing organizational identification, attachment attitudes, and voluntary turnover. The first model suggests that organizational identification and organizational attachment develop independently and have distinct antecedents. The second model posits that organizational identification mediates the relationships between change in organizational and personal valence and change in attachment and turnover. The third model posits that change in personal valence moderates the relationship between changes in organizational valence and in organizational identification and attachment. Using latent difference score (LDS) modeling in an SEM framework and survival analysis, the results suggest an emergent fourth model that integrates the first and second models: Although change in organizational identification during the merger mediates the relationship between change in personal status and organizational valence and change in attachment, there is a direct and unmediated relationship between change in personal valence and attachment. This integrated model has implications for M&A theory and practice. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Context change explains resurgence after the extinction of operant behavior
Trask, Sydney; Schepers, Scott T.; Bouton, Mark E.
2016-01-01
Extinguished operant behavior can return or “resurge” when a response that has replaced it is also extinguished. Typically studied in nonhuman animals, the resurgence effect may provide insight into relapse that is seen when reinforcement is discontinued following human contingency management (CM) and functional communication training (FCT) treatments, which both involve reinforcing alternative behaviors to reduce behavioral excess. Although the variables that affect resurgence have been studied for some time, the mechanisms through which they promote relapse are still debated. We discuss three explanations of resurgence (response prevention, an extension of behavioral momentum theory, and an account emphasizing context change) as well as studies that evaluate them. Several new findings from our laboratory concerning the effects of different temporal distributions of the reinforcer during response elimination and the effects of manipulating qualitative features of the reinforcer pose a particular challenge to the momentum-based model. Overall, the results are consistent with a contextual account of resurgence, which emphasizes that reinforcers presented during response elimination have a discriminative role controlling behavioral inhibition. Changing the “reinforcer context” at the start of testing produces relapse if the organism has not learned to suppress its responding under conditions similar to the ones that prevail during testing. PMID:27429503
Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude
2013-01-01
Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption. PMID:23886516
Pournaras, Dimitri J.; Glicksman, Clare; Vincent, Royce P.; Kuganolipava, Shophia; Alaghband-Zadeh, Jamie; Mahon, David; Bekker, Jan H.R.; Ghatei, Mohammad A.; Bloom, Stephen R.; Walters, Julian R.F.; le Roux, Carel W.
2012-01-01
Gastric bypass leads to the remission of type 2 diabetes independently of weight loss. Our hypothesis is that changes in bile flow due to the altered anatomy may partly explain the metabolic outcomes of the operation. We prospectively studied 12 patients undergoing gastric bypass and six patients undergoing gastric banding over a 6-wk period. Plasma fibroblast growth factor (FGF)19, stimulated by bile acid absorption in the terminal ileum, and plasma bile acids were measured. In canine and rodent models, we investigated changes in the gut hormone response after altered bile flow. FGF19 and total plasma bile acids levels increased after gastric bypass compared with no change after gastric banding. In the canine model, both food and bile, on their own, stimulated satiety gut hormone responses. However, when combined, the response was doubled. In rats, drainage of endogenous bile into the terminal ileum was associated with an enhanced satiety gut hormone response, reduced food intake, and lower body weight. In conclusion, after gastric bypass, bile flow is altered, leading to increased plasma bile acids, FGF19, incretin. and satiety gut hormone concentrations. Elucidating the mechanism of action of gastric bypass surgery may lead to novel treatments for type 2 diabetes. PMID:22673227
Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude
2013-10-01
Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid. SNPs within SREBF1, ACLY, and ACACA genes were genotyped using TAQMAN methodology. After correction for multiple comparison, only two SNPs, rs8071753 (ACLY) and rs1714987 (ACACA), were associated with the relative change in plasma TG concentrations (P = 0.004 and P = 0.005, respectively). These two SNPs explained 7.73% of the variance in plasma TG relative change following fish oil consumption. Genotype frequencies of rs8071753 according to the TG response groups (responders versus nonresponders) were different (P = 0.02). We conclude that the presence of certain SNPs within genes, such as ACLY and ACACA, encoding proteins involved in de novo lipogenesis seem to influence the plasma TG response following fish oil consumption.
Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V
2014-03-15
The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (f
Hossack, Blake R.
2017-01-01
Management actions are based upon predictable responses. To form expected responses to restoration actions, I estimated habitat relationships and trends (2002–2015) for four pond-breeding amphibians on a wildlife refuge (Montana, USA) where changes to restore historical hydrology to the system greatly expanded (≥8 times) the flooded area of the primary breeding site for western toads (Anaxyrus boreas). Additional restoration actions are planned for the near future, including removing ponds that provide amphibian habitat. Multi-season occupancy models based on data from 15 ponds sampled during 7 years revealed that the number of breeding subpopulations increased modestly for Columbia spotted frogs (Rana luteiventris) and was stationary for long-toed salamanders (Ambystoma macrodactylum) and Pacific treefrogs (Pseudacris regilla). For these three species, pond depth was the characteristic that was associated most frequently with occupancy or changes in colonization and extinction. In contrast, a large decrease in colonization by western toads explained the decline from eight occupied ponds in 2002 to two ponds in 2015. This decline occurred despite an increase in wetland area and the colonization of a newly created pond. These changes highlight the challenges of managing for multiple species and how management responses can be unpredictable, possibly reducing the efficacy of targeted actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo
Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.
Forecasted range shifts of arid-land fishes in response to climate change
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.
2017-01-01
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.
Obesity and the built environment: changes in environmental cues cause energy imbalances.
Cohen, D A
2008-12-01
The past 30 years have seen dramatic changes in the food and physical activity environments, both of which contribute to the changes in human behavior that could explain obesity. This paper reviews documented changes in the food environment, changes in the physical activity environment and the mechanisms through which people respond to these environments, often without conscious awareness or control. The most important environmental changes have been increases in food accessibility, food salience and decreases in the cost of food. The increases in food marketing and advertising create food cues that artificially stimulate people to feel hungry. The existence of a metabolic pathway that allows excess energy to be stored as fat suggests that people were designed to overeat. Many internal mechanisms favor neurophysiologic responses to food cues that result in overconsumption. External cues, such as food abundance, food variety and food novelty, cause people to override internal signals of satiety. Other factors, such as conditioning and priming, tie food to other desirable outcomes, and thus increase the frequency that hunger is stimulated by environmental cues. People's natural response to the environmental cues are colored by framing, and judgments are flawed and biased depending on how information is presented. People lack insight into how the food environment affects them, and subsequently are unable to change the factors that are responsible for excessive energy consumption. Understanding the causal pathway for overconsumption will be necessary to interrupt the mechanisms that lead to obesity.
Evolutionary consequences of multidriver environmental change in an aquatic primary producer.
Brennan, Georgina L; Colegrave, Nick; Collins, Sinéad
2017-09-12
Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.
NASA Astrophysics Data System (ADS)
Yang, Lianjiao; Sun, Liguang; Emslie, Steven D.; Xie, Zhouqing; Huang, Tao; Gao, Yuesong; Yang, Wenqing; Chu, Zhuding; Wang, Yuhong
2018-01-01
The Adélie penguin is a well-known indicator for climate and environmental changes. Exploring how large-scale climate variability affects penguin ecology in the past is essential for understanding the responses of Southern Ocean ecosystems to future global change. Using ornithogenic sediments at Cape Bird, Ross Island, Antarctica, we inferred relative population changes of Adélie penguins in the southern Ross Sea over the past 500 yr, and observed an increase in penguin populations during the Little Ice Age (LIA; 1500-1850 AD). We used cadmium content in ancient penguin guano as a proxy of ocean upwelling and identified a close linkage between penguin dynamics and atmospheric circulation and oceanic conditions. During the cold period of ∼1600-1825 AD, a deepened Amundsen Sea Low (ASL) led to stronger winds, intensified ocean upwelling, enlarged Ross Sea and McMurdo Sound polynyas, and thus higher food abundance and penguin populations. We propose a mechanism linking Antarctic marine ecology and atmospheric/oceanic dynamics which can help explain and predict responses of Antarctic high latitudes ecosystems to climate change.
NASA Astrophysics Data System (ADS)
Pena, Rodrigo F. O.; Ceballos, Cesar C.; Lima, Vinicius; Roque, Antonio C.
2018-04-01
In a neuron with hyperpolarization activated current (Ih), the correct input frequency leads to an enhancement of the output response. This behavior is known as resonance and is well described by the neuronal impedance. In a simple neuron model we derive equations for the neuron's resonance and we link its frequency and existence with the biophysical properties of Ih. For a small voltage change, the component of the ratio of current change to voltage change (d I /d V ) due to the voltage-dependent conductance change (d g /d V ) is known as derivative conductance (GhDer). We show that both GhDer and the current activation kinetics (characterized by the activation time constant τh) are mainly responsible for controlling the frequency and existence of resonance. The increment of both factors (GhDer and τh) greatly contributes to the appearance of resonance. We also demonstrate that resonance is voltage dependent due to the voltage dependence of GhDer. Our results have important implications and can be used to predict and explain resonance properties of neurons with the Ih current.
Matsuzaki, Jun; Masumori, Masaya; Tange, Takeshi
2006-09-01
The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.
MATSUZAKI, JUN; MASUMORI, MASAYA; TANGE, TAKESHI
2006-01-01
• Background and Aims The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. • Methods Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. • Key Results Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. • Conclusions The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes. PMID:16790467
Age-Dependent Decline of Endogenous Pain Control: Exploring the Effect of Expectation and Depression
Grashorn, Wiebke; Sprenger, Christian; Forkmann, Katarina; Wrobel, Nathalie; Bingel, Ulrike
2013-01-01
Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age. PMID:24086595
Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding
Iskander, Kendra N.; Osuchowski, Marcin F.; Stearns-Kurosawa, Deborah J.; Kurosawa, Shinichiro; Stepien, David; Valentine, Catherine
2013-01-01
Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed. PMID:23899564
NASA Astrophysics Data System (ADS)
González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación
2017-08-01
Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.
Effect of Ayurvedic mercury preparation Makaradhwaja on geriatric canine--a preliminary study.
Sinyorita, S; Ghosh, C K; Chakrabarti, A; Auddy, B; Ghosh, Runa; Debnath, P K
2011-07-01
Makaradhwaja, an alchemical Ayurvedic mercury preparation is used as stimulant and vitalizer. Towards veterinary practices, the acceptability, tolerability and toxicity studies were undertaken in geriatric pet dogs aged more than 10 years irrespective of breed and sex for future use. Makaradhwaja (2.5 mg/kg) was used with honey once daily for 30 days. Before and after treatment, blood was collected for hematological studies as well as liver, kidney function and anti-oxidant activity. In control group, honey itself showed no appreciable change whereas, Makaradhwaja lowered neutrophil and total leucocyte count. Serum cholesterol, urea, glucose, alanine amino transferase, aspartate amino transferase, sodium, phosphorus and calcium were decreased. Haemoglobin and serum creatinine were significantly increased. There was appreciable physical, behavioral and body weight change including quality of life. The dose was used in replication of human dose (125 mg/50 kg). Anti-oxidant study showed significant increase of lipid per oxidation in experimental group while the values of ABTS radical cation decolorisation assay although decreased but did not show any significant changes. Decrease of serum urea and increase of serum creatinine could not be explained on single dose response. Different dose study could only explain the optimum dose to be required in canine practices.
NASA Astrophysics Data System (ADS)
Miller, C. A.; Le Mével, H.; Currenti, G.; Williams-Jones, G.; Tikoff, B.
2017-04-01
Time-dependent, or 4-D, microgravity changes observed at the Laguna del Maule volcanic field, Chile, since 2013, indicate significant (1.5 × 1011 kg) ongoing mass injection. Mass injection is focused along the Troncoso fault, and subparallel structures beneath the lake at 1.5-2 km depth, and is best modeled by a vertical rectangular prism source. The low-density change (156 to 307 kg/m3) and limited depth extent suggest a mechanism of hydrothermal fluid intrusion into existing voids, or voids created by the substantial uplift, rather than deeper-sourced dike intrusion of rhyolite or basalt magma. Although the gravity changes are broadly spatially coincident with ongoing surface deformation, existing models that explain the deformation are deeper sourced and cannot explain the gravity changes. To account for this discrepancy and the correspondence in time of the deformation and gravity changes, we explore a coupled magmatectonic interaction mechanism that allows for shallow mass addition, facilitated by deeper magma injection. Computing the strain, and mean, normal, and Coulomb stress changes on northeast trending faults, caused by the opening of a sill at 5 km depth, shows an increase in strain and mean and normal stresses along these faults, coincident with the areas of mass addition. Seismic swarms in mid-2012 to the west and southwest of the mass intrusion area may be responsible for dynamically increasing permeability on the Troncoso fault, promoting influx of hydrothermal fluids, which in turn causes larger gravity changes in the 2013 to 2014 interval, compared to the subsequent intervals.
Can increasing carbon dioxide cause climate change?
Lindzen, Richard S.
1997-01-01
The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates. PMID:11607742
The legitimacy of leadership in international climate change negotiations.
Karlsson, Christer; Hjerpe, Mattias; Parker, Charles; Linner, Bjorn-Ola
2012-01-01
Leadeship is an essential ingredient in reaching international agreements and overcoming the collective action problems associated with responding to climate change. In this study, we aim at answering two questions that are crucial for understanding the legitimacy of leadership in international climate change negotiations. Based on the responses of the three consecutive surveys distributed at COPs 14-16, we seek first to chart which actors are actually recognized as leaders by climate change negotiation participants. Second, we aim to explain what motivates COP participants to support different actors as leaders. Both these questions are indeed crucial for understanding the role, importance, and legitimacy of leadership in the international climate change regime. Our results show that the leadership landscape in this issue area is fragmented, with no one clear-cut leader, and strongly suggest that it is imperative for any actor seeking recognition as climate change leader to be perceived as being devoted to promoting the common good.
Historical Changes and remediation Measures of Agricultural Streams
NASA Astrophysics Data System (ADS)
Wörman, Anders; Riml, Joakim; Morén, Ida
2017-04-01
Changes in landscapes and climate during the last centuries in Sweden can be tracer in dramatic changes in the runoff pattern over large areas. Particularly, extensive drainage works aimed at expanding arable land and reduce risks for local floods. The availability of long-term monitoring runoff time series make it possible to distinguish the effects of landscape changes from climate fluctuations. However, it is expected that these changes also have an effect on retention and attenuation of nutrients in agricultural streams. This work focuses on design approaches for remediation actions in streams that can restore some of the previous self-purifying capacity and, hence, contribute to improved eutrophication status of the Baltic Sea. For analysis of historical time-series we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. We found periodic fluctuations in runoff all over Sweden that can be explained by various climate indices. In addition, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. Finally, we developed a design approach for stream remediation actions that restored the self-purification capacity while also increasing the risk for local floods. It is shown that step-structures, like check dams, are effective measures for inducing hyporheic exchange and thereby increasing potential for adsorption of phosphorus to soil and denitrification of nitrogen in biofilms.
Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V
2013-01-01
We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes.
Mining a sea of data: deducing the environmental controls of ocean chlorophyll.
Irwin, Andrew J; Finkel, Zoe V
2008-01-01
Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.
Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.
Coates, E L; Ballam, G O
1987-01-01
1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.
Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings
NASA Astrophysics Data System (ADS)
Truffer, Martin; Motyka, Roman J.
2016-03-01
Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.
Health Behavior Change: Can Genomics Improve Behavioral Adherence?
Bryan, Angela D.; Bray, Molly S.; Swan, Gary E.; Green, Eric D.
2012-01-01
The National Human Genome Research Institute recommends pursuing “genomic information to improve behavior change interventions” as part of its strategic vision for genomics. The limited effectiveness of current behavior change strategies may be explained, in part, by their insensitivity to individual variation in adherence responses. The first step in evaluating whether genomics can inform customization of behavioral recommendations is evidence reviews to identify adherence macrophenotypes common across behaviors and individuals that have genetic underpinnings. Conceptual models of how biological, psychological, and environmental factors influence adherence also are needed. Researchers could routinely collect biospecimens and standardized adherence measurements of intervention participants to enable understanding of genetic and environmental influences on adherence, to guide intervention customization and prospective comparative effectiveness studies. PMID:22390502
New findings on object permanence: A developmental difference between two types of occlusion
Moore, M. Keith; Meltzoff, Andrew N.
2013-01-01
Manual search for totally occluded objects was investigated in 10-, 12- and 14-month-old infants. Infants responded to two types of total hiding in different ways, supporting the inference that object permanence is not a once-and-for-all attainment. Occlusion of an object by movement of a screen over it was solved at an earlier age than occlusion in which an object was carried under the screen. This dissociation was not explained by motivation, motor skill or means–ends coordination, because for both tasks the same object was hidden in the same place under the same screen and required the same uncovering response. This dissociation generalized across an experimentally manipulated change in recovery means—infants removed cloths while seated at a table in Expt 1 and were required to crawl through 3-D space to displace semi-rigid pillows in Expt 2. Further analysis revealed that emotional response varied as a function of hiding, suggesting an affective correlate of infant cognition. There are four empirical findings to account for: developmental change, task dissociation, generalization of the effects across recovery means, and emotional reactions. An identity-development theory is proposed explaining these findings in terms of infants’ understanding of object identity and the developmental relationship between object identity and object permanence. Object identity is seen as a necessary precursor to the development of object permanence. PMID:25364086
New findings on object permanence: A developmental difference between two types of occlusion.
Moore, M Keith; Meltzoff, Andrew N
1999-11-01
Manual search for totally occluded objects was investigated in 10-, 12- and 14-month-old infants. Infants responded to two types of total hiding in different ways, supporting the inference that object permanence is not a once-and-for-all attainment. Occlusion of an object by movement of a screen over it was solved at an earlier age than occlusion in which an object was carried under the screen. This dissociation was not explained by motivation, motor skill or means-ends coordination, because for both tasks the same object was hidden in the same place under the same screen and required the same uncovering response. This dissociation generalized across an experimentally manipulated change in recovery means-infants removed cloths while seated at a table in Expt 1 and were required to crawl through 3-D space to displace semi-rigid pillows in Expt 2. Further analysis revealed that emotional response varied as a function of hiding, suggesting an affective correlate of infant cognition. There are four empirical findings to account for: developmental change, task dissociation, generalization of the effects across recovery means, and emotional reactions. An identity-development theory is proposed explaining these findings in terms of infants' understanding of object identity and the developmental relationship between object identity and object permanence. Object identity is seen as a necessary precursor to the development of object permanence.
Carpenter, April C.; Smith, April N.; Wagner, Heidi; Cohen-Tayar, Yamit; Rao, Sujata; Wallace, Valerie; Ashery-Padan, Ruth; Lang, Richard A.
2015-01-01
The Wnt/β-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wlsfl/fl) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/β-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/β-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/β-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wlsfl/fl mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change. PMID:25715397
Uga, Minako; Dan, Ippeita; Sano, Toshifumi; Dan, Haruka; Watanabe, Eiju
2014-01-01
Abstract. An increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance imaging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM for fNIRS signals. Thus, we devised a GLM-based method utilizing an adaptive hemodynamic response function (HRF). We sought the optimum temporal parameters to best explain the observed time series data during verbal fluency and naming tasks. The peak delay of the HRF was systematically changed to achieve the best-fit model for the observed oxy- and deoxy-Hb time series data. The optimized peak delay showed different values for each Hb signal and task. When the optimized peak delays were adopted, the deoxy-Hb data yielded comparable activations with similar statistical power and spatial patterns to oxy-Hb data. The adaptive HRF method could suitably explain the behaviors of both Hb parameters during tasks with the different cognitive loads during a time course, and thus would serve as an objective method to fully utilize the temporal structures of all fNIRS data. PMID:26157973
Clinical skills: cardiac rhythm recognition and monitoring.
Sharman, Joanna
With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.
Cancer stem cells: impact, heterogeneity, and uncertainty
Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.
2015-01-01
The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924
Role of Marine Biology in Glacial-Interglacial CO2 Cycles
NASA Astrophysics Data System (ADS)
Kohfeld, Karen E.; Le Quéré, Corinne; Harrison, Sandy P.; Anderson, Robert F.
2005-04-01
It has been hypothesized that changes in the marine biological pump caused a major portion of the glacial reduction of atmospheric carbon dioxide by 80 to 100 parts per million through increased iron fertilization of marine plankton, increased ocean nutrient content or utilization, or shifts in dominant plankton types. We analyze sedimentary records of marine productivity at the peak and the middle of the last glacial cycle and show that neither changes in nutrient utilization in the Southern Ocean nor shifts in plankton dominance explain the CO2 drawdown. Iron fertilization and associated mechanisms can be responsible for no more than half the observed drawdown.
Mussap, Alexander J; Salton, Nancy
2006-07-01
The 'rubber-hand' illusion, in which individuals misattribute tactile sensations felt by their hand to a rubber prosthetic hand that they see being stimulated, was employed to examine the relationship between perceptual body image and unhealthy body change in 128 volunteers. Variance in unhealthy body development in males (22%) and in bulimic symptomatology in both females and males (10%), was explained by susceptibility to the illusion. The illusion, which is relatively free from cognitive and emotional 'contamination', could be used to identify individuals most responsive to therapies designed to correct inaccurate body perceptions-individuals whose perceptual body image is malleable.
Betrus, P A; Elmore, S K; Woods, N F; Hamilton, P A
1995-01-01
As Western society increases in complexity and becomes more reliant on technology, women who thrive as integrators in interactional modes will face new dilemmas. Many women will view these changes as challenges, but for many other women, who view these changes as threats, the response will be depression. We lay a foundation to an understanding of depression in women, evaluating the current concept of depression and pointing out its limitations. We then review the traditional theories of women's increased vulnerability to depressive disorders, which have failed to explain adequately this phenomenon. A more recent theory of women's depression, based on the self-in-relation theory of women's development, is offered as an alternative.
Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations
NASA Astrophysics Data System (ADS)
Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji
2017-04-01
In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.
Predicting species-specific responses of fungi to climatic variation using historical records.
Diez, Jeffrey M; James, Timothy Y; McMunn, Marshall; Ibáñez, Inés
2013-10-01
Although striking changes have been documented in plant and animal phenology over the past century, less is known about how the fungal kingdom's phenology has been changing. A few recent studies have documented changes in fungal fruiting in Europe in the last few decades, but the geographic and taxonomic extent of these changes, the mechanisms behind these changes, and their relationships to climate are not well understood. Here, we analyzed herbarium data of 274 species of fungi from Michigan to test the hypotheses that fruiting times of fungi depend on annual climate and that responses depend on taxonomic and functional groups. We show that the fungal community overall fruits later in warmer and drier years, which has led to a shift toward later fruiting dates for autumn-fruiting species, consistent with existing evidence. However, we also show that these effects are highly variable among species and are partly explained by basic life-history characteristics. Resulting differences in climate sensitivities are expected to affect community structure as climate changes. This study provides a unique picture of the climate dependence of fungal phenology in North America and an approach for quantifying how individual species and broader fungal communities will respond to ongoing climate change. © 2013 John Wiley & Sons Ltd.
Life on the edge: insect ecology in arctic environments.
Strathdee, A T; Bale, J S
1998-01-01
The restricted Arctic insect fauna is usually explained by a lack of recolonization since the last glacial period, inadequate supply of suitable resources, or insufficient adaptation to such a harsh environment. These hypotheses and others that attempt to explain the latitudinal gradient of species distributions and abundance are reviewed. Arctic habitats available to insects are strongly heterogeneous, requiring a similarly diverse array of adaptive responses, characteristic of those species that have colonized and survived in such a stressful climate. Important adaptations in morphology (size, wings), behavior (activity patterns, thermoregulation), life cycles, and ecophysiology (cold hardiness, anaerobiosis, desiccation resistance) are discussed. The current focus of global climate change research on polar regions is identified, particularly the opportunity to study fundamental ecological processes and spatial dynamics in the relatively simple Arctic ecosystems.
Phylogeny predicts future habitat shifts due to climate change.
Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A
2014-01-01
Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
Blair, Thomas R
2016-01-01
Psychiatrists, psychologists, and other mental health professionals were among the first and most crucial responders to HIV/AIDS. Given an epidemic in which behavior and identity played fundamental roles, mental health professionals were uniquely positioned to conduct social research to explain the existence and spread of disease; to develop clinical understanding of psychological aspects of HIV/AIDS as they emerged; and to collaborate with affected communities to promote education and behavioral change. This study examines the roles of mental health professionals as "plague doctors" in San Francisco's response to HIV/AIDS, in the early years of the epidemic. Among the many collaborations and projects that distinguished the "San Francisco model" of response to this plague, bathhouse-based epidemiology, consult-liaison psychiatry, and community partnerships for counseling and education are examined in detail as illustrations of the epidemic-changing engagement of the mental health community.
Baslam, Marouane; Oikawa, Kazusato; Kitajima-Koga, Aya; Kaneko, Kentaro; Mitsui, Toshiaki
2016-09-01
The diversity of protein targeting pathways to plastids and their regulation in response to developmental and metabolic status is a key issue in the regulation of cellular function in plants. The general import pathways that target proteins into and across the plastid envelope with changes in gene expression are critical for plant development by regulating the response to physiological and metabolic changes within the cell. Glycoprotein targeting to complex plastids involves routing through the secretory pathway, among others. However, the mechanisms of trafficking via this system remain poorly understood. The present article discusses our results in site-specific N-glycosylation of nucleotide pyrophosphatase/phosphodiesterases (NPPs) glycoproteins and highlights protein delivery in Golgi/plastid pathway via the secretory pathway. Furthermore, we outline the hypotheses that explain the mechanism for importing vesicles trafficking with nucleus-encoded proteins into plastids.
Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline
2013-04-01
Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.
Eyles, Alieta
2013-01-01
Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source–sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses. PMID:23382548
Santos, Xavier; Badiane, Arnaud; Matos, Cátia
2016-01-01
Changes in habitat structure constitute a major factor explaining responses of reptiles to fire. However, few studies have examined habitat factors that covary with fire-history variables to explain reptile responses. We hypothesise that more complex habitats should support richer reptile communities, and that species-specific relative abundance should be related to particular habitat features. From spring 2012-2014, twenty-five transects were surveyed in the Albera Region (north-east Iberia). The vegetation structure was measured and the extent of habitat types in a 1000-m buffer around each transect calculated. Reptile-community metrics (species richness and reptile abundance) were related to fire history, vegetation structure, and habitat types, using generalized additive models. These metrics correlated with habitat-structure variables but not with fire history. The number of species increased with more complex habitats but decreased with pine-plantation abundance in the 1000-m buffer. We found contrasting responses among reptiles in terms of time since fire and those responses differed according to vegetation variables and habitat types. An unplanned fire in August 2012 provided the opportunity to compare reptile abundance values between pre-fire and the short term (1-2 years) after the fire. Most species exhibited a negative short-term response to the 2012 fire except Tarentola mauritanica, a gecko that inhabits large rocks, as opposed to other ground-dwelling species. In the reptiles studied, contrasting responses to time since fire are consistent with the habitat-accommodation model of succession. These differences are linked to specific microhabitat preferences and suggest that functional traits can be used to predict species-specific responses to fire.
Understanding multidecadal variability in ENSO amplitude
NASA Astrophysics Data System (ADS)
Russell, A.; Gnanadesikan, A.
2013-12-01
Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.
Rapid response to changing environments during biological invasions: DNA methylation perspectives.
Huang, Xuena; Li, Shiguo; Ni, Ping; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin
2017-12-01
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Litwin, Howard
1994-01-01
Surveyed family caregivers of 110 hospitalized elderly Jews regarding filial responsibility and supports they provide their parent(s). Found future expectations of support explained by perceptions of filial responsibility that were explained by caregiver religiosity. Current support was influenced by proximity to care recipient, activities of…
Álvarez, C; Ramírez-Campillo, R; Ramírez-Vélez, R; Martínez, C; Castro-Sepúlveda, M; Alonso-Martínez, A; Izquierdo, M
2018-01-01
Little evidence exists on which variables of body composition or muscular strength mediates more glucose control improvements taking into account inter-individual metabolic variability to different modes of exercise training. We examined 'mediators' to the effects of 6-weeks of resistance training (RT) or high-intensity interval training (HIT) on glucose control parameters in physically inactive schoolchildren with insulin resistance (IR). Second, we also determined both training-induce changes and the prevalence of responders (R) and non-responders (NR) to decrease the IR level. Fifty-six physically inactive children diagnosed with IR followed a RT or supervised HIT program for 6 weeks. Participants were classified based on ΔHOMA-IR into glycemic control R (decrease in homeostasis model assessment-IR (HOMA-IR) <3.0 after intervention) and NRs (no changes or values HOMA-IR⩾3.0 after intervention). The primary outcome was HOMA-IR associated with their mediators; second, the training-induced changes to glucose control parameters; and third the report of R and NR to improve body composition, cardiovascular, metabolic and performance variables. Mediation analysis revealed that improvements (decreases) in abdominal fat by the waist circumference can explain more the effects (decreases) of HOMA-IR in physically inactive schoolchildren under RT or HIT regimes. The same analysis showed that increased one-maximum repetition leg-extension was correlated with the change in HOMA-IR (β=-0.058; P=0.049). Furthermore, a change in the waist circumference fully mediated the dose-response relationship between changes in the leg-extension strength and HOMA-IR (β'=-0.004; P=0.178). RT or HIT were associated with significant improvements in body composition, muscular strength, blood pressure and cardiometabolic parameters irrespective of improvement in glycemic control response. Both glucose control RT-R and HIT-R (respectively), had significant improvements in mean HOMA-IR, mean muscular strength leg-extension and mean measures of adiposity. The improvements in the lower body strength and the decreases in waist circumference can explain more the effects of the improvements in glucose control of IR schoolchildren in R group after 6 weeks of RT or HIT, showing both regimes similar effects on body composition or muscular strength independent of interindividual metabolic response variability.
Adaptive and plastic responses of Quercus petraea populations to climate across Europe.
Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine
2017-07-01
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.
Wang, S C; Sheen, P C; Ko, Y C
1993-02-01
The purpose of this paper is to evaluate the medical centers and regional hospitals, strategic response to the implementation of new labour insurance fee schedule. This survey selects fifty-one medical centers and regional hospitals, with the response rate of 92.73%. This questionnaire was developed and evaluated by the authors and mailed to the questionnaire response by hospital's director or relative department director. We have selected Shortell et al. (1985) theory as the framework for evaluating and explaining hospital response to regulation environment (ex: change in the reimbursement system) at institutional-level response (ex: hospital association activity aimed at influencing regulation), managerial-level response (ex: increased physician participation in hospital-wide decision making; starting or expanding a planning department) and technical-level response (ex: shared clinical services such as lab., X-ray, pharmacy). The result found that hospitals with the characteristics as non-public ownership, medical centers, bigger size, and more administrative staff are more inclined to adopt institutional-level response. And a technical-level response occurs to hospital when market competibility becomes more intense which leads to higher reimbursement resource dependency.
Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.
Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries
2017-09-01
Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.
Butland, B. K.; Strachan, D. P.; Anderson, H. R.
1997-01-01
BACKGROUND: Prevalence surveys of asthma and/or wheezing among all children aged between 7 1/2 and 8 1/2 attending state and private schools in the London Borough of Croydon were conducted in February 1978 and February 1991. Two population based case-control studies drawn from the survey responders were used to investigate the association between childhood wheeze and characteristics of the home environment and to assess whether changes in these characteristics between 1978 and 1991 may have contributed to an increase in the population prevalence of wheeze among school children. METHODS: Information on exposure to potential indoor environmental risk factors was obtained from parents by home interview and compared between cases-that is, children with frequent (> or = 5) or in-frequent (1-4) attacks of asthma or wheezing in the past 12 months- and controls, with adjustment for study. Changes in exposure over time were assessed by comparing control groups. RESULTS: Between 1978 and 1991 the population prevalence odds of wheeze increased by 20% (OR 1.20; 95% CI 1.04 to 1.39). Change in parental smoking, gas cooking, pet ownership, and central heating did not appear to explain the rise. Use of non-feather pillows was positively associated with childhood wheeze even after adjusting for other risk factors and after re-coding from non-feather to feather cases thought to have changed pillow in response to symptoms (OR 1.54; 95% CI 1.13 to 2.10). The proportion of control children reportedly using non-feather pillows was 44% in 1978 and 67% in 1991. CONCLUSIONS: Increased use of non-feather pillows was the only domestic indoor exposure studied which appeared to explain a modest rise in prevalence of wheeze from 1978 to 1991. Our analysis attempts to address behavioural change in response to the child's symptoms but an artifact arising from lifelong avoidance of feather bedding in atopic families cannot be entirely discounted. PMID:9246133
A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN
Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.
2015-01-01
Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225
Little, Daniel R; Wang, Tony; Nosofsky, Robert M
2016-09-01
Among the most fundamental results in the area of perceptual classification are the "correlated facilitation" and "filtering interference" effects observed in Garner's (1974) speeded categorization tasks: In the case of integral-dimension stimuli, relative to a control task, single-dimension classification is faster when there is correlated variation along a second dimension, but slower when there is orthogonal variation that cannot be filtered out (e.g., by attention). These fundamental effects may result from participants' use of a trial-by-trial bypass strategy in the control and correlated tasks: The observer changes the previous category response whenever the stimulus changes, and maintains responses if the stimulus repeats. Here we conduct modified versions of the Garner tasks that eliminate the availability of a pure bypass strategy. The fundamental facilitation and interference effects remain, but are still largely explainable in terms of pronounced sequential effects in all tasks. We develop sequence-sensitive versions of exemplar-retrieval and decision-bound models aimed at capturing the detailed, trial-by-trial response-time distribution data. The models combine assumptions involving: (i) strengthened perceptual/memory representations of stimuli that repeat across consecutive trials, and (ii) a bias to change category responses on trials in which the stimulus changes. These models can predict our observed effects and provide a more complete account of the underlying bases of performance in our modified Garner tasks. Copyright © 2016 Elsevier Inc. All rights reserved.
Opiate-induced Changes in Brain Adenosine Levels and Narcotic Drug Responses
Wu, Manhong; Sahbaie, Peyman; Zheng, Ming; Lobato, Robert; Boison, Detlev; Clark, J. David; Peltz, Gary
2012-01-01
We have very little information about the metabolomic changes that mediate neurobehavioral responses, including addiction. It was possible that opioid-induced metabolomic changes in brain could mediate some of the pharmacodynamic effects of opioids. To investigate this, opiate-induced brain metabolomic responses were profiled using a semi-targeted method in C57BL/6 and 129Sv1 mice, which exhibit extreme differences in their tendency to become opiate dependent. Escalating morphine doses (10–40 mg/kg) administered over a 4-day period selectively induced a two-fold decrease (p<0.00005) in adenosine abundance in the brainstem of C57BL/6 mice, which exhibited symptoms of narcotic drug dependence; but did not decrease adenosine abundance in 129Sv1 mice, which do not exhibit symptoms of dependence. Based on this finding, the effect of adenosine on dependence was investigated in genetically engineered mice with alterations in adenosine tone in the brain and in pharmacologic experiments. Morphine withdrawal behaviors were significantly diminished (P<0.0004) in genetically engineered mice with reduced adenosine tone in the brainstem, and by treatment with an adenosine receptor1 (A1) agonist (2-chloro-N6-cyclopentyladenosine, 0.5 mg/kg) or an A2a receptor (A2a) antagonist (SCH 58261 1 mg/kg). These results indicate that adenosine homeostasis plays a crucial role in narcotic drug responses. Opiate-induced changes in brain adenosine levels may explain many important neurobehavioral features associated with opiate addiction and withdrawal. PMID:23098802
Cochlear compression: perceptual measures and implications for normal and impaired hearing.
Oxenham, Andrew J; Bacon, Sid P
2003-10-01
This article provides a review of recent developments in our understanding of how cochlear nonlinearity affects sound perception and how a loss of the nonlinearity associated with cochlear hearing impairment changes the way sounds are perceived. The response of the healthy mammalian basilar membrane (BM) to sound is sharply tuned, highly nonlinear, and compressive. Damage to the outer hair cells (OHCs) results in changes to all three attributes: in the case of total OHC loss, the response of the BM becomes broadly tuned and linear. Many of the differences in auditory perception and performance between normal-hearing and hearing-impaired listeners can be explained in terms of these changes in BM response. Effects that can be accounted for in this way include poorer audiometric thresholds, loudness recruitment, reduced frequency selectivity, and changes in apparent temporal processing. All these effects can influence the ability of hearing-impaired listeners to perceive speech, especially in complex acoustic backgrounds. A number of behavioral methods have been proposed to estimate cochlear nonlinearity in individual listeners. By separating the effects of cochlear nonlinearity from other aspects of hearing impairment, such methods may contribute towards identifying the different physiological mechanisms responsible for hearing loss in individual patients. This in turn may lead to more accurate diagnoses and more effective hearing-aid fitting for individual patients. A remaining challenge is to devise a behavioral measure that is sufficiently accurate and efficient to be used in a clinical setting.
Teich, Andrew F; Qian, Ning
2010-03-01
Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes near the trained orientation. These changes have been explained previously in a recurrent model (RM) of orientation selectivity. However, the RM generates only complex cells when they are well tuned, so that there is currently no model of orientation plasticity for simple cells. In addition, some feedforward models, such as the modified feedforward model (MFM), also contain recurrent cortical excitation, and it is unknown whether they can explain plasticity. Here, we compare plasticity in the MFM, which simulates simple cells, and a recent modification of the RM (MRM), which displays a continuum of simple-to-complex characteristics. Both pre- and postsynaptic-based modifications of the recurrent and feedforward connections in the models are investigated. The MRM can account for all the learning- and adaptation-induced plasticity, for both simple and complex cells, while the MFM cannot. The key features from the MRM required for explaining plasticity are broadly tuned feedforward inputs and sharpening by a Mexican hat intracortical interaction profile. The mere presence of recurrent cortical interactions in feedforward models like the MFM is insufficient; such models have more rigid tuning curves. We predict that the plastic properties must be absent for cells whose orientation tuning arises from a feedforward mechanism.
Rodent Studies of Cardiovascular Deconditioning
NASA Technical Reports Server (NTRS)
Shoukas, Artin A.
1999-01-01
Changes in blood pressure can occur for two reasons: 1) A decrease in cardiac output resulting from the altered contractility of the heart or through changes in venous filling pressure via the Frank Starling mechanism or; 2) A change in systemic vascular resistance. The observed changes in cardiac output and blood pressure after long term space flight cannot be entirely explained through changes in contractility or heart rate alone. Therefore, alterations in filling pressure mediated through changes in systemic venous capacitance and arterial resistance function may be important determinants of cardiac output and blood pressure after long term space flight. Our laboratory and previous studies have shown the importance of veno-constriction mediated by the carotid sinus baroreceptor reflex system on overall circulatory homeostasis and in the regulation of cardiac output. Our proposed experiments test the overall hypothesis that alterations in venous capacitance function and arterial resistance by the carotid sinus baroreceptor reflex system are an important determinant of the cardiac output and blood pressure response seen in astronauts after returning to earth from long term exposure to microgravity. This hypothesis is important to our overall understanding of circulatory adjustments made during long term space flight. It also provides a framework for investigating counter measures to reduce the incidence of orthostatic hypotension caused by an attenuation of cardiac output. We continue to use hind limb unweighted (HLU) rat model to simulate the patho physiological effects as they relate to cardiovascular deconditioning in microgravity. We have used this model to address the hypothesis that microgravity induced cardiovascular deconditioning results in impaired vascular responses and that these impaired vascular responses result from abnormal alpha-1 AR signaling. The impaired vascular reactivity results in attenuated blood pressure and cardiac output responses to an orthostatic challenge. We have used in vitro vascular reactivity assays to explore abnormalities in vascular responses in vessels from HLU animals and, cardiac output (CO), blood pressure (BP) and heart rate (HR) measurements to characterize changes in hemodynamics following HLU.
Marchin, Renée M; Salk, Carl F; Hoffmann, William A; Dunn, Robert R
2015-08-01
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6-5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5-15 days and delayed leaf coloring by 18-21 days, resulting in an extension of the growing season by as much as 20-29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring-porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse-porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring-porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10-16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring-blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology. © 2015 John Wiley & Sons Ltd.
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.
Neural response to pictorial health warning labels can predict smoking behavioral change
Riddle, Philip J.; Newman-Norlund, Roger D.; Baer, Jessica; Thrasher, James F.
2016-01-01
In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants’ self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals’ intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). PMID:27405615
Neural response to pictorial health warning labels can predict smoking behavioral change.
Riddle, Philip J; Newman-Norlund, Roger D; Baer, Jessica; Thrasher, James F
2016-11-01
In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants' self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals' intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). © The Author (2016). Published by Oxford University Press.
Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate
NASA Astrophysics Data System (ADS)
Wang, Wei; Lee, Xuhui; Xiao, Wei; Liu, Shoudong; Schultz, Natalie; Wang, Yongwei; Zhang, Mi; Zhao, Lei
2018-06-01
Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth's surface is crucial for evaluating the hydrological response to climate change.
[Pregnancy gingivitis and tumor gravidarum].
Bilińska, Maria; Sokalski, Jerzy
2016-01-01
During pregnancy periodontal tissues may become more susceptible to internal and external factors promoting inflammation. Changes in hormone levels, alterations in the periodontal tissue structure and a predisposition to dilating blood vessels during pregnancy may lead to a painful inflammation as a response to a slightest amount of biofilm. Tumor gravidarum emerges in 5% of pregnant women during the first or second trimester - it may recede and fade completely right after the labour when hormone levels normalize. This paper explains the aetiology and potential risk factors of pregnancy gingivitis.
High skeletal muscle adenylate cyclase in malignant hyperthermia.
Willner, J H; Cerri, C G; Wood, D S
1981-01-01
Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806
A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.
1984-09-01
the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in
The effects of subliminal symbiotic stimulation on free-response and self-report mood.
Weinberger, J; Kelner, S; McClelland, D
1997-10-01
Research has shown that subliminal presentation of MOMMY AND I ARE ONE (MIO) can help improve adaptive functioning. Two experiments tried to determine whether changes in mood, especially free-response mood, could help explain these findings. In one experiment, 20 men were randomly assigned to receive either a subliminal MIO or control stimulus. Results showed predicted effects on a free-response and no effects on a self-report mood measure. In the other experiment, 54 male subjects randomly received one of three subliminal stimuli. They evidenced the same pattern of mood results. Sentential semantics were shown to be relevant to the obtained results. Ascending threshold and 150 forced-choice discrimination trials demonstrated that subjects could not report stimulus content. It was concluded that MIO effects were attributable to unconscious processing of the entire message and that free-response mood may partly mediate these effects. Suggestions for future research were offered.
McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M
2017-03-24
Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our findings indicate that climate change will not always lead to range expansion of disease vectors such as sand flies. Ecological niche models should be species specific, carefully selected and combined in an ensemble approach.
Dielectric properties of magnetorheological elastomers with different microstructure
NASA Astrophysics Data System (ADS)
Moucka, R.; Sedlacik, M.; Cvek, M.
2018-03-01
Composite materials containing magnetic particles organised within the polymer matrix by the means of an external magnetic field during the curing process were prepared, and their dielectric properties were compared with their isotropic analogues of the same filler concentration but homogeneous spatial distribution. A substantial dielectric response observed for anisotropic systems in a form of relaxation processes was explained as charge transport via the mechanism of variable range hopping. The changes in registered relaxations' critical frequency and shape of dielectric spectra with the filler concentration were discussed in terms of decreasing anisotropy of the system. The knowledge of the dielectric response of studied systems is essential for their practical applications such as piezoresistive sensors or radio-absorbing materials.
Strain effects in Hg/sub 1-//sub x/Cd/sub x/Te (xapprox. 0. 2) photovoltaic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, E.; Mainzer, N.
1989-03-01
The effect of stress and strain on the performance of Hg/sub 1-//sub x/Cd/sub x/Te (xapprox.0.2) photovoltaic arrays was studied both in the dark and under illumination. Stress, external as well as internal, affects the current--voltage characteristic of the photodiode. The combined action of illumination and strain yields an anomalous response to light absorption in the device. A model is conceived wherein the photodiode and guard ring are treated as a metal-insulator semiconductor field effect transistor (MISFET). Stress developed in the vicinity of small contact windows causes n-type damage, which brings about a forward bias in the device. The effect ofmore » strain on the reverse current of the photodiode is explained by a change in the n-channel conductivity of the MISFET. This change is caused by charges which are due either to a piezoelectric effect or n-type damage. Using this model observed phenomena in Hg/sub 1-//sub x/Cd/sub x/Te photovoltaic arrays are explained, as due to internal stresses originating from wafer deformation.« less
Geyser periodicity and the response of geysers to deformation
Ingebritsen, S.E.; Rojstaczer, S.A.
1996-01-01
Numerical simulations of multiphase fluid and heat transport through a porous medium define combinations of rock properties and boundary conditions which lead to geyser-like periodic discharge. Within the rather narrow range of conditions that allow geyser-like behavior, eruption frequency and discharge are highly sensitive to the intrinsic permeabilities of the geyser conduit and the surrounding rock matrix, to the relative permeability functions assumed, and to pressure gradients in the matrix. In theory, heats pipes (concomitant upward flow of steam and downward flow of liquid) can exist under similar conditions, but our simulations suggest that the periodic solution is more stable. Simulated time series of geyser discharge are chaotic, but integrated quantities such as eruption frequency and mass discharge per eruption are free of chaos. These results may explain the observed sensitivity of natural geysers to small strains such as those caused by remote earthquakes, if ground motion is sufficient to induce permeability changes. Changes in geyser behavior caused by minor preseismic deformation, periodic surface loading, and Earth tides are more difficult to explain in the context of our current model. Copyright 1996 by the American Geophysical Union.
Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
Huang, Bing; Li, Dian-Geng; Huang, Ying; Liu, Chang-Ting
2018-05-14
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses
NASA Astrophysics Data System (ADS)
Kattenbelt, Carolien; Roffel, B.
2008-10-01
In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties
NASA Astrophysics Data System (ADS)
Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric
2002-07-01
The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.
Complex adaptive systems: a tool for interpreting responses and behaviours.
Ellis, Beverley
2011-01-01
Quality improvement is a priority for health services worldwide. There are many barriers to implementing change at the locality level and misinterpreting responses and behaviours can effectively block change. Electronic health records will influence the means by which knowledge and information are generated and sustained among those operating quality improvement programmes. To explain how complex adaptive system (CAS) theory provides a useful tool and new insight into the responses and behaviours that relate to quality improvement programmes in primary care enabled by informatics. Case studies in two English localities who participated in the implementation and development of quality improvement programmes. The research strategy included purposefully sampled case studies, conducted within a social constructionist ontological perspective. Responses and behaviours of quality improvement programmes in the two localities include both positive and negative influences associated with a networked model of governance. Pressures of time, resources and workload are common issues, along with the need for education and training about capturing, coding, recording and sharing information held within electronic health records to support various information requirements. Primary care informatics enables information symmetry among those operating quality improvement programmes by making some aspects of care explicit, allowing consensus about quality improvement priorities and implementable solutions.
Prestimulus neural oscillations inhibit visual perception via modulation of response gain.
Chaumon, Maximilien; Busch, Niko A
2014-11-01
The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.
Promoting Conceptual Change in First Year Students' Understanding of Evaporation
ERIC Educational Resources Information Center
Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor
2010-01-01
We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin; Harrington, Peter Z.
2018-04-01
The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.
NASA Astrophysics Data System (ADS)
Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael
2018-01-01
The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.
Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.
2005-01-01
We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.
Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host.
Sorek, Michal; Díaz-Almeyda, Erika M; Medina, Mónica; Levy, Oren
2014-04-01
To date, the association and synchronization between two organismal circadian clocks ticking in parallel as part of a meta-organism (termed a symbiotic association), have rarely been investigated. Reef-building corals exhibit complex rhythmic responses to diurnal, lunar, and annual changes. Understanding circadian, circatidal, and annual regulation in reef-building corals is complicated by the presence of photosynthetic endosymbionts, which have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while simultaneously responding to internal physiological changes imposed by the symbiont, is not clear. There is insufficient molecular or physiological evidence of the existence of a circadian pacemaker that controls the metabolism, photosynthesis, synchronized mass spawning, and calcification processes in symbiotic corals. In this review, we present current knowledge regarding the animal pacemaker and the symbiotic-algal pacemaker. We examine the evidence from behavioral, physiological, molecular, and evolutionary perspectives. We explain why symbiotic corals are an interesting model with which to study the complexities and evolution of the metazoan circadian clock. We also provide evidence of why the chronobiology of corals is fundamental and extremely important for explaining the biology, physiology, and metabolism of coral reefs. A deeper understanding of these complex issues can help explain coral mass spawning, one of the earth's greatest and most mysterious behavioral phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Z.
2017-12-01
The responses of Asian summer monsoon and associated precipitation to astronomical forcing have beenintensively explored during the past decades, but debate still exists regarding whether or not the Asianmonsoon is controlled by northern or southern summer insolation. Various modeling studies have been conducted that support the potential roles played by the insolation in bothhemispheres. Among these previous studies, however, the main emphasis has been on the Asianmonsoon intensity, with the response of monsoon duration having received little consideration. In thepresent study, the response of the rainy season duration over different monsoon areas to astronomical forcingand its contribution to total annual precipitation are evaluated using an atmospheric general circulationmodel. The results show that the durations of the rainy seasons, especially their withdrawal, in northernEast Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-likeconditions. Compared to those during stronger boreal summer insolation, the Asian monsoon associatedrainy seasons at weaker insolation last longer, although the peak intensity is smaller. Thislonger duration of rainfall, which results from the change in land-ocean thermal contrast associated withatmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce anopposite response of total annual precipitation. However, the duration effect of Asian monsoon is limitedunder glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the astronomical-scalevariability of Asian monsoon, alongside the intensity, and it should therefore receive greaterattention when attempting to explain astronomical-scale monsoon change.
Understanding Differences in the Response to Composition Change as Simulated by CCMVal Models
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Strahan, Susan E.; Oman, Luke D.
2012-01-01
Chemistry climate models (CCMs) have a common conceptual basis. Differences in implementation lead to differences in the stratospheric ozone response to changes in composition and climate. Although evaluation by CCMVal-2 identified strengths and weaknesses of participant models, the evaluation results were not used to discriminate among projections for future ozone evolution, at least in part because the overall diagnostic evaluation did not cleanly relate to the differences in CCM response. Here we use a subset of CCMVal diagnostics and additional analysis to understand the differences in response. In the upper stratosphere, differences in simulated temperature and total odd nitrogen prior to increases in chlorine loading explain the large differences in CCM sensitivity. In the lower atmosphere, there are two principle contributions to differences in CCM sensitivity to chlorine and climate change. First, differences in the lower stratospheric ClO affect simulated sensitivity to chlorine. CCMs with best transport performance match NDACC column HCl measurements at a broad range of latitudes. Other CCMs disagree with observations due to differences in total inorganic chlorine, partitioning between HCl and ClONO2, or both. Differences in ClONO2 are directly related to differences in simulated ClO. Second, although all CCMs predict increased tropical upwelling, the rate of increase varies and contributes to differences in tropical ozone and the 60N-60S column average.
Time Course and Variability of Polycythemic Response in Men at High Altitude
NASA Technical Reports Server (NTRS)
Grover, R. F.; Seiland, M.; McCullough, R. G.; Greenleaf, J. E.; Dahms, T. E.; Wolfel, E.; Reeves, J. T.
2000-01-01
Ten young men were exposed to 4,300 m (PB 460 Torr) for three weeks. Plasma volume (PV, Evans Blue dye). and blood volume (BV, carbon monoxide) measured simultaneously, and red cell volume (RCV) calculated from hematocrit, were determined twice at sea level and after 9-11 and 19-20 days at high altitude. After 19-20 days. half the subjects increased RCV +19.4 +/- 1.8% (p<0.001); the other 5 subjects had no significant change in RCV. All 10 subjects had a sustained decrease in PV (-16.2 +/- 1.9%, p<0.05) at altitude. Consequently, compared with sea level values, BV was unchanged (-3.1 +/- 1.8%) in the group with increased RCV, but BV decreased significantly (-12.2 +/- 1.4%, p<0.05) in the other group. Variability in RCV response was not explained by differences, in hypoxemic stimulus or the erythropoictin and reticulocyte responses. Since RCV reflects the balance between red cell. production and destruction, accelerated red cell destruction may have occurred in those individuals with no net change in RCV.
"What Is Our Story?" Philip Morris's Changing Corporate Narrative.
McDaniel, Patricia A; Malone, Ruth E
2015-10-01
We sought to learn how employees reacted to changes in the corporate narrative of Philip Morris Companies (PMC) in the late 1990s and early 2000s. We analyzed archival internal tobacco industry documents about PMC's creation of a new corporate story. In response to litigation and public opprobrium, PMC replaced its market success-oriented corporate narrative with a new one centered on responsibility. Although management sought to downplay inconsistencies between the old and new narratives, some employees reportedly had difficulty reconciling them, concerned that the responsibility focus might affect company profitability. However, others embraced the new narrative, suggesting radical ideas to prevent youth smoking. These ideas were not adopted. PMC's new narrative was unconvincing to many of its employees, who perceived it either as a threat to the company's continued profits or as incongruous with what they had previously been told. As it had done with the public, PMC misled its employees in explaining a narrative repositioning that would help the company continue business as usual. Moving toward a tobacco endgame will require ongoing discursive and symbolic efforts to disrupt this narrative.
NASA Astrophysics Data System (ADS)
Wu, Jun; Fan, Ting-Bo; Xu, Di; Zhang, Dong
2014-10-01
Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.
Verdam, Mathilde G E; Oort, Frans J; Sprangers, Mirjam A G
2016-06-01
The structural equation modeling (SEM) approach for detection of response shift (Oort in Qual Life Res 14:587-598, 2005. doi: 10.1007/s11136-004-0830-y ) is especially suited for continuous data, e.g., questionnaire scales. The present objective is to explain how the SEM approach can be applied to discrete data and to illustrate response shift detection in items measuring health-related quality of life (HRQL) of cancer patients. The SEM approach for discrete data includes two stages: (1) establishing a model of underlying continuous variables that represent the observed discrete variables, (2) using these underlying continuous variables to establish a common factor model for the detection of response shift and to assess true change. The proposed SEM approach was illustrated with data of 485 cancer patients whose HRQL was measured with the SF-36, before and after start of antineoplastic treatment. Response shift effects were detected in items of the subscales mental health, physical functioning, role limitations due to physical health, and bodily pain. Recalibration response shifts indicated that patients experienced relatively fewer limitations with "bathing or dressing yourself" (effect size d = 0.51) and less "nervousness" (d = 0.30), but more "pain" (d = -0.23) and less "happiness" (d = -0.16) after antineoplastic treatment as compared to the other symptoms of the same subscale. Overall, patients' mental health improved, while their physical health, vitality, and social functioning deteriorated. No change was found for the other subscales of the SF-36. The proposed SEM approach to discrete data enables response shift detection at the item level. This will lead to a better understanding of the response shift phenomena at the item level and therefore enhances interpretation of change in the area of HRQL.
Biophysical basis of low-power-laser effects
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-06-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1995-05-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Mechanisms of interaction of monochromatic visible light with cells
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-01-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O'2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low- power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Besides explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.
1999-01-01
Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.
Future hotspots of increasing temperature variability in tropical countries
NASA Astrophysics Data System (ADS)
Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T. M.
2017-12-01
Resolving how climate variability will change in future is crucial to determining how challenging it will be for societies and ecosystems to adapt to climate change. We show that the largest increases in temperature variability - that are robust between state-of-the art climate models - are concentrated in tropical countries. On average, temperature variability increases by 15% per degree of global warming in Amazonia and Southern Africa during austral summer, and by up to 10% °C-1 in the Sahel, India and South East Asia. Southern hemisphere changes can be explained by drying soils, whereas shifts in atmospheric structure play a more important role in the Northern hemisphere. These robust regional changes in variability are associated with monthly timescale events, whereas uncertain changes in inter-annual modes of variability make the response of global temperature variability uncertain. Our results suggest that regional changes in temperature variability will create new inequalities in climate change impacts between rich and poor nations.
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
Ice sheet-ocean interactions and sea level change
NASA Astrophysics Data System (ADS)
Heimbach, Patrick
2014-03-01
Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.
Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport
NASA Astrophysics Data System (ADS)
Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.
2014-09-01
In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.
Grant, R F; Margolis, H A; Barr, A G; Black, T A; Dunn, A L; Bernier, P Y; Bergeron, O
2009-01-01
Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO(2) concentration (C(a)) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO(2) exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (T(a)) during 2004-2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO(2) uptake was found to rise with warming at T(a) < 15 degrees C and to decline with warming at T(a) > 20 degrees C. As mean annual T(a) rose from 2004 to 2006, increases in net CO(2) uptake with warming at lower T(a) were greater than declines with warming at higher T(a) so that annual gross primary productivity and hence NEP increased. Increases in net CO(2) uptake measured at lower T(a) were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO(2) uptake measured at higher T(a) were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (g(c)) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (psi(c)), and hence in g(c) under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO(2) uptake to specified rises in T(a) caused annual NEP of black spruce in the model to rise with increases in T(a) of up to 6 degrees C, but to decline with further increases at mid-continental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in T(a).
Sex-Related Differences in the Effects of the Mediterranean Diet on Glucose and Insulin Homeostasis
Bédard, Alexandra; Corneau, Louise; Lamarche, Benoît; Dodin, Sylvie; Lemieux, Simone
2014-01-01
Objective. To document sex differences in the impact of the Mediterranean diet (MedDiet) on glucose/insulin homeostasis and to verify whether these sex-related effects were associated with changes in nonesterified fatty acids (NEFA). Methods. All foods were provided to 38 men and 32 premenopausal women (24–53 y) during 4 weeks. Variables were measured during a 180 min OGTT before and after the MedDiet. Results. A sex-by-time interaction for plasma insulin iAUC was found (men: −17.8%, P = 0.02; women: +9.4%, P = 0.63; P for sex-by-time interaction = 0.005). A sex-by-time interaction was also observed for insulin sensitivity (Cederholm index, P = 0.03), for which only men experienced improvements (men: +8.1%, P = 0.047; women: −5.9%, P = 0.94). No sex difference was observed for glucose and C-peptide responses. Trends toward a decrease in NEFA AUC (P = 0.06) and an increase in NEFA suppression rate (P = 0.06) were noted, with no sex difference. Changes in NEFA were not associated with change in insulin sensitivity. Conclusions. Results suggest that the more favorable changes in glucose/insulin homeostasis observed in men compared to women in response to the MedDiet are not explained by sex differences in NEFA response. This clinical trial is registered with clinicaltrials.gov NCT01293344. PMID:25371817
Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.
Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka
2015-10-01
Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Students Losing Interest? How to Help them Adapt to Changes in the Classroom.
ERIC Educational Resources Information Center
Fawcett, Gay
1999-01-01
Discusses how reform affects students and how teachers can help them adapt to change. After explaining the principles of change and how they affect students, the paper examines the stages of change (comfortable dependence, anxiety, and comfortable independence); discusses students and the process of change; explains the supports that students need…
Precipitation variability as a strong determinant on tree cover across global tropics
NASA Astrophysics Data System (ADS)
Xu, X.; Medvigy, D.; Guan, K.; Trugman, A. T.; Good, S. P.; Rodriguez-Iturbe, I.
2017-12-01
Tropical and subtropical ecosystems support a significant carbon sink and storage and provide various ecosystem services. One challenge for these ecosystems is the changing precipitation variability (PV), which is likely to become more extreme under on-going climate change. However, there is a lack of consensus in the determining role of PV on tropical tree cover, which is a widely-used indicator for ecosystem state and functions in the tropics, as well as the underlying mechanism. Here, we ask whether changes in PV by themselves are likely to lead to changes in tropical tree cover. Using a combination of climate, soil and remotely-sensed tree cover data, we comprehensively assess the effects of PV on tree cover spatial variations at intra-seasonal, seasonal and inter-annual scales. We find that PV contributes 33% -56% to the total explained spatial variation (65% -79%) in tree cover. The contribution of PV depends on mean annual precipitation (MAP) and is highest under intermediate MAP (500 - 1500 mm). In general, tree cover increases with rainy day frequency and wet season length but shows mixed responses to inter-annual precipitation variability. We further use a biophysical model to show that the PV-tree cover relation can be explained by tree-grass water competition. Our results suggest that tropical tree cover can decrease by 3-5% overall and by up to 20% in Amazonia under projected changes in PV at the end of this century.
Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.
2014-01-01
Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.
Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S
2017-01-01
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective.
Ratti, Simona; Knoll, Andrew H; Giordano, Mario
2013-01-01
The taxonomic composition of phytoplankton responsible for primary production on continental shelves has changed episodically through Earth history. Geological correlations suggest that major changes in phytoplankton composition correspond in time to changes in grazing and seawater chemistry. Testing hypotheses that arise from these correlations requires experimentation, and so we carried out a series of experiments in which selected phytoplankton species were grown in treatments that differed with respect to the presence or absence of grazers as well as seawater chemistry. Both protistan (Euplotes sp.) and microarthropod (Acartia tonsa) grazers changed the growth dynamics and biochemical composition of the green alga Tetraselmis suecica, the diatom Thalassiosira weissflogii, and the cyanobacterium Synechococcus sp., increasing the specific growth rate and palatability of the eukaryotic algae, while decreasing or leaving unchanged both parameters in the cyanobacteria. Synechococcus (especially) and Thalassiosira produced toxins effective against the copepod, but ciliate growth was unaffected. Acartia induced a 4-6 fold increase of Si cell quota in the diatom, but Euplotes had no similar effect. The differential growth responses of the eukaryotic algae and cyanobacteria to ciliate grazing may help to explain the apparently coeval radiation of eukaryophagic protists and rise of eukaryotes to ecological prominence as primary producers in Neoproterozoic oceans. The experimental results suggest that phytoplankton responses to the later radiation of microarthropod grazers were clade-specific, and included changes in growth dynamics, toxin synthesis, encystment, and (in diatoms) enhanced Si uptake.
Species- and community-level responses combine to drive phenology of lake phytoplankton
Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.
2013-01-01
Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.
Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik; Pedersen, Jan; Riis-Nielsen, Torben; Jonko, Krzysztof; Słowińska, Iwona; Rahbek, Carsten; Karsholt, Ole
2016-01-01
Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot-adapted species, as indicated by their oppositely directed phenological responses. An especially pronounced advancement of cold-adapted specialists suggests that such phenological advances might help minimize further temperature-induced loss of resource specialists. Although limited to a single study site, our results suggest several local changes in the insect fauna in concordance with expected change of larger-scale temperature increases. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Caldwell, W J
1996-01-01
This article outlines the approaches taken to the management of two long-term care facilities by the County of Huron in southwestern Ontario in 1994. Lay-offs, a move to new facilities, loss of local political confidence, changes in key administrative personnel and low staff morale prompted the county to ask an interim administrative team to develop and implement an appropriate response. The article explains how community development and planning principles and techniques were applied to the management of the homes to achieve an overall improvement in communication, staff morale and attitude. These approaches may prove helpful to other administrations facing major change.
No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats
Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich
2016-01-01
Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900
Predicting phenology by integrating ecology, evolution and climate science
Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.
2011-01-01
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.
Baroclinic Adjustment of the Eddy-Driven Jet
NASA Astrophysics Data System (ADS)
Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.
2017-04-01
The prediction of poleward shift in the midlatitude eddy-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between eddy growth rate (referred to as baroclinicity) and eddy activity, whereby baroclinicity responds most rapidly to an eddy-dissipating forcing whereas eddy activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the eddy-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in eddy activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.
Legacy nutrient dynamics and patterns of catchment response under changing land use and management
NASA Astrophysics Data System (ADS)
Attinger, S.; Van, M. K.; Basu, N. B.
2017-12-01
Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we explain different patterns of nonlinearity in watershed nutrient dynamics? And finally, how does the accumulation of nutrient legacies within watersheds impact current and future water quality?
On the role of ozone feedback in the ENSO amplitude response under global warming
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.
2017-12-01
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.
Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline
2015-12-01
Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.
Patient Beliefs About Colon Cancer Screening.
Ely, John W; Levy, Barcey T; Daly, Jeanette; Xu, Yinghui
2016-03-01
Only about half of eligible individuals undergo colon cancer screening. We have limited knowledge about the patient beliefs that adversely affect screening decisions and about which beliefs might be amenable to change through education. As part of a clinical trial, 641 rural Iowans, aged 52 to 79 years, reported their beliefs about colon cancer screening in response to a mailed questionnaire. Consenting subjects were randomized into four groups, which were distinguished by four levels of increasingly intensive efforts to promote screening. Two of the groups received mailed educational materials and completed a follow-up questionnaire, which allowed us to determine whether their beliefs about screening changed following the education. We also completed a factor analysis to identify underlying (latent) factors that might explain the responses to 33 questions about readiness, attitudes, and perceived barriers related to colon cancer screening. The strongest predictors of a patient's stated readiness to be screened were a physician's recommendation to be screened (1 point difference on 10-point Likert scale, 95 % confidence interval [CI], 0.5 to 1.6 point difference), a family history of colon cancer (0.85-point Likert scale difference, 95 % CI, 0.1 to 1.6), and a belief that health-care decisions should be mostly left to physicians rather than patients (Spearman correlation coefficient 0.21, P < .001). Of the 33 questionnaire items about screening beliefs, 11 (33 %) changed favorably following the educational intervention. In the factor analysis, the 33 items were reduced to 8 underlying factors, such as being too busy to undergo screening and worries about screening procedures. We found a limited number of underlying factors that may help explain patient resistance to colon cancer screening.
Harms, Tamara K.; Edmonds, Jennifer W.; Genet, Hélène; ...
2016-01-10
Spatial patterns in carbon (C) and nitrogen (N) cycles of high-latitude catchments have been linked to climate and permafrost and used to infer potential changes in biogeochemical cycles under climate warming. However, inconsistent spatial patterns across regions indicate that factors in addition to permafrost and regional climate may shape responses of C and N cycles to climate change. In this paper, we hypothesized that physical attributes of catchments modify responses of C and N cycles to climate and permafrost. We measured dissolved organic C (DOC) and nitrate (NO 3 ¯) concentrations, and composition of dissolved organic matter (DOM) in 21more » streams spanning boreal to arctic Alaska, and assessed permafrost, topography, and attributes of soils and vegetation as predictors of stream chemistry. Multiple regression analyses indicated that catchment slope is a primary driver, with lower DOC and higher NO 3 ¯ concentration in streams draining steeper catchments, respectively. Depth of the active layer explained additional variation in concentration of DOC and NO 3 ¯. Vegetation type explained regional variation in concentration and composition of DOM, which was characterized by optical methods. Composition of DOM was further correlated with attributes of soils, including moisture, temperature, and thickness of the organic layer. Finally, regional patterns of DOC and NO 3 ¯ concentrations in boreal to arctic Alaska were driven primarily by catchment topography and modified by permafrost, whereas composition of DOM was driven by attributes of soils and vegetation, suggesting that predicting changes to C and N cycling from permafrost-influenced regions should consider catchment setting in addition to dynamics of climate and permafrost.« less
Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan
2012-01-01
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802
NASA Astrophysics Data System (ADS)
Zhang, Y.
2017-12-01
Changes of global terrestrial water storage (TWS) retrieved from the Gravity Recovery and Climate Experiment (GRACE) satellite mission has been extensively evaluated by previous studies. However, attributions of global TWS changes are still poorly understood. In this study, the responses TWS to two most important surface water fluxes, precipitation (P) and evapotranspiration (ET), were comprehensively examined based on 3 global P datasets and 3 global ET datasets. In addition, the relative contribution of P and ET to TWS changes were quantified using the hierarchical partitioning analysis. Results show that, over the period of Apr. 2002 to July. 2016, more than 40.5% global continent experienced significant TWS decrease, while significant TWS increases were observed over 36% of global continent. A general positive effect of P on TWS was observed over almost all land, but a contrasting response of TWS to ET were identified between arid or cold areas and humid areas with positive and negative TWS-ET relationship, respectively. Global as a whole, precipitation from GPCC and ET simulated by the Noah model forcing by Global land Data Assimilation System (GLDAS) has the highest performance in explaining global TWS change. HP analysis suggests that the independent contribution of ET to TWS change is apparently higher than that of P. Furthermore, with the decrease of climate humidity, the contribution of P is decreasing, while the contribution of ET is increasing. Spatially speaking, ET has higher impacts on TWS than P in arid areas, while the opposite function was identified for very humid and cold areas. Knowledge from this study is crucial for the understanding of the response of global TWS change to climate change.
Global changes alter soil fungal communities and alter rates of organic matter decomposition
NASA Astrophysics Data System (ADS)
Moore, J.; Frey, S. D.
2016-12-01
Global changes - such as warming, more frequent and severe droughts, increasing atmospheric CO2, and increasing nitrogen (N) deposition rates - are altering ecosystem processes. The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of detrital organisms, namely soil fungi, and yet their sensitivity to global changes remains unresolved. We present results from a meta-analysis of 200+ studies spanning manipulative and observational field experiments to quantify fungal responses to global change and expected consequences for ecosystem C dynamics. Warming altered the functional soil microbial community by reducing the ratio of fungi to bacteria (f:b) total fungal biomass. Additionally, warming reduced lignolytic enzyme activity generally by one-third. Simulated N deposition affected f:b differently than warming, but the effect on fungal biomass and activity was similar. The effect of N-enrichment on f:b was contingent upon ecosystem type; f:b increased in alpine meadows and heathlands but decreased in temperate forests following N-enrichment. Across ecosystems, fungal biomass marginally declined by 8% in N-enriched soils. In general, N-enrichment reduced fungal lignolytic enzyme activity, which could explain why soil C accumulates in some ecosystems following warming and N-enrichment. Several global change experiments have reported the surprising result that soil C builds up following increases in temperature and N deposition rates. While site-specific studies have examined the role of soil fungi in ecosystem responses to global change, we present the first meta-analysis documenting general patterns of global change impacts on soil fungal communities, biomass, and activity. In sum, we provide evidence that soil microbial community shifts and activity plays a large part in ecosystem responses to global changes, and have the potential to alter the magnitude of the C-climate feedback.
Wisniewski, Timothy J; Robinson, Thomas N; Deluty, Robert H
2010-01-01
The lack of success of the "coming out" studies over the last three decades to explain and predict parental responses has motivated an evolutionary psychological reconceptualization. According to this reconceptualization, it was predicted that (a) biological mothers would experience more distress and apply more pressure on gay sons to change than would biological fathers and; (b) obligate investment for fathers on dependent sons would cause fathers to experience more distress and apply more pressure on gay sons to change than it would fathers without this obligate investment. In contrast, a cultural-norm hypothesis predicted that fathers would experience more distress and apply more pressure on gay sons to change than mothers. The majority of predictions were tested using 787 participants from two-biological parent families, who were drawn from a total sample of 891 participants from various family backgrounds. As predicted by the evolutionary hypothesis, biological mothers were reported to have been more distressed and coercive than biological fathers, in spite of a strong, societal expectation to the contrary. Furthermore, the results supported the obligate investment argument for paternal reactions. The model not only correctly explained and predicted parental behavior during coming out, but also was shown to unify within its theoretical framework discrepant results from the literature previously considered inconsistent.
Brown, Kyle S.; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L.; Schoville, Benjamin J.; Marean, Curtis W.
2017-01-01
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6. PMID:28355257
Wilkins, Jayne; Brown, Kyle S; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L; Schoville, Benjamin J; Marean, Curtis W
2017-01-01
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.
Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions
Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.
2014-01-01
Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled regeneration suitability is necessary but not sufficient to explain sagebrush presence. We conclude that future assessment of big sagebrush responses to climate change will need to account for responses of regenerative stages using a process-based understanding, such as provided by our model.
NASA Astrophysics Data System (ADS)
Kinoshita, C.; Saffer, D.; Kopf, A.; Roesner, A.; Wallace, L. M.; Araki, E.; Kimura, T.; Machida, Y.; Kobayashi, R.; Davis, E.; Toczko, S.; Carr, S.
2018-02-01
One primary objective of Integrated Ocean Drilling Program Expedition 365, conducted as part of the Nankai Trough Seismogenic Zone Experiment, was to recover a temporary observatory emplaced to monitor formation pore fluid pressure and temperature within a splay fault in the Nankai subduction zone offshore SW Honshu, Japan. Here we use a 5.3 year time series of formation pore fluid pressure, and in particular the response to ocean tidal loading, to evaluate changes in pore pressure and formation and fluid elastic properties induced by earthquakes. Our analysis reveals 31 earthquake-induced perturbations. These are dominantly characterized by small transient increases in pressure (28 events) and decreases in ocean tidal loading efficiency (14 events) that reflect changes to formation or fluid compressibility. The observed perturbations follow a magnitude-distance threshold similar to that reported for earthquake-driven hydrological effects in other settings. To explore the mechanisms that cause these changes, we evaluate the expected static and dynamic strains from each earthquake. The expected static strains are too small to explain the observed pressure changes. In contrast, estimated dynamic strains correlate with the magnitude of changes in both pressure and loading efficiency. We propose potential mechanism for the changes and subsequent recovery, which is exsolution of dissolved gas in interstitial fluids in response to shaking.
Cunning, R; Silverstein, R N; Baker, A C
2015-06-22
Dynamic symbioses may critically mediate impacts of climate change on diverse organisms, with repercussions for ecosystem persistence in some cases. On coral reefs, increases in heat-tolerant symbionts after thermal bleaching can reduce coral susceptibility to future stress. However, the relevance of this adaptive response is equivocal owing to conflicting reports of symbiont stability and change. We help reconcile this conflict by showing that change in symbiont community composition (symbiont shuffling) in Orbicella faveolata depends on the disturbance severity and recovery environment. The proportion of heat-tolerant symbionts dramatically increased following severe experimental bleaching, especially in a warmer recovery environment, but tended to decrease if bleaching was less severe. These patterns can be explained by variation in symbiont performance in the changing microenvironments created by differentially bleached host tissues. Furthermore, higher proportions of heat-tolerant symbionts linearly increased bleaching resistance but reduced photochemical efficiency, suggesting that any change in community structure oppositely impacts performance and stress tolerance. Therefore, even minor symbiont shuffling can adaptively benefit corals, although fitness effects of resulting trade-offs are difficult to predict. This work helps elucidate causes and consequences of dynamism in symbiosis, which is critical to predicting responses of multi-partner symbioses such as O. faveolata to environmental change. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Failure above and below the elastic limit in AD995
NASA Astrophysics Data System (ADS)
Bourne, Neil; Millett, Jeremy; Chen, M. W.; Dandekar, Datta; Maccauley, James
2007-06-01
There is an ongoing interest in identifying inexpensive armour materials for use in protection of personnel and vehicles. The response of AD995 under shock loading is one of the materials most extensively investigated. Over recent years, workers have reported failure occurring in various polycrystalline ceramics behind the shock front. This phenomenon has been investigated using embedded stress sensors and a recovery technique that has allowed observation of the microstructure above and below the HEL and these results are brought together here to explain the observed behaviour. The failure front velocity is found to change with the applied stress, in particular it slows markedly as the HEL is exceeded. The evidence in the microstructure shows the response below HEL is dominated by intergranular failure whilst above HEL the response dominated by plasticity in grains (including twinning), which alters failure characteristics.
Can species-specific prey responses to chemical cues explain prey susceptibility to predation?
Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří
2018-05-01
The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
Predictors of response to neuroleptic treatment in schizophrenia.
Stern, R G; Kahn, R S; Davidson, M
1993-06-01
Baseline symptom severity, early reduction in symptom severity, initial subjective response to neuroleptic treatment, the degree of brain atrophy, and early changes in pHVA levels appear to predict treatment outcome in schizophrenic patients. Computerized EEG results, neuropsychological and neurophysiologic tests, and baseline pHVA concentrations require further examination. Only a limited proportion of variance in treatment response, however, could be explained by either of the nine predictors alone or combined. Therefore, further research is necessary to discover yet unidentified determinants of treatment response. Future studies should test the validity and reliability of these five promising predictors in large groups of male and female patients, employ high standards for assessment reliability of clinical parameters, and use absolute rating scores on psychopathology as well as functional scales for the definition of good and poor treatment response. Furthermore, the statistical approach for data analysis should take in consideration the need for appropriate corrections when multiple correlations are performed and should test the extent to which these predictors are interdependent.
Medaglia, John D; Harvey, Denise Y; White, Nicole; Kelkar, Apoorva; Zimmerman, Jared; Bassett, Danielle S; Hamilton, Roy H
2018-06-08
In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words in order to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understand word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we computed network controllability underlying the site of transcranial magnetic stimulation in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response (word generation) vs. closed-response (number naming) tasks. We find that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we find that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link between network controllability, cognitive function, and TMS effects. SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects. Copyright © 2018 the authors.
García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto
2013-08-01
Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
Huber, Veronika; Wagner, Carola; Gerten, Dieter; Adrian, Rita
2012-05-01
Past heat waves are considered harbingers of future climate change. In this study, we have evaluated the effects of two recent Central European summer heat waves (2003 and 2006) on cyanobacterial blooms in a eutrophic, shallow lake. While a bloom of cyanobacteria developed in 2006, consistent with our expectations, cyanobacterial biomass surprisingly remained at a record-low during the entire summer of 2003. Critical thresholds of abiotic drivers extracted from the long-term (1993-2007) data set of the studied lake using classification tree analysis (CTA) proved suitable to explain these observations. We found that cyanobacterial blooms were especially favoured in 2006 because thermal stratification was critically intense (Schmidt stability >44 g cm cm(-2)) and long-lasting (>3 weeks). Our results also suggest that some cyanobacterial species (Anabaena sp.) benefitted directly from the stable water column, whereas other species (Planktothrix sp.) took advantage of stratification-induced internal nutrient loading. In 2003, conditions were less favourable for cyanobacteria due to a spell of lower temperatures and stronger winds in mid-summer; as a result, the identified thresholds of thermal stratification were hardly ever reached. Overall, our study shows that extracting critical thresholds of environmental drivers from long-term records is a promising avenue for predicting ecosystem responses to future climate warming. Specifically, our results emphasize that not average temperature increase but changes in short-term meteorological variability will determine whether cyanobacteria will bloom more often in a warmer world.
Lewden, Agnès; Nord, Andreas; Petit, Magali; Vézina, François
2017-10-01
Body temperature variation in response to acute stress is typically characterized by peripheral vasoconstriction and a concomitant increase in core body temperature (stress-induced hyperthermia). It is poorly understood how this response differs between species and within individuals of the same species, and how it is affected by the environment. We therefore investigated stress-induced body temperature changes in a non-model species, the Black-capped Chickadee, in two environmental conditions: outdoors in low ambient temperature (mean: -6.6°C), and indoors, in milder ambient temperature close to thermoneutrality (mean: 18.7°C). Our results show that the change in body temperature in response to the same handling stressor differs in these conditions. In cold environments, we noted a significant decrease in core body temperature (-2.9°C), whereas the response in mild indoor conditions was weak and non-significant (-0.6°C). Heat loss in outdoor birds was exacerbated when birds were handled for longer time. This may highlight the role of behavioral thermoregulation and heat substitution from activity to body temperature maintenance in harsh condition. Importantly, our work also indicates that changes in the physical properties of the bird during handling (conductive cooling from cold hands, decreased insulation from compression of plumage and prevention of ptiloerection) may have large consequences for thermoregulation. This might explain why females, the smaller sex, lost more heat than males in the experiment. Because physiological and physical changes during handling may carry over to affect predation risk and maintenance of energy balance during short winter days, we advice caution when designing experimental protocols entailing prolonged handling of small birds in cold conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Zheng, Han; Wang, Qiufeng; Zhu, Xianjin; Li, Yingnian; Yu, Guirui
2014-01-01
Evapotranspiration (ET) is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (Ta), vapor pressure deficit (VPD) and net radiation (Rn) at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both Ta and VPD response curves of ET. At a similar Ta and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to Rn was not evident. Similar hysteresis patterns were also observed in the Ta/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-Ta and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between Rn and Ta/VPD is the most important factor generating and modulating the ET-Ta/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of Rn in driving the diel course of ET.
Behmer, Lawrence P; Fournier, Lisa R
2016-11-01
Questions regarding the malleability of the mirror neuron system (MNS) continue to be debated. MNS activation has been reported when people observe another person performing biological goal-directed behaviors, such as grasping a cup. These findings support the importance of mapping goal-directed biological behavior onto one's motor repertoire as a means of understanding the actions of others. Still, other evidence supports the Associative Sequence Learning (ASL) model which predicts that the MNS responds to a variety of stimuli after sensorimotor learning, not simply biological behavior. MNS activity develops as a consequence of developing stimulus-response associations between a stimulus and its motor outcome. Findings from the ideomotor literature indicate that stimuli that are more ideomotor compatible with a response are accompanied by an increase in response activation compared to less compatible stimuli; however, non-compatible stimuli robustly activate a constituent response after sensorimotor learning. Here, we measured changes in the mu-rhythm, an EEG marker thought to index MNS activity, predicting that stimuli that differ along dimensions of ideomotor compatibility should show changes in mirror neuron activation as participants learn the respective stimulus-response associations. We observed robust mu-suppression for ideomotor-compatible hand actions and partially compatible dot animations prior to learning; however, compatible stimuli showed greater mu-suppression than partially or non-compatible stimuli after explicit learning. Additionally, non-compatible abstract stimuli exceeded baseline only after participants explicitly learned the motor responses associated with the stimuli. We conclude that the empirical differences between the biological and ASL accounts of the MNS can be explained by Ideomotor Theory. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.
2017-12-01
Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.
Bird population trends are linearly affected by climate change along species thermal ranges.
Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake
2010-12-07
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Quirk, D Adam; Hubley-Kozey, Cheryl L
2014-12-01
While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.
Circulatory response and autonomic nervous activity during gum chewing.
Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu
2009-08-01
Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.
Schlegel, Peter; Havenhand, Jon N; Gillings, Michael R; Williamson, Jane E
2012-01-01
Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. We examined the effect of CO(2)-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.
Schlegel, Peter; Havenhand, Jon N.; Gillings, Michael R.; Williamson, Jane E.
2012-01-01
Background Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings We examined the effect of CO2-induced pH changes (“ocean acidification”) in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. Conclusions and Significance The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of ‘winners’ and ‘losers’ of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act. PMID:23300876
NASA Astrophysics Data System (ADS)
Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.
2016-03-01
Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
Feygina, Irina; Jost, John T; Goldsmith, Rachel E
2010-03-01
Despite extensive evidence of climate change and environmental destruction, polls continue to reveal widespread denial and resistance to helping the environment. It is posited here that these responses are linked to the motivational tendency to defend and justify the societal status quo in the face of the threat posed by environmental problems. The present research finds that system justification tendencies are associated with greater denial of environmental realities and less commitment to pro-environmental action. Moreover, the effects of political conservatism, national identification, and gender on denial of environmental problems are explained by variability in system justification tendencies. However, this research finds that it is possible to eliminate the negative effect of system justification on environmentalism by encouraging people to regard pro-environmental change as patriotic and consistent with protecting the status quo (i.e., as a case of "system-sanctioned change"). Theoretical and practical implications of these findings are discussed.
[How does salt intake influence blood pressure? Associated aetiopathogenic mechanisms].
Fernández-Llama, P; Calero, F
2017-12-15
Abundant evidence from epidemiological and experimental studies has established a link between salt and blood pressure. However, there is heterogeneity in the blood pressure responses of humans to changes in sodium intake. Those individuals in whom a severe, abrupt change in salt intake causes the least change in arterial pressure and are termed salt-resistant, whereas in those in whom this leads to large changes in blood pressure, are called salt sensitive. Classically, Guyton's theory of the pressure-natriuresis phenomenon has been accepted to explain the pressor effect of salt, as well as the fundamental role played by the different protein sodium transporters of the renal tubules. In recent years, new theories have emerged pointing to the possible role of the immune system and the existence of a third sodium store in the body as aetiopathogenic factors. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Mechanical response and buckling of a polymer simulation model of the cell nucleus
NASA Astrophysics Data System (ADS)
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.
McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.
2012-01-01
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.
Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.
Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2017-08-01
Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.