NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
NASA Astrophysics Data System (ADS)
Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun
2018-02-01
Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments demonstrated that the change in spring basic state before and after 1998 played a relatively minor role in exciting such a teleconnection pattern, when compared with the tropical precipitation anomaly pattern change.
ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing
NASA Astrophysics Data System (ADS)
Yeh, Sang-Wook; Cai, Wenju; Min, Seung-Ki; McPhaden, Michael J.; Dommenget, Dietmar; Dewitte, Boris; Collins, Matthew; Ashok, Karumuri; An, Soon-Il; Yim, Bo-Young; Kug, Jong-Seong
2018-03-01
El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.
Routson, Cody C.; Woodhouse, Connie A.; Overpeck, Jonathan T.; Betancourt, Julio L.; McKay, Nicholas P.
2016-01-01
Western North America (WNA) is rich in hydroclimate reconstructions, yet questions remain about the causes of decadal-to-multidecadal hydroclimate variability. Teleconnection patterns preserved in annually-resolved tree-ring reconstructed drought maps, and anomalies in a global network of proxy sea surface temperature (SST) reconstructions, were used to reassess the evidence linking ocean forcing to WNA hydroclimate variability over the past millennium. Potential forcing mechanisms of the Medieval Climate Anomaly (MCA) and individual drought and pluvial events—including two multidecadal-length MCA pluvials—were evaluated. We show strong teleconnection patterns occurred during the driest (wettest) years within persistent droughts (pluvials), implicating SSTs as a potent hydroclimate forcing mechanism. The role of the SSTs on longer timescales is more complex. Pacific teleconnection patterns show little long-term change, whereas low-resolution SST reconstructions vary over decades to centuries. While weaker than the tropical Pacific teleconnections, North Atlantic teleconnection patterns and SST reconstructions also show links to WNA droughts and pluvials, and may in part account for longer-term WNA hydroclimate changes. Nonetheless, evidence linking WNA hydroclimate to SSTs still remains sparse and nuanced—especially over long-timescales with a broader range of hydroclimatic variability than characterized during the 20th century.
NASA Astrophysics Data System (ADS)
Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun
2018-05-01
Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
NASA Astrophysics Data System (ADS)
Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Ze
2017-06-01
A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5-6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA-EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.
Impact of the basic state and MJO representation on MJO Pacific teleconnections in GCMs
NASA Astrophysics Data System (ADS)
Henderson, S. A.; Maloney, E. D.; Son, S. W.
2017-12-01
Teleconnection patterns induced by the Madden-Julian Oscillation (MJO) are known to significantly alter extratropical weather and climate patterns. However, accurate MJO representation has been difficult for many General Circulation Models (GCMs). Furthermore, many GCMs contain large basic state biases. These issues present challenges to the simulation of MJO teleconnections and, in turn, their associated extratropical impacts. This study examines the impacts of basic state quality and MJO representation on the quality of MJO teleconnection patterns in GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Results suggest that GCMs assessed to have a good MJO but with large basic state biases have similarly low skill in reproducing MJO teleconnections as GCMs with poor MJO representation. In the good MJO models examined, poor teleconnection quality is associated with large errors in the zonal extent of the Pacific subtropical jet. Whereas the horizontal structure of MJO heating in the Indo-Pacific region is found to have modest impacts on the teleconnection patterns, results suggest that MJO heating east of the dateline can alter the teleconnection pattern characteristics over North America. These findings suggest that in order to accurately simulate the MJO teleconnection patterns and associated extratropical impacts, both the MJO and the basic state must be well represented.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
Quantifying the impact of Teleconnections on Hydrologic Regimes in Texas
NASA Astrophysics Data System (ADS)
Bhatia, N.; Singh, V. P.; Srivastav, R. K.
2016-12-01
Climate change is being alleged to have led to the increased frequency of extreme flooding events and the resulting damages are severe, especially where the flood-plain population densities are higher. Much research in the field of hydroclimatology is focusing on improving real-time flood forecasting models. Recent studies show that, in the state of Texas, extreme regional floods are actually triggered by abruptly higher precipitation intensities. Such intensities are further driven by sea-surface temperature and pressure anomalies, defined by certain patterns of teleconnections. In this study, climate variability is defined on the basis of five major Atlantic and Pacific Ocean related teleconnections: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI). Hydrologic extremes will be modeled using probabilistic distributions. Leave-One-Out-Test (LOOT) will be employed to address the outliers in the extremes, and to eventually obtain the robust correlation coefficient. The variation in the effect of most correlated teleconnection with respect to hydrologic attributes will be investigated for the entire state. This study will attempt to identify potential teleconnection inputs for data-driven hydrologic models under varying climatic conditions.
Intensified ENSO-Driven Precipitation Teleconnections in the Future
NASA Astrophysics Data System (ADS)
Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L. R.; Doutriaux, C.
2014-12-01
The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Charlock, Thomas P.; Bess, T. Dale; Smith, G. Louis; Rose, Fred G.
1990-01-01
The relationship between low frequency variations in extratropical fields of outgoing longwave radiation (OLR) and geopotential teleconnection patterns as determined by rotated principal components analysis of the NMC 500-mb heights is investigated in the Northern Hemisphere. The monthly broadband OLR is obtained from the Nimbus-6 and Nimbus-7 Wide-Field-Of-View radiometer record. Each of the main 500-mb teleconnection patterns has a characteristic signal in the OLR field for the month in which the 500-mb pattern occurs. The OLR signals mark cloud and diabatic heating events that are associated with the teleconnection patterns. A demonstration is given of correlation between extratropical monthly OLR and geopotential height. Coupled with the expected tropospheric response to radiation on monthly time scale. This demonstration stresses the importance of the radiation simulation in model studies of the low frequency variability of atmospheric circulation. The extratropical OLR does not appear to be a useful predictor for the 500-mb teleconnection patterns on a monthly time scale.
NASA Astrophysics Data System (ADS)
Wharton, S.; Chasmer, L.; Falk, M.; Paw U, K.
2007-12-01
In this study, year-to-year variability in three of the major Pacific teleconnection patterns were examined to determine if CO2 and H2O fluxes at an old-growth forest in the Pacific Northwest were affected by climatic changes associated with these patterns. The three cycles examined are the Pacific Decadal Oscillation, Pacific/North American Oscillation and El Niño-Southern Oscillation. We centered our study on the Wind River Canopy Crane, an AmeriFlux tower located in a 500 year old conifer forest in southern Washington State. CO2 and H2O fluxes have been measured continuously for six years using the eddy covariance method. The objectives of this study are to: 1. determine to what extent teleconnection patterns influence measured CO2 and H2O fluxes through mechanistic anomalies; 2. ascertain if climatic shifts affect annual vegetation canopy characteristics; and 3. make comparisons at the local and regional scales using MODIS. The ecosystem was a significant sink of carbon (-207 gC m-2 year-1) in 1999 but turned into a large carbon source (+ 100 gC m-2 year-1) in 2003. NEE significantly (above the 95th CI) lags the PNA, ENSO and PDO indicating that these patterns affect the forest carbon budget across overlapping time scales. To ascertain the influence of atmospheric patterns on fluxes, we categorized the flux measurement years based on in-phase climate events (1999 = La Niña/cool PDO, 2003 = El Niño/warm PDO, 2000-2002, 2004 = neutral ENSO years). The results of this analysis indicate that the Pacific Ocean/atmospheric oscillation anomalies explain much of variance in annual NEE (R2 = 0.78 between NEE and the PDO, R2 = 0.87 for the PNA, and R2 = 0.56 for ENSO). Teleconnection patterns are found to be associated mostly with air temperature, precipitation, and incoming light radiation (cloudy vs. sunny conditions). Important meteorological driving mechanisms of fluxes include: water- use efficiency (WUE), light-use efficiency (LUE) and canopy structure parameters (e.g., fPAR). Tower-based fPAR was strongly related to NEE (R2 = 0.78) and climatic patterns (R2 = 0.84 with ENSO and R2 = 0.76 with PDO). Variability in fluxes may be a result of changes in the canopy structural characteristics; for example higher, fPAR (e.g., 2003) correlated well with increased respiration fluxes. MODIS data (200 km X 200 km area) were obtained to determine if anomalies in vegetation indices and canopy structure could be linked to teleconnection patterns at the site level and across the region. The MODIS-derived Enhanced Vegetation Index (EVI) correlated well with yearly cumulative NEE at the tower and regional EVI anomalies were strongly negatively correlated with the annual PDO index (R2 = 0.9). MODIS-derived fPAR product correlated with yearly variability in the PDO (R2 = 0.34) at the site level. Therefore, there is reasonable expectation that structural changes, as a result of climate variability during strongly positive or negative teleconnection patterns, will be observed in other parts of the Pacific Northwest. MODIS data is useful for identifying the effects of teleconnections across a regional scale.
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...
2015-12-18
The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less
Sonia Wharton; Laura Chasmer; Matthias Falk; Kyaw Tha Paw U
2009-01-01
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and EI Nino-Southern Oscillation (ENSO). We use 9 years of eddy covariance...
NASA Astrophysics Data System (ADS)
Nandini, Sri
2017-04-01
The Caspian Sea level has undergone dramatic variations of more than 3 m during the past century with important implications for the life of coastal people, economy and the ecosystem. The origin of these variations as well as future changes in the Caspian water budget are still a matter of debate. In this study, we examine the influence of the major seasonal North Atlantic teleconnection patterns, the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the Scandinavian pattern (SCA), and the North Sea Caspian Pattern (NCP), on Caspian hydroclimate variability from 1850-2000 CE. Numerical experiments at different atmospheric grid resolutions (2° and 1°) are carried out with the coupled Community Earth System Model (CESM1.2.2). We test model skills under different resolutions through validation against observational data by various statistical methods (Empirical Orthogonal Functions, Taylor diagrams, linear regressions and Spearman rank correlation). Results reveal the strongest simulated signal in winter (DJF) with high explained variances for 1° CESM1.2.2 NAO (39%) and EA (15.7%), similar to observational data. The model is unable to reproduce the SCA pattern in the third EOF, which is found in the observations. The modelled NAO has a strong influence on winter temperature and rainfall over the Caspian catchment area. A strong winter NCP induces above-average 2-meter temperatures over north Caspian region and lower-than-normal precipitation over the eastern Caspian sea. Our study suggests that the 1° version of CESM1.2.2 (with CAM5 atmosphere physics) shows adequate performance with respect to teleconnection maps during the historical period. Lastly, 1° model climate projections (2005-2100 CE) are performed with different Representative Concentration Pathways (RCP 4.5 and RCP 8.5) to examine potential changes in the teleconnection patterns and their influence on the Caspian region.
Stability of ENSO and Its Tropical Pacific Teleconnections over the Last Millennium
NASA Technical Reports Server (NTRS)
Lewis, Sophie; Legrande, A. N.
2015-01-01
Determining past changes in the amplitude, frequency and teleconnections of the El Nio Southern Oscillation (ENSO) is important for understanding its potential sensitivity to future anthropogenic climate change. Palaeo-reconstructions from proxy records provide long-term information of ENSO interactions with the background climatic state through time. However, it remains unclear how ENSO characteristics have changed through time, and precisely which signals proxies record. Proxy interpretations are underpinned by the assumption of stationarity in relationships between local and remote climates, and often utilise archives from single locations located in the Pacific Ocean to reconstruct ENSO histories. Here, we investigate the stationarity of ENSO teleconnections using the Last Millennium experiment of CMIP5 (Coupled Model Intercomparison Project phase 5) (Taylor et al., 2012). We show that modelled ENSO characteristics vary on decadal- to centennial-scales, resulting from internal variability and external forcings, such as tropical volcanic eruptions. Furthermore, the relationship between ENSO conditions and local climates across the Pacific basin varies throughout the Last Millennium. Results show the stability of teleconnections is regionally dependent and proxies may reveal complex changes in teleconnected patterns, rather than large-scale changes in base ENSO characteristics. As such, proxy insights into ENSO likely require evidence to be synthesised over large spatial areas in order to deconvolve changes occurring in the NINO3.4 region from those pertaining to proxy-relevant local climatic variables. To obtain robust histories of the ENSO and its remote impacts, we recommend interpretations of proxy records should be considered in conjunction with palaeo-reconstructions from within the Central Pacific
Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection
Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju
2016-01-01
Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053
Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.
Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju
2016-02-03
Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.
NASA Astrophysics Data System (ADS)
Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang
2017-01-01
Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most situations. Karst spring discharge as a proxy can represent groundwater resource variability at a regional scale, and is more strongly influenced by climate variation.
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Analysing the teleconnection systems affecting the climate of the Carpathian Basin
NASA Astrophysics Data System (ADS)
Kristóf, Erzsébet; Bartholy, Judit; Pongrácz, Rita
2017-04-01
Nowadays, the increase of the global average near-surface air temperature is unequivocal. Atmospheric low-frequency variabilities have substantial impacts on climate variables such as air temperature and precipitation. Therefore, assessing their effects is essential to improve global and regional climate model simulations for the 21st century. The North Atlantic Oscillation (NAO) is one of the best-known atmospheric teleconnection patterns affecting the Carpathian Basin in Central Europe. Besides NAO, we aim to analyse other interannual-to-decadal teleconnection patterns, which might have significant impacts on the Carpathian Basin, namely, the East Atlantic/West Russia pattern, the Scandinavian pattern, the Mediterranean Oscillation, and the North-Sea Caspian Pattern. For this purpose primarily the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-20C atmospheric reanalysis dataset and multivariate statistical methods are used. The indices of each teleconnection pattern and their correlations with temperature and precipitation will be calculated for the period of 1961-1990. On the basis of these data first the long range (i. e. seasonal and/or annual scale) forecast ability is evaluated. Then, we aim to calculate the same indices of the relevant teleconnection patterns for the historical and future simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models and compare them against each other using statistical methods. Our ultimate goal is to examine all available CMIP5 models and evaluate their abilities to reproduce the selected teleconnection systems. Thus, climate predictions for the 21st century for the Carpathian Basin may be improved using the best-performing models among all CMIP5 model simulations.
Climate teleconnections and recent patterns of human and animal disease outbreaks
USDA-ARS?s Scientific Manuscript database
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the p...
Teleconnections in the Presence of Climate Change: A Case Study of the Annular Modes
NASA Astrophysics Data System (ADS)
Gerber, Edwin; Baldwin, Mark
2010-05-01
Long model integrations of future and past climates present a problem for defining teleconnection patterns through Empirical Orthogonal Function (EOF) or correlation analysis when trends in the underlying climate begin to dominate the covariance structure. Similar issues may soon appear in observations as the record becomes longer, especially if climate trends accelerate. The Northern and Southern Annular Modes provide a prime example, because the poleward shift of the jet streams strongly projects onto these patterns, particularly in the Southern Hemisphere. Climate forecasts of the 21st century by chemistry climate models provide a case study. Computation of the annular modes in these long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The new procedure involves two key changes. First, the global mean geopotential height is removed at each time step before computing anomalies. This is particularly important high in the atmosphere, where seasonal variations in geopotential height become significant, and filters out trends due to changes in the temperature structure of the atmosphere. Pattern definition can be very sensitive near the tropopause, as regions of the atmosphere that used to be more of stratospheric character begin to take on tropospheric characteristics as the tropopause rises. The second change is to define anomalies relative to a slowly evolving seasonal climatology, so that the covariance structure reflects internal variability. Once these changes are accounted for, it is found that the zonal mean variability of the atmosphere stays remarkably constant, despite significant changes in the baseline climate forecast for the rest of the century. This stability of the internal variability makes it possible to relate trends in climate to teleconnections.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.
NASA Astrophysics Data System (ADS)
Oh, Hyoeun; Jhun, Jong-Ghap; Ha, Kyung-Ja; Seo, Kyong-Hwan
2017-05-01
This study investigates the individual effects of the East Atlantic/West Russia (EATL/WRUS) and Western Pacific (WP) teleconnection patterns and their combined effect on the East Asian winter monsoon (EAWM). The contributions of the respective EATL/WRUS and WP teleconnection patterns to the EAWM are revealed by removing the dependence on the Arctic Oscillation (AO) and the El Niño-Southern Oscillation (ENSO) using a linear regression, which are named as N_EATL/WRUS and N_WP, respectively. This is because the EATL/WRUS (WP) is closely linked to the Arctic (tropics) region. A significant increase (decrease) in temperature over East Asia (EA) corresponding to a weak (strong) EAWM is associated with the N_EATL/WRUS and N_WP teleconnection patterns during the positive (negative) phases. In order to examine impacts of these two teleconnections on the EAWM, three types of effects are reconstructed on the basis of ± 0.5 standard deviation: 1) Combined effect, 2) N_EATL/WRUS effect, and 3) N_WP effect. The positive N_EATL/WRUS teleconnection induces to a weakened Siberian High and a shallow EA trough at the mid-troposphere through wave propagation, leading to the weak EAWM. During the positive N_WP pattern, warm air from the tropics flows toward the EA along western flank of an anomalous anticyclone over the North Pacific that is relevant to the meridional shift of the Aleutian Low. When the two mid-latitude teleconnections have the in-phase combination, the increase in temperature over EA appears to be more pronounced than the individual effects by transporting warm air from tropics via strong southeasterly wind anomalies induced by anomalous zonal pressure gradient between the Siberian High and Aleutian Low. Therefore, the impact of the mid-latitude teleconnections on the EAWM becomes robust and linearly superimposed, unlike a nonlinear in-phase combined effect of the AO and ENSO.
Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection
NASA Astrophysics Data System (ADS)
Kashid, S. S.; Ghosh, Subimal; Maity, Rajib
2010-12-01
SummarySimultaneous variations in weather and climate over widely separated regions are commonly known as "hydroclimatic teleconnections". Rainfall and runoff patterns, over continents, are found to be significantly teleconnected, with large-scale circulation patterns, through such hydroclimatic teleconnections. Though such teleconnections exist in nature, it is very difficult to model them, due to their inherent complexity. Statistical techniques and Artificial Intelligence (AI) tools gain popularity in modeling hydroclimatic teleconnection, based on their ability, in capturing the complicated relationship between the predictors (e.g. sea surface temperatures) and predictand (e.g., rainfall). Genetic Programming is such an AI tool, which is capable of capturing nonlinear relationship, between predictor and predictand, due to its flexible functional structure. In the present study, gridded multi-site weekly rainfall is predicted from El Niño Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation (EQUINOO) indices, Outgoing Longwave Radiation (OLR) and lag rainfall at grid points, over the catchment, using Genetic Programming. The predicted rainfall is further used in a Genetic Programming model to predict streamflows. The model is applied for weekly forecasting of streamflow in Mahanadi River, India, and satisfactory performance is observed.
NASA Astrophysics Data System (ADS)
Lionello, P.; Galati, M. B.
2008-06-01
This study analyzes the link between the SWH (Significant Wave Height) distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure) teleconnection patterns. The SWH distribution is computed using the WAM (WAve Model) forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958-2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA), Scandinavian Pattern (SCA), North Atlantic Oscillation (NAO), East Atlantic/West Russia Pattern (EA/WR) and East Pacific/ North Pacific Pattern (EP/NP). Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.
Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2016-02-01
During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.
Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns
NASA Astrophysics Data System (ADS)
Chen, Chia-Jeng; Lee, Tsung-Yu
2017-04-01
Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping with extreme events in empirical seasonal predictions are also carried out. Findings from this work will contribute to the development of an integrated water resources planning and management system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Changhyun; Park, Sungsu; Kim, Daehyun
2015-10-01
The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, influences weather and climate in the extratropics through atmospheric teleconnection. In this study, two simulations using the Community Atmosphere Model version 5 (CAM5) - one with the default shallow and deep convection schemes and the other with the Unified Convection scheme (UNICON) - are employed to examine the impacts of cumulus parameterizations on the simulation of the boreal wintertime MJO teleconnection in the Northern Hemisphere. We demonstrate that the UNICON substantially improves the MJO teleconnection. When the UNICON is employed, the simulated circulation anomalies associated with the MJO bettermore » resemble the observed counterpart, compared to the simulation with the default convection schemes. Quantitatively, the pattern correlation for the 300-hPa geopotential height anomalies between the simulations and observation increases from 0.07 for the default schemes to 0.54 for the UNICON. These circulation anomalies associated with the MJO further help to enhance the surface air temperature and precipitation anomalies over North America, although room for improvement is still evident. Initial value calculations suggest that the realistic MJO teleconnection with the UNICON is not attributed to the changes in the background wind, but primarily to the improved tropical convective heating associated with the MJO.« less
Role of Tropical Atlantic SST Variability as a Modulator of El Nino Teleconnections
NASA Technical Reports Server (NTRS)
Ham, Yoo-Geun; Sung, Mi-Kyung; An, Soon-II; Schubert, Siegfried D.; Kug, Jong-Seong
2014-01-01
The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).
Teleconnection Paths via Climate Network Direct Link Detection.
Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo
2015-12-31
Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.
NASA Astrophysics Data System (ADS)
Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.
2018-05-01
This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain, but a weaker ENSO/IOD signal over the southern part of the region. This signal is consistent and robust in all global and regional model simulations. The projected increase in OND rainfall over the eastern horn of Africa might be linked with the mean changes in SST over Indian and Pacific Ocean basins and the associated Walker circulations.
Atmospheric teleconnection influence on North American land surface phenology
NASA Astrophysics Data System (ADS)
Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.
2018-03-01
Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.
NASA Astrophysics Data System (ADS)
Mentaschi, Lorenzo; Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Dosio, Alessandro; Feyen, Luc
2017-03-01
In this study we conducted a comprehensive modeling analysis to identify global trends in extreme wave energy flux (WEF) along coastlines in the 21st century under a high emission pathway (Representative Concentration Pathways 8.5). For the end of the century, results show a significant increase up to 30% in 100 year return level WEF for the majority of the coastal areas of the southern temperate zone, while in the Northern Hemisphere large coastal areas are characterized by a significant negative trend. We show that the most significant long-term trends of extreme WEF can be explained by intensification of teleconnection patterns such as the Antarctic Oscillation, El Niño-Southern Oscillation, and North Atlantic Oscillation. The projected changes will have broad implications for ocean engineering applications and disaster risk management. Especially low-lying coastal countries in the Southern Hemisphere will be particularly vulnerable due to the combined effects of projected relative sea level rise and more extreme wave activities.
NASA Astrophysics Data System (ADS)
Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.
2018-03-01
The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.
McCabe, G.J.; Dettinger, M.D.
1999-01-01
Changing patterns of correlations between the historical average June-November Southern Oscillation Index (SOI) and October-March precipitation totals for 84 climate divisions in the western US indicate a large amount of variability in SOI/precipitation relations on decadal time scales. Correlations of western US precipitation with SOI and other indices of tropical El Nino-Southern Oscillation (ENSO) processes were much weaker from 1920 to 1950 than during recent decades. This variability in teleconnections is associated with the character of tropical air-sea interactions as indexed by the number of out-of-phase SOI/tropical sea surface temperature (SST) episodes, and with decadal variability in the North Pacific Ocean as indexed by the Pacific Decadal Oscillation (PDO). ENSO teleconnections with precipitation in the western US are strong when SOI and NINO3 are out-of-phase and PDO is negative. ENSO teleconnections are weak when SOI and NINO3 are weakly correlated and PDO is positive. Decadal modes of tropical and North Pacific Ocean climate variability are important indicators of periods when ENSO indices, like SOI, can be used as reliable predictors of winter precipitation in the US.
Southern Ocean Convection and tropical telleconnections
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gnanadesikan, A.
2014-12-01
We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the tantalizing possibility that such large-scale changes in SO deep convection might have tropical and indeed global implications via atmospheric teleconnections. We advocate the collection of both paleo and modern proxies that can verify these model-derived mechanisms and global teleconnections.
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J.; Meyerson, J.
2011-12-01
The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.
NASA Technical Reports Server (NTRS)
Coats, Sloan; Smerdon, Jason E.; Cook, Benjamin I.; Seager, Richard
2013-01-01
The temporal stationarity of the teleconnection between the tropical Pacific Ocean and North America (NA) is analyzed in atmosphere-only, and coupled last-millennium, historical, and control runs from the Coupled Model Intercomparison Project Phase 5 data archive. The teleconnection, defined as the correlation between December-January-February (DJF) tropical Pacific sea surface temperatures (SSTs) and DJF 200 mb geopotential height, is found to be nonstationary on multidecadal timescales. There are significant changes in the spatial features of the teleconnection over NA in continuous 56-year segments of the last millennium and control simulations. Analysis of atmosphere-only simulations forced with observed SSTs indicates that atmospheric noise cannot account for the temporal variability of the teleconnection, which instead is likely explained by the strength of, and multidecadal changes in, tropical Pacific Ocean variability. These results have implications for teleconnection-based analyses of model fidelity in simulating precipitation, as well as any reconstruction and forecasting efforts that assume stationarity of the observed teleconnection.
NASA Astrophysics Data System (ADS)
Gao, Tao; Yu, Jin-yi; Paek, Houk
2017-08-01
The impacts of four teleconnection patterns on atmospheric circulation components over Eurasia and the Pacific region, from low to high latitudes in the Northern Hemisphere (NH), were investigated comprehensively in this study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/Western Russia (EAWR), Polar/Eurasia (POLEUR), and Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the subtropical high over different sectors of the NH in all seasons, especially boreal winter. The wave train associated with this pattern serves as an atmospheric bridge that transfers Atlantic influence into the low-latitude region of the Pacific. In addition, the amplitudes of the EAWR, SCAND, and POLEUR patterns were found to have considerable control on the "Vangengeim-Girs" circulation that forms over the Atlantic-Eurasian region in winter or spring. The EA and EAWR mainly affect the westerlies in winter and spring and the POLEUR and SCAND, respectively, in summer and winter. Strong westerlies confine the extension of the North Polar vortex, which generally results in a small weak vortex and a shallow East Asian trough located in a position further east than normal. Furthermore, the North Polar vortex presents significant connections with the patterns during winter and summer. Analyses in this work suggest that the teleconnection patterns in summer could be driven, at least partly, by the Atlantic Multidecadal Oscillation, which to some degree might transmit the influence of the Atlantic Ocean to Eurasia and the Pacific region.
Atlantic-induced pan-tropical climate change over the past three decades
NASA Astrophysics Data System (ADS)
Li, Xichen; Xie, Shang-Ping; Gille, Sarah T.; Yoo, Changhyun
2016-03-01
During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus, to the warming trends in either the Atlantic or Indian Ocean. However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute ~55-75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes. The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.
Fleming, Sean W.; Hood, Eran; Dalhke, Helen; O'Neel, Shad
2016-01-01
The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.
NASA Technical Reports Server (NTRS)
Collow, Allison B. Marquardt; Mahanama, Sarith P.; Bosilovich, Michael G.; Koster, Randal D.; Schubert, Siegfried D.
2017-01-01
The atmospheric general circulation model that is used in NASA's Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) is evaluated with respect to the relationship between large-scale teleconnection patterns and daily temperature and precipitation over the United States (US) using a ten-member ensemble of simulations, referred to as M2AMIP. A focus is placed on four teleconnection patterns that are known to influence weather and climate in the US: El Nino Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation, and the Pacific-North American Pattern. The monthly and seasonal indices associated with the patterns are correlated with daily temperature and precipitation statistics including: (i) monthly mean 2 m temperature and precipitation, (ii) the frequency of extreme temperature events at the 90th, 95th, and 99th percentiles, and (iii) the frequency and intensity of extreme precipitation events classified at the 90th, 95th, and 99th percentiles.Correlations obtained with M2AMIP data and thus the strength of teleconnections in the free-running model are evaluated through comparison against corresponding correlations computed from observations and from MERRA-2. Overall, the strongest teleconnections in all datasets occur during the winter and coincide with the largest agreement between the observations, MERRA-2, and M2AMIP. When M2AMIP does capture the correlation seen in observations, there is a tendency for the spatial extent to be exaggerated. The weakest agreement between the data sources, for all teleconnection patterns, is in the correlation with extreme precipitation; however there are discrepancies between the datasets in the number of days with at least 1 mm of precipitation: M2AMIP has too few days with precipitation in the Northwest and the Northern Great Plains and too many days in the Northeast. In JJA, M2AMIP has too few days with precipitation in the western two-thirds of the country and too many days with precipitation along the east coast.
Interdecadal variability of the Afro-Asian summer monsoon system
NASA Astrophysics Data System (ADS)
Li, Yi; Ding, Yihui; Li, Weijing
2017-07-01
The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century (1901-2014) and during the last three decades (1979-2014). A recent abrupt change of precipitation occurred in the late 1990s. Since then, the entire rainbelt of the Afro-Asia monsoon system has advanced northwards in a coordinated way. Consistent increases in precipitation over the Huanghe-Huaihe River valley and the Sahel are associated with the teleconnection pattern excited by the warm phase of the Atlantic Multidecadal Oscillation (AMO). A teleconnection wave train, with alternating cyclones/anticyclones, is detected in the upper troposphere. Along the teleconnection path, the configuration of circulation anomalies in North Africa is characterized by coupling of the upper-level anticyclone (divergence) with low-level thermal low pressure (convergence), facilitating the initiation and development of ascending motions in the Sahel. Similarly, in East Asia, a coupled circulation pattern also excites ascending motion in the Huanghe-Huaihe River valley. The synchronous increase in precipitation over the Sahel and Huanghe-Huaihe River valley can be attributed to the co-occurrences and in-phase changes of ascending motion. On the other hand, the warm phase of the AMO results in significant warming in the upper troposphere in North Africa and the northern part of East Asia. Such warming contributes to intensification of the tropical easterly jet through increasing the meridional pressure gradient both at the entrance region (East Asia) and the exit region (Africa). Accordingly, precipitation over the Sahel and Huanghe-Huaihe River valley intensifies, owing to ageostrophic secondary cells. The results of this study provide evidence for a consistent and holistic interdecadal change in the Afro-Asian summer monsoon.
Regional Famine Patterns of The Last Millennium as Influenced by Aggregated Climate Teleconnections
NASA Astrophysics Data System (ADS)
Santoro, Michael Melton
Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India. The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines. The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914. The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years. Ultimately, the causes of famine are complex and involve many factors including societal and climatic. This dissertation demonstrates that climate teleconnections impact famine patterns and often the aggregates of multiple climate variables hold the most significant climatic impact. These results will increase the understanding of famine patterns and will help to better allocate resources to alleviate future famines.
Stratospheric role in interdecadal changes of El Niño impacts over Europe
NASA Astrophysics Data System (ADS)
Ayarzagüena, B.; López-Parages, J.; Iza, M.; Calvo, N.; Rodríguez-Fonseca, B.
2018-04-01
The European precipitation response to El Niño (EN) has been found to present interdecadal changes, with alternated periods of important or negligible EN impact in late winter. These periods are associated with opposite phases of multi-decadal sea surface temperature (SST) variability, which modifies the tropospheric background and EN teleconnections. In addition, other studies have shown how SST anomalies in the equatorial Pacific, and in particular, the location of the largest anomalous SST, modulate the stratospheric response to EN. Nevertheless, the role of the stratosphere on the stationarity of EN response has not been investigated in detail so far. Using reanalysis data, we present a comprehensive study of EN teleconnections to Europe including the role of the ocean background and the stratosphere in the stationarity of the signal. The results reveal multidecadal variability in the location of EN-related SST anomalies that determines different teleconnections. In periods with relevant precipitation signal over Europe, the EN SST pattern resembles Eastern Pacific EN and the stratospheric pathway plays a key role in transmitting the signal to Europe in February, together with two tropospheric wavetrains that transmit the signal in February and April. Conversely, the stratospheric pathway is not detected in periods with a weak EN impact on European precipitation, corresponding to EN-related SST anomalies primarily located over the central Pacific. SST mean state and its associated atmospheric background control the location of EN-related SST anomalies in different periods and modulate the establishment of the aforementioned stratospheric pathway of EN teleconnection to Europe too.
NASA Astrophysics Data System (ADS)
Yoon, S.
2016-12-01
This study analyzes nonlinear behavior links with atmospheric teleconnections between hydrologic variables and climate indices using statistical models over the Korean Peninsula (KP). The ocean-related major climate factors such as the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mode in the Tropical Ocean (TO) region were used to analyze the atmospheric teleconnections by principal component analysis (PCA) and a singular spectrum analysis (SSA). The nonlinear lag time correlations between climate indices and hydrological variables are calculated by the Mutual Information (MI) techniques. Results show that teleconnection based nonlinear correlation coefficients (CCs) were higher than linear CCs, ENSO shows a few months of lag time correlation with IOD, which has a direct influence on rainfall and streamflow anomalies in the KP. The precipitation and streamflow in KP shows a significant increasing and decreasing tendency during warm pool (WP) and cold tongue (CT) El Niño decaying years, respectively, while the La Niña year shows slightly above normal conditions. IOD events show significantly decreasing and increasing long-term normal conditions during positive and negative years, respectively. A better understanding of the relationship between climate indices and streamflow can help policy makers prepare for possible options in river discharge pattern changes. Furthermore, these results provide useful information for water managers and end-users to support long-range water resources prediction and water-related management plan.
NASA Astrophysics Data System (ADS)
Haguma, D.; Leconte, R.
2017-12-01
Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.
Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM
NASA Astrophysics Data System (ADS)
Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed
2017-03-01
ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (`SPEEDY'). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air-sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact over the tropical Atlantic and the Indian Ocean through Walker circulation. ENSO-induced negative (positive) NAO-like response and associated changes over Southern Europe and North Africa get significantly strong following increased intensity of El Niño (La Niña) in the northern (southern) hemisphere in the boreal winter (summer) season. We further find that ENSO magnitude significantly impacts Hadley and Walker circulations. The positive phase of ENSO (El Niño) overall strengthens Hadley cell and a reverse is true for the La Niña phase. ENSO-induced strengthening and weakening of Hadley cell induces significant impact over South Asian and African ITCZ convective regions through modification of ITCZ/monsoon circulation system.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2006-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer precipitation seesaw between eastern and western Siberia. The results of this study raise the possibility that global aerosol forcing during boreal spring may play an important role in spawning atmospheric teleconnections that affect regional and global climates.
NASA Astrophysics Data System (ADS)
Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo
2017-11-01
The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.
2018-05-01
Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Wang, P., III; Wu, C.; Hao, Y.; Xu, K.
2017-12-01
In the process of global warming, the frequency and intensity of a series of climate events (such as, precipitation, flood disaster, climate arid) are also being changed. Even in the today of advanced science and technology, the occurrence and severity of drought in China is still devastating impact on social and economic development. We studied the spatial and temporal variability of drought in southwestern China China and its relationships to teleconnection indices. We used the Palmer Drought Severity Index (PDSI) to investigate the variation in drought in southwestern China between 1961 and 2012 using the Mann-Kendall (MK), continuous wavelet transform (CWT) and the rotated empirical orthogonal function (REOF) methods. Additionally, We analyzed the relationships between the time variability of significant patterns and teleconnection indices. The PDSI shows that there is a trend of turning dry in west Tibet; while it is remarkably drying in junction of Yunnan, Guizhou, Sichuan, Chongqing provinces, and the drought in Spring is more severe than in autumn, with a changing oscillation period of 2-7a. It's found the drought strength reducing before rising without a obvious turning point. Also, the drought frequency staggered in spatial distribution, and a larger inter-annual difference. AO and SS are the most important factors among all the drought influence factors, the others differ from the importance.
Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s
NASA Astrophysics Data System (ADS)
Hong, Xiaowei; Lu, Riyu; Li, Shuanglin
2017-09-01
Regional temperature changes are a crucial factor in affecting agriculture, ecosystems and societies, which depend greatly on local temperatures. We identify a nonuniform warming pattern in summer around the mid-1990s over the Eurasian continent, with a predominant amplified warming over Europe-West Asia and Northeast Asia but much weaker warming over Central Asia. It is found that the nonuniform warming concurs with both the phase shift of the Atlantic Multi-decadal Oscillation (AMO) and the decadal change in the Silk Road Pattern (SRP), which is an upper-tropospheric teleconnection pattern over the Eurasian continent during summer. We suggest that the AMO may modulate the decadal change in SRP and then induce the zonal asymmetry in temperature changes. Our results have important implications for decadal prediction of regional warming pattern in Eurasia based on the predictable AMO.
NASA Astrophysics Data System (ADS)
Wong, C. I.; Potter, G. L.; Montanez, I. P.; Otto-Bliesner, B. L.; Behling, P.; Oster, J. L.
2014-12-01
Investigating climate dynamics governing rainfall over the western US during past warmings and coolings of the last glacial and deglaciation is pertinent to understanding how precipitation patterns might change with future global warming, especially as the processes driving the global hydrological reorganization affecting this drought-prone region during these rapid temperature changes remain unresolved. We present model climates of the Bølling warm event (14,500 years ago) and Younger Dryas cool event (12,200 years ago) that i) uniquely enable the assessment of dueling hypothesis about the atmospheric teleconnections responsible for abrupt temperature shifts in the North Atlantic region to variations in moisture conditions across the western US, and ii) show that existing hypotheses about these teleconnections are unsupported. Modeling results show no evidence for a north-south shift of the Pacific winter storm track, and we argue that a tropical moisture source with evolving trajectory cannot explain alternation between wet/dry conditions, which have been reconstructed from the proxy record. Alternatively, model results support a new hypothesis that variations in the intensity of the winter storm track, corresponding to its expansion/contraction, can account for regional moisture differences between warm and cool intervals of the last deglaciation. Furthermore, we demonstrate that the mechanism forcing the teleconnection between the North Atlantic and western US is the same across different boundary conditions. In our simulation, during the last deglaciation, and in simulations of future warming, perturbation of the Rossby wave structure reconfigures the atmospheric state. This reconfiguration affects the Aleutian Low and high-pressure ridge over and off of the northern North American coastline driving variability in the storm track. Similarity between the processes governing the climate response during these distinct time intervals illustrates the robust nature of the teleconnection, a novel result that provides context for understanding the climate processes governing the response of moisture variability to future climate change.
The interannual variation in monthly temperature over Northeast China during summer
NASA Astrophysics Data System (ADS)
Chen, Wei; Lu, Riyu
2014-05-01
The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.
NASA Astrophysics Data System (ADS)
Li, J.; Xie, S. P.
2017-12-01
The El Niño influence on monsoon Asia climate weakened during the mid-20th century and strenthened substantially after the late 1970s. Exploring the nature of such an interdecadal variation is constrained by short instrumental records. Here we synthesize the Indo-Pacific tree-rings and coral records to reconstruct monsoon Asia temperature and moisture change during the past five centuries, and show that the interdecadal modulation of El Niño teleconnection on monsoon Asia climate is a robust feature beyond the instrumenal era. Comparison with proxy El Niño records indicates that the El Niño-monsoon Asia climate teleconnection is controlled by interdecadal changes in ENSO variance, with strong (weak) teleconnection in periods of high (low) variance, respectively.
NASA Astrophysics Data System (ADS)
Breshears, D. D.; Allen, C. D.; McDowell, N. G.; Adams, H. D.; Barnes, M.; Barron-Gafford, G.; Bradford, J. B.; Cobb, N.; Field, J. P.; Froend, R.; Fontaine, J. B.; Garcia, E.; Hardy, G. E. S. J.; Huxman, T. E.; Kala, J.; Lague, M. M.; Martinez-Yrizar, A.; Matusick, G.; Minor, D. M.; Moore, D. J.; Ng, M.; Ruthrof, K. X.; Saleska, S. R.; Stark, S. C.; Swann, A. L. S.; Villegas, J. C.; Williams, A. P.; Zou, C.
2017-12-01
Evidence that tree mortality is increasingly likely occur in extensive die-off events across the terrestrial biosphere continues to mount. The consequences of such extensive mortality events are potentially profound, not only for the locations where die-off events occur, but also for other locations that could be impacted via ecoclimate teleconnections, whereby the land surface changes associated with die-off in one location could alter atmospheric circulation patterns and affect vegetation elsewhere. Here, we (1) recap the background of tree mortality as an emerging environmental issue, (2) highlight recent advances that could help us improve predictions of the vulnerability to tree mortality, including the underlying importance of hydraulic failure, the potential to develop climatic envelopes specific to tree mortality events, and consideration of the role of heat waves; and (3) initial bounding simulations that indicate the potential for tree die-off events in different locations to alter ecoclimate teleconnections. As we move toward globally coordinated carbon accounting and management, the high vulnerability to tree die-off events and the potential for such events to affect vegetation elsewhere will both need to be accounted for.
NASA Astrophysics Data System (ADS)
Woo, Sumin; Singh, Gyan Prakash; Oh, Jai-Ho; Lee, Kyoung-Min
2018-01-01
The present paper examined the teleconnections between two huge Asian summer monsoon components (South and East Asia) during three time slices in future: near-(2010-2039), mid-(2040-2069) and far-(2070-2100) futures under the RCP4.5 and RCP8.5 scenarios. For this purpose, a high-resolution atmospheric general circulation model is used and integrated at 40 km horizontal resolution. To get more insight into the relationships between the two Asian monsoon components, we have studied the spatial displaying correlation coefficients (CCs) pattern of precipitation over the entire Asian monsoon region with that of South Asia and three regions of East Asia (North China, Korea-Japan and Southern China) separately during the same three time slices. The possible factors responsible for these teleconnections are explored by using mean sea level pressure (MSLP) and wind fields at 850 hPa. The CC pattern of precipitation over South Asia shows an in-phase relationship with North China and an out-of-phase relationship with Korea-Japan, while precipitation variations over Korea-Japan and Southern China exhibit an out-of-phase relationship with South Asia. The CCs analysis between the two Asian blocks during different time slices shows the strongest CCs during the near and far future with the RCP8.5 scenario. The CC pattern of precipitation over Korea-Japan and Southern China with the wind (at 850 hPa) and MSLP fields indicate that the major parts of the moisture over Korea-Japan gets transported from the west Pacific along the western limb of NPSH, while the moisture over Southern China comes from the Bay of Bengal and South China Seas for good monsoon activity.
On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China
NASA Astrophysics Data System (ADS)
Zhong, Yu; Wang, Binbin; Zou, Chris B.; Hu, Bill X.; Liu, Youcun; Hao, Yonghong
2017-11-01
The Tianshan Mountains are known as the "water tower" in the arid region of Central Asia. Change in precipitation amount and pattern can have a profound impact on regional civilization and life supporting ecosystems. For this study, a systematic analysis of long-term precipitation data for the eastern Tianshan Mountains was conducted to investigate the influence of climate teleconnections on annual and intra-annual precipitation using data collected between 1951 and 2014 from 39 meteorological stations. Annual precipitation has increased during the past six decades at an average rate of 6.7 mm/10 years largely due to the increase in precipitation during the intra-annual wet period (May-October). The annual precipitation and its rate of increase were higher in the northwestern region. Annual precipitation was found to be most strongly correlated with index of Indian Summer Monsoon (ISM), and partially correlated with indices of Pacific Decadal Oscillation (PDO), Pacific North American Teleconnection Pattern (PNA), Arctic Oscillation (AO), El Nino-Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO). ISM was positively correlated with the precipitation in almost the entire region during the intra-annual wet period, while it showed positive correlations in the northern slope and the alpine region, and negative correlations in the southern slope during the intra-annual dry period (November to April). PDO had much weaker influence both in spatial scale and strength and primarily affected low elevations on the southern slopes of the middle and western regions. The impacts of PNA and AO on precipitation were weak and localized. ENSO and NAO indices were almost not correlated with annual precipitation observation in the eastern Tianshan Mountains.
The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates
NASA Astrophysics Data System (ADS)
Li, Jianping; Ruan, Chengqing
2018-02-01
A teleconnection between the North Atlantic Ocean and the Eurasian continent is suggested by statistical and dynamical analysis of the northern summer 500 hPa geopotential height field. This teleconnection, termed the Atlantic-Eurasian (AEA) teleconnection, has five centers of action, in the subtropical North Atlantic Ocean, northeastern North Atlantic Ocean, Eastern Europe, the Kara Sea, and north China. The AEA index (AEAI) shows that the AEA undergoes a high degree of variability from year to year, and the AEAI has an increasing trend over the last 30 years. Our results suggest that this phenomenon is a large-scale Rossby wave train that originates in the subtropical North Atlantic Ocean. We support this conclusion by the methods of stationary wave ray tracing in non-uniform horizontal basic flow, wave activity flux calculations, and numerical models. The AEA and midlatitude circumglobal teleconnection pattern manifest distinct features at the hemispheric scale, despite the anomalies associated with them bear some similarities in the northeastern North Atlantic and Eastern Europe. Regional climate variations are strongly linked to this AEA along its path through northern Eurasia.
NASA Astrophysics Data System (ADS)
King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel
2018-03-01
We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.
Forecasting of Seasonal Rainfall using ENSO and IOD teleconnection with Classification Models
NASA Astrophysics Data System (ADS)
De Silva, T.; Hornberger, G. M.
2017-12-01
Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present an analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli, river basin. Forecasting of rainfall as classes - above normal, normal, and below normal - can be useful for water resource management decision making. Quadratic discrimination analysis (QDA) and random forest models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. These models can be used to forecast the likelihood of areal rainfall anomalies using predicted climate indices. Results can be used for decisions regarding allocation of water for agriculture and electricity generation within the Mahaweli project of Sri Lanka.
NASA Astrophysics Data System (ADS)
Smith, E. T.
2017-12-01
Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.
NASA Astrophysics Data System (ADS)
Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian
2017-09-01
The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.
The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wang, H.
2004-01-01
The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.
Predicting summer monsoon of Bhutan based on SST and teleconnection indices
NASA Astrophysics Data System (ADS)
Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen
2018-02-01
The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.
NASA Astrophysics Data System (ADS)
Kim, Seon Tae; Sohn, Soo-Jin; Kug, Jong-Seong
2017-09-01
This study proposes a new index for monitoring and predicting winter temperatures of the Korean Peninsula based on the dominant atmospheric winter teleconnection patterns. The utilization of this index is further extended to the East Asian Winter Monsoon (EAWM) index because the new index is found to well represent the main feature of the EAWM circulation. Among the teleconnection patterns, the East Atlantic (EA) and Western Pacific (WP) patterns are found to be most strongly correlated with winter temperatures via their partial association with changes in sea level pressure (SLP) around the Korean Peninsula, i.e., the EA and WP patterns are associated with SLP variation over the Siberian High region and the Kuroshio extension region to the east of Japan, respectively. On the basis of this relationship, the two regions representing the northwest-to-southeast SLP gradients are determined to define the new index. It is found that the new index can represent the Korean winter temperatures consistently well regardless of their considerable decadal changes. When compared with the existing SLP-based EAWM indices, the new index shows the best performance in delineating winter air temperatures, not only in the Korean Peninsula but also in the entire East Asian region. We also assess the prediction skill of the new index with seasonal coupled forecast models of the APEC Climate Center of Korea and its capability to predict winter temperatures. This assessment shows that the new index has potential for operationally predicting and monitoring winter temperatures in Korea and the whole of East Asia.
Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales
NASA Astrophysics Data System (ADS)
Stan, Cristiana; Straus, David M.; Frederiksen, Jorgen S.; Lin, Hai; Maloney, Eric D.; Schumacher, Courtney
2017-12-01
The interactions and teleconnections between the tropical and midlatitude regions on intraseasonal time scales are an important modulator of tropical and extratropical circulation anomalies and their associated weather patterns. These interactions arise due to the impact of the tropics on the extratropics, the impact of the midlatitudes on the tropics, and two-way interactions between the regions. Observational evidence, as well as theoretical studies with models of complexity ranging from the linear barotropic framework to intricate Earth system models, suggest the involvement of a myriad of processes and mechanisms in generating and maintaining these interconnections. At this stage, our understanding of these teleconnections is primarily a collection of concepts; a comprehensive theoretical framework has yet to be established. These intraseasonal teleconnections are increasingly recognized as an untapped source of potential subseasonal predictability. However, the complexity and diversity of mechanisms associated with these teleconnections, along with the lack of a conceptual framework to relate them, prevent this potential predictability from being translated into realized forecast skill. This review synthesizes our progress in understanding the observed characteristics of intraseasonal tropical-extratropical interactions and their associated mechanisms, identifies the significant gaps in this understanding, and recommends new research endeavors to address the remaining challenges.
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
Projections of Flood Risk using Credible Climate Signals in the Ohio River Basin
NASA Astrophysics Data System (ADS)
Schlef, K.; Robertson, A. W.; Brown, C.
2017-12-01
Estimating future hydrologic flood risk under non-stationary climate is a key challenge to the design of long-term water resources infrastructure and flood management strategies. In this work, we demonstrate how projections of large-scale climate patterns can be credibly used to create projections of long-term flood risk. Our study area is the northwest region of the Ohio River Basin in the United States Midwest. In the region, three major teleconnections have been previously demonstrated to affect synoptic patterns that influence extreme precipitation and streamflow: the El Nino Southern Oscillation, the Pacific North American pattern, and the Pacific Decadal Oscillation. These teleconnections are strongest during the winter season (January-March), which also experiences the greatest number of peak flow events. For this reason, flood events are defined as the maximum daily streamflow to occur in the winter season. For each gage in the region, the location parameter of a log Pearson type 3 distribution is conditioned on the first principal component of the three teleconnections to create a statistical model of flood events. Future projections of flood risk are created by forcing the statistical model with projections of the teleconnections from general circulation models selected for skill. We compare the results of our method to the results of two other methods: the traditional model chain (i.e., general circulation model projections to downscaling method to hydrologic model to flood frequency analysis) and that of using the historic trend. We also discuss the potential for developing credible projections of flood events for the continental United States.
NASA Astrophysics Data System (ADS)
Lorenzo, M. N.; Iglesias, I.; Taboada, J. J.; Gómez-Gesteira, M.; Ramos, A. M.
2009-04-01
This work assesses the possibility of doing a forecast of rainfall and the main teleconnections patterns that influences climate in Southwest Europe by using sea surface temperature anomalies (SSTA). The area under study is located in the NW Iberian Peninsula. This region has a great oceanic influence on its climate and has an important dependency of the water resources. In this way if the different SST patterns are known, the different rainfall situations can be predicted. On the other hand, the teleconnection patterns, which have strong weight on rainfall, are influenced by the SSTA of different areas. In the light of this, the aim of this study is to explore the relationship between global SSTAs, rainfall and the main teleconnection patterns influencing on Europe. The SST data with a 2.0 degree resolution was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. A monthly averaged data from 1 January 1951 through December 2006 was considered. The monthly precipitation data from 1951-2006 were obtained from the database CLIMA of the University of Santiago de Compostela with data from the Meteorological State Agency (AEMET) and the Regional Government of Galicia. The teleconnection indices were taken of the Climate Prediction Center of the NOAA between 1950 and 2006. A monthly and seasonal study was analysed considering up to three months of delay in the first case and up to four seasons of delay in the second case. The Pearson product-moment correlation coefficient r was considered to quantify linear associations between SSTA and precipitation and/or SSTA and teleconnection indices. A test for field-significance was applied considering the properties of finiteness and interdependence of the spatial grid to avoid spurious correlations. Analysing the results obtained with the global SSTA and the teleconnection indices, a great number of ocean regions with high correlations can be found. The spatial patterns show very high correlations with Indian Ocean waters which could be related with the Monsoon. Another area with high correlation is Equatorial Pacific Ocean, the area related with the ENSO phenomenon. These SSTAs could be used to forecast rainfall anomalies in spring season in the area of NW Iberian Peninsula. Results show that La Niña years almost always announces dry spring in NW Iberian Peninsula. Nevertheless, El Niño years do not preclude the appearance of wet spring. Because of the progress that has been made in its prediction, the relation between ENSO and climate in NW Iberian Peninsula is of interest with respect to potential seasonal predictability and the results can be extended to the south west of Europe. [1] Lorenzo, M.N. and J. J. Taboada (2005). Influences of atmospheric variability on freshwater input in Galician Rías in winter. Journal of Atmospheric and Ocean Science Vol 10, No 4, 377-387. [2] Lorenzo, M.N. I. Iglesias, J.J. Taboada and M. Gómez-Gesteira. Relationship between monthly rainfall in NW Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. (Submitted to International Journal of Climatology). [3] Philips, I.D. and J. Thorpe (2006): Icelandic precipitation-North Atlantic sea-surface temperature associations. International Journal of Climatology 26: 1201-1221.
NASA Astrophysics Data System (ADS)
Bonaccorso, Brunella; Cancelliere, Antonino
2015-04-01
In the present study two probabilistic models for short-medium term drought forecasting able to include information provided by teleconnection indices are proposed and applied to Sicily region (Italy). Drought conditions are expressed in terms of the Standardized Precipitation-Evapotranspiration Index (SPEI) at different aggregation time scales. More specifically, a multivariate approach based on normal distribution is developed in order to estimate: 1) on the one hand transition probabilities to future SPEI drought classes and 2) on the other hand, SPEI forecasts at a generic time horizon M, as functions of past values of SPEI and the selected teleconnection index. To this end, SPEI series at 3, 4 and 6 aggregation time scales for Sicily region are extracted from the Global SPEI database, SPEIbase , available at Web repository of the Spanish National Research Council (http://sac.csic.es/spei/database.html), and averaged over the study area. In particular, SPEIbase v2.3 with spatial resolution of 0.5° lat/lon and temporal coverage between January 1901 and December 2013 is used. A preliminary correlation analysis is carried out to investigate the link between the drought index and different teleconnection patterns, namely: the North Atlantic Oscillation (NAO), the Scandinavian (SCA) and the East Atlantic-West Russia (EA-WR) patterns. Results of such analysis indicate a strongest influence of NAO on drought conditions in Sicily with respect to other teleconnection indices. Then, the proposed forecasting methodology is applied and the skill in forecasting of the proposed models is quantitatively assessed through the application of a simple score approach and of performance indices. Results indicate that inclusion of NAO index generally enhance model performance thus confirming the suitability of the models for short- medium term forecast of drought conditions.
Coralline alga reveals first marine record of subarctic North Pacific climate change
Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James A.
2007-01-01
While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Provancha, C.; Adams, P. N.; Hegermiller, C.; Storlazzi, C. D.
2015-12-01
Shoreline change via coastal erosion and accretion is largely influenced by variations in ocean wave climate. Identifying the sources of these variations is challenging because the timing of wave energy delivery varies over multiple timescales within ocean basins. We present the results of an investigation of USACE Wave Information Studies hindcast hourly wave heights, periods, and directions along the North American Atlantic coast from 1980-2012, designed to explore links between wave climate and teleconnection patterns. Trends in median and extreme significant wave heights (SWHs) demonstrate that mean monthly SWHs increased from 1 to 5 cm/yr along the roughly 3000 km reach of study area, with changes in hurricane season waves appearing to be most influential in producing the overall trends. Distributions of SWHs categorized by North Atlantic Oscillation (NAO) phase, show that positive-period NAO SWHs are greater than negative-period NAO SWHs along the entire eastern seaboard (25°N to 45°N). The most prominent wave direction off Cape Cod, MA during positive-period NAO is approximately 105°, as compared to approximately 75° during negative-period NAO. Prominent wave directions between Cape Canaveral, FL, and Savannah, GA exhibit a similar shift but during opposite phases of the NAO. The results of this analysis suggest that the atmosphere-ocean interactions associated with contrasting NAO phases can significantly change the wave climate observed offshore along the North American Atlantic coast, altering alongshore wave energy fluxes and sediment transport patterns along the coast.
NASA Astrophysics Data System (ADS)
Liu, Zhongfang; Kennedy, Casey D.; Bowen, Gabriel J.
2011-10-01
Large-scale climate teleconnections such as the Pacific/North American (PNA) pattern strongly influence atmospheric processes and continental climate. Here we show that precipitation δ 18O values in the contiguous United States are correlated with an index of the PNA pattern. The δ 18O/PNA relationship varies across the study region and exhibits two prominent modes, with positive correlation in the western USA and negative correlation in the east. This spatial pattern appears not to reflect variation in local climate variables, but rather primarily reflects differences in atmospheric circulation and moisture sources associated with PNA. Our results suggest that strong antiphase variation in paired paleo-water δ 18O proxy records from regions characterized by the two modes of δ 18O/PNA correlation, especially in the Midwest and southwestern USA, may provide a robust basis for reconstruction of past variation in the PNA pattern.
NASA Astrophysics Data System (ADS)
Sachse, D.; Romero, L.; Kienel, U.; Haug, G. H.
2016-12-01
ENSO is one of the major drivers of inter-annual climate variability and its effects extend far beyond the Tropical Pacific. However, our knowledge about the stability and linearity of ENSO teleconnections is limited due to the short temporal coverage of observational data, in particular of well dated paleo-ENSO records. Here we present a high-resolution record of rainfall variability on the Pacific coast of Mexico, which today is significantly correlated to ENSO variability (NINO 3.4 index), with dryer conditions during an El Niño phase and wetter conditions during a La Niña phase. The lake, situated in a volcanic crater on Isabel Island, is strongly influenced by rainfall intensity, i.e. freshwater and saline sea water input. A halophile bacterial community dominates during dry phases and an algal community dominates in a freshwater lens which develops during the wet season. Specific lipid biomarkers in the sediments indicate the dominant bacterial community (tetrahymanol and long-chain diols, respectively) in an annually laminated sediment core and record the timing and direction of ENSO mean state changes. We find the region was dry before 825 AD, indicating dominant El Niño. Between 825 and 950 AD, wetter conditions provide evidence for a dominating La Niña like pattern. During the early Medieval Climate Anomaly (MCA, 925-1100 AD) we reconstruct a dryer (El Niño like) environment, changing into a La Niña dominated pattern, prevailing until 1700 AD. The late Little Ice Age (LIA, 1700-1850AD) was initially dry and changed into a wetter climate at 1750 AD. Afterwards El Niño dominated in the region. The overall pattern of these changes agrees with other paleoclimate records from the Pacific region. However, our well dated (±20 years) high-resolution record identifies a number of short-lived episodes of deviations from this pattern, in particular during the MCA and the LIA. We also find strong similarities in the timing of these episodes with North Pacific and North Atlantic records, indicating that ENSO-Northern Hemisphere teleconnections existed throughout the last 2000 years. We find that changes in ENSO pattern during the MCA and the LIA predate changes in the Northern Hemisphere, indicating that ENSO changes affected atmospheric circulation patterns and so directly influenced Northern hemispheric climate.
Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China
NASA Astrophysics Data System (ADS)
Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.
2017-12-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.
Relationships between teleconnection patterns and Turkish climatic extremes
NASA Astrophysics Data System (ADS)
Baltacı, H.; Akkoyunlu, B. O.; Tayanç, M.
2017-12-01
This is a study on the effects of teleconnection patterns (TPs) on the extremes of temperature and precipitation over Turkey. Relationships between five teleconnection patterns, North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), East Atlantic (EA), and Scandinavian (SCA) patterns, and 11 climate extreme indices were studied by using 94 uniformly distributed meteorological stations over Turkey for the period of 1965-2014. Analyzing strong positive and negative temperature deviations from the 50-year-winter means shows that such extremes can often be explained by using AO and EAWR patterns. During the negative AO, generally more warm days occur over Black Sea (r = -0.6) and Aegean regions (r = -0.7). This phase of AO also generates above-normal precipitation in the western parts of the Anatolian Peninsula (r around - 0.5). Winter-time negative AO is mainly associated with the presence of a deepened Genoa cyclone over Italy that can transport warm and moist air mass from Mediterranean Sea towards Turkey by strong westerly winds. In contrast, positive EAWR is mainly connected to cold nights over Black Sea (r = 0.6) and Aegean regions (r = 0.6) together with positive precipitation anomalies at the seaside stations of the eastern Black Sea region. On the other hand, when positive EAWR prevails, Azores high-pressure center expands towards continental Europe bringing cold air by strong northerly winds together with higher moisture transport from the Black Sea. These results could pave the way for new possibilities regarding the projection of extremes in downscaling techniques.
Future Changes to ENSO Temperature and Precipitation Teleconnections Under Warming
NASA Astrophysics Data System (ADS)
Perry, S.; McGregor, S.; Sen Gupta, A.; England, M. H.
2016-12-01
As the dominant mode of interannual climate variability, the El Niño-Southern Oscillation (ENSO) modulates temperature and rainfall globally, additionally contributing to weather extremes. Anthropogenic climate change has the potential to alter the strength and frequency of ENSO and may also alter ENSO-driven atmospheric teleconnections, affecting ecosystems and human activity in regions far removed from the tropical Pacific. State-of-art climate models exhibit considerable disagreement in projections of future changes in ENSO sea surface temperature variability. Despite this uncertainty, recent model studies suggest that the precipitation response to ENSO will be enhanced in the tropical Pacific under future warming, and as such the societal impacts of ENSO will increase. Here we use temperature and precipitation data from an ensemble of 41 CMIP5 models to show where ENSO teleconnections are being enhanced and dampened in a high-emission future scenario (RCP8.5) focusing on the changes that are occurring over land areas globally. Although there is some spread between the model projections, robust changes with strong ensemble agreement are found in certain locations, including amplification of teleconnections in southeast Australia, South America and the Maritime Continent. Our results suggest that in these regions future ENSO events will lead to more extreme temperature and rainfall responses.
Influence of tropical atmospheric variability on Weddell Sea deep water convection
NASA Astrophysics Data System (ADS)
Kleppin, H.
2016-02-01
Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).
Variations in the correlation between teleconnections and Taiwan's streamflow
NASA Astrophysics Data System (ADS)
Chen, Chia-Jeng; Lee, Tsung-Yu
2017-07-01
Interannual variations in catchment streamflow represent an integrated response to anomalies in regional moisture transport and atmospheric circulations and are ultimately linked to large-scale climate oscillations. This study conducts correlation analysis to calculate how summertime (July-September, JAS) streamflow data derived at 28 upstream and 13 downstream gauges in Taiwan correlate with 14 teleconnection indices in the current or preceding seasons. We find that the western Pacific (WP) and Pacific-Japan (PJ) patterns, both of which play a critical role in determining cyclonic activity in the western North Pacific basin, exhibit the highest concurrent correlations (most significant r = 0. 50) with the JAS flows in Taiwan. Alternatively, the Quasi-Biennial Oscillation (QBO) averaged over the period from the previous October to June of the current year is significantly correlated with the JAS flows (most significant r = -0. 66), indicating some forecasting utility. By further examining the correlation results using a 20-year moving window, peculiar temporal variations and possible climate regime shifts (CRSs) can be revealed. A CRS test is employed to identify suspicious and abrupt changes in the correlation. The late 1970s and 1990s are identified as two significant change points. During the intermediate period, Taiwan's streamflow and the PJ index exhibit a marked in-phase relationship (r > 0. 8). It is verified that the two shifts are in concordance with the alteration of large-scale circulations in the Pacific basin by investigating the changes in pattern correlation and composite maps before and after the change point. Our results suggest that empirical forecasting techniques should take into account the effect of CRSs on predictor screening.
NASA Astrophysics Data System (ADS)
Smerdon, J. E.; Baek, S. H.; Coats, S.; Williams, P.; Cook, B.; Cook, E. R.; Seager, R.
2017-12-01
The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.
Urban land teleconnections and sustainability
Seto, Karen C.; Reenberg, Anette; Boone, Christopher G.; Fragkias, Michail; Haase, Dagmar; Langanke, Tobias; Marcotullio, Peter; Munroe, Darla K.; Olah, Branislav; Simon, David
2012-01-01
This paper introduces urban land teleconnections as a conceptual framework that explicitly links land changes to underlying urbanization dynamics. We illustrate how three key themes that are currently addressed separately in the urban sustainability and land change literatures can lead to incorrect conclusions and misleading results when they are not examined jointly: the traditional system of land classification that is based on discrete categories and reinforces the false idea of a rural–urban dichotomy; the spatial quantification of land change that is based on place-based relationships, ignoring the connections between distant places, especially between urban functions and rural land uses; and the implicit assumptions about path dependency and sequential land changes that underlie current conceptualizations of land transitions. We then examine several environmental “grand challenges” and discuss how urban land teleconnections could help research communities frame scientific inquiries. Finally, we point to existing analytical approaches that can be used to advance development and application of the concept. PMID:22550174
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Dogar, Muhammad Mubashar Ahmad; Qiao, Shaobo; Hu, Po; Feng, Guolin
2017-09-01
This study examines the ability of the Beijing Climate Center Climate System Model (BCC_CSM) to predict the meridional pattern of summer precipitation over East Asia-Northwest Pacific (EA-NWP) and its East Asia-Pacific (EAP) teleconnection. The differences of summer precipitation modes of the empirical orthogonal function and the bias of atmospheric circulations over EA-NWP are analyzed to determine the reason for the precipitation prediction errors. Results indicate that the BCC_CSM could not reproduce the positive-negative-positive meridional tripole pattern from south to north that differs markedly from that observed over the last 20 years. This failure can be attributed to the bias of the BCC_CSM hindcasts of the summer EAP teleconnection and the low predictability of 500 hPa at the mid-high latitude lobe of the EAP. Meanwhile, the BCC_CSM hindcasts' deficiencies of atmospheric responses to SST anomalies over the Indonesia maritime continent (IMC) resulted in opposite and geographically shifted geopotential anomalies at 500 hPa as well as wind and vorticity anomalies at 850 hPa, rendering the BCC_CSM unable to correctly reproduce the EAP teleconnection pattern. Understanding these two problems will help further improve BCC_CSM's summer precipitation forecasting ability over EA-NWP.
NASA Astrophysics Data System (ADS)
Diz, Paula; Hernández-Almeida, Iván; Bernárdez, Patricia; Pérez-Arlucea, Marta; Hall, Ian R.
2018-07-01
The modern Eastern Equatorial Pacific (EEP) is a key oceanographic region for regulating the Earth's climate system, accounting for between 5-10% of global marine production whilst also representing a major source of carbon dioxide efflux to the atmosphere. Changes in ocean dynamics linked to the nutrient supply from the Southern Ocean have been suggested to have played a dominant role in regulating EEP productivity over glacial-interglacial timescales of the past 500 ka. Yet, the full extent of the climate and oceanic teleconnections and the mechanisms promoting the observed increase of productivity occurring at glacial terminations remain poorly understood. Here we present multi-proxy, micropaleontological, geochemical and sedimentological records from the easternmost EEP to infer changes in atmospheric patterns and oceanic processes potentially influencing regional primary productivity over glacial-interglacial cycles of the mid-late Pleistocene (∼0-650 ka). These proxy data support a leading role for the north-south migration of the Intertropical Convergence Zone (ITCZ) in shaping past productivity variability in the EEP. Productivity increases during glacial periods and notably peaks at major and "extra" glacial terminations (those occurring 1-2 precession cycles after some major terminations) coincident with the inferred southernmost position of the ITCZ. The comparison of our reconstructions with proxy records of climate variability suggests the intensification of related extratropical atmospheric and oceanic teleconnections during deglaciation events. These processes may have re-activated the supply of southern sourced nutrients to the EEP, potentially contributing to enhanced productivity in the EEP and thus counterbalancing the oceanic carbon dioxide outgassing at glacial terminations.
Allan, Andrea M.; Hostetler, Steven W.; Alder, Jay R.
2014-01-01
We use the NCEP/NCAR Reanalysis (NCEP) and the MPI/ECHAM5 general circulation model to drive the RegCM3 regional climate model to assess the ability of the models to reproduce the spatiotemporal aspects of the Pacific-North American teleconnection (PNA) pattern. Composite anomalies of the NCEP-driven RegCM3 simulations for 1982–2000 indicate that the regional model is capable of accurately simulating the key features (500-hPa heights, surface temperature, and precipitation) of the positive and negative phases of the PNA with little loss of information in the downscaling process. The basic structure of the PNA is captured in both the ECHAM5 global and ECHAM5-driven RegCM3 simulations. The 1950–2000 ECHAM5 simulation displays similar temporal and spatial variability in the PNA index as that of NCEP; however, the magnitudes of the positive and negative phases are weaker than those of NCEP. The RegCM3 simulations clearly differentiate the climatology and associated anomalies of snow water equivalent and soil moisture of the positive and negative PNA phases. In the RegCM3 simulations of the future (2050–2100), changes in the location and extent of the Aleutian low and the continental high over North America alter the dominant flow patterns associated with positive and negative PNA modes. The future projections display a shift in the patterns of the relationship between the PNA and surface climate variables, which suggest the potential for changes in the PNA-related surface hydrology of North America.
NASA Astrophysics Data System (ADS)
Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina
2018-05-01
The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente
2017-05-01
Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.
NASA Astrophysics Data System (ADS)
Giannakaki, Paraskevi; Calanca, Pierluigi
2017-04-01
Russia has become one of the leading wheat exporters worldwide. Major breakdowns in Russian wheat production induced by extreme weather events are therefore of high significance not only for the domestic but also for the global market. Wheat production in south-western Russia, the main growing area, suffers in particular from the adverse effects of drought and heat waves. For this reason knowledge of the occurrence of this type of extreme events and of the processes that lead to adverse conditions is of paramount importance for risk management. The negative impacts of heat waves and drought are particularly severe when anomalous conditions persist in time. As an example, a blocking event in summer 2010 resulted in one of the warmest and worst drought conditions in Russia's recent history. The latter caused a decline in Russian wheat production by more than 30%, which in turn prompted the Russian government to issue an export ban that lasted until summer 2011. In view of this, the question of course arises of how much of the negative variations in Russian wheat production levels can be explained by blocking events and other features of the large-scale atmospheric circulation. Specific questions are: how often are blocking events over Russia associated with extreme high temperatures and dry conditions? Which of the teleconnection patterns are correlated with drought and heat stress conditions in the area? Answering these questions can contribute to a develop strategies for agricultural risk management. In this contribution we present results of a study that aims at characterizing the occurrence of adverse weather conditions in south-western Russia in relation to atmospheric blocking and teleconnection patterns such as East Atlantic/Western Russia pattern, the Polar/Eurasia pattern, the North Atlantic Oscillation and the Scandinavia pattern. The analysis relies on weather data for 1980-2014 from 130 stations distributed across the wheat production area. The account for similarities in the occurrence of extreme heat, stations are clustered according to 90th percentile of daily maximum temperature. The results indicate that adverse conditions in the area are significantly correlated with the occurrence of blocking events and with the phase of some teleconnection patterns.
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
Visualizing a possible atmospheric teleconnection associated with UK floods in autumn 2000
NASA Astrophysics Data System (ADS)
Pall, P.; Bensema, K.; Stone, D.; Wehner, M. F.; Bethel, W.; Joy, K.
2012-12-01
Severe floods occurred across England and Wales during the record-wet autumn of the year 2000. Recently Pall et al. (2011) demonstrated that the risk of such floods occurring at that time substantially increased as a result of anthropogenic greenhouse gas emissions, and that the synoptic weather system associated with the floods was a common but anomalously strong 'Scandinavia' atmospheric circulation pattern (a Rossby-wave-like train of tropospheric anomalies in geopotential height, extending from the subtropical Atlantic across Eurasia, with a cyclone over the UK and a strong anticyclone over Scandinavia). Blackburn and Hoskins (2001) suggest that this pattern was itself catalyzed by an anomalous upper-tropospheric flow of air: originating with an ascent of air due to convection over warm sea surface temperatures in the western Tropical Pacific, and ending in a descent of air over the Amazon in the proposed source region of the Scandinavia pattern. However, evidence for this so-called 'teleconnection' is not entirely clear in the idealised climate models they used. Here we use visualization techniques to search for this teleconnection in the simulations generated with the more comprehensive seasonal-forecast-resolution climate model of Pall et al. (2011) -- by identifying anomalous streamflow patterns and using the UV-CDAT software developed at Berkeley Lab to do so. Furthermore, since several thousand simulations were generated (in order to capture the rare flood event), totaling hundreds of GB in size, we use paralleisation techniques to perform this search efficiently.
Summer precipitation prediction in the source region of the Yellow River using climate indices
NASA Astrophysics Data System (ADS)
Yuan, F.
2016-12-01
The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.
Global sea surface temperature (SST) anomalies have a demonstrable effect on vegetation dynamics and precipitation patterns throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactio...
Climate and wildfires in the North American boreal forest.
Macias Fauria, Marc; Johnson, E A
2008-07-12
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.
Wintertime East Asian Jet Stream and Its Association with the Asian-Pacific Climate
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
2000-01-01
Interannual variability of the wintertime East Asian westerly jet stream and the linkage between this variability and the Asian-Pacific climate are investigated. The study emphasizes on the variability of the jet core and its association with the Asian winter monsoon, tropical convection, upper tropospheric wave patterns, and the teleconnection of the jet with other climate systems. The relationship between the jet and North Pacific sea surface temperature pattern (SST) is also explored. NCEP/NCAR reanalysis, NASA GISS surface temperature, NASA GEOS reanalysis, NOAA reconstructed SST, GPCP precipitation, and NOAA snow cover data sets are analyzed in this study. An index of the East Asian jet has been defined by the December-February means of the 200 mb zonal winds that are averaged within a box enclosing the jet maximum, which shifts only moderately from one year to another especially in the south-north direction. The jet links to a teleconnection pattern whose major climate anomalies appear over the Asian continent and western Pacific (west of the dateline). This pattern differs distinctly from the teleconnection pattern associated with El Nino/Southern Oscillation (ENSO), which causes the Pacific/North American pattern to the east of the dateline. A strong jet is accompanied clearly by an increase in the intensity of the atmospheric circulation over Asia and the Pacific. In particular, the winter monsoon strengthens over East Asia, leading to cold climate in the region, and convection intensifies over the tropical Asia-Australia sector. Changes in the jet are associated with broad-scale modification in the upper tropospheric wave patterns that leads to downstream climate anomalies over the eastern Pacific. Through this downstream influence, the East Asian jet causes climate signals in North America as well. A strong jet gives rise to warming and less snow cover in the western United States but reverse climate anomalies in the eastern part of the country, although these signals are relatively weaker than the jet-related anomalies in East Asia. There is a strong association between the East Asian jet and the North Pacific SST (NPSST). A strong jet is accompanied by a cooling in the extratropical Pacific and a warming in the tropical-subtropical Pacific. Evidence also indicates that the extratropical NPSST pattern plays a role in modulating the intensity of the jet stream. ENSO, the jet, and the NPSST are mutually interactive on certain time scales and such an interaction links closely to the climate anomalies in the Asian-Pacific-American regions.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Impact of the Dominant Large-scale Teleconnections on Winter Temperature Variability over East Asia
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2013-01-01
Monthly mean geopotential height for the past 33 DJF seasons archived in Modern Era Retrospective analysis for Research and Applications reanalysis is decomposed into the large-scale teleconnection patterns to explain their impacts on winter temperature variability over East Asia. Following Arctic Oscillation (AO) that explains the largest variance, East Atlantic/West Russia (EA/WR), West Pacific (WP) and El Nino-Southern Oscillation (ENSO) are identified as the first four leading modes that significantly explain East Asian winter temperature variation. While the northern part of East Asia north of 50N is prevailed by AO and EA/WR impacts, temperature in the midlatitudes (30N-50N), which include Mongolia, northeastern China, Shandong area, Korea, and Japan, is influenced by combined effect of the four leading teleconnections. ENSO impact on average over 33 winters is relatively weaker than the impact of the other three teleconnections. WP impact, which has received less attention than ENSO in earlier studies, characterizes winter temperatures over Korea, Japan, and central to southern China region south of 30N mainly by advective process from the Pacific. Upper level wave activity fluxes reveal that, for the AO case, the height and circulation anomalies affecting midlatitude East Asian winter temperature is mainly located at higher latitudes north of East Asia. Distribution of the fluxes also explains that the stationary wave train associated with EA/WR propagates southeastward from the western Russia, affecting the East Asian winter temperature. Investigation on the impact of each teleconnection for the selected years reveals that the most dominant teleconnection over East Asia is not the same at all years, indicating a great deal of interannual variability. Comparison in temperature anomaly distributions between observation and temperature anomaly constructed using the combined effect of four leading teleconnections clearly show a reasonable consistency between them, demonstrating that the seasonal winter temperature distributions over East Asia are substantially explained by these four large-scale circulation impacts.
NASA Technical Reports Server (NTRS)
Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.
2016-01-01
Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.
NASA Technical Reports Server (NTRS)
Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara E.; Bosilovich, Michael G.
2007-01-01
The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. In this study, we show that one of several PDV interdecadal regime shifts occurred during the 1990s. This significant change in the Pacific basin is comparable but opposite in phase to the 1976 climate regime shift, which results persisting warming in the central-eastern Pacific, and cooling in the North and South Pacific. The 1990s PDV regime shift is consistent with observed changes in ocean biosphere and ocean circulation. A comprehensive picture of PDV as manifested in the troposphere and at the surface is described. In general, the PDV spatial patterns in different parameter fields share some similarities with the patterns associated with ENSO, but important differences exist. First, the PDV atmospheric circulation pattern is shifted westward by about 20deg and its zonal extent is limited to approx.60deg compared to approx.110deg for ENS0 pattern. The westward shift of the PDV wave train produces a different, more west-east oriented, North American teleconnection pattern. The lack of a strong PDV surface temperature (ST) signal in the western equatorial Pacific and the relatively strong ST signal in the subtropical regions are consistent with an atmospheric overturning circulation response that differs from the one associated with ENSO.
North Atlantic teleconnection patterns signature on sea level from satellite altimetry
NASA Astrophysics Data System (ADS)
Iglesias, Isabel; Lázaro, Clara; Joana Fernandes, M.; Bastos, Luísa
2015-04-01
Presently, satellite altimetry record is long enough to appropriately study inter-annual signals in sea level anomaly and ocean surface circulation, allowing the association of teleconnection patterns of low-frequency variability with the response of sea level. The variability of the Atlantic Ocean at basin-scale is known to be complex in space and time, with the dominant mode occurring on annual timescales. However, interannual and decadal variability have already been documented in sea surface temperature. Both modes are believed to be linked and are known to influence sea level along coastal regions. The analysis of the sea level multiannual variability is thus essential to understand the present climate and its long-term variability. While in the open-ocean sea level anomaly from satellite altimetry currently possesses centimetre-level accuracy, satellite altimetry measurements become invalid or of lower accuracy along the coast due to the invalidity of the wet tropospheric correction (WTC) derived from on-board microwave radiometers. In order to adequately analyse long-term changes in sea level in the coastal regions, satellite altimetry measurements can be recovered by using an improved WTC computed from recent algorithms that combine wet path delays from all available observations (remote sensing scanning imaging radiometers, GNSS stations, microwave radiometers on-board satellite altimetry missions and numerical weather models). In this study, a 20-year (1993-2013) time series of multi-mission satellite altimetry (TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1/2, ENVISAT, CryoSat-2 and SARAL), are used to characterize the North Atlantic (NA) long-term variability on sea level at basin-scale and analyse its response to several atmospheric teleconnections known to operate on the NA. The altimetry record was generated using an improved coastal WTC computed from either the GNSS-derived path Delay or the Data Combination methodologies developed by University of Porto (Fernandes et al., 2010; Fernandes et al., 2013). Regular 0.25°x0.25° latitude-longitude grids were generated at a 10-day interval for the NA Ocean (60°W-5°W, 5°N-60°N) using optimal interpolation with a realistic space-time correlation function (Lázaro et al., 2013). These grids are used to inspect the response of sea level anomalies to several teleconnection patterns as well as the NA variability on annual and longer timescales. The teleconnection patterns selected are the ones that have influence on the NA basin: North Atlantic Oscillation, East Atlantic pattern, East Atlantic/Western Russia pattern, Scandinavia pattern, Western Mediterranean Oscillation index, El Niño Southern Oscillation, Tropical North Atlantic Index, and Atlantic Multidecadal Oscillation. Acknowledgments: RAIA tec (0688-RAIATEC-1-P) project. The RAIA Coastal Observatory has been funded by the Programa Operativo de Cooperación Transfronteriza España-Portugal (POCTEP 2007-2013). References: Fernandes M.J., C. Lázaro, A.L. Nunes, N. Pires, L. Bastos, V.B. Mendes (2010). GNSS-derived Path Delay: an approach to compute the wet tropospheric correction for coastal altimetry. IEEE Geosci. Rem. Sens Lett., Vol. 7, NO. 3, 596 - 600, doi: 10.1109/LGRS.2010.2042425. Lázaro, C., M. J. Juliano, M. J. Fernandes (2013): Semi-automatic determination of the Azores Current axis using satellite altimetry: application to the study of the current variability during 1995-2006. Advances in Space Research, Vol. 51(11), pp. 2155-2170, doi:10.1016/j.asr.2012.12.021. Fernandes, M. J., A.L. Nunes, C. Lázaro (2013). Analysis and Inter-Calibration of Wet Path Delay Datasets to Compute the Wet Tropospheric Correction for CryoSat-2 over Ocean. Remote Sensing, 5, 4977-5005.
North Polar Radiative Flux Variability from 2002 Through 2014
NASA Technical Reports Server (NTRS)
Rutan, David; Rose, Fred; Doelling, David; Kato, Seiji; Smith, Bill, Jr.
2017-01-01
NASA's Clouds and the Earth's Radiant Energy System (CERES) project produces the SYN1Deg data product. SYN1deg provides global, 1deg gridded, hourly estimates of Top of Atmosphere (TOA) (CERES observations and calculations) and atmospheric and surface radiative flux (calculations). Examples of 12 year North Polar averages of some variables are shown to the right. Given recent interest in polar science we focus here on TOA and Surface validation of calculated irradiant fluxes. TOA upward longwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining strong through PC 6. Compare SYN1Deg Calculations & Meteorological Teleconnections. TOA reflected shortwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining string through PC 7. Comparing SYN1Deg calculations to teleconnection patterns requires expanding the area to 30N for EOF analyses. Correlating the Principal Components of various variables to teleconnection time series indicates which variable is most highly correlated with which teleconnection signal. The tables indicate the Pacific North American Oscillation is most correlated to the OLR EOF 1, and the North American Oscillation is correlated most closely to surface LW flux down EOF 1.
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Florindo, Fabio; McKay, Robert; Golledge, Nicholas; Sangiorgi, Francesca; Montoli, Enea; Masina, Simona; Cherchi, Annalisa; De Santis, Laura
2017-04-01
Sea Surface Temperatures (SST) reconstructions have shown that the Pliocene global zonal and meridional temperature gradients were different from today, implying changes of atmospheric and oceanic circulations, and thus of the main teleconnections. The impact of the main atmospheric teleconnections on the surface mass balance (SMB) of the Antarctic ice sheet (AIS) in the past has been seldom investigated. The ANDRILL marine record have shown that at the end of the Pliocene, the ice sheet expanded in the Ross Sea concomitantly with the expansion of the sea ice cover. This would have enhanced the formation of bottom waters that in turn, would have fostered upwelling along the West African coast and along the coast of Peru. The impact of Antarctica on the tropical climate dynamics has been shown by previous studies. To close the loop, this work investigates the impact of the tropical and high-latitude SST cooling on the main atmospheric teleconnections and then on the Antarctic SMB through the Plio/Pleistocene transition. Idealized Atmospheric General Circulation Model simulations are performed, in which high-latitude and tropical SST cooling are prescribed starting from the Pliocene SST. The atmospheric conditions obtained are then used to force an ice sheet model and a stand-alone energy balance model to investigate the impact on the SMB of the two main atmospheric teleconnections active in the Southern Hemisphere, namely the Southern Annular Mode (SAM) and the Pacific-South-American oscillation (PSA. In agreement with ANDRILL marine records, results show that the Easterlies strengthen along the Antarctic coasts during the Plio/Pleistocene transition. This, however, occurs only after cooling the tropical SSTs in the AGCM simulations. More importantly, the cooling of the tropical SST, through the strengthening of the PSA, has the largest influence on the spatial distribution of the climatic anomalies over Antarctica. This explains most of the SMB patterns simulated by the ice sheet model. In particular, the PSA fosters positive SMB over the Victoria Land, the Wilson Basin, the Aurora Basin and Prydz Bay that were partly deglaciated during the warm Pliocene. While the amplitude of the ice thickness changes due to the SAM and the PSA remains of the same order of today, i.e, few tens of meters, the main impact occurs in strategic areas of the AIS dynamics.
NASA Astrophysics Data System (ADS)
Polk, J. S.; van Beynen, P.; Asmerom, Y.
2008-12-01
Understanding atmospheric teleconnections between tropical, subtropical, and higher-latitude regions of the North Atlantic Ocean is necessary to better evaluate the anthropogenic contribution to climate change. Here, we present a precisely dated, high- resolution speleothem record of stable isotopes and trace elements from Florida spanning the last 1,500 years. By using a multi-proxy approach, the different climatic influences were deconvolved, including the NAO, ENSO, PDO, and ITCZ, which all can affect our region. Further comparison using time-series analysis between our data and other high-resolution records covering this same period reveal differing influences of these teleconnections on geographic regions. Our record shows both the influence of changing rainfall above the cave and the influence of sea surface temperatures on atmospheric convection caused by atmospheric-oceanic variability over time.
Applying complex networks to evaluate precipitation patterns over South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja
2016-04-01
The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)
NASA Astrophysics Data System (ADS)
Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.
2013-05-01
climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.
Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.
2013-01-01
Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S; Chasmer, L; Falk, M
2009-03-12
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillationsmore » to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO{sub 2} uptake variability in Pacific Northwest conifer forests.« less
Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng
2017-04-01
The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.
Climate, fishery and society interactions: Observations from the North Atlantic
NASA Astrophysics Data System (ADS)
Hamilton, Lawrence C.
2007-11-01
Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The "teleconnections" linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project.
El Nino-like Teleconnection Increases California Precipitation in Response to Warming
NASA Astrophysics Data System (ADS)
Allen, R.
2017-12-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Nino teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Nino-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.
NASA Astrophysics Data System (ADS)
Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong
2007-09-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.
Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa
NASA Astrophysics Data System (ADS)
Gómara, Iñigo; Mohino, Elsa; Losada, Teresa; Domínguez, Marta; Suárez-Moreno, Roberto; Rodríguez-Fonseca, Belén
2018-06-01
West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979-2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO-WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED-WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM-WAM teleconnection, which cannot be isolated for the 1979-2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.
Simulation of South-Asian Summer Monsoon in a GCM
NASA Astrophysics Data System (ADS)
Ajayamohan, R. S.
2007-10-01
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.
Links between teleconnection patterns and mean temperature in Spain
NASA Astrophysics Data System (ADS)
Ríos-Cornejo, David; Penas, Ángel; Álvarez-Esteban, Ramón; del Río, Sara
2015-10-01
This work describes the relationships between Spanish temperature and four teleconnection patterns with influence on the Iberian Peninsula on monthly, seasonal and annual time scales, using data from 144 meteorological stations. Partial correlation analyses were carried out using Spearman test, and spatial distribution maps of the correlation coefficients were produced with geostatistical interpolation techniques. We regionalize the study area based on homogeneous areas containing weather stations with a similar response of temperatures to the same patterns. The links between the temperature and the patterns are mainly positive; only the correlations with Western Mediterranean Oscillation (WeMO) in the north and west are negative, indicating that WeMO plays an opposed role in temperature behaviour in Spain. In general terms, the four modes exert considerable influence on temperature in February, May and September. The East Atlantic (EA) is the pattern with the strongest influence on temperature in Spain—mainly in the north—except in June. Generally, on the seasonal and annual scales, large significant areas were only observed for the EA. EA and WeMO best account for the mean temperature on the Mediterranean fringe and in northern Spain, while EA and North Atlantic Oscillation largely explain the temperature in the rest of Spain.
NASA Astrophysics Data System (ADS)
Feba, F.; Ashok, K.; Ravichandran, M.
2018-04-01
We explore the decadal variability of teleconnection from tropical Pacific to the Indian summer monsoon rainfall (ISMR) using various observational and Reanalysis datasets for the period 1958-2008. In confirmation with the earlier findings, we find that the interannual correlations between the various SST indices of ENSO and ISMR have continued to weaken. Interestingly, we find that even the robust lead correlations of the tropical pacific warm-water-volume with ISMR have weakened since late 1970s. Our analysis suggests that there is a relative intensification of the cross-equatorial flow from the southern hemisphere into the equatorial Indian Ocean associated with ISMR due to strenghtening of Mascarene High. Further, a shift in the surface wind circulation associated with monsoon over the northern pacific since late 1970s has resulted in a strenghtened cyclonic seasonal circulation south-east of Japan. These changed circulation features are a shift from the known circulation-signatures that efficiently teleconnect El Niño forcing to South Asia. These recent changes effectively weakened the teleconnection of the El Niño to ISMR.
NASA Astrophysics Data System (ADS)
Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.
2017-10-01
A series of hydroclimatic teleconnection patterns were identified between variations in either Atlantic or Pacific oceanic indices with precipitation and discharge anomalies in the northeastern United States. We hypothesized that temporal annual or seasonal changes in discharge could be explained by variations in extreme phases of the Atlantic Multi-decadal Oscillation (AMO index, SST: Sea Surface Temperature anomalies) and the North Atlantic Oscillation (NAO index, SLP: Sea-Level Pressure anomalies) up to three seasons in advance. The Merrimack River watershed, the fourth largest basin in New England, with a drainage area of 13,000 km2, is a compelling study site because it not only provides an opportunity to investigate the teleconnection between hydrologic variables and large-scale climate circulation patterns, but also how those patterns may become obscured by anthropogenic disturbances such as river regulation or urban development. We considered precipitation and discharge data of 21 gauging stations within the Merrimack River watershed, including the Hubbard Brook Experimental Forest (HBEF), NH, with a median record length of 55 years beginning as early as 1904. The discharge anomalies were statistically significant (p-value ≤ 0.2) between extreme positive and negative phases of AMO (1857-2011) and NAO (1900-2011) and revealed the potential teleconnectivity of climate circulation patterns with discharge. Annual and seasonal correlations of discharge were examined with the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags (total of 30 scenarios). When AMO was greater than 0.2, the strongest correlations of AMO and NAO with discharge were observed at headwater catchments. This correlation weakened downstream towards larger regulated and/or developed sub-basins. We introduced a simple approach for near-term prediction of drought and flooding events. An exponential decay function was regressed through the historic occurrence of the relative frequency of wet, average, and dry discharge conditions with regards to the extreme phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into and stabilized at the theoretical probability of the event. As the basin scale increased, the probability of wet, average, and dry discharge conditions decreased. The Merrimack River watershed will most likely experience greater than average discharge as its extreme condition, therefore development should be avoided on flood plains. Furthermore, the current reservoir storage capacity in the Merrimack should be improved in order to accommodate excess water input and minimize flood damage. Future research should target changes in the magnitude and timing of high discharge events in order to develop adaptation strategies for aging hydraulic infrastructure in the region.
NASA Astrophysics Data System (ADS)
Taboada, J. J.; Cabrejo, A.; Guarin, D.; Ramos, A. M.
2009-04-01
It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. Rainfall does not show a clear tendency in its yearly accumulated values. The aim of this work is to study different extreme indices of rainfall and temperatures analysing variability and possible trends associated to climate change. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). The definition of the extreme indices was taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparison of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: fewer nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. This trend is expected to continue in the next decades because of anthropogenic climate change. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic Oscillation) has also some relationship with these tendencies, but only related with cold days and nights in winter. Rainfall index do not show any clear tendency on the annual scale. Nevertheless, the count of days when precipitation is greater than 20mm (R20mm) and the total precipitation when rainfall is greater than 95th percentile (R95pTOT) diminishes in winter and spring, but increases in autumn. This trend is related with NAO in winter and spring and with SCA in autumn.
The response of European and Asian climate to global and regional aerosol emissions
NASA Astrophysics Data System (ADS)
Wilcox, Laura; Dunstone, Nick; Highwood, Eleanor; Bollasina, Massimo; Dong, Buwen; Sutton, Rowan
2017-04-01
Asia has the world's highest anthropogenic aerosol loading and has experienced a dramatic increase in emissions since the 1950s, which has continued in the 21st century, in stark contrast with European (and North American) emissions which started to decrease in the 1970s. We use a set of transient coupled model experiments (HadGEM2-GC2) to explore the regional climate effects of anthropogenic aerosol changes since the 1980s, with a focus on the European and Asian responses. Comparing simulations with globally varying aerosol emissions to an equivalent set with Asian emissions fixed at their 1971-1980 mean over Asia, we identify the contribution of Asian emissions to the total impact. Identifying thermodynamic and dynamic responses to global and regional aerosol changes, we diagnose atmospheric teleconnections and their interactions with local processes, and the mechanisms by which aerosol affects both European and Asian climate. It is found that Asian aerosols led to substantial changes in Asian climate, weakening the summer monsoon, which is a key driver of the observed precipitation changes there in recent decades. Asian emissions are also able to induce planetary-scale teleconnection patterns in both winter and summer. The impact of the regional diabatic heating anomaly propagates remotely by exciting northern hemisphere wave-trains which, enhanced by regional feedbacks, cause changes in near-surface climate over Europe. To examine the robustness of the mechanisms we identify in HadGEM2, we analyse similar sets of experiments from NorESM1-M and GFDL-CM3: models with very different climatologies and representations of aerosol processes.
El Niño-like teleconnection increases California precipitation in response to warming
Allen, Robert J.; Luptowitz, Rainer
2017-01-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century. PMID:28681837
El Niño-like teleconnection increases California precipitation in response to warming
NASA Astrophysics Data System (ADS)
Allen, Robert J.; Luptowitz, Rainer
2017-07-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.
Sensitivity of ENSO teleconnections to a warming background state.
NASA Astrophysics Data System (ADS)
Drouard, Marie; Cassou, Christophe
2016-04-01
The sensitivity of ENSO teleconnections to the background state is investigated using two ensembles of coupled model experiments, one representative of the pre-industrial climate and the other one expected of the end of the 21st century based on the high emission RCP85 scenario. A 30-year period of representative ENSO events bearing resemblance to observed ones is a priori selected from a 850-year pre-industrial simulation of the CNRM-CM5 model. Following the so-called pacemaker protocol, new coupled experiments are carried with the model SST being restored in the eastern tropical Pacific towards the selected anomalies, the rest of the globe being fully coupled. In the first set of experiments, the anomalous restoring is applied on top of pre-industrial mean ocean state and in the second, on top of RCP85 mean state. Two sets of 10-member of 30-year long integrations are then generated. By construction, they share the exact same ENSO and thus make it possible to strictly isolate the dependence of the ENSO teleconnections to a warmer background state. Results confirm the eastward shift of the ENSO-induced deepening Aleutian low as documented in the literature for the winter season. They also show changes in the wintertime teleconnection over the North Atlantic. Several diagnostic tools (such as E-vectors) are used to investigate the dynamics of the teleconnection between the tropical Pacific, the North Pacific and dowstream towards the North Atlantic along the jet wave guide. A more indirect route based on the change in the Walker cell and associated signals in the tropical Atlantic leading to the excitation of forced Rossby wave is also analysed.
Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.
2007-01-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Berton, R.; Shaw, S. B.; Chandler, D. G.; Driscoll, C. T.
2014-12-01
Climatic change affects streamflow in watersheds with winter snowpack and an annual snowmelt hydrograph. In the northeastern US, changes in streamflow are driven by both the advanced timing of snowmelt and increasing summer precipitation. Projections of climate for the region in the 21st century is for warmer winters and wetter summers. Water planners need to understand future changes in flow metrics to determine if the current water resources are capable of fulfilling future demands or adapting to future changes in climate. The study of teleconnection patterns between oceanic indices variations and hydrologic variables may help improve the understanding of future water resources conditions in a watershed. The purpose of this study is to evaluate the correlation between oceanic indices and discharge variations in the Merrimack Watershed. The Merrimack Watershed is the fourth largest basin in New England which drains much of New Hampshire and northeastern portions of Massachusetts, USA. Variations in sea surface temperature (SST) and sea level pressure (SLP) are defined by the Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (NAO), respectively. We hypothesize that temporal changes in discharge are related to AMO and NAO variations since precipitation and discharge are highly correlated in the Merrimack. The Merrimack Watershed consists of undisturbed (reference) catchments and disturbed (developed) basins with long stream gauge records (> 100 years). Developed basins provide an opportunity to evaluate the impacts of river regulation and land development on teleconnection patterns as well as changing climate. Time series of AMO and NAO indices over the past 150 years along with Merrimack annual precipitation and discharge time series have shown a 1 to 2-year watershed hydrologic memory; higher correlation between Merrimack annual precipitation and discharge with AMO and NAO are observed when a 1 to 2-year lag is given to AMO and NAO indices. For instance, the mean correlation of AMO with precipitation/discharge for a zero-year lag was 0.16/0.09 and increased to 0.26/0.23 for a 1-year lag. Our study provides an insight on the lagged hydrologic response of reference catchments and developed basins to variations in oceanic indices.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan
2017-09-01
Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to the CP SST variation. Indeed, further inspection suggests that models with stronger intensification of the CP SST variability and its related tropical precipitation response tend to have larger deepening magnitude of the North Pacific trough associated with the PNA variability.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan
2018-06-01
Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to the CP SST variation. Indeed, further inspection suggests that models with stronger intensification of the CP SST variability and its related tropical precipitation response tend to have larger deepening magnitude of the North Pacific trough associated with the PNA variability.
NASA Astrophysics Data System (ADS)
Zhou, T.; Song, F.
2014-12-01
The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection
NASA Astrophysics Data System (ADS)
Li, Jianping; Sun, Cheng; Jin, Fei-Fei
2017-04-01
ABSTRACT North Atlantic region shows prominent multidecadal variability. Observational analysis shows that the North Atlantic Oscillation (NAO) leads the oceanic Atlantic Multidecadal Oscillation (AMO) by 15-20 years and the latter also leads the former by around 15 years. The mechanisms are investigated using simulations from a fully coupled model, and a NATNAO-AMOC-AMO Coupled Mode is proposed to explain the multidecadal variability in North Atlantic region. The NAT-NAO-AMO-AMOC coupled mode has important remote influences on regional climates. Observational analysis identifies a significant in-phase relationship between the AMV and Siberian warm season (May to October) precipitation. The physical mechanism for this relationship is investigated using both observations and numerical simulations. North Atlantic sea surface temperature (SST) warming associated with the positive AMV phase can excite an eastward propagating wave train response across the entire Eurasian continent, which includes an east-west dipole structure over Siberia. The dipole then leads to anomalous southerly winds bringing moisture northward to Siberia; the precipitation increases correspondingly. Furthermore, a prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data, and this teleconnection pattern is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). A strong inphase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability.
NASA Astrophysics Data System (ADS)
Beyene, Mussie T.; Jain, Shaleen
2018-06-01
El Niño-Southern Oscillation (ENSO) teleconnections induced wintertime surface air temperature (SAT) anomalies over North America show inter-event variability, asymmetry, and nonlinearity. This diagnostic study appraises the assumption that ENSO-induced teleconnections are adequately characterized as symmetric shifts in the SAT probability distributions for North American locations. To this end, a new conditional quantile functional estimation approach presented here incorporates: (a) the detailed nature of location and amplitude of SST anomalies—in particular the Eastern Pacific (EP), Central Pacific (CP) ENSO events—based on its two leading principal components, and (b) over the entire range of SATs, characterize the differential sensitivity to ENSO. Statistical significance is assessed using a wild bootstrap approach. Conditional risk at upper and lower quartile SAT conditioned on archetypical ENSO states is derived. There is marked asymmetry in ENSO effects on the likelihood of upper and lower quartile winter SATs for most North American regions. CP El Niño patterns show 20-80% decrease in the likelihood of lower quartile SATs for Canada and US west coast and a 20-40% increase across southeastern US. However, the upper quartile SAT for large swathes of Canada shows no sensitivity to CP El Niño. Similarly, EP El Niño is linked to a 40-80% increase in the probability of upper quartile winter SATs for Canada and northern US and a 20% decrease for southern US and northern Mexico regions; however, little or no change in the risk of lower quartile winter temperatures for southern parts of North America. Localized estimate of ENSO-related risk are also presented.
Statistical downscaling forecast of Chinese winter temperature based on the autumn SST anomalies
NASA Astrophysics Data System (ADS)
Lu, J.
2017-12-01
This study investigates the impacts of the autumn sea surface temperature anomalies (SSTA) on interannual variations of Chinese winter temperature, and discusses the potential predictability of December-January-February (DJF) 2-m air temperature anomalies (TSA) over China based on the intimate linkage between the DJF TSA and autumn SSTA. According to the Empirical Orthogonal Function (EOF) analysis, three leading EOF modes jointly account for 80% of the total TSA variances and are characterized by a homogeneous spatial pattern, a north-south seesaw and a cross structure. The first three EOFs exhibit a stable feature revealed by cross-validation, suggesting the potential predictability of the DJF TSA. The EOF1 mode is influenced by changes in the intensities of the Siberian High (SH), East Asian winter monsoon (EAWM) and East Asian Trough related to an Eurasian pattern teleconnection, which can be tracked back to September-October-November (SON) SSTA associated with two SSTA tripole patterns in the North Pacific and North Atlantic, a dipole mode in the Indian Ocean and an ENSO-like mode in the equatorial and subtropical Pacific. However, the Arctic Oscillation plays an important role in the second mode. The teleconnection connecting the atmospheric circulation anomalies in two hemispheres indicates that the configuration of global SON SSTA induces the two annular modes and causes a TSA oscillation between the northern and southern parts of China. The third mode is related to the westward shift of the SH and western pathway EAWM, which are attributed to two dipole modes in the North Pacific and South Pacific, Atlantic Multidecadal Oscillation and Indian Ocean Basin Mode. Therefore a physically-based statistical model is established based on autumn SSTA indices. Cross-validation suggests that this statistical downscaling forecast model shows a good performance in predicting the DJF TSA.
Precipitation response to the current ENSO variability in a warming world
NASA Astrophysics Data System (ADS)
Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.
2013-12-01
The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and is supported, among others, by C.B. Early Career Research Program award.
ASSOCIATIONS BETWEEN NAO VARIBILITY AND U.S. MID-ATLANTIC REGION HYDROCLIMATOLOGY
Variability in the climate of the US Mid-Atlantic Region is associated with larger scale variability in the El Nino-Southern Oscillation (ENSO), the Pacific North American (PNA) teleconnection pattern, and the North Atlantic Oscillation (NAO). Collectively, these three large-scal...
Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River
NASA Astrophysics Data System (ADS)
Du, Y.; Berndtsson, R.; An, D.; Yuan, F.
2017-12-01
Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.
The role of external forcing and Pacific trade winds in recent changes of the global climate system
NASA Astrophysics Data System (ADS)
Friedman, Andrew; Gastineau, Guillaume; Khodri, Myriam
2017-04-01
The Pacific trade winds experienced an unprecedented strengthening since the mid 1990s. Several studies have proposed that the increased Pacific trade winds were associated with the reduced rate of global mean surface temperature warming in the first decade of the 21st century, as well as far-reaching atmospheric teleconnections. We designed a set of ensemble partial coupling experiments using the IPSL-CM5A-LR coupled model that allow us to cleanly distinguish the influence of Pacific trade wind variability from that of external forcing over the past few decades. In this study, we quantify the respective impacts of these processes on surface temperature, ocean heat content, and atmospheric teleconnections. We designed two ensembles of coupled simulations using partial coupling with the IPSL-CM5A-LR model to separate the Pacific internal variability and that of external radiative forcing. We prescribe surface wind stress in the tropical Pacific (20°S to 20°N) from 1979-2014 in two ensembles of 30 members each: (1) Prescribed climatological model wind stress, which allows us to estimate the influence of external radiative forcing in the absence of variability within the Pacific Ocean. (2) Wind stress anomalies from ERA-Interim reanalysis added to the model wind stress climatology, which accounts for the effects of both external radiative forcing and the wind stress variability. We find that the observed wind stress anomalies account for the pattern of eastern tropical Pacific cooling when compared to the climatology experiment, so that it resembles the observed trends from 1992-2011. The tropical Pacific shows dominant heat uptake in the western Pacific above the 20°C isotherm, which contributed to slow the warming of tropical SST during the 2000s. The trade wind increase is associated with a strengthening of the Pacific Walker circulation, and zonal shifts in tropical rainfall. Despite tropical SST biases which affect the response of tropical rainfall and the location of deep convection, the wind stress anomaly forcing effectively simulates the wave train pattern emanating from the tropical Pacific, and associated extratropical teleconnections such as a weakening of the Aleutian Low and drought in North America.
The Caspian Sea Catchment influenced by Atlantic Teleconnections in CESM1.2.2 and Observations
NASA Astrophysics Data System (ADS)
Nandini, S. D.; Prange, M.; Schulz, M.
2017-12-01
The Caspian Sea (CS) is the world's largest inland sea and located within a closed (endorheic) drainage basin [ 37°-47N, 47°-54°E]. It has undergone dynamic variations (>3 m) during the past century with huge impacts on the economy, ecosystem and livelihood of coastal people. The origin of these variations as well as future changes are disputable. Here, we examine the impact of the major seasonal North Atlantic teleconnection patterns, the North Atlantic Oscillation (NAO) and the East Atlantic pattern (EA) on Caspian hydroclimate variability from 1850-2100 CE. Five Numerical experiments at different atmospheric grid resolutions (2° and 1°) and atmospheric model versions (CAM4 and CAM5) are carried out with the coupled Community Earth System Model (CESM1.2.2). Results reveal the 1° CESM1.2.2 CAM5 captures DJF NAO (46.5%) and EA (13.4%), agreeing well with observational data (1850-2000). The DJF NAO has a strong influence on the DJF temperature, rainfall and evaporation minus precipitation (E-P) over the Caspian sub-basins (Volga, Ural, Terek and Kura). Furthermore, 1° model climate projections (2020-2100 CE) are performed with different Representative Concentration Pathways (RCP4.5 and RCP8.5) to examine likely changes in the NAO and EA and their influence on the Caspian catchment. The NAO under the RCP4.5 and RCP8.5 scenarios remains the leading mode with the highest variance and influences E-P with increased precipitation over the Volga basin and increased evaporation over the Caspian Sea. The above canceling effects act on the hydroclimate variability in the Caspian sub-basins. Moreover, it is indicated that no substantial change is predicted in the CSL by the year 2100. Keywords: North Atlantic Oscillation (NAO), CESM1.2.2 resolutions, Evaporation minus Precipitation (E-P), RCP4.5, RCP8.5
The role of the basic state in the ENSO-monsoon relationship and implications for predictability
NASA Astrophysics Data System (ADS)
Turner, A. G.; Inness, P. M.; Slingo, J. M.
2005-04-01
The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability.
Garcia, Elizabeth S; Swann, Abigail L S; Villegas, Juan C; Breshears, David D; Law, Darin J; Saleska, Scott R; Stark, Scott C
2016-01-01
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.
NASA Astrophysics Data System (ADS)
He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei
2018-01-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
NASA Astrophysics Data System (ADS)
He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.
2017-12-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
Met UM Upper-tropospheric summer jet teleconnections: A model assessment
NASA Astrophysics Data System (ADS)
Joao Carvalho, Maria; Rodriguez, Jose; Milton, Sean
2017-04-01
The upper tropospheric jet stream has been documented to act as a waveguide (Hoskins and Ambrizzi, 1993) and supporting quasi-stationary Rossby waves (Schubert et al. 2011). These have been associated with remote effects in surface level weather such as rainfall anomalies in the East Asian Summer Monsoon as well as extreme temperature events. The goal of this work was to analyse the intraseasonal to interannual upper level boreal summer jet variability and its coupling with low level atmospheric dynamics within the Met Office Unified Model using climate runs. Using the Wallace and Gutzler (1981) proposed approach to find teleconnection patterns on the 200 hPa level wind, lead-lag correlation and Empirical Orthogonal Function analysis on the upper-level jet and relating the results with surface weather variables as well as dynamical variables, it was found that the model presents too strong jet variability, particularly in the tropical region and. In addition, the model presents high teleconnectivity hotspots with higher importance in areas such as the Mediterranean and Caspian Sea which are important source areas for Rossby Waves. Further to this, the model was found to produce an area of teleconnectivity between the tropical Atlantic and western Africa which is not observed in the reanalysis but coexists with long lasting precipitation biases. As comparison for the model results, ERA-Interim circulation and wind data and the TRMM precipitation dataset were used. In order to assess the relative importance of relevant model parameters in the biases and process errors, work is currently underway using perturbed model parameter ensembles.
La Niña diversity and Northwest Indian Ocean Rim teleconnections
Hoell, Andrew; Funk, Christopher C.; Barlow, Mathew
2014-01-01
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.
Droughts in Amazonia: Spatiotemporal Variability, Teleconnections, and Seasonal Predictions
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; AghaKouchak, Amir
2017-12-01
Most Amazonia drought studies have focused on rainfall deficits and their impact on river discharges, while the analysis of other important driver variables, such as temperature and soil moisture, has attracted less attention. Here we try to better understand the spatiotemporal dynamics of Amazonia droughts and associated climate teleconnections as characterized by the Palmer Drought Severity Index (PDSI), which integrates information from rainfall deficit, temperature anomalies, and soil moisture capacity. The results reveal that Amazonia droughts are most related to one dominant pattern across the entire region, followed by two seesaw kind of patterns: north-south and east-west. The main two modes are correlated with sea surface temperature (SST) anomalies in the tropical Pacific and Atlantic oceans. The teleconnections associated with global SST are then used to build a seasonal forecast model for PDSI over Amazonia based on predictors obtained from a sparse canonical correlation analysis approach. A unique feature of the presented drought prediction method is using only a few number of predictors to avoid excessive noise in the predictor space. Cross-validated results show correlations between observed and predicted spatial average PDSI up to 0.60 and 0.45 for lead times of 5 and 9 months, respectively. To the best of our knowledge, this is the first study in the region that, based on cross-validation results, leads to appreciable forecast skills for lead times beyond 4 months. This is a step forward in better understanding the dynamics of Amazonia droughts and improving risk assessment and management, through improved drought forecasting.
Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon.
Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki
2015-11-13
Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.
Influence of climate variability on near-surface ozone depletion events in the Arctic spring
NASA Astrophysics Data System (ADS)
Koo, Ja-Ho; Wang, Yuhang; Jiang, Tianyu; Deng, Yi; Oltmans, Samuel J.; Solberg, Sverre
2014-04-01
Near-surface ozone depletion events (ODEs) generally occur in the Arctic spring, and the frequency shows large interannual variations. We use surface ozone measurements at Barrow, Alert, and Zeppelinfjellet to analyze if their variations are due to climate variability. In years with frequent ODEs at Barrow and Alert, the western Pacific (WP) teleconnection pattern is usually in its negative phase, during which the Pacific jet is strengthened but the storm track originated over the western Pacific is weakened. Both factors tend to reduce the transport of ozone-rich air mass from midlatitudes to the Arctic, creating a favorable environment for the ODEs. The correlation of ODE frequencies at Zeppelinfjellet with WP indices is higher in the 2000s, reflecting stronger influence of the WP pattern in recent decade to cover ODEs in broader Arctic regions. We find that the WP pattern can be used to diagnose ODE changes and subsequent environmental impacts in the Arctic spring.
NASA Astrophysics Data System (ADS)
Chiang, F.; AghaKouchak, A.
2017-12-01
While many studies have explored the predictive capabilities of teleconnections associated with North American climate, currently established teleconnections offer limited predictability for rainfall in the Western United States. A recent example was the 2015-16 California drought in which a strong ENSO signal did not lead to above average precipitation as was expected. From an exploration of climate and ocean variables available from satellite data, we hypothesize that ocean currents can provide additional information to explain precipitation variability and improve seasonal predictability on the West Coast. Since ocean currents are influenced by surface wind and temperatures, characterizing connections between currents and precipitation patterns has the potential to further our understanding of coastal weather patterns. For the study, we generated gridded point correlation maps to identify ocean areas with high correlation to precipitation time series corresponding to climate regions in the West Coast region. We also used other statistical measures to evaluate ocean `hot spot' regions with significant correlation to West Coast precipitation. Preliminary results show that strong correlations can be found in the tropical regions of the globe.
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; Breshears, David D.; Law, Darin J.; Saleska, Scott R.; Stark, Scott C.
2016-01-01
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change. PMID:27851740
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; ...
2016-11-16
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less
NASA Astrophysics Data System (ADS)
Kusche, J.; Forootan, E.; Eicker, A.; Hoffmann-Dobrev, H.
2012-04-01
West-African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources, for instance reduced freshwater availability, and changes in the frequency, duration and magnitude of droughts and floods. Extracting the main patterns of water storage change in West Africa from remote sensing and linking them to climate variability, is therefore an essential step to understand the hydrological aspects of the region. In this study, the higher order statistical method of Independent Component Analysis (ICA) is employed to extract statistically independent water storage patterns from monthly Gravity Recovery And Climate Experiment (GRACE), from the WaterGAP Global Hydrology Model (WGHM) and from Tropical Rainfall Measuring Mission (TRMM) products over West Africa, for the period 2002-2012. Then, to reveal the influences of climatic teleconnections on the individual patterns, these results were correlated to the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) indices. To study the predictability of water storage changes, advanced statistical methods were applied on the main independent Sea Surface Temperature (SST) patterns over the Atlantic and Indian Oceans for the period 2002-2012 and the ICA results. Our results show a water storage decrease over the coastal regions of West Africa (including Sierra Leone, Liberia, Togo and Nigeria), associated with rainfall decrease. The comparison between GRACE estimations and WGHM results indicates some inconsistencies that underline the importance of forcing data for hydrological modeling of West Africa. Keywords: West Africa; GRACE-derived water storage; ICA; ENSO; IOD
Processes and mechanisms of persistent extreme precipitation events in East China
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Chen, Yang
2014-11-01
This study mainly presents recent progresses on persistent extreme precipitation events (PEPEs) in East China. A definition focusing both persistence and extremity of daily precipitation is firstly proposed. An identification method for quasi-stationary regional PEPEs is then designed. By utilizing the identified PEPEs in East China, typical circulation configurations from the lower to the upper troposphere are confirmed, followed by investigations of synoptic precursors for key components with lead time of 1-2 weeks. Two characteristic circulation patterns responsible for PEPEs in East China are identified: a double blocking high type and a single blocking high type. They may account for occurrence of nearly 80% PEPEs during last 60 years. For double blocking high type, about two weeks prior to PEPEs, two blockings developed and progressed towards the Ural Mountains and the Sea of Okhotsk, respectively. A northwestward progressive anomalous anticyclone conveying abundant moisture and eastward-extended South Asia High favoring divergence can be detected about one week in advance. A dominant summertime teleconnection over East Asia, East Asia/ Pacific (EAP) pattern, is deemed as another typical regime inducing PEPEs in the East China. Key elements of the EAP pattern initiated westward movement since one week prior to PEPEs. Eastward energy dispersion and poleward energy dispersion contributed to early development and subsequent maintenance of this teleconnection pattern, respectively. These typical circulation patterns and significant precursors may offer local forecasters some useful clues in identifying and predicting such high-impact precipitation events about 1-2 weeks in advance.
NASA Astrophysics Data System (ADS)
Sulca, J. C.; Vuille, M. F.; Silva, F. Y.; Takahashi, K.
2013-12-01
Knowledge about changes in regional circulation and physical processes associated with extreme rainfall events in South America is limited. Here we investigate such events over the Mantaro basin (MB) located at (10°S-13°S; 73°W-76°W) in the central Peruvian Andes and Northeastern Brazil (NEB), located at (9°S-15°S; 39°W-46°W). Occasional dry and wet spells can be observed in both areas during the austral summer season. The main goal of this study is to investigate potential teleconnections between extreme rainfall events in MB and NEB during austral summer. We define wet (dry) spells as periods that last for at least 3 (5) consecutive days with rainfall above (below) the 70 (30) percentile. To identify the dates of ocurrence of these events, we used daily accumulated rainfall data from 14 climate stations located in the Mantaro basin for the period 1965 to 2002. In NEB we defined a rainfall index which is based on average daily gridded rainfall data within the region for the same period. Dry (wet spells) in the MB are associated with positive (negative) OLR anomalies which extend over much of the tropical Andes, indicating the large-scale nature of these events. At 200 hPa anomalous easterly (westerly) zonal winds aloft accompany wet (dry) spells. Composite anomalies of dry spells in MB reveal significant contemporaneous precipitation anomalies of the opposite sign over NEB, which suggest that intraseasonal precipitation variability over the two regions may be dynamically linked. Indeed upper-tropospheric circulation anomalies over the central Andes extend across South America and appear to be tied to an adjustment in the Bolivian High-Nordeste Low system. Dry (wet) spells in NEB are equally associated with a large-scale pattern of positive (negative) OLR anomalies; however, there are no related significant OLR anomalies over the MB during these events. Dry (wet) spells are associated with robust patterns of anomalous wind fields at both low and upper levels, caused by a changing position of the South Atlantic Convergence Zone (SACZ) toward the southwest (northeast). But, there is no coincident robust pattern of wind anomalies over the Mantaro Basin. In conclusion, dry spells in the Mantaro basin appear to be dynamically linked to wet spells in NEB, since 62% of all dry events in MB coincide with wet spells in NEB (35% of all events). The dynamical link explaining the observed teleconnection and the resulting dipole pattern between precipitation extremes in the MB and NEB region, respectively, appears to be related to intraseasonal variability in the Bolivian High - Nordeste Low system. Only 26.53% of all wet spells, however, coincide with dry spells in NEB (12.15% of all events). While circulation anomalies that affect precipitation extremes in the MB have the potential to also affect the precipitation characteristics in NEB, the opposite is not the case. Extreme events in NEB are primarily affected by NE-SW displacement in the SACZ, a mechanism that is of little relevance for precipitation extremes in the MB.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhai, Panmao; Chen, Yang; Ni, Yunqi
2016-06-01
Based on the daily reanalysis data from NCEP-NCAR and daily precipitation data from the China National Meteorological Information Center, an ensemble empirical mode decomposition method is employed to extract the predominant oscillation modes of the East Asia-Pacific (EAP) teleconnection pattern. The influences of these low-frequency modes on persistent heavy precipitation in the Yangtze-Huai River (YHR) valley are investigated. The results indicate that the EAP pattern and rainfall in YHR valley both exhibit remarkable 10-30- and 30-60-day oscillations. The impacts of the EAP pattern on the YHR persistent heavy precipitation can be found on both the 10-30- and 30-60-day timescales—the 10-30-day scale for most cases. Composite analysis indicates that, on the 10-30-day timescale, formation of the EAP pattern in the lower and middle troposphere is determined by convective systems near the tropical western Pacific; whereas in the middle troposphere, the phase transition is jointly contributed by both the dispersion of zonal wave energies at higher latitudes and convective systems over the South China Sea. In the context of the 10-30-day EAP pattern, the anomalously abundant moisture is transported by an anomalous subtropical anticyclone system, and strong moisture convergence results from that anomalous anticyclone system and a cyclonic system in the midlatitude East Asia. Such a combination of systems persists for at least three days, contributing to the formation of persistent heavy precipitation in the YHR valley.
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...
Structured teleconnections reveal the South American monsoon onset: A network approach
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Ekhtiari, Nikoo; Barbosa, Henrique; Boers, Niklas; Donner, Reik; Kurths, Jürgen; Rammig, Anja; Winkelmann, Ricarda
2017-04-01
The regional onset dates of the global monsoon systems are, to first order, determined by the seasonal shift of the intertropical convergence zone. However, precise onset dates vary substantially from year to year due to the complexity of the involved mechanisms. In this study, we investigate processes determining the onset of the South American monsoon system (SAMS). In recent years, a trend towards later onset dates of the SAMS has been observed. A later onset of the monsoon can have severe impacts on agriculture and infrastructure such as farming, water transport routes, and the stability of the Amazon rainforest in the long term. Possible reasons for this shift involve a multitude of climatic phenomena and variables relevant for the SAMS. To account for the highly interactive nature of the SAMS, we here investigate it with the help of complex networks. By studying the temporal changes of the correlation structure in spatial rainfall networks, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections in terms of strongly correlated areas, detect key regions for precipitation correlations, and finally reveal the monsoon onset by an abrupt shift from an unordered to an ordered correlation structure of the network. To further evaluate the shift in the monsoon onset, we couple our rainfall network to a network of climate networks using sea surface temperature as a second variable. We are thereby able to emphasize oceanic regions that are particularly important for the SAMS and anticipate the influence of future changes of sea-surface temperature on the SAMS.
NASA Astrophysics Data System (ADS)
Asong, Z. E.; Wheater, H. S.; Bonsal, B. R.; Razavi, S.; Kurkute, S.
2017-12-01
Drought is a naturally occurring environmental phenomenon, and a major costly natural hazard that can have devastating impacts on regional water resources, agriculture, energy and other social-ecological systems. Of particular interest here is drought occurrence over Canada, where drought is both a frequent and damaging phenomenon, particularly in the interior Prairie region. However, nation-wide drought assessments are currently lacking and hampered partly by observational uncertainties. Therefore, this study aims to fill these gaps by providing a comprehensive analysis of historical droughts over the whole of Canada, including the role of observational uncertainties and teleconnectivity. This is carried out by analysing different monthly precipitation and temperature products for the period 1950 - 2013. Drought events are characterized by the Standardized Precipitation-Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months and 6 months from April to September and 12 months from October to September). First, trends in the SPEI are investigated by means of the Modified Mann Kendall test, while the Pettitt test was used to detect change points/transition years during the period of record. Major spatial patterns of long-term change, inter/intra-annual variability and periodicity of drought events are then characterized using the Rotated Empirical Orthogonal Function, and Continuous Wavelet Transform techniques. In addition, potential key drivers of drought are investigated using Wavelet Coherence Analysis, with a special emphasis on the role played by large-scale modes of climate variability. This provides important insight into the physical and dynamical mechanisms associated with the variability of drought events over different Canadian sub-regions.
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2017-12-01
The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.
NASA Astrophysics Data System (ADS)
Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi
2016-10-01
We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.
Zhang, Wei; Villarini, Gabriele
2018-01-30
Atmospheric rivers (ARs) exert major socioeconomic repercussions along the US West Coast by inducing heavy rainfall, flooding, strong winds, and storm surge. Despite the significant societal and economic repercussions of these storms, our understanding of the physical drivers responsible for their interannual variability is limited, with different climate modes identified as possible mechanisms. Here we show that the Pacific-Japan (PJ) teleconnections/patterns and the East Asian subtropical jet (EASJ) exhibit a strong linkage with the total frequency of ARs making landfall over the western United States, much stronger than the other potential climate modes previously considered. While our findings indicate that the PJ pattern and EASJ are the most relevant climate modes driving the overall AR activity, we also uncover heterogeneities in AR tracks. Specifically, we show that not all ARs making landfall along the West Coast come from a single population, but rather that it is possible to stratify these storms into three clusters. While the PJ pattern and EASJ are major drivers of AR activity for two clusters, the cluster that primarily affects the US Southwest is largely driven by other climate modes [El Niño Southern Oscillation (ENSO), the Atlantic meridional mode (AMM), the Pacific-North America (PNA) teleconnection pattern, and the North Pacific Gyre Oscillation (NPGO)]. Therefore, important regional differences exist and this information can substantially enhance our ability to predict and prepare for these storms and their impacts.
ScienceCast 107: An Early Start for Noctilucent Clouds
2013-06-07
Glowing electric-blue at the edge of space, noctilucent clouds have surprised researchers by appearing early this year. The unexpected apparition hints at a change in the "teleconnections" of Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Ait Brahim, Y.; Cheng, H.; Sifeddine, A.; Wassenburg, J. A.; Khodri, M.; Cruz, F. W., Sr.
2017-12-01
In this study, we present new paleoclimate records from two well dated Moroccan speleothems. Our stalagmites were sampled from Ifoulki cave in the Western High Atlas Mountains in SW Morocco and Chaara cave in the Eastern Middle Atlas Mountains in NE Morocco. The new paleo-records cover the last 1000 years with a high resolution and reveal substantial swings of dry and humid periods with decadal to multidecadal frequencies. The Medieval Climate Anomaly (MCA) is characterized by generally dry conditions, while wetter conditions are recorded during the Little Ice Age (LIA) and a trend towards dry conditions during the 20th century. These observations are consistent with regional climate signals, providing new insights on common climate controls and teleconnection patterns in NW Africa. We emphasize that the hydro-climate conditions in Morocco remained under the influence of the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO). At longer timescales, we hypothesize that the generally warmer MCA and colder LIA influenced the regional climate in NW Africa through interactions with local mechanisms, such as the Sahara Low, which weakened and strengthened the mean moisture inflow from the Atlantic Ocean during the MCA and LIA respectively.
Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa
2017-12-31
Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.
Relationship between Precipitation Components and Teleconnection Patterns in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
María Ruiz, Ana; Maqueda, Gregorio
2016-04-01
The study of precipitation components is of increasing interest due to the differences that involve each of the correspondent consequences. On one hand, the stratiform component, weak and light, causes regular and long-lasting precipitation. On the other hand, the convective one, stronger and intense, is associated with more local precipitation, produced in short periods of time. In this work, the separated components of precipitation, obtained through the distribution of cumulated rain as its intensity has been analyzed for five sectors with different climate characteristic in Spain. The sectors may initially be of Atlantic or Mediterranean influence, besides having others geographical and orographic dependence. The aim of this study is to determine the influence of different teleconnection patterns over the stratiform and convective precipitation for each sector. The dataset have been a 17 years time series (1998-2014) of hourly rain data from the AEMET network (Spanish Meteorological Agency) consistent of 63 rain gauge stations that cover all the study area. Results show, in autumn-winter season, a clear influence of NAO in the stratiform precipitation for every sector except the closest to the Mediterranean sea. High correlation between EA, SCAND and EA/WR patterns with the stratiform component also it is observed. In the case of convective precipitation only the WeMO index keeps some influence in the near Mediterranean sector.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Guan, Zhaoyong
2017-02-01
Based on the known climatic shift that occurred in 1976, we divide the present study period into two epochs: epoch-I, for 1958-1976; and epoch-II, for 1977-2002. Using ERA-40 and the 20th century reanalysis data, we investigate the interdecadal change in the Eurasia-Pacific anti-phase relation (EPAR) pattern of atmospheric mass (AM) during boreal winter before and after 1976. It is found that anomalous AM over lands is highly and negatively correlated with anomalous AM over oceans in the Northern Hemisphere during the winter season. This correlation does not change much from epoch-I to epoch-II. However, the correlation pattern of surface air pressure anomalies with variations of anomalous AM over lands changes remarkably from epoch-I to epoch-II; the EPAR pattern emerges evidently in the later period, whereas it is not significant in epoch-I. The occurrence of the EPAR pattern in epoch-II may be attributable to the Pacific Decadal Oscillation (PDO). The PDO may modulate the EPAR pattern in two ways. Firstly, the interdecadal component of the PDO as a background may modulate the intensities of the Aleutian low, East Asian trough, and westerly flow, acting as a waveguide during the warm phase (epoch-II) of the PDO. Secondly, the interannual variations of sea surface temperature anomalies in the North Pacific, in association with the PDO, may affect the interannual variations of AM, which facilitates the existence of the EPAR pattern in epoch-II only. With the teleconnection pattern having changed before and after 1976, winter climate anomalies, including rainfall and temperature, are found to be different in many regions in the Northern Hemisphere between epoch-I and epoch-II. All the results of the present work are meaningful for a better understanding of climate anomalies during boreal winter.
Climate indices strongly influence old-growth forest carbon exchange
Sonia Wharton; Matthias Falk
2016-01-01
We present a decade and a half (1998â2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running...
A possible abrupt change in summer precipitation over eastern China around 2009
NASA Astrophysics Data System (ADS)
Ren, Yongjian; Song, Lianchun; Wang, Zunya; Xiao, Ying; Zhou, Bing
2017-04-01
Historical studies have shown that summer rainfall in eastern China undergoes decadal variations, with three apparent changes in the late 1970s, 1992, and the late 1990s. The present observational study indicates that summer precipitation over eastern China likely underwent a change in the late 2000s, during which the main spatial pattern changed from negative-positive-negative to positive-negative in the meridional direction. This change in summer precipitation over eastern China may have been associated with circulation anomalies in the middle/upper troposphere. A strong trough over Lake Baikal created a southward flow of cold air during 2009-15, compared with 1999-2008, while the westward recession of the western Pacific subtropical high strengthened the moisture transport to the north, creating conditions that were conducive for more rainfall in the north during this period. The phase shift of the Pacific Decadal Oscillation in the late 2000s led to the Pacific-Japan-type teleconnection wave train shifting from negative to positive phases, resulting in varied summer precipitation over eastern China.
Utilizing Wavelet Analysis to assess hydrograph change in northwestern North America
NASA Astrophysics Data System (ADS)
Tang, W.; Carey, S. K.
2017-12-01
Historical streamflow data in the mountainous regions of northwestern North America suggest that changes flows are driven by warming temperature, declining snowpack and glacier extent, and large-scale teleconnections. However, few sites exist that have robust long-term records for statistical analysis, and pervious research has focussed on high and low-flow indices along with trend analysis using Mann-Kendal test and other similar approaches. Furthermore, there has been less emphasis on ascertaining the drivers of change in changes in shape of the streamflow hydrograph compared with traditional flow metrics. In this work, we utilize wavelet analysis to evaluate changes in hydrograph characteristics for snowmelt driven rivers in northwestern North America across a range of scales. Results suggest that wavelets can be used to detect a lengthening and advancement of freshet with a corresponding decline in peak flows. Furthermore, the gradual transition of flows from nival to pluvial regimes in more southerly catchments is evident in the wavelet spectral power through time. This method of change detection is challenged by evaluating the statistical significance of changes in wavelet spectra as related to hydrograph form, yet ongoing work seeks to link these patters to driving weather and climate along with larger scale teleconnections.
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.
2016-08-01
A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.
NASA Astrophysics Data System (ADS)
Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.
2016-12-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
"Ice out": the contribution of citizen scientists to our understanding of climate change
NASA Astrophysics Data System (ADS)
Patterson, R. Timothy; Swindles, Graeme T.
2016-04-01
Long-term trends in spring 'ice out' dates (1836-2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America reveal a remarkable coherency across the region (rs=0.462-0.933, p<0.01). These data have been compiled since the early 19th century, primarily by amateur citizen scientists, for a variety of purposes, including determining fishing seasons, estimating the spring opening of ferry boat routes, community contests, and general curiosity. Ice out dates correlate closely with late-winter/early-spring, March-April (MA), instrumental temperature records from across the region (rs=0.488-0.816, p<0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876-2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970's ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation as well as a significant correlation between inland lake records and the Arctic Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980-2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but by phase interference between teleconnections, which periodically damps the various signals.
Detecting primary precursors of January surface air temperature anomalies in China
NASA Astrophysics Data System (ADS)
Tan, Guirong; Ren, Hong-Li; Chen, Haishan; You, Qinglong
2017-12-01
This study aims to detect the primary precursors and impact mechanisms for January surface temperature anomaly (JSTA) events in China against the background of global warming, by comparing the causes of two extreme JSTA events occurring in 2008 and 2011 with the common mechanisms inferred from all typical episodes during 1979-2008. The results show that these two extreme events exhibit atmospheric circulation patterns in the mid-high latitudes of Eurasia, with a positive anomaly center over the Ural Mountains and a negative one to the south of Lake Baikal (UMLB), which is a pattern quite similar to that for all the typical events. However, the Eurasian teleconnection patterns in the 2011 event, which are accompanied by a negative phase of the North Atlantic Oscillation, are different to those of the typical events and the 2008 event. We further find that a common anomalous signal appearing in early summer over the tropical Indian Ocean may be responsible for the following late-winter Eurasian teleconnections and the associated JSTA events in China. We show that sea surface temperature anomalies (SSTAs) in the preceding summer over the western Indian Ocean (WIO) are intimately related to the UMLB-like circulation pattern in the following January. Positive WIOSSTAs in early summer tend to induce strong UMLB-like circulation anomalies in January, which may result in anomalously or extremely cold events in China, which can also be successfully reproduced in model experiments. Our results suggest that the WIOSSTAs may be a useful precursor for predicting JSTA events in China.
NASA Astrophysics Data System (ADS)
Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita
2014-05-01
Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the integrative climatic signal in the averaged mass balance records of the selected regions; (ii) to analyse the possible coupling between the mass balance and climatic variables, including the dominant patterns of Northern Hemisphere climate variability; and (iii) to compare the main characteristics of the three regions. Furthermore, (iv) a short discussion is given considering the significant decreasing trend of the cumulative annual mass balances in every region under the detected climatic changes in the second half of the 20th century. Preliminary results suggest that the strongest teleconnection links could be between winter mass balance and winter NAO for the Polar Ural (r=0.46, p<0.05), and between annual mass balance and PDO for Svalbard (r=-0.43, p<0.05). Neither seasonal, nor annual mass balance records showed significant correlation with any of the examined circulation indices for the Caucasus.
Historical drought patterns over Canada and their teleconnections with large-scale climate signals
NASA Astrophysics Data System (ADS)
Asong, Zilefac Elvis; Wheater, Howard Simon; Bonsal, Barrie; Razavi, Saman; Kurkute, Sopan
2018-06-01
Drought is a recurring extreme climate event and among the most costly natural disasters in the world. This is particularly true over Canada, where drought is both a frequent and damaging phenomenon with impacts on regional water resources, agriculture, industry, aquatic ecosystems, and health. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. This study provides a comprehensive analysis of historical droughts over the whole of Canada, including the role of large-scale teleconnections. Drought events are characterized by the Standardized Precipitation Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months, 6 months from April to September, and 12 months from October to September) applied to different gridded monthly data sets for the period 1950-2013. The Mann-Kendall test, rotated empirical orthogonal function, continuous wavelet transform, and wavelet coherence analyses are used, respectively, to investigate the trend, spatio-temporal patterns, periodicity, and teleconnectivity of drought events. Results indicate that southern (northern) parts of the country experienced significant trends towards drier (wetter) conditions although substantial variability exists. Two spatially well-defined regions with different temporal evolution of droughts were identified - the Canadian Prairies and northern central Canada. The analyses also revealed the presence of a dominant periodicity of between 8 and 32 months in the Prairie region and between 8 and 40 months in the northern central region. These cycles of low-frequency variability are found to be associated principally with the Pacific-North American (PNA) and Multivariate El Niño/Southern Oscillation Index (MEI) relative to other considered large-scale climate indices. This study is the first of its kind to identify dominant periodicities in drought variability over the whole of Canada in terms of when the drought events occur, their duration, and how often they occur.
The effect of two types of El Niño on the southerly low-level jets in North America
Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian
2016-01-01
Low-level jets (LLJs) are frequent weather phenomena in many regions of North America and have profound impacts on precipitation and wind energy. We used a 31 year (1979-2010) three-hourly reanalysis data set to examine the teleconnection between southerly LLJ activity in North America and the two dominant patterns of the equatorial Pacific Ocean sea surface...
NASA Astrophysics Data System (ADS)
Persechino, A.; Marsh, R.; Sinha, B.; Megann, A. P.; Blaker, A. T.; New, A. L.
2012-08-01
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15-30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.
Cooperative satellite-based flood detection, mapping, and river monitoring in near real time
NASA Technical Reports Server (NTRS)
Brakenridge, Robert G.; Nghiem, Son V.
2004-01-01
The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.
Influence of the May Southern annular mode on the South China Sea summer monsoon
NASA Astrophysics Data System (ADS)
Liu, Ting; Li, Jianping; Li, YanJie; Zhao, Sen; Zheng, Fei; Zheng, Jiayu; Yao, Zhixiong
2017-07-01
The possible impact of the May Southern Hemisphere (SH) annular mode (SAM) on the following South China Sea (SCS) summer monsoon (SCSSM) is examined. A close inverse relationship between the two is revealed in the observations. The simultaneous South Pacific dipole (SPD), a dipole-like sea surface temperature anomaly pattern in the South Pacific, acts as the "oceanic bridge" to preserve the May SAM signal and prolong it into June-September. Observational evidence and numerical simulations both demonstrate that the SPD communicates its large thermal inertia signal to the atmosphere, regulating the Southern Pacific Subtropical Jet (SPSJ) variability over eastern Australia. Corresponding to the adjustment of circulation associated with the SPSJ is a prominent tripolar cross-Pacific teleconnection pattern stretching from the SH middle-high latitudes into the NH East Asia coastal region, referred to as the South-North Pacific (SNP) teleconnection pattern. Wave ray tracing analysis manifests that the SNP acts as the "atmospheric bridge" to propagate the related wave energy across the equator and into the Maritime Continent and SCS monsoon region, modulating the vertical motion and middle-lower tropospheric flows, and favoring the out-of-phase variation of the SCSSM. Therefore, the "coupled oceanic-atmospheric bridge" process and the related Rossby wave energy transmission are possible mechanisms for the significant influence of the May SAM on the variability of the following SCSSM. Therefore, the May SAM provides a fresh insight into the prediction of the SCSSM from the perspective of the SH high latitudes.
A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction
NASA Astrophysics Data System (ADS)
Lemmon, Danielle E.; Karnauskas, Kristopher B.
2018-04-01
Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.
NASA Astrophysics Data System (ADS)
Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan; Nath, Debashis
2017-11-01
In this paper, distinct patterns of boreal winter convection anomalies over the tropical Pacific and associated wave trains in the extratropics are addressed. The first leading mode (EOF1) of convection anomalies as measured by outgoing longwave radiation demonstrates an east-west oscillation of deep convection with centers over the equatorial central Pacific (CP) and over the tropical western North Pacific and the Maritime Continent. The second leading mode (EOF2) is also a dipole pattern with opposite centers straddling 170°W, possibly modifying EOF1 to some extent. Combining the first two leading modes, five major categories of tropical convection anomalies can be identified for the period 1979/80-2012/13. The comparison between these five categories and the corresponding SST anomaly patterns indicates a nonlinear relationship between convection and SST. The combination of EOF1 and EOF2 with in-phase PCs exhibits an east-west dipole pattern with opposite signs over west of the dateline and the Maritime Continent. The negative phase of the two PCs, named La Niña pattern, induces a negative Pacific/North American—positive North Atlantic Oscillation teleconnection in the extratropics. Approximately opposite responses can be detected in its positive phase, named CP El Niño pattern. The negative PC2 superposing positive PC1, named EP El Niño pattern, shows the strongest convection anomalies with enhanced (depressed) convection over the eastern (western) Pacific and leads to a Tropical/Northern Hemisphere-like teleconnection pattern and an anomalous anticyclone extending from the North Pacific to the North Atlantic. The positive PC2 with neutral PC1, named western CP pattern, shows weakly enhanced convection to the west of the dateline as a response to local SST warming around the dateline. This convection anomaly pattern, although weak, is important and excites a northeastward wave train from the tropics to Greenland, resulting in surface air temperature cooling covering the northeastern North America and warmer and wetter conditions over Western Europe.
Intensification of the Northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period
Zheng, Yen; van Geen, Alexander; Anderson, Robert F.; Gardner, James V.; Dean, Walter E.
2000-01-01
Although climate records from several locations around the world show nearly synchronous and abrupt changes, the nature of the inferred teleconnection is still poorly understood. On the basis of preserved laminations and molybdenum enrichments in open margin sediments we demonstrate that the oxygen content of northeast Pacific waters at 800 m depth during the Bölling-Alleröd warm period (15–13 kyr) was greatly reduced. Existing oxygen isotopic records of benthic and planktonic foraminifera suggest that this was probably due to suppressed ventilation at higher latitudes of the North Pacific. Comparison with ventilation records for the North Atlantic indicates an antiphased pattern of convection relative to the North Pacific over the past 22 kyr, perhaps due to variations in water vapor transport across Central America.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
2012-01-24
chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data...anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that...eastern- and-central Pacific Islands, Ecuador , and Peru. Similarly, there is a tendency for drought to occur over a large area of Southeast Asia
NASA Astrophysics Data System (ADS)
Cerrone, Dario; Fusco, Giannetta; Simmonds, Ian; Aulicino, Giuseppe; Budillon, Giorgio
2017-04-01
A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes , and sea ice concentration) has been investigated with the aim of revealing the dominant timescales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the Multiple-Taper Method with Singular Value Decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere (SH) extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the Southern Annular Mode (SAM), the Pacific-South America (PSA) teleconnection, the Semi-Annual Oscillation (SAO) and Zonal Wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found consistent with the occurrence of the SAM+/PSA- or SAM-/PSA+ combinations, which could have favored the cooling of the sub-Antarctic and important changes in the Antarctic sea ice distribution since 2000.
Food Security Under Shifting Economic, Demographic, and Climatic Conditions (Invited)
NASA Astrophysics Data System (ADS)
Naylor, R. L.
2013-12-01
Global demand for food, feed, and fuel will continue to rise in a more populous and affluent world. Meeting this demand in the future will become increasingly challenging with global climate change; when production shocks stemming from climate variability are added to the new mean climate state, food markets could become more volatile. This talk will focus on the interacting market effects of demand and supply for major food commodities, with an eye on climate-related supply trends and shocks. Lessons from historical patterns of climate variability (e.g., ENSO and its global teleconnections) will be used to infer potential food security outcomes in the event of abrupt changes in the mean climate state. Domestic food and trade policy responses to crop output and price volatility in key producing and consuming nations, such as export bans and import tariffs, will be discussed as a potentially major destabilizing force, underscoring the important influence of uncertainty in achieving--or failing to achieve--food security.
Large-Scale Circulation and Climate Variability. Chapter 5
NASA Technical Reports Server (NTRS)
Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.
2017-01-01
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.
Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate
NASA Astrophysics Data System (ADS)
Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.
2015-12-01
ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The impact of European teleconnections including the East AtlanticWest Russia (EA-WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter temperature variability was quantified and compared with the combined effect of the Arctic Oscillation (AO), the Western Pacific (WP), and the El-Nino Southern Oscillation (ENSO), which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three European teleconnections explained 22-25 percent of the total monthly upper-tropospheric height variance over Eurasia. Regression analysis revealed warming by EA-WR and EA and cooling by SCA over mid-latitude East Asia during their positive phase and vice versa. Temperature anomalies were largely explained by the advective temperature change process at the lower troposphere. The average spatial correlation over East Asia (90-180E, 10-80N) for the last 34 winters between observed and reconstructed temperature comprised of AO, WP and ENSO effect (AWE) was approximately 0.55, and adding the European teleconnection components (ESE) to the reconstructed temperature improved the correlation up to approximately 0.64. Lower level atmospheric structure demonstrated that approximately five of the last 34 winters were significantly better explained by ESE than AWE to determine East Asian seasonal winter temperatures. We also compared the impact between EA-WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian high. These three were strongly coupled, and their spatial features and interannual variation were somewhat better explained by EA-WR than AO. Results suggest that the EA-WR impact must be treated more importantly than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
East Asian winter temperature variation associated with the combined effects of AO and WP pattern
NASA Astrophysics Data System (ADS)
Park, Hye-Jin; Ahn, Joong-Bae
2016-04-01
The combined effects of the Arctic Oscillation (AO) and Western Pacific (WP) teleconnection pattern on the East Asian winter monsoon (EAWM) over the last 56 years (1958/59-2013/2014) were investigated using NCEP/NCAR reanalysis data (Park and Ahn, 2015). The study results revealed that the effect of the AO on winter temperature in East Asia could be changed depending on the phases of the WP pattern in the North Pacific. The negative relationship between the EAWM and the AO increased when the AO and WP were in-phase with each other. Hence, when winter negative (positive) AO was accompanied by negative (positive) WP, negative (positive) temperature anomalies were dominant across the entire East Asia region. Conversely, when the AO and WP were of-of-phase, the winter temperature anomaly in East Asia did not show distinct changes. Furthermore, from the perspective of stationary planetary waves, the zonal wavenumber-2 patterns of sea level pressure and geopotential height at 500hPa circulation strengthened when the AO and WP were in-phase but were not significant for the out-of-phase condition. It explained the possible mechanism of the combined effects of the AO and WP on the circulation related to EAWM. Reference Park, H.-J., and J.-B. Ahn (2015) Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature, Clim. Dyn. DOI:10.1007/s00382-015-2763-2. Acknowledgements This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA2015-2081.
NASA Astrophysics Data System (ADS)
Bejranonda, Werapol; Koch, Manfred
2010-05-01
Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations (ENSO) events in the Pacific Ocean, if such teleconnections exist, one would have would have a powerful tool at hand to forecast extreme seasonal climate pattern across Thailand over a limited time period. Eventually, such a predictive tool would help to better manage the availability and adequate supply of surface water resources to the various water users in this country. In the present study the spatial and temporal relationships between the global climate circulation system and the regional weather in Thailand are assessed by various techniques of stochastic time series analysis. More specifically, the time series of the sea surface temperature (SST) and various ocean indices of the Pacific and the Indian Oceans, as well as the time series of 121 meteorological stations from 5 regions across Thailand which include humidity, evaporation, temperature and rainfall during 1950-2007 are examined using autocorrelation, ARIMA, Wavelet Transform methods. Possible teleconnections between the behaviour of the ocean states and the climate variations at meteorological stations in eastern Thailand which frequently suffers from water shortage problems are analyzed using regression, cross-correlation and the Wavelet cross-correlation method. In addition to the time series of the observed ocean and meteorological variables, 1961-2000 CGCM3 predictors of the macro-scale regional climate variations for this study area are analyzed by the methods above and correlated with the ocean indices as well. Rainfall and temperatures at selected stations are forecasted up to year 2007 using the teleconnection- relationships found by multiple linear regression with the CGCM3 predictors. In addition, autoregressive integrated moving average (ARIMA) models of these climate variable are set up that are eventually extended to include the ocean indices as external regressors. The results of these various statistical techniques show that the El-Niño 1.2 SST anomaly indice of the Pacific Ocean, which refers to the most eastern section of the Pacific, correlates the strongest with the Thai local climate. Through cross-correlation, the most sensitive parameters to the ocean indices are the minimum temperature at stations in the northern and northeastern, inland regions of Thailand and the number of rainy days in the eastern, central and southern, coastal regions. In the southern region the amount of rainfall at the coast of Gulf of Thailand varies positively with El-Niño, but negatively for stations along the Andaman Sea coast in the west of the isthmus, with maximal correlation lag.-times of 4 months. Surprisingly the corresponding connections of the local climate variables with the Indian Ocean indices are less well established, with an optimal lag-time of only 3 months. Using the results of the teleconnection regression relationships, the forecast of the local climate variables could be improved significantly, as indicated by the Nash-Sutcliffe-coefficient of the prediction model's which increased from originally 0.30, 0.72 and 0.26 to 0.51, 0.82 and 0.46 for the rainfall, minimum and maximum temperatures, respectively. The results of our analysis indicate the possibility of a better forecast of extreme seasonal climate variations across some regions of Thailand over a limited time period by using short-term expected variations of the Pacific and Indian ocean indices.
NASA Astrophysics Data System (ADS)
Khedun, C. P.; Mishra, A. K.; Bolten, J. D.; Giardino, J. R.; Singh, V. P.
2010-12-01
Soil moisture is an important component of the hydrological cycle. Climate variability patterns, such as the Pacific Decadal Oscillation (PDO), El Niño Southern Oscillation (ENSO), and Atlantic Multidecadal Oscillation (AMO) are determining factors on surface water availability and soil moisture. Understanding this complex relationship and the phase and lag times between climate events and soil moisture variability is important for agricultural management and water planning. In this study we look at the effect of these climate teleconnection patterns on the soil moisture across the Rio Grande/Río Bravo del Norte basin. The basin is transboundary between the US and Mexico and has a varied climatology - ranging from snow dominated in its headwaters in Colorado, to an arid and semi-arid region in its middle reach and a tropical climate in the southern section before it discharges into the Gulf of Mexico. Agricultural activities in the US and in northern Mexico are highly dependent on the Rio Grande and are extremely vulnerable to climate extremes. The treaty between the two countries does not address climate related events. The soil moisture is generated using the community NOAH land surface model (LSM). The LSM is a 1-D column model that runs in coupled or uncoupled mode, and it simulates soil moisture, soil temperature, skin temperature, snowpack depth, snow water equivalent, canopy water content, and energy flux and water flux of the surface energy and water balance. The North American Land Data Assimilation Scheme 2 (NLDAS2) is used to drive the model. The model is run for the period 1979 to 2009. The soil moisture output is validated against measured values from the different Soil Climate Analysis Network (SCAN) sites within the basin. The spatial and temporal variability of the modeled soil moisture is then analyzed using marginal entropy to investigate monthly, seasonal, and annual variability. Wavelet transform is used to determine the relation, phase difference, and lag times between climate teleconnection events and soil moisture. The results from this study will help agricultural scientists and water planners in both the US and Mexico in better managing the dwindling water resources of this transboundary basin.
The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections
NASA Astrophysics Data System (ADS)
Coelho, Caio A. S.; de Oliveira, Cristiano Prestrelo; Ambrizzi, Tércio; Reboita, Michelle Simões; Carpenedo, Camila Bertoletti; Campos, José Leandro Pereira Silveira; Tomaziello, Ana Carolina Nóbile; Pampuch, Luana Albertani; Custódio, Maria de Souza; Dutra, Lívia Marcia Mosso; Da Rocha, Rosmeri P.; Rehbein, Amanda
2016-06-01
The southeast region of Brazil experienced in austral summer 2014 a major drought event leading to a number of impacts in water availability for human consumption, agricultural irrigation and hydropower production. This study aims to perform a diagnostic analysis of the observed climate conditions during this event, including an inspection of the occurred precipitation anomalies in the context of previous years, and an investigation of possible relationships with sea surface temperatures and atmospheric circulation patterns. The sea surface temperature analysis revealed that the southwestern South Atlantic Ocean region near the coast of southeast Brazil showed strong negative association with precipitation over southeast Brazil, indicating that increased sea temperatures in this ocean region are consistent with reduced precipitation as observed in summer 2014. The circulation analysis revealed prevailing anti-cyclonic anomalies at lower levels (850 hPa) with northerly anomalies to the west of southeast Brazil, channeling moisture from the Amazon towards Paraguay, northern Argentina and southern Brazil, and drier than normal air from the South Atlantic Ocean towards the southeast region of Brazil. This circulation pattern was found to be part of a large-scale teleconnection wave train linked with the subsidence branch of the Walker circulation in the tropical east Pacific, which in turn was generated by an anomalous tropical heat source in north/northeastern Australia. A regional Hadley circulation with an ascending branch to the south of the subsidence branch of the Walker circulation in the tropical east Pacific was identified as an important component connecting the tropical and extratropical circulation. The ascending branch of this Hadley circulation in the south Pacific coincided with an identified Rossby wave source region, which contributed to establishing the extratropical component of the large-scale wave train connecting the south Pacific and the Atlantic region surrounding southeast Brazil. This connection between the Pacific and the Atlantic was confirmed with Rossby ray tracing analyses. The local circulation response was associated to downward air motion (subsidence) over Southeast Brazil, contributing to the expressive negative precipitation anomalies observed during summer 2014, and leading to a major drought event in the historical context. The analysis of atmospheric and oceanic patterns of this event helped defining a schematic framework leading to the observed drought conditions in southeast Brazil, including the involved teleconnections, blocking high pressure, radiative and humidity transport effects.
Global Water Cycle Diagrams Minimize Human Influence and Over-represent Water Security
NASA Astrophysics Data System (ADS)
Abbott, B. W.; Bishop, K.; Zarnetske, J. P.; Minaudo, C.; Chapin, F. S., III; Plont, S.; Marçais, J.; Ellison, D.; Roy Chowdhury, S.; Kolbe, T.; Ursache, O.; Hampton, T. B.; GU, S.; Chapin, M.; Krause, S.; Henderson, K. D.; Hannah, D. M.; Pinay, G.
2017-12-01
The diagram of the global water cycle is the central icon of hydrology, and for many people, the point of entry to thinking about key scientific concepts such as conservation of mass, teleconnections, and human dependence on ecological systems. Because humans now dominate critical components of the hydrosphere, improving our understanding of the global water cycle has graduated from an academic exercise to an urgent priority. To assess how the water cycle is conceptualized by researchers and the general public, we analyzed 455 water cycle diagrams from textbooks, scientific articles, and online image searches performed in different languages. Only 15% of diagrams integrated human activity into the water cycle and 77% showed no sign of humans whatsoever, although representation of humans varied substantially by region (lowest in China, N. America, and Australia; highest in Western Europe). The abundance and accessibility of freshwater resources were overrepresented, with 98% of diagrams omitting water pollution and climate change, and over 90% of diagrams making no distinction for saline groundwater and lakes. Oceanic aspects of the water cycle (i.e. ocean size, circulation, and precipitation) and related teleconnections were nearly always underrepresented. These patterns held across disciplinary boundaries and through time. We explore the historical and contemporary reasons for some of these biases and present a revised version of the global water cycle based on research from natural and social sciences. We conclude that current depictions of the global water cycle convey a false sense of water security and that reintegrating humans into water cycle diagrams is an important first step towards understanding and sustaining the hydrosocial cycle.
Client-Friendly Forecasting: Seasonal Runoff Predictions Using Out-of-the-Box Indices
NASA Astrophysics Data System (ADS)
Weil, P.
2013-12-01
For more than a century, statistical relationships have been recognized between atmospheric conditions at locations separated by thousands of miles, referred to as teleconnections. Some of the recognized teleconnections provide useful information about expected hydrologic conditions, so certain records of atmospheric conditions are quantified and published as hydroclimate indices. Certain hydroclimate indices can serve as strong leading indicators of climate patterns over North America and can be used to make skillful forecasts of seasonal runoff. The methodology described here creates a simple-to-use model that utilizes easily accessed data to make forecasts of April through September runoff months before the runoff season begins. For this project, forecasting models were developed for two snowmelt-driven river systems in Colorado and Wyoming. In addition to the global hydroclimate indices, the methodology uses several local hydrologic variables including the previous year's drought severity, headwater snow water equivalent and the reservoir contents for the major reservoirs in each basin. To improve the skill of the forecasts, logistic regression is used to develop a model that provides the likelihood that a year will fall into the upper, middle or lower tercile of historical flows. Categorical forecasting has two major advantages over modeling of specific flow amounts: (1) with less prediction outcomes models tend to have better predictive skill and (2) categorical models are very useful to clients and agencies with specific flow thresholds that dictate major changes in water resources management. The resulting methodology and functional forecasting model product is highly portable, applicable to many major river systems and easily explained to a non-technical audience.
Teleconnected food supply shocks
NASA Astrophysics Data System (ADS)
Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
2016-03-01
The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model
NASA Astrophysics Data System (ADS)
Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.
2018-06-01
In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.
Interannual Variations in Arctic Winter Temperature: The Role of Global Scale Teleconnections
2015-06-01
also advect warm air northward and eastward between Iceland and Scandinavia . Figure 7 shows the LTM patterns of global Z200 and shows the normal...with an extension of this warm anomaly into the subpolar regions of the North Atlantic (i.e., Baffin Bay- Scandinavia ). Weak positive anomalies in...positive anomalies over northern Siberia and Scandinavia . We speculate that these areas of positive and negative anomalies in Z850, and implied WAA, may
Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast
Velasco, Elzie M.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Corona, Claudia
2017-01-01
Study regionThe U.S. West Coast, including the Pacific Northwest and California Coastal Basins aquifer systems.Study focusGroundwater response to interannual to multidecadal climate variability has important implications for security within the water–energy–food nexus. Here we use Singular Spectrum Analysis to quantify the teleconnections between AMO, PDO, ENSO, and PNA and precipitation and groundwater level fluctuations. The computer program DAMP was used to provide insight on the influence of soil texture, depth to water, and mean and period of a surface infiltration flux on the damping of climate signals in the vadose zone.New hydrological insights for the regionWe find that PDO, ENSO, and PNA have significant influence on precipitation and groundwater fluctuations across a north-south gradient of the West Coast, but the lower frequency climate modes (PDO) have a greater influence on hydrologic patterns than higher frequency climate modes (ENSO and PNA). Low frequency signals tend to be preserved better in groundwater fluctuations than high frequency signals, which is a function of the degree of damping of surface variable fluxes related to soil texture, depth to water, mean and period of the infiltration flux. The teleconnection patterns that exist in surface hydrologic processes are not necessarily the same as those preserved in subsurface processes, which are affected by damping of some climate variability signals within infiltrating water.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, H. Y.; Einaudi, Franco (Technical Monitor)
2001-01-01
In this paper, we present results showing that summertime precipitation anomalies over North America and East Asia may be linked via pan-Pacific teleconnection patterns, which are components of two dominant recurring global climate modes. The first mode (Mode-1) features an inverse relationship between rainfall anomaly over the US Midwest/central to the eastern/southeastern regions, coupled to a mid-tropospheric high-low pressure system over the northwest and southeast of the US, which regulates low level moisture transport from the Gulf of Mexico to the Midwest. The regional circulation pattern appears to be a part of a global climate mode spanning Eurasia, the North Pacific, North America, and the Atlantic. This mode is associated with coherent fluctuations of jetstream variability over East Asia, and Eurasia, SST in the North Pacific and the North Atlantic. While Mode-1 is moderately correlated with El Nino-Southern Oscillation (ENSO), it appears to be distinct from it, with strong influences from mid-latitude or possibly from higher latitude processes. Results show that Mode-1 not only has an outstanding contribution to the great flood of 1993, it has large contribution to the US precipitation anomalies in other years. Also noted is an apparent increase in influence of Mode-1 on US summertime precipitation in the last two decades since 1977.
NASA Astrophysics Data System (ADS)
Choi, Ki-Seon; Moon, Il-Ju
2012-09-01
This study analyzes the characteristics of Western North Pacific (WNP) tropical cyclone (TC) activity and large-scale environments according to the Western Pacific (WP) teleconnection pattern in summer. In the positive WP phase, an anomalous cyclone and an anomalous anticyclone develop in the low and middle latitudes of the East Asia area, respectively. As a result, southeasterlies are reinforced in the northeast area of East Asia (including Korea and Japan), which facilitates the movement of TC to this area, whereas northwesterlies are reinforced in the southwest area of East Asia (including southern China and the Indochina Peninsula) which blocks the movement of TC to that area. Due to the spatial distribution of this reinforced pressure system, TCs that develop during the positive WP phase move and turn more to the northeast of the WNP than TCs which develop during the negative WP phase. The characteristics of this TC activity during the positive WP phase are associated with the upper tropospheric jet being located farther to the northeast. TCs during the negative WP phase mainly move to the west from the Philippines toward southern China and the Indochina Peninsula. Due to the terrain effect caused by the passage of TCs in mainland China, the intensity of TCs during the negative WP phase is weaker than those during the positive WP phase.
Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime
NASA Astrophysics Data System (ADS)
Li, Chun; Ma, Hao
2011-09-01
In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.
21st century California drought risk linked to model fidelity of the El Nino teleconnection
USDA-ARS?s Scientific Manuscript database
Greenhouse gas induced climate change is expected to lead to negative hydrological impacts for southwestern North America, including California (CA). This includes a decrease in the amount and frequency of precipitation and an increase in evapotranspiration, both of which imply a decline in surface ...
Tropopause Pressure May Explain California Droughts and Wet Period
NASA Astrophysics Data System (ADS)
Mazdiyasni, O.; AghaKouchak, A.
2017-12-01
Sea surface temperatures and teleconnection patterns such as El Nino/La Nina are considered the main culprits behind major California droughts. However, the underlying relationship between sea surface temperatures (SSTs) and precipitation anomalies is relatively weak. In 2015-2016 the most extreme El Nino did not lead to a wet season as expected, which triggered a series of studies on this topic. Here we show that tropopause level pressure in a region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a major role in whether California will experience a wet or dry year and often dominates the role of SST-based teleconnections. Our results indicate that pressure in the PARS-NEP region Granger-Causes precipitation in California during the wet season. We show that when pressure in the PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and California precipitation is stronger than all the commonly used SST-based climatic indictors frequently used for understanding causes of droughts.
NASA Technical Reports Server (NTRS)
Wang, S.-Y. Simon; Barandiaran, Danny; Hilburn, Kyle; Houser, Paul; Oglesby, Bob; Pan, Ming; Pinker, Rachel; Santanello, Joe; Schubert, Siegfried; Wang, Hailan;
2015-01-01
This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.
NASA Astrophysics Data System (ADS)
Gromig, R.; Viehberg, F. A.; Damcı, E.; Ülgen, U. B.; Assonov, S.; Franz, S. O.; Cagatay, M. N.; Litt, T.; Melles, M.; Wagner, B.; Staubwasser, M.
2016-12-01
The Marmara region is a key area to investigate the teleconnection and environmental changes of the Black Sea/Eastern Mediterranean Sea and northern hemisphere climate patterns. Lake Iznik, an oligohaline lake, is the largest lake in the Bosphorous region, which holds a continuous sediment archive. A hydro-acoustic survey screened the locations of three sediment cores (5 to 17 m) from previous field campaigns. The longest record reaches back almost to the Campanian Ignimbrite (39.3 cal kyr BP), which represents most likely the lowermost high amplitude reflector in hydro-acoustic profiles. The late Pleistocene ostracode fauna appears low in diversity and evolves abruptly to an abundant monospecific species assemblage of Limnocythere inopinata during the Younger Dryas after substantial alteration in the hydrocarbonate and alkalinity system of Lake Iznik. This distinct change in hydrochemistry is reflected in the appearence of different shell phenotypes and the occurence of a population with sexual reproduction (males/females). Independently, results from stable isotope analyses (δ18O and δ13C) on ostracode shells also suggest that Lake Iznik evolves from a freshwater system to a closed basin sensitive to temperature and precipitation changes.
Role of Equatorial Pacific SST Anomalies in Precipitation over Western Americas
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.; Henderson, N.; Lee, D.
2017-12-01
El Niño, as the prime source of seasonal to interannual climate predictability, could impose impacts on the Americas from tropical to mid-latitude regions. The teleconnection patterns are sensitive to the longitudinal location of the maximum tropical sea surface temperature anomalies (SSTA). Meanwhile, slight differences in the location and configuration of the anomalous atmospheric circulations could differentiate between a wet and dry season regionally. For example, the 2015/16 strong El Niño event did not bring excessive precipitation to California despite expectations based on observational and model-based analyses. Whether the westward shift in the tropical SSTA pattern played a key role during this event is examined. We conduct two SSTA-forced experimental runs in three NCAR GCMs (CCM3, CAM4, and CAM5): one forced by the observed February-March-April 2016 SSTA and the other forced by the model-ensemble mean forecast FMA 2016 SSTA from the North America Multi-Model Ensemble. The observed SSTAs, compared to the forecast SSTAs, are colder in the central-eastern tropical Pacific and slightly warmer in the westernmost tropical Pacific. In response, all three models have a weaker and westward shifted low-pressure anomaly over the North Pacific and west coast of North America when the observed SSTA is prescribed. As the result, northern California is either about the same or drier in the observed SSTA runs than in the forecast SSTA runs. However, the precipitation over southern California responds differently across models. One of the possible explanations is that in CCM3 the teleconnections respond mainly to the SSTA differences in the eastern tropical Pacific; while in CAM4 and CAM5, the teleconnections are also sensitive to the small SSTA differences in the western tropical Pacific. The results suggest that the tropical SSTA differences matter for atmospheric circulations and precipitation over western Americas even though models disagree on the details of the circulation responses and subsequently the sign of regional precipitation responses. Further work on the sensitivity of circulations and precipitation to the tropical Pacific SSTA forcing will be conducted to improve the prediction of precipitation over western Americas.
A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai
2010-05-01
Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.
NASA Astrophysics Data System (ADS)
Jenney, A. M.; Randall, D. A.
2017-12-01
Tropical intraseasonal oscillations are known to be a source of extratropical variability. We show that subseasonal variability in observed North American epidemiologically significant regional extreme weather regimes is teleconnected to the boreal summer intraseasonal oscillation (BSISO)—a complex tropical weather system that is active during the northern summer and has a 30-50 day timescale. The dynamics of the teleconnection are examined. We also find that interannual variability of the tropical mean-state can modulate the teleconnection. Our results suggest that the BSISO may enable subseasonal to seasonal predictions of North American summertime weather extremes.
NASA Astrophysics Data System (ADS)
Fleming, S. W.; Dahlke, H. E.
2014-10-01
It is almost universally assumed in statistical hydroclimatology that relationships between large-scale climate indices and local-scale hydrometeorological responses, though possibly nonlinear, are monotonic. However, recent work suggests that northern-hemisphere atmospheric teleconnections to El Niño-Southern Oscillation (ENSO) and the Arctic Oscillation can be parabolic. The effect has recently been explicitly confirmed in hydrologic responses, though associations are complicated by land surface characteristics and processes, and investigation of water resource implications has been limited to date. Here, we apply an Akaike Information Criterion-based polynomial selection approach to investigate annual flow volume teleconnections for 42 of the northern hemisphere’s largest ocean-reaching rivers. Though we find a rich diversity of responses, parabolic relationships are formally consistent with the data for almost half the rivers, and the optimal model for eight. These highly nonlinear water supply teleconnections could radically alter the standard conceptual model of how water resources respond to climatic variability. For example, the Sacramento river in drought-ridden California exhibits no significant monotonic ENSO teleconnection but a 0.92 probability of a quadratic relationship, reducing mean predictive error by up to 65% and suggesting greater opportunity for climate index-based water supply forecasts than previously appreciated.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu
2018-04-01
Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.
NASA Astrophysics Data System (ADS)
Ke, L.; Ding, X.; Song, C.; Sheng, Y.
2016-12-01
Temperate glaciers can be highly sensitive to global climate change due to relatively humid and warm local climate. Numerous temperate glaciers are distributed in the southeastern Tibet Plateau (SETP) and their changes are still poorly represented. Based on a latest glacier inventory and ICESat altimetry measurements, we examine the spatial heterogeneity of glacier change in the SETP (including the central and eastern Nyainqêntanglha ranges) and further analyze its relation with climate change by using station-based and gridded meteorological data. Our results show that SETP glaciers experienced drastic surface lowering at about -0.84±0.26 m a-1 on average over 2003-2008. Debris-covered ice thinned at an average rate of -1.13±0.32 m a-1, in comparison with -0.92±0.17 m a-1 over the debris-free ice areas. The thinning rate is the strongest in the southeastern sub-region (up to -1.24 m a-1 ) and moderate ( -0.45 m a-1 ) in the central and northwestern parts, which is in general agreement with the pattern of surface mass changes based on the GRACE gravimetry observation. Long-term climate data at weather stations show that, in comparison with the period of 1992-2002, mean temperature increased by 0.46 °C - 0.59 °C in the recent decade (2003-2013); while the change of summer precipitation exhibited remarkably spatial variability, following a southeast-northwest contrasting pattern (decreasing by over 10% in the southeast, to stable level in the central region, and increment up to 10% in the northwest). This spatially variable precipitation change is consistent with results from CN05 grid data and ERA re-analysis data, and agrees well with the spatial pattern of glacier surface elevation changes. The results suggest that overall negative glacier mass balances in SETP are governed by temperature rising, while the different precipitation change could contribute to inconsistent glacier thinning rates. The spatial pattern of precipitation decrease and mass loss might be tele-connected with the dynamics of the Indian summer monsoon.
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
NASA Astrophysics Data System (ADS)
Srivastava, Ankur; Pradhan, Maheswar; Goswami, B. N.; Rao, Suryachandra A.
2017-11-01
The high propensity of deficient monsoon rainfall over the Indian sub-continent in the recent 3 decades (seven deficient monsoons against 3 excess monsoon years) compared to the prior 3 decades has serious implications on the food and water resources in the country. Motivated by the need to understand the high occurrence of deficient monsoon during this period, we examine the change in predictability of the Indian summer monsoon (ISM) and its teleconnections with Indo-Pacific sea surface temperatures between the two periods. The shift in the tropical climate in the late 1970s appears to be one of the major reasons behind this. We find an increased predictability of the ISM in the recent 3 decades owing to reduced `internal' interannual variability (IAV) due to the high-frequency modes, while the `external' IAV arising from the low-frequency modes has remained largely the same. The Indian Ocean Dipole-ISM teleconnection has become positive during the monsoon season in the recent period thereby compensating for the weakened ENSO-ISM teleconnection. The central Pacific El-Niño and the Indian Ocean (IO) warming during the recent 3 decades are working together to realise enhanced ascending motion in the equatorial IO between 70°E and 100°E, preconditioning the Indian monsoon system prone to a deficient state.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2005-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations.
Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A
2018-05-01
Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Hengyi
2000-01-01
Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.
NASA Astrophysics Data System (ADS)
Dallmeyer, A.; Claussen, M.
2011-02-01
Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.
NASA Astrophysics Data System (ADS)
Dallmeyer, A.; Claussen, M.
2011-06-01
Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease in evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter; Valdes, Paul
2014-05-01
An important example of abrupt climate change occurred 8200 years ago in the North Atlantic and is generally known as the 8.2kyr event. This abrupt ~160 year cooling appears to coincide with the final drainage of the ice-dammed Lakes Agassiz and Ojibway. The resultant influx of meltwater to the North Atlantic is assumed to have perturbed the Atlantic Meridional Overturning circulation, reducing northward heat transport and causing widespread cooling. Numerous lines of evidence support this theory, with reconstructions showing changes in deep water formation, reductions in salinity and evidence of sea-level rise. Coupled general circulation model (GCM) simulations driven with realistic estimates of the meltwater flux show a regional cooling but fail to replicate the duration or the magnitude of this event in comparison with proxy archives. Meltwater injection was not the only rapid climate forcing in operation at this time. Drainage of the pro-glacial lakes would have had a profound effect on the boundary layer heat fluxes over North America, with potential teleconnections further afield. In this work we use an isotope-enabled version of the coupled GCM HadCM3 with boundary conditions appropriate for the time period of 9kyr (including ice sheets, greenhouse gases and orbital parameters). This model tracks oxygen isotopes throughout the hydrological cycle allowing more robust comparison with proxy archives. We analyse the impact of the removal of a lake area corresponding to Lakes Agassiz and Ojibway at this time and present sensitivity tests designed to analyse the contributions from lake removal, orographic change and the assumed isotopic content of the pro-glacial lakes. The results show a distinct pattern of cooling across North America (in the annual mean) with an apparent teleconnection to the Barents Sea, where there is warming associated with sea-ice reduction. The isotopic implications depend on the initial isotopic content of the pro-glacial lake. Assuming a uniform value of -30 permille, the δ18O of precipitation anomaly shows reasonably strong deviations across different parts of the North Atlantic region implying a possible contribution to signals detected in proxy archives. These results raise the possibility that land surface changes associated with abrupt climate change events might be more important than previously assumed.
Teleconnection Locator: TeleLoc
NASA Astrophysics Data System (ADS)
Bowen, M. K.; Duffy, D.
2016-12-01
Extreme climate events, such as tropical storms, droughts, and floods, have an enormous impact on all aspects of society. Being able to detect the causes of such events on a global scale is paramount to being able to predict when and where these events will occur. These teleconnections, where a small change in a closed, complex system creates drastic disturbances elsewhere in the system, are generally represented by an index, one of the most famous being the El Nino Southern Oscillation (ENSO). However, due to the enormity, complexity, and technical challenges surrounding climate and its data, it is hypothesized that many of these teleconnections have as of yet gone undiscovered. TeleLoc (Teleconnection Locator) is a machine-learning framework combining a number of techniques for finding correlations between weather trends and extreme climate events. The current focus is on connecting global trends with tropical cyclones. A combination of two data sets, The International Best Track Archive for Climate Stewardship (IBTrACS) and the Modern-Era Retrospective analysis for Research and Applications (MERRA2), are being utilized. PostGIS is used for raw data storage, and a Python API has been developed as the core of the framework. Cyclones are first clustered using a combination of Symbolic Aggregate ApproXimation (this allows for a symbolic, sequential representation of the various time-series variables of interest) and DBSCAN. This serves to break the events into subcategories, which alleviates computational load for the next step. Events which are clustered together (those with similar characteristics) are compared against global climate variables of interest, which are also converted to a symbolic form, leading up to the event using Association Rule Mining. Results will be shown where cyclones have been clustered, specifically in the West Pacific storm basin, as well as the global variable symbolic subsections with a high support that have been singled out for analysis.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Katherine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2011-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the period 2004 - 2009 have privileged different disease vectors. Chikungunya outbreaks occurred during the severe drought from late 2004 to 2006 over coastal East Africa and the western Indian Ocean islands and in the later years India and Southeast Asia. The chikungunya pandemic was caused by a Central/East African genotype that appears to have been precipitated and then enhanced by global-scale and regional climate conditions in these regions. Outbreaks of Rift Valley fever occurred following excessive rainfall period from late 2006 to late 2007 in East Africa and Sudan, and then in 2008 - 2009 in Southern Africa. The shift in the outbreak patterns of Rift Valley fever from East Africa to Southern Africa followed a transition of the El Nino/Southern Oscillation (ENSO) phenomena from the warm El Nino phase (2006-2007) to the cold La Nina phase (2007-2009) and associated patterns of variability in the greater Indian Ocean basin that result in the displacement of the centres of above normal rainfall from Eastern to Southern Africa. Understanding the background patterns of climate variability both at global and regional scale and their impacts on ecological drivers of vector borne-diseases is critical in long-range planning of appropriate response and mitigation measures.
NASA Astrophysics Data System (ADS)
Margolis, Ellis Quinn
Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer Drought Severity Index and tree-ring reconstructed ENSO, PDO and AMO phases (1905-1978 and 1700-1904). Upper elevation fires (115 fires, 84 fire years, 1623-1904) were compared with climate indices. ENSO, PDO, and AMO affected regional PDSI, but AMO and PDO teleconnections changed between periods. Fire occurrence was significantly related to inter-annual variability in PDSI, precipitation, ENSO, and phase combinations of ENSO and PDO, but not AMO (1700-1904). Reduced upper elevation fire (1785-1840) was coincident with a cool AMO phase.
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.
2014-04-01
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.
USDA-ARS?s Scientific Manuscript database
We willexamine how climate teleconnect ions and variability impact vector biology and vector borne disease ecology, and demonstrate that global climate monitoring can be used to anticipate and forecast epidemics and epizootics. In this context we willexamine significant worldwide weather anomalies t...
Modulation of MJO-Associated North Pacific Storm Track Variation by the QBO
NASA Astrophysics Data System (ADS)
Wang, J.; Kim, H. M.; Chang, E. K. M.; Son, S. W.
2017-12-01
The North Pacific storm track (NPST) is a preferred region of extratropical synoptic-scale disturbances which plays a critical role in the mid-latitude weather and climate variability during the cool season (October to March). Extreme precipitation, heat/cold events, and sub-seasonal variation of the North Atlantic Oscillation (NAO) are found to be caused/modulated by the NPST. Thus investigating the variability of the NPST and the possible precursors for its variation is an important field of research. The Madden-Julian Oscillation (MJO) is the dominant intraseasonal mode in the tropics. A teleconnection between the MJO and the NPST has been realized recently. However, the MJO-NPST relationship shows a significant dependence on the background state. As previous studies primarily kept an eye on the modulation of El Niño Southern Oscillation (ENSO) on the MJO-NPST relationship, this study focuses on the role of the Quasi-Biennial Oscillation (QBO) because the QBO is suggested to make a much larger contribution to the interannual variability of the MJO than ENSO does. Results of this study show a regulation of the MJO-NPST relationship by different phases of the QBO. The amplitude of the MJO associated NPST variation is generally larger in the easterly phase of the QBO (EQBO) than in westerly phase of the QBO (WQBO). The pattern of the NPST variation also exhibits significant differences between the two QBO phases. The analysis of the underlying mechanism from the perspective of intraseasonal mean flow indicates an important role of the MJO associated baroclinicity in the enhanced amplitude of the NPST variation in EQBO years. On the other hand, the pattern differences in the NPST variation during different QBO phases result from changes in the intraseasonal baroclinic energy conversion and corresponding energy propagation. The results of this study suggest a consideration of the QBO impact in reproducing the MJO-midlatitudes teleconnection in general circulation models (GCMs). This study also provides a potential route for the improvement of the sub-seasonal prediction of extratropical storm activities.
NASA Astrophysics Data System (ADS)
Swain, D. L.; Singh, D.; Horton, D. E.; Mankin, J. S.; Ballard, T.; Thomas, L. N.; Diffenbaugh, N. S.
2016-12-01
The ongoing and severe drought in California is linked to the multi-year persistence of anomalously strong ridging along the west coast of North America, which has deflected the Pacific storm track north of its climatological mean position. Recent work has shown that that highly amplified and strongly meridional atmospheric flow patterns in this region similar to the "Ridiculously Resilient Ridge" have become more common in recent decades. Previous investigations have suggested multiple possible contributors to this conspicuous atmospheric anomaly—including remote teleconnections to unusual tropical Pacific Ocean warmth and/or reduced Arctic sea ice, internal (natural) atmospheric variability, and anthropogenic forcing due to greenhouse gas emissions. Here, we explore observed relationships between mid-tropospheric atmospheric structure in this region and five hypothesized surface forcings: sea ice extent in the (1) Barents/Kara and (2) Beaufort/Chukchi regions, and sea surface temperatures in the (3) extratropical northeastern Pacific Ocean, (4) western tropical Pacific Ocean, and (5) eastern tropical Pacific Ocean. Using a predictive model based upon these observed relationships, we also investigate whether the failure of the powerful 2015-2016 El Niño event to bring above-average precipitation to California could have been predicted based upon these teleconnections.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
Global markets and the differential effects of climate and weather on conflict
NASA Astrophysics Data System (ADS)
Meng, K. C.; Hsiang, S. M.; Cane, M. A.
2011-12-01
Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit that conflict reacts to climate and not weather because climatic events trigger not only local agricultural losses but also increased food prices as a result of an aggregate decline in output. This is because in an open economy, idiosyncratic weather variation alone would not lead to higher prices. These results are informative in understanding the impacts of anthropogenic global change, which would yield variation exhibiting spatial coherence beyond the extent of existing markets.
NASA Astrophysics Data System (ADS)
Lane, C.; Taylor, A. K.; Spencer, J.; Jones, K.
2017-12-01
Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen isotope analyses of terrestrially-derived n-alkanes (δ2Halkane) from Jones Lake and Singletary Lake in eastern North Carolina spanning the last 50,000 years. Combined with prior pollen, charcoal, and bulk sediment geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but marked differences in edaphic conditions at the two sites likely due to differing water table depths. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that resemble the Bølling Allerød and Younger Dryas climatic events indicating potential sensitivity of regional hydrology to rapid climate change. The δ2Halkane data indicate a generally mesic Holocene that supported colonization by Quercus-dominated ecosystems during the early to middle Holocene. Evidence of increased aridity on the in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions in eastern North Carolina during the middle to late Holocene, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. This pattern may be indicative of a stronger Pacific basin influence on regional paleoprecipitation patterns than the distally-closer Atlantic. A transition from Quercus-to Pinus-dominated ecosystems 5500 cal yr B.P. is accompanied by a large increase in charcoal abundance, but is not coincident with any high-amplitude changes in the δ2Halkane record, indicating that precipitation variability was not likely the mechanism responsible for this ecological transition. While further development of regional paleohydrological records is necessary, the lack of a clear change in middle Holocene precipitation dynamics and the temporally-heterogeneous nature of the Quercus-Pinus transition in the region indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the ecological change.
NASA Astrophysics Data System (ADS)
Brigham-Grette, J.; Melles, M.; Deconto, R.; Koenig, S.
2007-12-01
The common goal of recovering long high-resolution records is in testing relevant questions of Earth system dynamics, as well as documenting the drivers of regional and global scale change. Lake El'gygytgyn, located 100 km north of the Arctic Circle in NE Russia is a target for deep drilling a continuous record back to ~3.6 My in Spring 2009. Pilot cores dating to 250ka to 300 ka provide the impetus for evaluating the sensitivity of the Arctic to regional and global climate events on millennial timescales. A clear record of the Younger Dryas, rapid change within MIS 3, and events including interstadials 19, 20, events within Stage 5, and at the end of stage 6 seen in Greenland and marine records suggest that oceanographic and atmospheric changes over the North Atlantic are reflected in hydrologic and seasonal temperature proxies. Rapid events are recorded despite demonstrated precessional influences and the suggested upwind influence of the Eurasian Ice sheet and dramatic changes in continentality due to changes in sea level across the Bering/Chukchi shelves and the extent and seasonal persistence of sea ice in the Arctic Ocean and deeper Bering Sea. Regionally, lake cores throughout Beringia reflect patterns of precipitation and temperature that point to persistent zonal differences in the response of the landscape to environmental change.
Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures
NASA Astrophysics Data System (ADS)
Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.
2018-03-01
A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.
On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, P. A.; Garfinkel, C. I.
2012-01-01
Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High Low differences are consistent with a weakened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes.
Hydropower in the Southeast: Balancing Lakeview and Production Optimization
NASA Astrophysics Data System (ADS)
Engstrom, J.
2017-12-01
Hydropower is the most important source of renewable electricity in Southeastern U.S. However, the region is repeatedly struck by droughts, and there are many conflicting interests in the limited water resource. This study takes a historical perspective and investigates how hydropower production patterns have changed over time, considering both natural drivers and human dimensions. Hydropower production is strongly tied to the natural variability of large-scale atmospheric drivers (teleconnections) as they affect the water availability in the whole river system and partly also the market demand. To balance the water resource between different interests is a complex task, and the conflicting interests vary by basin, sometimes over a relatively small geographic area. Here road networks adjacent to the hydropower reservoirs are used as an indicator of human development and recreational activities. Through a network analysis of the historical development of road networks surrounding the reservoir, the local and regional conflicting interests are identified and the influence on renewable electricity production quantified.
Disruption of Saturn's quasi-periodic equatorial oscillation by the great northern storm
NASA Astrophysics Data System (ADS)
Fletcher, Leigh N.; Guerlet, Sandrine; Orton, Glenn S.; Cosentino, Richard G.; Fouchet, Thierry; Irwin, Patrick G. J.; Li, Liming; Flasar, F. Michael; Gorius, Nicolas; Morales-Juberías, Raúl
2017-11-01
The equatorial middle atmospheres of the Earth1, Jupiter2 and Saturn3,4 all exhibit a remarkably similar phenomenon—a vertical, cyclic pattern of alternating temperatures and zonal (east-west) wind regimes that propagate slowly downwards with a well-defined multi-year period. Earth's quasi-biennial oscillation (QBO) (observed in the lower stratospheric winds with an average period of 28 months) is one of the most regular, repeatable cycles exhibited by our climate system1,5,6, and yet recent work has shown that this regularity can be disrupted by events occurring far away from the equatorial region, an example of a phenomenon known as atmospheric teleconnection7,8. Here, we reveal that Saturn's equatorial quasi-periodic oscillation (QPO) (with an 15-year period3,9) can also be dramatically perturbed. An intense springtime storm erupted at Saturn's northern mid-latitudes in December 201010-12, spawning a gigantic hot vortex in the stratosphere at 40° N that persisted for three years13. Far from the storm, the Cassini temperature measurements showed a dramatic 10 K cooling in the 0.5-5 mbar range across the entire equatorial region, disrupting the regular QPO pattern and significantly altering the middle-atmospheric wind structure, suggesting an injection of westward momentum into the equatorial wind system from waves generated by the northern storm. Hence, as on Earth, meteorological activity at mid-latitudes can have a profound effect on the regular atmospheric cycles in Saturn's tropics, demonstrating that waves can provide horizontal teleconnections between the phenomena shaping the middle atmospheres of giant planets.
NASA Astrophysics Data System (ADS)
Lane, Chad S.; Taylor, Audrey K.; Spencer, Jessica; Jones, Kaylee B.
2018-02-01
Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen (δ2Halkane) and carbon (δ13Calkane) isotope analyses of terrestrially-derived n-alkanes from Jones Lake and Singletary Lake in eastern North Carolina spanning the last ∼50,000 years. Combined with pollen, charcoal, and bulk geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but differing edaphic conditions at the sites perhaps related to differing water table depths. The δ13Calkane data indicate a significant C4 plant component during the late Pleistocene, but other proxies indicate a sparsely-vegetated landscape. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that are similar to the patterns of Bølling Allerød and Younger Dryas isotope data from Greenland indicating sensitivity of the regional climate to short-lived, high-amplitude climatic events. The δ2Halkane data indicate a mesic early Holocene that supported colonization by Quercus-dominated ecosystems. Evidence of middle Holocene aridity in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions on the ACP, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. A transition to Pinus-dominated ecosystems ∼5500 cal yr B.P. is accompanied by a large increase charcoal, but is not coincident with any large changes in δ2Halkane values, indicating that hydrologic change was likely not responsible for sustained late-Holocene dominance of Pinus. The lack of a change in middle Holocene hydrology and the spatiotemporally heterogeneous nature of the Quercus-Pinus transition on the ACP indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the regionally pervasive ecological change.
NASA Astrophysics Data System (ADS)
Kong, W.; Chiang, J. C. H.
2014-12-01
The East Asian Summer Monsoon (EASM) varies on inter-decadal to interglacial-glacial timescales. The EASM is stronger in the mid-Holocene than today, and these changes can be readily explained by orbitally-driven insolation increase during the boreal summer. However, a detailed understanding of the altered seasonal evolution of the EASM during this time is still lacking. In particular, previous work has suggested a close link between seasonal migration of the EASM and that of the mid-latitude westerlies impinging on the Tibetan Plateau. In this study, we explore, this problem in PMIP3 climate model simulations of the mid-Holocene, focusing on the role of atmospheric circulation and in particular how the westerly jet modulates the East Asia summer climate on paleoclimate timescales. Analysis of the model simulations suggests that, compared to the preindustrial simulations, the transition from Mei-Yu to deep summer rainfall occurs earlier in the mid-Holocene. This is accompanied by an earlier weakening and northward shift of westerly jet away from the Tibetan Plateau. The variation in the strength and the 3-D structure of the westerly jet in the mid-Holocene is summarized. We find that changes to the monsoonal rainfall, westerly jet and meridional circulation covary on paleoclimate timescales. Meridional wind changes in particular are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road' teleconnection pattern, riding along the westerly jet. Diagnostic analysis also reveals changes in moist static energy and eddy energy fluxes associated with the earlier seasonal transition of the EASM. Our analyses suggest that the westerly jet is critical to the altered dynamics of the East Asian summer monsoon during the mid-Holocene.
Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew
2017-12-20
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
NASA Astrophysics Data System (ADS)
Milner, A. M.; Roucoux, K. H.; Collier, R. E. L.; Müller, U. C.; Pross, J.; Tzedakis, P. C.
2016-12-01
The discovery that climate variability during the Last Glacial shifted rapidly between climate states has intensified efforts to understand the distribution, timing and impact of abrupt climate change under a wide range of boundary conditions. In contribution to this, we investigate the nature of abrupt environmental changes in terrestrial settings of the Mediterranean region during the Last Interglacial Complex (Marine Isotope Stage [MIS] 5) and explore the relationships of these changes to high-latitude climate events. We present a new, temporally highly resolved (mean: 170 years) pollen record for the Last Interglacial Complex from Tenaghi Philippon, north-east Greece. The new pollen record, which spans the interval from 130,000 to 65,000 years ago, forms part of an exceptionally long polleniferous sediment archive covering the last 1.35 million years. The pollen data reveal an interglacial followed by alternating forest and steppe phases representing the interstadials and stadials of the Early Glacial. Superimposed on these millennial-scale changes is evidence of persistent sub-millennial-scale variability. We identify ten high-amplitude abrupt events in the pollen record, characterised by rapid contractions of closed forest to open steppe environment and interpreted to indicate major changes in moisture availability and temperature. The contractions in forest cover on millennial timescales appear associated with cooling events in the Mediterranean Sea, North Atlantic and Greenland regions, linked to the Dansgaard-Oeschger (DO) cycles of the Early Glacial. On sub-millennial timescales, the pattern of changes in forest cover at Tenaghi Philippon display a structure similar to the pattern of short-lived precursor and rebound-type events detected in the Greenland ice-core record. Our findings indicate that persistent, high-amplitude environmental variability occurred throughout the Early Glacial, on both millennial and submillennial timescales. Furthermore, the similarity of the pattern of change between Tenaghi Philippon and Greenland on sub-millennial timescales suggests that teleconnections between the high-latitudes and the Mediterranean region operate on sub-millennial timescales and that some terrestrial archives, such as Tenaghi Philippon, are particularly sensitive recorders of these abrupt climate changes.
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
Summer precipitation variability over South America on long and short intraseasonal timescales
NASA Astrophysics Data System (ADS)
Gonzalez, Paula L. M.; Vera, Carolina S.
2014-10-01
A dipole pattern in convection between the South Atlantic convergence zone and the subtropical plains of southeastern South America characterizes summer intraseasonal variability over the region. The dipole pattern presents two main bands of temporal variability, with periods between 10 and 30 days, and 30 and 90 days; each influenced by different large-scale dynamical forcings. The dipole activity on the 30-90-day band is related to an eastward traveling wavenumber-1 structure in both OLR and circulation anomalies in the tropics, similar to that associated with the Madden-Julian oscillation. The dipole is also related to a teleconnection pattern extended along the South Pacific between Australia and South America. Conversely, the dipole activity on the 10-30-day band does not seem to be associated with tropical convection anomalies. The corresponding circulation anomalies exhibit, in the extratropics, the structure of Rossby-like wave trains, although their sources are not completely clear.
Teleconnections of ENSO and IOD to summer monsoon and rice production potential of India
NASA Astrophysics Data System (ADS)
Jha, Somnath; Sehgal, Vinay Kumar; Raghava, Ramesh; Sinha, Mourani
2016-12-01
Regional trend of summer monsoon precipitation has been analyzed for broad physical regions of India namely, (i) Indo-Gangetic plain, (ii) Central and East India, (iii) Coastal and Peninsular India and (iv) Western India. A significantly drying trend has been found in the two regions namely, Indo-Gangetic plain and Central and East India with comparative seasonal rate of drying higher in the latter region. A complex relation between the regional trend of summer monsoon precipitation, global teleconnection parameters and rice production of the regions have been studied. El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) have a significant role in the precipitation anomaly of Indo-Gangetic plain unlike Central and East India where the ENSO only plays role as global teleconnection parameter. Rice production of Central and East India has been found to be affected adversely during the El Nino years. Central and East India is found to be the worst affected region compared to the Indo-Gangetic plain with respect to its fragile rainfed rice production potential and strong adverse teleconnection of El Nino on the rice production in this zone.
Extreme cyclone events in the Arctic during wintertime: Variability and Trends
NASA Astrophysics Data System (ADS)
Rinke, Annette; Maturilli, Marion; Graham, Robert; Matthes, Heidrun; Handorf, Doerthe; Cohen, Lana; Hudson, Stephen; Moore, John
2017-04-01
Extreme cyclone events are of significant interest as they can transport much heat, moisture, and momentum poleward. Associated impacts are warming and sea-ice breakup. Recently, several examples of such extreme weather events occurred in winter (e.g. during the N-ICE2015 campaign north of Svalbard and the Frank North Atlantic storm during the end of December 2015). With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny Alesund station for the same 37 year period. We define an extreme cyclone event by a extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny Alesund/N-ICE2015 SLP data) and a deepening of at least 6 hPa/6 hours. Areas of highest frequency of occurrence of extreme cyclones are south/southeast of Greenland (corresponding to the Islandic low), between Norway and Svalbard and in the Barents/Kara Seas. The time series of the number of occurrence of extreme cyclone events for Ny Alesund/N-ICE show considerable interannual variability. The trend is not consistent through the winter, but we detect an increase in early winter and a slight decrease in late winter. The former is due to the increased occurrence of longer events at the expense of short events. Furthermore, the difference patterns of the frequency of events for months following the September with high and low Arctic sea-ice extent ("Low minus high sea ice") conforms with the change patterns of extreme cyclones numbers (frequency of events "2000-2015 minus 1979-1994") and with the trend patterns. This indicates that the changes in extreme cyclone occurrence in early winter are associated with sea-ice changes (regional feedback). In contrast, different mechanisms via large-scale circulation changes/teleconnections seem to play a role in late winter.
NASA Astrophysics Data System (ADS)
Blais, J. M.; Korosi, J.; Thienpont, J. R.; Pisaric, M. F.; Kokelj, S.; Smol, J. P.; Simpson, M. J.
2017-12-01
Climate change-induced landscape alterations have consequences for vulnerable wildlife. In high-latitude regions, dramatic changes in water levels have been linked to climate warming. While most attention has focused on shrinking Arctic lakes, here, we document the opposite scenario: extensive lake expansion in Canada's Northwest Territories that has implications for the conservation of ecologically-important wood bison. We quantified lake area changes since 1986 using remote sensing techniques, and recorded a net gain of > 500 km2, from 5.7% to 11% total water coverage. Inter-annual variability in water level was significantly correlated to the Pacific/North American pattern teleconnection and the summer sea surface temperature anomaly. Historical reconstructions using proxy data archived in dated sediment cores showed that recent lake expansion is outside the range of natural variability of these ecosystems over at least the last 300 years. Lake expansion resulted in increased allochthonous carbon transport, as shown unequivocally by increases in lignin-derived phenols, but with a greater proportional increase in the contribution of organic matter from phytoplankton, as a result of increased open-water habitat. We conclude that complex hydrological changes occurring as a result of recent climatic change have resulted in rapid and widespread lake expansion that may significantly affect at-risk wildlife populations. This study is based on results we reported in Nature Communications in 2017 (DOI: 10.1038/ncomms14510).
Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2015-12-01
Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Niña mode with Bjerknes ocean dynamical feedback. This mechanism contributes to the understanding of the global decadal climate variability and predictability. In particular, Atlantic contributes to the Eastern Pacific cooling, which is considered as an important source of the recent global warming hiatus.
17 Years of Cloud Heights from Terra, and Beyond
NASA Astrophysics Data System (ADS)
Davies, R.
2017-12-01
The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.
NASA Astrophysics Data System (ADS)
Cooke, Melanie
The substantial interannual variability and the observed warming trend of the Beaufort Sea region are important motivators for the study of regional climate and weather there. In an attempt to further our understanding of strong wind events, which can drive sea ice dynamics and storm surges, their characteristic environments at the synoptic and planetary scales are defined and analysed using global reanalysis data. A dependency on an enhanced or suppressed Aleutian low is found. This produces either a strong southeasterly or north-westerly 1000-hPa geostrophic wind event. The characteristic mid-tropospheric patterns for these two distinct event types show similarities to the positive and negative Pacific/North American teleconnection patterns, but their correlations have yet to be assessed.
The East Asian Jet Stream and Asian-Pacific Climate
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
1999-01-01
In this study, the NASA GEOS and NCEP/NCAR reanalyses and GPCP rainfall data have been used to study the variability of the East Asian westerly jet stream and its impact on the Asian-Pacific climate, with a focus on interannual time scales. Results indicate that external forcings such as sea surface temperature (SST) and land surface processes also play an important role in the variability of the jet although this variability is strongly governed by internal dynamics. There is a close link between the jet and Asian-Pacific climate including the Asian winter monsoon and tropical convection. The atmospheric teleconnection pattern associated with the jet is different from the ENSO-related pattern. The influence of the jet on eastern Pacific and North American climate is also discussed.
Teleconnections in complex human-Earth system models
NASA Astrophysics Data System (ADS)
Calvin, K. V.; Edmonds, J.
2017-12-01
Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.
Advancements in the use of speleothems as climate archives
NASA Astrophysics Data System (ADS)
Wong, Corinne I.; Breecker, Daniel O.
2015-11-01
Speleothems have become a cornerstone of the approach to better understanding Earth's climatic teleconnections due to their precise absolute chronologies, their continuous or semicontinuous deposition and their global terrestrial distribution. We review the last decade of speleothem-related research, building off a similar review by McDermott (2004), in three themes - i) investigation of global teleconnections using speleothem-based climate reconstructions, ii) refinement of climate interpretations from speleothem proxies through cave monitoring, and iii) novel, technical methods of speleothem-based climate reconstructions. Speleothem records have enabled critical insight into the response of global hydroclimate to large climate changes. This includes the relevant forcings and sequence of climatic responses involved in glacial terminations and recognition of a global monsoon response to climate changes on orbital and millennial time scales. We review advancements in understanding of the processes that control speleothem δ13C values and introduce the idea of a direct atmospheric pCO2 influence. We discuss progress in understanding kinetic isotope fractionation, which, with further advances, may help quantify paleoclimate changes despite non-equilibrium formation of speleothems. This feeds into the potential of proxy system modeling to consider climatic, hydrological and biogeochemical processes with the objective of quantitatively interpreting speleothem proxies. Finally, we provide an overview of emerging speleothem proxies and novel approaches using existing proxies. Most recently, technical advancements made in the measurement of fluid inclusions are now yielding reliable determinations of paleotemperatures.
Abrupt decadal-to-centennial hydroclimate changes in the Mediterranean region since the mid-Holocene
NASA Astrophysics Data System (ADS)
Hu, Hsun-Ming; Shen, Chuan-Chou; Jiang, Xiuyang; Wang, Yongjin; Mii, Horng-Sheng; Michel, Véronique
2016-04-01
A series of severe drought events in the Mediterranean region over the past two decades has posed a threat on both human society and biosystem. Holocene hydrological dynamics can offer valuable clues for understanding future climate and making proper adaption strategy. Here, we present a decadal-resolved stalagmite record documenting various hydroclimatic fluctuations in the north central Mediterranean region since the middle Holocene. The stalagmite δ18O sequence shows dramatic instability, characterized by abrupt shifts between dry and wet conditions <50 years. The timing of regional culture demises, such as the Hittite Kingdom, Mycenaean Greece, Akkadian Empire, Egyptian Old Kingdom, and Uruk, occurred during the drought events, suggesting an important role of climate impact on human civilization. The unstable hydroclimate evolution is related to transferred North Atlantic Oscillation states. Rate of rapid transfer of precipitation patterns, which can be pin-pointed by our good chronology, improves the prediction to future climate changes in North Atlantic region. We also found that a strong correlation between this stalagmite δ18O and sea surface temperatures especially in Pacific Ocean. This agreement suggests a distant interregional climate teleconnection.
Tropical Pacific climate during the Medieval Climate Anomaly: progress and pitfalls
NASA Astrophysics Data System (ADS)
Cobb, K. M.; Westphal, N.; Charles, C.; Sayani, H. R.; Edwards, R. L.; Cheng, H.; Grothe, P. R.; Chen, T.; Hitt, N. T.; O'Connor, G.; Atwood, A. R.
2016-12-01
A vast trove of paleoclimate records indicates that the Medieval Climate Anomaly (MCA; 900-1200AD) was characterized by relative warmth throughout the Northern Hemisphere and significant hydroclimate anomalies - particularly well-resolved over North America - that posed a challenge to human populations. The global-scale nature of the climate anomalies has driven speculation that the tropical Pacific, with its rich spectrum of natural variability and far-reaching impact, may have undergone a prolonged reorganization during the MCA. While some key records from across the tropical Pacific document significant changes in temperature and/or hydrology, a dynamically-consistent picture of the MCA tropical Pacific climate state has proven elusive. In particular, there are few if any robust paleoclimate constraints from the central Pacific, where even modest changes in ocean temperature translate into distinct patterns of global atmospheric teleconnections. Here, we present a new collection of fossil coral multi-proxy records from Christmas Island (2N, 157W) that provide robust constraints on both temperature and hydrological changes during the MCA. We employ both modern coral data, instrumental climate data, and climate model output in developing a framework for quantifying the uncertainties associated with the new fossil coral data. In doing so, we illustrate the clear benefits of modern environmental monitoring campaigns that inform the generation of paleoclimate pseudo-proxies.
Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA
NASA Astrophysics Data System (ADS)
Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid
2018-06-01
There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).
South Asian high and Asian-Pacific-American climate teleconnection
NASA Astrophysics Data System (ADS)
Zhang, Peiqun; Song, Yang; Kousky, Vernon E.
2005-11-01
Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the mid-Pacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean.
Trans-Pacific ENSO teleconnections pose a correlated risk to global agriculture
NASA Astrophysics Data System (ADS)
Anderson, W. B.; Seager, R.; Cane, M. A.; Baethgen, W.
2017-12-01
The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability, particularly in the Pacific Basin. ENSO life-cycles tend to evolve over multiple years, as do the associated trans-Pacific ENSO teleconnections. This analysis, however, represents the first attempt to characterize the structure of the risk posed by ENSO to wheat, maize and soybean production across the Pacific Basin. Our results indicate that most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the midlatitudes that spans the Pacific Basin. This teleconnection directly links the soybean and maize growing seasons of the US, Mexico and China. It also connects the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. While the prospect of ENSO forcing simultaneous droughts in major food producing regions seems disastrous, there may be a silver lining from the perspective of global food security: trans-Pacific ENSO teleconnections to yields are often offsetting between major producing regions in the eastern and western portions of the Pacific Basin. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in China, Mexico and northeast Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Finally, we investigate how trade networks interact with this structure of ENSO teleconnections to influence food security. Global trade may shift the burden of poor growing conditions onto import-dependent countries if multiple exporting nations experience crop failures simultaneously. But trade may also mitigate food security crises if shortfalls from one major producing region are compensated by good harvests elsewhere.
The unusual wet summer (July) of 2014 in Southern Europe
NASA Astrophysics Data System (ADS)
Ratna, Satyaban B.; Ratnam, J. V.; Behera, Swadhin K.; Cherchi, Annalisa; Wang, Wanqiu; Yamagata, Toshio
2017-06-01
Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The monthly rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982-2013 July climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea surface temperature (SST) and convective anomalies in the tropical Pacific through the atmospheric teleconnection. Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi-stationary Rossby wave from the Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic in nature and seen extending to lower atmospheric levels, weakening the seasonal high and causing heavy precipitation over the Southern Europe. The hypothesis is verified using the National Centers for Environmental Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.
NASA Astrophysics Data System (ADS)
Feng, Juan; Chen, Wen; Li, Yanjie
2017-04-01
Asymmetric atmospheric responses to ENSO are revisited after dividing it into two types: eastern-Pacific (EP) and central-Pacific (CP) ENSO. The EP ENSO triggers two obvious asymmetric atmospheric teleconnections: One is the Pacific-North American-like teleconnection. Its asymmetry is characterized by weaker amplitudes during the EP La Niña than EP El Niño, which is caused by a much weaker EP La Niña tropical forcing and the resultant weaker extra-tropical vorticity forcing. The other is the Atlantic-Eurasian teleconnection with negative height anomalies in the subtropical Atlantic and Eurasia and positive anomalies in the high-latitude Atlantic and northeast Asia, which appears during the EP La Niña but not during the EP El Niño. The background state plays a vital role in this asymmetry. The EP La Niña-type basic state is more conducive to propagation of the wave rays into the Atlantic-Eurasian region compared to EP El Niño situation. In contrast, the CP ENSO yields an Arctic Oscillation-like teleconnection, presenting an appreciable asymmetry in the subtropical amplitudes that are stronger during the CP El Niño than during the CP La Niña. In this case, the distinct effects of the different background state on the equatorward wave rays are responsible for this asymmetry. Under the CP El Niño-type background state, the equatorward wave rays tend to be reflected at the latitudes where the zonal wind equals zero (U = 0), and then successfully captured by the subtropical westerly jet. However, under the CP La Niña-type background state, the equatorward wave rays disappear at U = 0 latitudes.
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Parekh, Anant; Gnanaseelan, C.; Sreenivas, P.
2014-01-01
Inter-decadal modulation of El Niño-Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) is investigated in the coupled general circulation model Climate Forecast System (CFS) using a hundred year integration. The model is able to capture the periodicity of El Niño variability, which is similar to that of the observations. The maximum TIO/north Indian Ocean (NIO) SST warming (during spring following the decay phase of El Niño) associated with El Niño is well captured by the model. Detailed analysis reveals that the surface heat flux variations mainly contribute to the El Niño forced TIO SST variations both in observations and model. However, spring warming is nearly stationary throughout the model integration period, indicating poor inter-decadal El Niño teleconnections. The observations on the other hand displayed maximum SST warming with strong seasonality from epoch to epoch. The model El Niño decay delayed by more than two seasons, results in persistent TIO/NIO SST warming through the following December unlike in the observations. The ocean wave adjustments and persistent westerly wind anomalies over the equatorial Pacific are responsible for late decay of El Niño in the model. Consistent late decay of El Niño, throughout the model integration period (low variance), is mainly responsible for the poor inter-decadal ENSO teleconnections to TIO/NIO. This study deciphers that the model needs to produce El Niño decay phase variability correctly to obtain decadal-modulations in ENSO teleconnection.
A Wetter Future For California?
NASA Astrophysics Data System (ADS)
Luptowitz, R.; Allen, R.
2016-12-01
Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large natural variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use the Community Earth System Model (CESM) Large Ensemble Project driven by the business-as-usual scenario, and find a robust increase in CA precipitation. This implies CMIP5 model differences are the dominant cause of the large range of future CA precipitation projections. The boreal winter season-when most of the CA precipitation increase occurs-is associated with changes in the mean circulation reminiscent of an El Niño teleconnection, including a southeastward shift of the upper level winds and an increase in storm track activity in the east Pacific, and an increase in CA moisture convergence. We further show that warming of tropical eastern Pacific sea surface temperatures-a robust feature in all models-accounts for these changes. Models that better simulate El Niño-CA precipitation teleconnections, including CESM, tend to yield larger, and more consistent increases in CA precipitation. Our results show that California will become wetter in a warmer world.
Upper air teleconnections to Ob River flows and tree rings
NASA Astrophysics Data System (ADS)
Meko, David; Panyushkina, Irina; Agafonov, Leonid
2015-04-01
The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.
Origin of seasonal predictability for summer climate over the Northwestern Pacific
Kosaka, Yu; Xie, Shang-Ping; Lau, Ngar-Cheung; Vecchi, Gabriel A.
2013-01-01
Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific–Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air–sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean–atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean–atmosphere feedback explains why the last echoes of El Niño–Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society. PMID:23610388
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures
Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.
2012-01-01
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L
2012-09-04
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon
2014-01-01
Large-scale winter teleconnection of the East Atlantic - West Russia (EA-WR) over the Atlantic and surrounding regions is examined in order to quantify its impacts on temperature and precipitation and identify the physical mechanisms responsible for its existence. A rotated empirical orthogonal function (REOF) analysis of the upper-tropospheric monthly height field captures successfully the EA-WR pattern and its interannual variation, with the North Atlantic Oscillation as the first mode. EA-WRs climate impact extends from eastern North America to Eurasia. The positive (negative) EA-WR produces positive (negative) temperature anomalies over the eastern US, western Europe and Russia east of Caspian Sea, with negative (positive) anomalies over eastern Canada, eastern Europe including Ural Mountains and the Middle East. These anomalies are largely explained by lower-tropospheric temperature advections. Positive (negative) precipitation anomalies are found over the mid-latitude Atlantic and central Russia around 60E, where lower-level cyclonic (anticyclonic) circulation anomaly is dominant. The eastern Canada and the western Europe are characterized by negative (positive) precipitation anomalies.The EA-WR is found to be closely associated with Rossby wave propagation. Wave activity fluxes show that it is strongly tied to large-scale stationary waves. Furthermore, a stationary wave model (SWM) forced with vorticity transients in the mid-latitude Atlantic (approximately 40N) or diabatic heat source over the subtropical Atlantic near the Caribbean Sea produces well-organized EA-WR-like wave patterns, respectively. Sensitivity tests with the SWM indicate improvement in the simulation of the EA-WR when the mean state is modified to have a positive NAO component that enhances upper-level westerlies between 40-60N.
NASA Astrophysics Data System (ADS)
Greene, Arthur M.; Robertson, Andrew W.
2017-12-01
An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by "western disturbances" propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.
Skillful seasonal predictions of winter precipitation over southern China
NASA Astrophysics Data System (ADS)
Lu, Bo; Scaife, Adam A.; Dunstone, Nick; Smith, Doug; Ren, Hong-Li; Liu, Ying; Eade, Rosie
2017-07-01
Southern China experiences large year-to-year variability in the amount of winter precipitation, which can result in severe social and economic impacts. In this study, we demonstrate prediction skill of southern China winter precipitation by three operational seasonal prediction models: the operational Global seasonal forecasting system version 5 (GloSea5), the NCEP Climate Forecast System (CFSv2) and the Beijing Climate Center Climate System Model (BCC-CSM1.1m). The correlation scores reach 0.76 and 0.67 in GloSea5 and CFSv2, respectively; and the amplitude of the ensemble mean forecast signal is comparable to the observed variations. The skilful predictions in GloSea5 and CFSv2 mainly benefit from the successful representation of the observed ENSO teleconnection. El Niño weakens the Walker circulation and leads to the strengthening of the subtropical high over the northwestern Pacific. The anti-cyclone then induces anomalous northward flow over the South China Sea and brings water vapor to southern China, resulting in more precipitation. This teleconnection pattern is too weak in BCC-CSM1.1m, which explains its low skill (0.13). Whereas the most skilful forecast system is also able to simulate the influence of the Indian Ocean on southern China precipitation via changes in southwesterly winds over the Bay of Bengal. Finally, we examine the real-time forecast for 2015/16 winter when a strong El Niño event led to the highest rainfall over southern China in recent decades. We find that the GloSea5 system gave good advice as it produced the third wettest southern China in the hindcast, but underestimated the observed amplitude. This is likely due to the underestimation of the Siberian High strength in 2015/2016 winter, which has driven strong convergence over southern China. We conclude that some current seasonal forecast systems can give useful warning of impending extremes. However, there is still need for further model improvement to fully represent the complex dynamics of the region.
NASA Astrophysics Data System (ADS)
Lu, Mengqian; Lall, Upmanu
2017-04-01
The threats that hydroclimatic extremes pose to sustainable development, safety and operation of infrastructure are both severe and growing. Recent heavy precipitation triggered flood events in many regions and increasing frequency and intensity of extreme precipitation suggested by various climate projections highlight the importance of understanding the associated hydrometeorological patterns and space-time variability of such extreme events, and developing a new approach to improve predictability with a better estimation of uncertainty. This clear objective requires the optimal utility of Big Data analytics on multi-source datasets to extract informative predictors from the complex ocean-atmosphere coupled system and develop a statistical and physical based framework. The proposed presentation includes the essence of our selected works in the past two years, as part of our Global Floods Initiatives. Our approach for an improved extreme prediction begins with a better understanding of the associated atmospheric circulation patterns, under the influence and regulation of slowly changing oceanic boundary conditions [Lu et al., 2013, 2016a; Lu and Lall, 2016]. The study of the associated atmospheric circulation pattern and the regulation of teleconnected climate signals adopted data science techniques and statistical modeling recognizing the nonstationarity and nonlinearity of the system, as the underlying statistical assumptions of the classical extreme value frequency analysis are challenged in hydroclimatic studies. There are two main factors that are considered important for understanding how future flood risk will change. One is the consideration of moisture holding capacity as a function of temperature, as suggested by Clausius-Clapeyron equation. The other is the strength of the convergence or convection associated with extreme precipitation. As convergence or convection gets stronger, rain rates can be expected to increase if the moisture is available. For extreme rainfall events in the mid-latitudes, tropical moisture sources related to strong convection from equatorial oceans were identified together with atmospheric circulation conditions that in favor of consistent transport and convergence of moisture [Lu et al., 2013; Lu and Lall, 2016]. Further, [Lu et al., 2016a] linked the influence of the slowly changing oceanic boundary conditions with the development of the global atmospheric circulation and showed that (1) strong convection over the oceans and the atmospheric moisture transport and flow convergence indicated by atmospheric pressure fields can determine where and when extreme precipitation occurs; and (2) the time-lagged spatial relationship between teleconnected oceanic signals and synoptic atmospheric circulations can improve the predictability of extreme precipitation globally over the next 30 days; such a forecast would be potentially very useful for flood preparation at a lead time that is well beyond the lead time of meteorological forecasts, and it corresponds to a gap in the predictability between quantitative precipitation forecasts and seasonal-to-interannual climate prediction. Lastly, we will demonstrate our most recent results showing the merits of utilizing climate informed forecasts for water resources management, considering irrigation supply, hydropower and flood control, with marked-based financial instruments [Lu et al., 2016b].
Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation
Hoell, Andrew; Barlow, Mathew; Wheeler, Mathew; Funk, Christopher C.
2014-01-01
The El Niño–Southern Oscillation (ENSO) is the leading mode of interannual variability, with global impacts on weather and climate that have seasonal predictability. Research on the link between interannual ENSO variability and the leading mode of intraseasonal variability, the Madden–Julian oscillation (MJO), has focused mainly on the role of MJO initiating or terminating ENSO. We use observational analysis and modeling to show that the MJO has an important simultaneous link to ENSO: strong MJO activity significantly weakens the atmospheric branch of ENSO. For weak MJO conditions relative to strong MJO conditions, the average magnitude of ENSO-associated tropical precipitation anomalies increases by 63%, and the strength of hemispheric teleconnections increases by 58%. Since the MJO has predictability beyond three weeks, the relationships shown here suggest that there may be subseasonal predictability of the ENSO teleconnections to continental circulation and precipitation.
Tree growth response to ENSO in Durango, Mexico
NASA Astrophysics Data System (ADS)
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Tree growth response to ENSO in Durango, Mexico.
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Algeo, T. J.
1998-01-01
The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
Recent trends in the frequency and duration of global floods
NASA Astrophysics Data System (ADS)
Najibi, Nasser; Devineni, Naresh
2018-06-01
Frequency and duration of floods are analyzed using the global flood database of the Dartmouth Flood Observatory (DFO) to explore evidence of trends during 1985-2015 at global and latitudinal scales. Three classes of flood duration (i.e., short: 1-7, moderate: 8-20, and long: 21 days and above) are also considered for this analysis. The nonparametric Mann-Kendall trend analysis is used to evaluate three hypotheses addressing potential monotonic trends in the frequency of flood, moments of duration, and frequency of specific flood duration types. We also evaluated if trends could be related to large-scale atmospheric teleconnections using a generalized linear model framework. Results show that flood frequency and the tails of the flood duration (long duration) have increased at both the global and the latitudinal scales. In the tropics, floods have increased 4-fold since the 2000s. This increase is 2.5-fold in the north midlatitudes. However, much of the trend in frequency and duration of the floods can be placed within the long-term climate variability context since the Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation were the main atmospheric teleconnections explaining this trend. There is no monotonic trend in the frequency of short-duration floods across all the global and latitudinal scales. There is a significant increasing trend in the annual median of flood durations globally and each latitudinal belt, and this trend is not related to these teleconnections. While the DFO data come with a certain level of epistemic uncertainty due to imprecision in the estimation of floods, overall, the analysis provides insights for understanding the frequency and persistence in hydrologic extremes and how they relate to changes in the climate, organization of global and local dynamical systems, and country-scale socioeconomic factors.
ENSO detection and use to inform the operation of large scale water systems
NASA Astrophysics Data System (ADS)
Pham, Vuong; Giuliani, Matteo; Castelletti, Andrea
2016-04-01
El Nino Southern Oscillation (ENSO) is a large-scale, coupled ocean-atmosphere phenomenon occurring in the tropical Pacific Ocean, and is considered one of the most significant factors causing hydro-climatic anomalies throughout the world. Water systems operations could benefit from a better understanding of this global phenomenon, which has the potential for enhancing the accuracy and lead-time of long-range streamflow predictions. In turn, these are key to design interannual water transfers in large scale water systems to contrast increasingly frequent extremes induced by changing climate. Despite the ENSO teleconnection is well defined in some locations such as Western USA and Australia, there is no consensus on how it can be detected and used in other river basins, particularly in Europe, Africa, and Asia. In this work, we contribute a general framework relying on Input Variable Selection techniques for detecting ENSO teleconnection and using this information for improving water reservoir operations. Core of our procedure is the Iterative Input variable Selection (IIS) algorithm, which is employed to find the most relevant determinants of streamflow variability for deriving predictive models based on the selected inputs as well as to find the most valuable information for conditioning operating decisions. Our framework is applied to the multipurpose operations of the Hoa Binh reservoir in the Red River basin (Vietnam), taking into account hydropower production, water supply for irrigation, and flood mitigation during the monsoon season. Numerical results show that our framework is able to quantify the relationship between the ENSO fluctuations and the Red River basin hydrology. Moreover, we demonstrate that such ENSO teleconnection represents valuable information for improving the operations of Hoa Binh reservoir.
NASA Astrophysics Data System (ADS)
Mamalakis, A.; Yu, J. Y.; Randerson, J. T.; AghaKouchak, A.; Foufoula-Georgiou, E.
2017-12-01
Early and reliable prediction of seasonal precipitation in the southwestern US (SWUS) remains a challenge with significant implications for the economy, water security and ecosystem management of the region. Traditional drivers of winter precipitation in the SWUS have been linked to the El Niño-Southern Oscillation (ENSO), decadal/multidecadal oscillations of the sea surface temperature in northern Pacific and Atlantic oceans, and persistent high-pressure ridges over the Gulf of Alaska. However, ENSO as well as other climate modes exhibit weak statistical relationships with precipitation and low predictability as lead time increases. Grounded on the hypothesis that still undiscovered relationships between large-scale atmosphere-ocean dynamics and SWUS precipitation might exist, here we followed a diagnostic approach by which instead of restricting ourselves to the established teleconnections, we analyzed systematically the correlation of global sea surface temperature (SST) and geopotential height (GPH) with winter precipitation amounts in all climatic divisions in the SWUS, for 1950-2015. Our results show that late-summer persistent SST and GPH anomalies in the subtropical southwestern Pacific are strongly connected with winter precipitation in most climatic divisions, exhibiting higher correlation values than ENSO, and thus increasing the potential for earlier and more accurate precipitation prediction. Cross validation and 30-year running average analysis starting in 1950 suggest an amplification of the detected teleconnections over the past three to four decades. The latter is most likely a result of the reported expansion of the tropics, which has started after the 1980s, and allows SST or GPH variability at lower latitudes to affect the meridional atmospheric circulation. Our work highlights the need to understand the dynamic nature of the coupled atmosphere-ocean system in a changing climate for improving future predictions of regional precipitation.
The combined influence of the main European circulation patterns on carbon uptake by ecosystems
NASA Astrophysics Data System (ADS)
Bastos, Ana; Gouveia, Célia; Trigo, Ricardo
2014-05-01
Understanding how natural climate variability affects carbon uptake by land and ocean pools is particularly relevant to better characterize human impact on the carbon cycle. Recently, we have contributed to assess the major role played by the El-Niño/Southern Oscillation in driving inter-annual variability (IAV) of carbon uptake by land ecosystems and significantly influencing global CO2 air-borne fraction [1]. Despite the prominent role played by ENSO, other important teleconnections on the hemispheric scale have deserved less attention. On the European scale, the main mode of variability is the North-Atlantic Oscillation (NAO), which controls storm tracks position and drives changes in temperature and precipitation over the whole region, affecting vegetation dynamics [2]. Besides NAO, a few additional large scale circulation patterns the Scandinavian (SC) and East-Atlantic (EA) Patterns, are also known to influence significantly the European climate [3]. Different combinations of these teleconnection polarities have been recently shown to modulate the overall role of the NAO impact location and strength, thus affecting winter temperature and precipitation patterns over Europe [4]. This work aims to answer the following questions: (i) how do NAO, EA and SC affect vegetation carbon uptake IAV? (ii) do the interactions between these three modes have a significant impact on land CO2 IAV? (iii) what is the contribution of the different physical variables to ecosystems' response to these modes? (iv) how well do the state-of-the-art Earth System Models (ESMs) from CMIP5 represent these climate variability modes and the corresponding carbon fluxes? We first analyze observational data to assess the relationships between the different combinations of NAO, SC and EA polarities and IAV of gross and net primary production (GPP and NPP, respectively), as well as the most relevant driving factors of ecosystem's response to those variability patterns. Although the winter state of NAO has, as expected, the largest impact on European-wide carbon uptake patterns, the other modes appear to have a strong influence in particular regions, presenting overlapping effects with different signs which are due to differentiated responses to temperature and precipitation variability. We then rely on the historical experiment (CO2 concentration driven) of 12 ESMs from CMIP5 to assess the capability of those models to represent NAO, EA and SC patterns, the associated physical variables as well as the corresponding land carbon fluxes. Although all models simulate NAO reasonably well, and most represent EA and SC patterns satisfactorily, the response of the carbon cycle to these variability modes still needs further improvements. References [1] Bastos, A., Running, S. W., Gouveia, C.M., Trigo, R.M., (2013): J. Geophys. Res. Biogeosci.,118, 1247-1255, doi:10.1002/jgrg.20100. [2] Gouveia, C.M., Trigo, R. M., DaCamara, C. C., Libonati, R., Pereira, J. M. C. (2008): Int. J. Climatol., 28, 1835-1847, doi: 10.1002/joc.1682. [3] Trigo R.M., Valente M.A., Trigo I.F., Miranda P.M., Ramos A.M., Paredes D., García-Herrera R. (2008): Annals of the New York Academy of Sciences, 1146, 212-234, doi: 10.1196/annals.1446.014. [4] Comas-Bru, L., McDermott, F. (2013): Q.J.R. Meteorol. Soc., doi: 10.1002/qj.2158.
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. L.; Cohen, A. S.
2010-12-01
Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.
The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, Kyu-Myong
2012-01-01
In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.
NASA Astrophysics Data System (ADS)
Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk
2018-03-01
The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.
NASA Astrophysics Data System (ADS)
Wang, Jiabao; Wen, Zhiping; Wu, Renguang; Guo, Yuanyuan; Chen, Zesheng
2016-06-01
The East Asia-Pacific (EAP) pattern is a well-known meridional teleconnection over East Asia during boreal summer. In this study, the mechanism for growth of the EAP on intraseasonal timescale is investigated through a vorticity budget. It is found that the beta-effect and high-frequency transient eddies have primary contributions to the growth of the low-frequency EAP. The former leads to a westward shift of disturbances associated with the low-frequency EAP and the latter favors an amplification of disturbances, respectively. The interaction between low-frequency disturbances and zonal flow has a damping effect by dragging disturbances eastward. The impact of boreal summer intraseasonal oscillation (BSISO) on the triggering of the low-frequency EAP is also examined in this study based on observational analysis and a linear model experiment. It is shown that an elongated anomalous convection band located in the vicinity of Philippines associated with the dominant mode of BSISO has a significant impact on the initiation of low-frequency EAP via Rossby wave propagation, whereas anomalous convection located over the North Indian Ocean has a limited impact. Based on the results of present study, the low-frequency EAP could be a self-sustained mode, and the BSISO plays a substantial role in triggering the low-frequency EAP.
Patterns of tropical Pacific convection anomalies and associated extratropical wave trains in AMIP5
NASA Astrophysics Data System (ADS)
Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan
2018-05-01
In this paper, the performance of 18 Coupled Model Intercomparison Project Phase 5 (CMIP5) models forced by observational SSTs in simulating the tropical Pacific convective variation and the atmospheric responses in the extratropics are assessed. The multi-model ensemble mean results of 18 CMIP5 models show that five major patterns of tropical Pacific convection anomaly in winter can indeed be well reproduced, however, the simulation of the corresponding extratropical responses for each pattern exists some deficiency except for the La Niña pattern compared with observations. We defined an optimized subset of well performing models (ACCESS1.0, CanAM4, CCSM4, CMCC-CM, HadGEM2-A, MPI-ESM-MR) in tropical Pacific deep convection according to the ranking of model skill score. These models exhibit approximately identical convection anomaly patterns in both amplitude and spatial structure to the observation, which potentially might improve the representation of extratropical teleconnections with the tropical Pacific, especially for the CP El Niño (CPEN), EP El Niño (EPEN) and western CP (W-CP) patterns. Both evident atmospheric anomalies of CPEN and EPEN patterns over the NA/E sector and the northeastward propagating wave trains of W-CP pattern can be quite well simulated in the high-skilled models.
Recent climate extremes associated with the West Pacific Warming Mode
Funk, Chris; Hoell, Andrew
2017-01-01
Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.
NASA Astrophysics Data System (ADS)
Zhou, Botao; Wang, Zunya; Shi, Ying
2017-11-01
This article revealed that strengthening of winter Hadley circulation in the context of climate change may partially contribute to interdecadal increasing of snowfall intensity over northeastern China in recent decades. This hypothesis is well supported by the process-based linkage between Hadley circulation and atmospheric circulations over the Asian-Pacific region on the interdecadal time scale. The strengthening of winter Hadley circulation corresponds to a weakening of the Siberian high, an eastward shifting of the Aleutian low, a reduction of the East Asian trough, and anomalous southwesterly prevailing over northeastern China. These atmospheric situations weaken the East Asian winter monsoon and lead to an increase of air temperature over northeastern China. Increased local evaporation due to the increase of air temperature, concurrent with more water vapor transported from the Pacific Ocean, can significantly enhance atmospheric water vapor content in the target region. Meanwhile, the ascending of airflows is also strengthened over northeastern China. All of these provide favorable interdecadal backgrounds for the occurrence of intense snowfalls, and thus, snowfall intensity is intensified over northeastern China after the 1980s. Further analysis suggests that the circum-Pacific-like teleconnection pattern may play an important role in connecting Hadley circulation strengthening signal and atmospheric circulation anomalies favoring interdecadal intensification of snowfalls over northeastern China.
Can we use Earth Observations to improve monthly water level forecasts?
NASA Astrophysics Data System (ADS)
Slater, L. J.; Villarini, G.
2017-12-01
Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.
Indian summer monsoon variability forecasts in the North American multimodel ensemble
NASA Astrophysics Data System (ADS)
Singh, Bohar; Cash, Ben; Kinter, James L., III
2018-04-01
The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 1982-2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully predicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, G.A.; Lough, J.M.; Fritts, H.C.
Reconstructions of winter (December-February) sea level pressure (SLP) from western North American tree-ring chronologies are compared with a proxy record of winter severity in Japan derived from the historically documented freeze dates of Lake Suwa. The SLP reconstructions extend from 1602 to 1961 and freeze dates from 1443 to 1954. The instrumental and reconstructed SLP for the 20th century reveal two distinct circulation regimes (teleconnection patterns) over the North Pacific that appear to be associated with severe and mild winters and, consequently, with early and late freezing of the lake. The reconstructed SLPO anomaly map for severe winters prior tomore » 1683 shows a pattern similar to those in the instrumental and reconstructed records of the 20th century. The analysis reveals that the reliability of the reconstruction may vary with the configuration of the actual SLP pattern as the mild winter pattern is not as well reconstructed as the severe winter pattern. That result illustrates the importance of testing the reliability of a reconstruction within the context of the intended interpretation. This analysis demonstrates how different types of proxy climate data can be compared and verified.« less
SWH trends and links to large scale teleconnection patterns in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Lionello, P.; Pino, C.; Galati, M. B.
2010-09-01
This study analyzes the SWH field in the Mediterranean Sea using a multidecadal simulations (1958-2001) carried out using the WAM (WAve Model) forced by the REMO-HIPOCAS wind fields. The simulations are validated against satellite altimeter data. Several mid-latitude patterns are linked to the SWH field in the Mediterranean. Considering the mean monthly SWH values, EA (Eastern Atlantic pattern) exerts the largest influence, while NAO and other patterns have a smaller but comparable effect. Severe SWH conditions have been characterized using the 95percentile of daily SWH maxima. NAO is important mainly for high SWH conditions in winter with significant correlation in December, January and March, but also EA, SCA (SCAndinavian) and EA-WR (Eastern Atlantic-Western Russia) play an important role. In general, both SWH high and mean values are modulated by several patterns, with an important variability in space and at monthly level so that no single pattern can be attributed a dominant role along the whole annual cycle and all the mentioned patterns are important for at least few months in the year. Significant trends of SWH are present only in sparse areas and suggest mostly a minor decrease of storm intensity, The statistics of extremes and high SWH values is substantially steady during the second half of the 20th century.
Global Precipitation Patterns Associated with ENSO and Tropical Circulations
NASA Technical Reports Server (NTRS)
Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric
1999-01-01
Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.
NASA Astrophysics Data System (ADS)
Vannière, Boris; Power, Mitch J.; Roberts, Neil; Tinner, Willy; Carrión, José; Magny, Michel; Bartlein, Patrick
2010-05-01
In this contribution I will present a synthesis of mid- to late-Holocene fire activity from the Mediterranean basin and explore the linkages among fire, climate variability and seasonality, and people through several climatic and ecological transitions. Regional fire histories were created from 36 radiocarbon-dated sedimentary charcoal records, available from the Global Charcoal Database. During the mid-Holocene "Thermal Maximum", charcoal records from the northern Mediterranean suggest the region was more fire prone while records from the southern Mediterranean indicate a decrease in fire activity associated with wetter-than-present summers. A North-South partition at 40-43°N is apparent in the central and western Mediterranean. In the context of orbitally-induced summer insolation decrease, South Mediterranean wet conditions could be linked to the Afro-Asian summer monsoon which weakened after ca. 8000-6000 cal yr BP. Relatively abrupt changes in fire regime observed at ca. 5500-5000 cal yr BP may be associated to a threshold in this weakening influence of the orbitally-driven Afro-Asian monsoon strength. Charcoal records of past fire activity appear sensitive to both orbitally-forced climate changes and shorter lived excursions which may be related to cold events apparent in the North Atlantic record of ice-rafted debris. These results contradict former notions of gradual aridification of the entire region due to climatic forcing and/or human activities. In contrast, they suggest: 1) Teleconnections between the Mediterranean area and other climatic regions, in particular the North Atlantic and the low-latitude monsoon areas, influenced past fire regimes; 2) Gradual forcing, such as changes in orbital parameters, may have triggered more abrupt shifts in fire regime, either directly or indirectly through these teleconnections.
Climate Change: Vulnerability Assessment for Water Resources Management in South Florida
NASA Astrophysics Data System (ADS)
Obeysekera, J.
2008-12-01
South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of projected climate change on water supply for all water sectors including the environment, and the potential impact of sea level rise on coastal regions. Questions on the potential impacts of climate change including sea level rise need to be investigated along with the uncertainties of projections to provide critical information for decision making on the planned infrastructure and operational changes in south Florida.
Increased frequency of ENSO-related hydroclimate extremes in a warming climate
NASA Astrophysics Data System (ADS)
Sun, Q.; Miao, C.; AghaKouchak, A.
2017-12-01
Global warming will likely alter surface warming in tropical Pacific regions, leading to changes in the characteristics of the El Niño Southern Oscillation (ENSO) characteristics and an incresed frequency of extreme ENSO events. The ENSO-related climatic variation and associated impacts will likely be modified in a warmer climatic state. However, little is known about the effect of changes in ENSO teleconnections with regard to future dry and wet conditions over land around the globe, especially outside tropical regions. We used the model simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for different twenty-first-century emission scenarios (RCP 4.5 and RCP 8.5) to investigate the changes in the ENSO' teleconnection on dry/wet condition over global land. Our results show that 64.64% and 38.12% of 181 river basins studied are expected to experience an increase in the frequency of unusually wet/dry events forced by both ENSO phases under the RCP 4.5 and 8.5, respectively. The anomalous precipitation variability forced by ENSO events will be intensified through a "wet-get-wetter, dry-get-drier" mechanism over west North America, South America, central Asia, and west Asia. More than 850 million people are at risk of exposure to unusually dry/wet events. There is a potential increased risk of high-intensity dry/wet events, with an increase/decrease in the 50-year return level of SPI value for drying/wetting regions. These results have important implications for disaster evaluation and related policies and for appropriate engineering design.
Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2018-02-01
The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
Early summer southern China rainfall variability and its oceanic drivers
NASA Astrophysics Data System (ADS)
Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li
2018-06-01
Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.
Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska Ice Core
NASA Astrophysics Data System (ADS)
Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.
2012-12-01
Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea ice cover on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An ice core from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea ice extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.
How uncertain are climate model projections of water availability indicators across the Middle East?
Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil
2010-11-28
The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George
2013-01-01
We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.
Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian
2005-01-01
Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface tempera- cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.
2005-01-01
Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
Transient coupling relationships of the Holocene Australian monsoon
NASA Astrophysics Data System (ADS)
McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.
2015-08-01
The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.
NASA Astrophysics Data System (ADS)
Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.
2014-12-01
A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.
2014-12-01
Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal hydroclimatic drivers will allow us to harness the inherent system memory of these processes to develop early warning systems and strengthen prevention measures.
Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,
2015-01-01
Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Bader, Jürgen
2017-09-01
As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.
NASA Astrophysics Data System (ADS)
Ao, Juan; Sun, Jianqi
2016-05-01
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies (SSTAs) over the South Pacific Ocean (SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.
Hyodo, Masayuki; Bradák, Balázs; Okada, Makoto; Katoh, Shigehiro; Kitaba, Ikuko; Dettman, David L; Hayashi, Hiroki; Kumazawa, Koyo; Hirose, Kotaro; Kazaoka, Osamu; Shikoku, Kizuku; Kitamura, Akihisa
2017-08-30
Suborbital-scale climate variations, possibly caused by solar activity, are observed in the Holocene and last-glacial climates. Recently published bicentennial-resolution paleoceanic environmental records reveal millennial-scale high-amplitude oscillations postdating the last geomagnetic reversal in the Marine Isotope Stage (MIS) 19 interglacial. These oscillations, together with decoupling of post-reversal warming from maximum sea-level highstand in mid-latitudes, are key features for understanding the climate system of MIS 19 and the following Middle Pleistocene. It is unclear whether the oscillations are synchronous, or have the same driver as Holocene cycles. Here we present a high resolution record of western North Pacific submarine anoxia and sea surface bioproductivity from the Chiba Section, central Japan. The record reveals many oxic events in MIS 19, coincident with cold intervals, or with combined cold and sea-level fall events. This allows detailed correlations with paleoceanic records from the mid-latitude North Atlantic and Osaka Bay, southwest Japan. We find that the millennial-scale oscillations are synchronous between East and West hemispheres. In addition, during the two warmest intervals, bioproductivity follows the same pattern of change modulated by bicentennial cycles that are possibly related to solar activity.
NASA Astrophysics Data System (ADS)
Deng, L.; Stenchikov, G. L.; McCabe, M. F.; Bangalath, H. K.
2014-12-01
Recently, the modulation of subtropical rainfall by the dominant tropical intraseasonal signal of the Madden-Julian Oscillation (MJO), has been explored through the discussion of the MJO-convection-induced Kelvin and Rossby wave related teleconnection patterns. Our study focuses on characterizing the modulation of heavy rainfall in the Middle East and North Africa (MENA) region by the MJO, using the Geophysical Fluid Dynamics Laboratory (GFDL) global High Resolution Atmospheric Model (HIRAM) simulations (25-km; 1979-2012) and a combination of available atmospheric products from satellite, in-situ and reanalysis data. The observed Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) and the simulated SST from GFDL's global coupled carbon-climate Earth System Models (ESM2M) are employed in HIRAM to investigate the sensitivity of the simulated heavy rainfall and MJO to SST. The future trend of the extreme rainfalls and their links to the MJO response to climate change are examined using HIRAM simulations of 2012-2050 with the RCP4.5 and RCP 8.5 scenarios to advance the possibility of characterization and forecasting of future extreme rainfall events in the MENA region.
NASA Astrophysics Data System (ADS)
Huang, Shaoni; Huang, Fei
2012-06-01
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Niño-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Niño, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a `Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a `Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the `Silk Road' teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.
NASA Astrophysics Data System (ADS)
Ma, Xiaojiao; Zhang, Yaocun
2018-01-01
Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.
Global salinity predictors of western United States precipitation
NASA Astrophysics Data System (ADS)
Liu, T.; Schmitt, R. W.; Li, L.
2016-12-01
Moisture transport from the excess of evaporation over precipitation in the global ocean drives terrestrial precipitation patterns. Sea surface salinity (SSS) is sensitive to changes in ocean evaporation and precipitation, and therefore, to changes in the global water cycle. We use the Met Office Hadley Centre EN4.2.0 SSS dataset to search for teleconnections between autumn-lead seasonal salinity signals and winter precipitation over the western United States. NOAA CPC Unified observational US precipitation in winter months is extracted from bounding boxes over the northwest and southwest and averaged. Lead autumn SON SSS in ocean areas that are relatively highly correlated with winter DJF terrestrial precipitation are filtered by a size threshold and treated as individual predictors. After removing linear trends from the response and explanatory variables and accounting for multiple collinearity, we use best subsets regression and the Bayesian information criterion (BIC) to objectively select the best model to predict terrestrial precipitation using SSS and SST predictors. The combination of autumn SSS and SST predictors can skillfully predict western US winter terrestrial precipitation (R2 = 0.51 for the US Northwest and R2 = 0.7 for the US Southwest). In both cases, SSS is a better predictor than SST. Thus, incorporating SSS can greatly enhance the accuracy of existing precipitation prediction frameworks that use SST-based climate indices and by extension improve watershed management.
River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions
NASA Astrophysics Data System (ADS)
Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.
2007-10-01
River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.
NASA Astrophysics Data System (ADS)
Matter, M. A.; Garcia, L. A.; Fontane, D. G.
2005-12-01
Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the UCRB advances understanding of atmosphere/land surface processes and interactions in complex terrain and subsequent effects on snowpack development and runoff (i.e., water supply), and may be used to improve seasonal forecast accuracy and extend lead time to develop more efficient and effective management strategies for water resources and ecosystems.
NASA Astrophysics Data System (ADS)
Liptak, J.; Keppel-Aleks, G.
2016-12-01
Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon cycling. Pan, Y. et al. A large and persistent carbon sink in the world's forests. Science 333, 988-993 (2011) Brienen, Roel J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344-348 (2015) Botta, A. et al. Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys. Res. Lett. 29 (2002)
Rapid ocean-atmosphere response to Southern Ocean freshening during the last glacial period
NASA Astrophysics Data System (ADS)
Turney, Christian; Jones, Richard; Phipps, Steven; Thomas, Zoë; Hogg, Alan; Kershaw, Peter; Fogwill, Christopher; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad; Staff, Richard; Grosvenor, Mark; Golledge, Nicholas; Rasmussen, Sune; Hutchinson, David; Haberle, Simon; Lorrey, Andrew; Boswijk, Gretel
2017-04-01
Contrasting Greenland and Antarctic temperature trends during the late last glacial period (60,000 to 11,703 years ago) are thought to be driven by imbalances in the rate of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'), with cooling in the north leading the onset of warming in the south. Some events, however, appear to have occurred independently of changes in deep water formation but still have a southern expression, implying that an alternative mechanism may have driven some global climatic changes during the glacial. Testing these competing hypotheses is challenging given the relatively large uncertainties associated with correlating terrestrial, marine and ice core records of abrupt change. Here we exploit a bidecadally-resolved 14C calibration dataset obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate datasets spanning 28,400 to 30,400 years ago. We observe no divergence between terrestrial and marine 14C datasets implying limited impact of freshwater hosing on the Atlantic Meridional Overturning Circulation (AMOC). However, an ice-rafted debris event (SA2) in Southern Ocean waters appears to be associated with dramatic synchronous warming over the North Atlantic and contrasting precipitation patterns across the low latitudes. Using a fully coupled climate system model we undertook an ensemble of transient meltwater simulations and find that a southern salinity anomaly can trigger low-latitude temperature changes through barotropic and baroclinic oceanic waves that are atmospherically propagated globally via a Rossby wave train, consistent with contemporary modelling studies. Our results suggest the Antarctic ice sheets and Southern Ocean dynamics may have contributed to some global climatic changes through rapid ocean-atmospheric teleconnections, with implications for past (and future) change.
Insights into changes in precipitation patterns in Brazil from oxygen isotope ratios on speleothems
NASA Astrophysics Data System (ADS)
Cruz, F.; Mathias, V.; Stephen, B. J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R. L.; Karmann, I.; Auler, A. S.
2008-12-01
Variations in tropical precipitation on millennial and orbital time scales can reflect a Hadley-cell-related anti- phasing between the Northern and Southern hemispheres due to the influence of insolation on the global summer monsoons. A new δ18O speleothem record from northeastern Brazil shows that insolation- driven changes in monsoon intensity are capable of producing a similar, zonally oriented anti-phasing within the same hemisphere. Comparison of our speleothem record with other precipitation-sensitive proxies from the central Andes and southeastern Brazil shows that precipitation in Northeastern Brazil has been out of phase with insolation and rainfall in the rest of tropical South America south of the equator since the Last Glacial Maximum. Northeastern Brazil experienced humid conditions when summer insolation was reduced and arid conditions when insolation was high. While previous interpretations of past climate change in NE South America have commonly invoked meridional displacements in ITCZ location as the main mechanism for changes in precipitation on millennial time scales, our results suggest that remote monsoon forcing is responsible for much of the observed precipitation changes on orbital time scales during the Holocene. These results demonstrate that orbitally driven out-of-phase relationships in precipitation are not limited to interhemispheric anti-phasing as demonstrated previously, but may well occur within the same hemisphere. Speleothem records also indicate contrasting climatic conditions around the Last Glacial Maximum in Brazil, characterized by marked dry and wet climates in the Nordeste and in southeastern Brazil, respectively. It is likely, however, that these regional differences primarily reflect more distant extratropical teleconnections from the Atlantic Ocean and high northern latitude changes during glacial conditions.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Li, J. Y.
2001-01-01
In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing
2018-01-01
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.
NASA Astrophysics Data System (ADS)
Deser, Clara; Guo, Ruixia; Lehner, Flavio
2017-08-01
The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.
The biogeophysical climatic impacts of anthropogenic land use change during the Holocene
NASA Astrophysics Data System (ADS)
Smith, M. C.; Singarayer, J. S.; Valdes, P. J.; Kaplan, J. O.; Branch, N. P.
2015-10-01
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high-latitudes led to remote teleconnections.
NASA Astrophysics Data System (ADS)
Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng
2018-02-01
This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.
Precipitation and temperature trends over central Italy (Abruzzo Region): 1951-2012
NASA Astrophysics Data System (ADS)
Scorzini, Anna Rita; Leopardi, Maurizio
2018-02-01
This study analyses spatial and temporal trends of precipitation and temperatures over Abruzzo Region (central Italy), using historical climatic data from a dense observation network. The results show a general, although not significant, negative trend in the regionally averaged annual precipitation (- 1.8% of the yearly mean rainfall per decade). This reduction is particularly evident in winter, especially at mountain stations (average - 3% change/decade). Despite this general decreasing trend, a partial rainfall recovery is observed after the 1980s. Furthermore, the majority of meteorological stations register a significant warming over the last 60 years, (mean annual temperature increase of + 0.15 °C/decade), which reflects a rise in both minimum and maximum temperatures, with the latter generally increasing at a faster rate. Spring and summer are the seasons which contribute most to the general temperature increase, in particular at high elevation sites, which exhibit a more pronounced warming (+ 0.24 °C/decade). However, this tendency has not been uniform over 1951-2012, but it has been characterised by a cooling phenomenon in the first 30 years (1951-1981), followed by an even stronger warming during the last three decades (1982-2012). Finally, correlations between the climatic variables and the dominant teleconnection patterns in the Mediterranean basin are analysed to identify the potential influence of large-scale atmospheric dynamics on observed trends in Abruzzo. The results highlight the dominant role of the East-Atlantic pattern on seasonal temperatures, while more spatially heterogeneous associations, depending on the complex topography of the region, are identified between winter precipitation and the North Atlantic Oscillation, East-Atlantic and East-Atlantic/Western Russian patterns.
Multi-scale Quantitative Precipitation Forecasting Using ...
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals difficult to be detected at a local scale as it could cause large uncertainties when using linear correlation analysis only. This paper explores the relationship between global SST and terrestrial precipitation with respect to long-term non-stationary teleconnection signals during 1981-2010 over three regions in North America and one in Central America. Empirical mode decomposition as well as wavelet analysis is utilized to extract the intrinsic trend and the dominant oscillation of the SST and precipitation time series in sequence. After finding possible associations between the dominant oscillation of seasonal precipitation and global SST through lagged correlation analysis, the statistically significant SST regions are extracted based on the correlation coefficient. With these characterized associations, individual contribution of these SST forcing regions linked to the related precipitation responses are further quantified through nonlinear modeling with the aid of extreme learning machine. Results indicate that the non-leading SST regions also contribute a salient portion to the terrestrial precipitation variability compared to some known leading SST regions. In some cases, these
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir
2017-12-01
The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.
Mediterranean Outflow Water dynamics during the past 570 kyr: Regional and global implications
NASA Astrophysics Data System (ADS)
Kaboth, Stefanie; de Boer, Bas; Bahr, André; Zeeden, Christian; Lourens, Lucas J.
2017-06-01
The Gulf of Cadiz constitutes a prime area to study teleconnections between the North Atlantic Ocean and climate change in the Mediterranean realm. In particular, the highly saline Mediterranean Outflow Water (MOW) is an important modulator of the North Atlantic salt budget on intermediate water levels. However, our understanding of its paleoceanographic evolution is poorly constrained due to the lack of high-resolution proxy records that predate the last glacial cycle. Here we present the first continuous and high-resolution ( 1 kyr) benthic δ18O and δ13C as well as grain size records from Integrated Ocean Drilling Program Site U1386 representing the last 570 kyr. We find three distinct phases of MOW variability throughout the Late to Middle Pleistocene at Site U1386 associated with prominent shifts in its composition and flow strength. We attribute this long-term variability to changes in water mass sourcing of the MOW. Superimposed on the long-term change in water mass sourcing is the occurrence of distinct and precession paced δ18O enrichment events, which contrast the pattern of global ice volume change as inferred from the global mean δ18O signal (i.e., LR04) but mimics that of the adjacent Mediterranean Sea. We attribute these enrichment events to a profound temperature reduction and salinity increases of the MOW, aligning with similar changes in the Mediterranean source region. These events might further signify ice volume increases as inferred from significant sea level drops recorded in the Red Sea and/or increased influence of North Atlantic intermediate water masses when MOW influence was absent at Site U1386.
Drivers and Effects of Virtual Water Cycling
NASA Astrophysics Data System (ADS)
D'Odorico, P.
2016-12-01
The increasing global demand for farmland products by the growing and increasingly burgeoning human population is placing unprecedented pressure on the global agricultural system and its water resources. Many regions of the world that are not self-sufficient because of their chronic water scarcity or lack of suitable agricultural land strongly depend on the importation of agricultural commodities and associated embodied (or "virtual") water. International trade, however, may become unreliable when the supplies in the international food market are scarce. As a result, transboundary investments in agricultural land have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. This global "land rush" is often driven by the need for a secure access to water resources for agriculture. The globalization of water and land through trade and foreign land acquisitions is leading to a displacement of land use and a disconnection between human populations and the water resources they rely on. Despite the recognized importance of these phenomena in reshaping the patterns of water dependency through teleconnections between consumer behavior and production areas, their effect on global and regional food security, remains poorly quantified. New teleconnections are also emerging from the increasing water use for energy production. Competition in water use for food and energy security constitutes the core of an emerging debate that is generating new questions on the environmental, ethical, economic, and policy implications of human appropriation of water resources. This lecture will examine the ways societies virtually modify their access to water through trade and foreign land acquisitions to meet their growing food and energy needs.
Variability, trends, and teleconnections of observed precipitation over Pakistan
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Farooq; Athar, H.
2017-10-01
The precipitation variability, trends, and teleconnections are studied over six administrative regions of Pakistan (Gilgit-Baltistan or GB, Azad Jammu and Kashmir or AJK, Khyber Pakhtoonkhawa or KPK, Punjab, Sindh, and Balochistan) on multiple timescales for the period of recent 38 years (1976-2013) using precipitation data of 42 stations and circulation indices datasets (Indian Ocean Dipole [IOD], North Atlantic Oscillation [NAO], Arctic Oscillation [AO], El Niño Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], Atlantic Multidecadal Oscillation [AMO], and Quasi-Biennial Oscillation [QBO]). The summer monsoon season received the highest precipitation, amounting to 45%, whereas the winter and pre-monsoon (post-monsoon) seasons contributed 30 and 20% (5%), respectively, of the annual total precipitation. Positive percentile changes were observed in GB, KPK, Punjab, and Balochistan regions during pre-monsoon season and in Balochistan region during post-monsoon season in second half as compared to first half of 38-year period. The Mann-Kendall test revealed increasing trends for the period of 1995-2013 as compared to period of 1976-1994 for entire Pakistan during monsoon season and on annual timescale. A significant influence of ENSO was observed in all the four seasons in Balochistan, KPK, Punjab, and AJK regions during monsoon and post-monsoon seasons. This study not only offers an understanding of precipitation variability linkages with large-scale circulations and trends, but also it contributes as a resource document for policy makers to take measures for adaptation and mitigation of climate change and its impacts with special focus on precipitation over different administrative regions of Pakistan.
Mediterranean summer climate and the monsoon regimes
NASA Astrophysics Data System (ADS)
Baldi, M.; Crisci, A.; Dalu, G. A.; Maracchi, G.; Meneguzzo, F.; Pasqui, M.
2003-04-01
The Authors examine the general features of climate of the Mediterranean Region, i.e. its variability and trends in the last 40 years, and the teleconnections between Mediterranean climate and the global climate, using zonal and global indices. In particular they focus the attention on the analysis of the summer Mediterranean climate, and its variability and connection with the summer monsoon regimes. Several subregions can be distinguished in the Mediterranean for each season, and the occurrence of Mediterranean Oscillation is evident between West and East sub-basins. Precipitation and SLP fields in the Eastern basin are shown to be correlated with Mediterranean Oscillation. A total decrease of precipitation has been detected in last few years, although there are some very intense. During winter a fundamental role is played by NAO index, which, influencing the storm tracks coming from the Atlantic and passing over the Mediterranean and North Europe, it has a major role in the precipitation patterns over the Region. Moreover, temperature analysis over the last 40 years in the Mediterranean shows a distinct warming, in agreement with the pattern over North Emisphere and NAO index fluctuations. During summer the Hadley cell extend further northwards, influencing the Mediterranean climate, and there is evidence of a possible teleconnection with the Asian Monsoon, and the Sahel precipitation (and related Hadley cell): the SLP field in the Eastern Mediterranean is inversely correlated with those two precipitation indices, while it is positively correlated with the pressure in the Western Mediterranean. Leading mechanisms of interaction between Mediterranean summer rainfall and SLP patterns and precipitation indices associated with monsoon regimes are stressed out and investigated, as well as the influence of the position and strength of the Hadley cell, by means of both statistical and dynamical analytical arguments. A modeling study has been carried out in order to study the variations and the anomalies in the recent Mediterranean summer precipitation patterns, consisting of two main phases. In the first phase, a numerical regional atmospheric model has been used to downscale the NCEP/NCAR reanalyses, showing a good agreement between model simulations and observations, proving the capability of the modeling tool. During the second phase, following and extending recent experiences the numerical model has been used to identify the features and extent of the impacts of the location and strength of the West Africa summer monsoon - therefore the regional Hadley cell - to the Mediterranean climate, by selectively modifying the main forcing of that tropical circulation, i.e. the Gulf of Guinea sea surface temperatures.
Recognition and dynamics of syntectonic sediment routing systems, southern Pyrenees
NASA Astrophysics Data System (ADS)
Allen, P. A.; Duller, R.; Fordyce, S.; Smithells, R.; Springett, J.; Whitchurch, A.; Whittaker, A.; Carter, A.; Fedele, J.-J.
2009-04-01
The erosional, transportational and depositional aspects of the biogeochemical cycles involving particulate sediment and solutes are integrated in sediment routing systems. The component parts of these tectonic-geomorphic systems communicate with each other, especially in response to changes in external forcing mechanisms such as tectonic perturbations and climate change; that is, sediment routing systems are characterized by important teleconnections. We are only just beginning to understand how these teleconnections work, and what it means for the spatial and temporal scales of system behaviour. One strategy for investigating the dynamics of sediment routing systems is to link information on the denudation of upstream source regions with downstream patterns of deposition. This is most likely to be fruitful where upstream catchments are tectonically active. Sediment is released into basins whose long-term subsidence is also controlled by tectonic activity. The spatial distribution of subsidence and the magnitude of the sediment discharge from the catchment are critical factors in the dispersal of sediment of different grain size and composition away from a mountain front. We investigate the coarse clastic sediment routing systems of mid-late Eocene age (40-34 Ma) that were deposited in basins located at the boundary of the Axial Zone and the thrust belt of the South-Central Unit on the southern flank of the Pyrenees, Spain. Most of the fan deposits of interest are found in the Pobla Basin, situated north of Tremp, which benefits from outstanding exposure conditions and rigorous previous work on biostratigraphy, magnetostratigraphy and sedimentology (Mellere 1993; Beamud et al. 2003). Distinct fan depositional systems can be identified and mapped on the basis of their sediment composition, detrital thermochronology, facies and architectures, which can be related to correspondingly distinct catchment properties (size, location, exhumational history, lithologies). Downstream fining of clasts of variable composition in streamflood fanglomerates is interpreted in terms of abrasion, which is minor, and selective deposition, which dominates. The observed downstream trends in different fan systems are used as a test for the selective deposition model of Fedele & Paola (2007). Beamud, E., Garcés, M., Cabrera, L., Munoz, J.A. & Almar, Y., 2003, A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth & Planetary Science Letters, 216, 501-514. Fedele, J.J., & Paola, C., 2007, Similarity solutions for fluvial sediment fining by selective deposition. Journal Geophysical Research-Earth Surface, 112, F02038, doi:10.1029/2005JF000409. Mellere, D., 1993, Thurst-generated, back-fill stacking of alluvial fan sequences, south-central Pyrenees, Spain (la Pobla de Segur Conglomerates). Special Publication International Association Sedimentologists, 20, 259-276.
NASA Astrophysics Data System (ADS)
Montañez, Isabel P.; Osleger, Dillon J.; Chen, Jitao; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.
2018-06-01
Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U-Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap-offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A -1 to -6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.
Montanez, Isabel P.; Osleger, Dillon J.; Chen, J.-H.; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.
2018-01-01
Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U–Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap–offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A −1 to −6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.
A search for solar related changes in tropospheric weather
NASA Technical Reports Server (NTRS)
Mohanakumar, K.
1989-01-01
The possibility that solar variations associated with the 11-year solar cycle may be the cause of the changes in tropospheric weather and climate has been the subject to scientific investigation for several decades. Meteorologists are greatly concerned with the changes in tropospheric phenomena. An attempt was made to find solar activity related changes in tropospheric weather, by the modulation of the quasi-biennial oscillation (QBO) of zonal wind at 50 mb. Rainfall and surface temperature data for a period of about three solar cycles, 1953 to 1988, from various stations in the Indian subcontinent were utilized. By extension, a possible teleconnection was looked for between the temperature changes in middle atmospheric levels and surface temperature when the data are stratified according to east or west phase of the QBO. The temperature data were averaged for January and February to represent the winter temperature and for July and August to represent the summer temperature.
Teleconnections Between Tropical Deforestation and Midlatitude Precipitation
NASA Astrophysics Data System (ADS)
Avissar, R.; Werth, D.
2003-12-01
Past studies have indicated that total deforestation of Amazonia would result in an important reduction of the rainfall in that region, but that this process had no significant impact on the global temperature or precipitation and had only local implications. Here, we show that deforestation of tropical regions activates Rossby waves, which affect significantly precipitation at mid-latitudes by 'teleconnections'. In particular, we find that the deforestation of Amazonia and Central Africa severely reduces rainfall in the US Midwest during spring and summer, when water is crucial for agriculture in that region. Deforestation of South-East Asia reduces winter precipitation in the Western US and, consequently, the water storage that is released from snow melting later in the spring.
Possible mechanisms for four regimes associated with cold events over East Asia
NASA Astrophysics Data System (ADS)
Yang, Zifan; Huang, Wenyu; Wang, Bin; Chen, Ruyan; Wright, Jonathon S.; Ma, Wenqian
2017-09-01
Circulation patterns associated with cold events over East Asia during the winter months of 1948-2014 are classified into four regimes by applying a k-means clustering method based on the area-weighted pattern correlation. The earliest precursor signals for two regimes are anticyclonic anomalies, which evolve into Ural and central Siberian blocking-like circulation patterns. The earliest precursor signals for the other two regimes are cyclonic anomalies, both of which evolve to amplify the East Asian trough (EAT). Both the blocking-like circulation patterns and amplified EAT favor the initialization of cold events. On average, the blocking-related regimes tend to last longer. The lead time of the earliest precursor signal for the central Siberian blocking-related regime is only 4 days, while those for the other regimes range from 16 to 18 days. The North Atlantic Oscillation plays essential roles both in triggering the precursor for the Ural blocking-related regime and in amplifying the precursors for all regimes. All regimes preferentially occur during the positive phase of the Eurasian teleconnection pattern and the negative phase of the El Niño-Southern Oscillation. For three regimes, surface cooling is primarily due to reduced downward infrared radiation and enhanced cold advection. For the remaining regime, which is associated with the southernmost cooling center, sensible and latent heat release and horizontal cold advection dominate the East Asian cooling.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, J.; Eswaraiah, S.; Ratnam, M. V.
2017-12-01
In the present study, we study the teleconnections between the tropical and polar region during the Southern Hemisphere (SH) Sudden Stratospheric Warmings (SSWs) as well as the effect of SH SSWs on the modification of global mean atmospheric circulation. By analyzing the European Center for Medium-range Weather Forecasts (ECMWF) data and Earth Observing System (EOS) Microwave Limb Sounder (MLS) measurements both at the equatorial and polar region during the SH SSW events of 2002 and 2010, we find that; (i) the zero-wind line in the stratosphere appeared over the tropics ˜90 days prior to the 2002 SSW and progressed toward the south pole, thus satisfying the preconditioning for planetary wave (PW) propagation as suggested in the model study; (ii) an enhanced 16-day PW activity, along with the zero-wind line, is noted from the equator to the south pole, and (iii) during the 2010 SSW strong anti-correlation between the polar and equatorial temperatures occurred both in the stratosphere and the mesosphere. We interpret these characteristics as a possible teleconnection between the two regions through the intensification of 16-day PW. This is the first observational study over SH that reveals some novel features of the SSW and its connection to the equatorial region.
Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events
NASA Astrophysics Data System (ADS)
Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.
2017-12-01
The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.
The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Saravanan, R.; Chang, P.
2016-12-01
The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.
On the presence of coastal upwelling along the northeastern Tyrrhenian coast
NASA Astrophysics Data System (ADS)
Martellucci, Riccardo; Melchiorri, Cristiano; Costanzo, Lorenzo; Marcelli, Marco
2017-04-01
The Mediterranean region shows a high climate variability due to the interactions between mid-latitude and tropical processes. This variability makes the Mediterranean a potentially vulnerable region to climatic changes. The present research aims to investigate the hydrographical response to Northerly wind in the northeastern Tyrrhenian coast, to identify the relations between upwelling events and teleconnection patterns. In the Tyrrhenian basin northerly winds flow between North-East and North-West and could be considered upwelling favorable winds. This atmospheric circulation can causes a divergent flow near the coast that generates a subsurface water flows inshore toward the coast up to the surface layer that is upwelling. This phenomenon strongly influence the marine ecosystems, contributing to the supply of nutrients and affecting the primary producers. In this context multi-platform observing system is an important tool to follow the evolution of these phenomena. Sea temperature and wind field acquired by the C-CEMS Observing system were used to identify upwelling phenomena between 2012 and 2016, in the coastal area of Civitavecchia, Northern Tyrrhenian sea, Italy. Moreover a thirty years' wind-driven upwelling conditions have been studied in the area. ERA-Interim (ECMWF) wind data for the period 1982-2012 have been used to compute the distribution of upwelling favorable wind events. These have been compared to "Copernicus Marine Environment Monitoring Service" Sea Surface Temperature (SST) to compute upwelling events. Upwelling favorable wind has been defined in the sector between Northwest and Northeast (Wd >330°N & Wd < 30°N). Wind speed has been divided into three classes: between 4 m/s and 6 m/s, between 6 m/s and 8 m/s and greater than 8 m/s. Sea Surface Temperature have been analyzed to define SST field for wind-driven coastal upwelling assessment. SST minima along the coast was used to identify upwelling from satellite imagery. The two datasets were compared and only the days that presented those characteristics were chosen. ERA-Interim (ECMWF) sea level pressure data over the Europe for the period 1982 -2012 have been used to compute the most relevant teleconnection patterns through Empirical Orthogonal Function's analysis. An increase of upwelling events in the Tyrrhenian coast is observed in the last thirty years; the occurrence of upwelling events has a seasonal oscillation, with a maximum frequency during winter and spring seasons. In the last decade an increase of these events in winter and a decrease in spring is observed; also a recurrence of these events in summer season has been identified, without the specific contribution of one of atmospheric regimes. Data analyzed shows a decrement in Atlantic Ridge (AR) regime and an increment in West Blocking (WBL) regime, especially for the event characterized by wind speeds greater than 8m/s.
NASA Technical Reports Server (NTRS)
Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuna, Rodolfo; Torbenson, Max C. A.;
2016-01-01
Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5deg latitude/longitude grid extending over land areas from 14 to 34degN and 75-120degW using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Ano de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Nino/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time-stable correlations than computed for either the Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. The extended Multivariate ENSO Index is most highly correlated with reconstructed scPDSI over northern Mexico, where warm events favor moist conditions during the winter, spring, and early summer. This ENSO teleconnection to northern Mexico has been strong over the past 150 years, but it has been comparatively weak and non-stationary in the MXDA over central and southern Mexico where eastern tropical Pacific and Caribbean/tropical Atlantic SSTs seem to be more important. The ENSO teleconnection to northern Mexico is weaker in the available instrumental PDSI, but analyses based on the millennium climate simulations with the Community Earth System Model suggest that the moisture balance during the winter, spring, and early summer over northern Mexico may indeed be particularly sensitive to ENSO forcing. Nationwide drought is predicted to become more common with anthropogenic climate change, but the MXDA reconstructions indicate that intense "All Mexico" droughts have been rare over the past 600 years and their frequency does not appear to have increased substantially in recent decades.
NASA Astrophysics Data System (ADS)
Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuña, Rodolfo; Torbenson, Max C. A.; Szejner, Paul; Howard, Ian M.
2016-10-01
Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5° latitude/longitude grid extending over land areas from 14 to 34°N and 75-120°W using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Año de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Niño/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time-stable correlations than computed for either the Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. The extended Multivariate ENSO Index is most highly correlated with reconstructed scPDSI over northern Mexico, where warm events favor moist conditions during the winter, spring, and early summer. This ENSO teleconnection to northern Mexico has been strong over the past 150 years, but it has been comparatively weak and non-stationary in the MXDA over central and southern Mexico where eastern tropical Pacific and Caribbean/tropical Atlantic SSTs seem to be more important. The ENSO teleconnection to northern Mexico is weaker in the available instrumental PDSI, but analyses based on the millennium climate simulations with the Community Earth System Model suggest that the moisture balance during the winter, spring, and early summer over northern Mexico may indeed be particularly sensitive to ENSO forcing. Nationwide drought is predicted to become more common with anthropogenic climate change, but the MXDA reconstructions indicate that intense "All Mexico" droughts have been rare over the past 600 years and their frequency does not appear to have increased substantially in recent decades.
Ortiz, J.D.; O'Connell, S. B.; DelViscio, J.; Dean, W.; Carriquiry, J.D.; Marchitto, T.; Zheng, Yen; VanGeen, A.
2004-01-01
Studies of the Santa Barbara Basin off the coast of California have linked changes in its bottom-water oxygen content to millennial-scale climate changes as recorded by the oxygen isotope composition of Greenland ice. Through the use of detailed records from a sediment core collected off the Magdalena Margin of Baja California, Mexico, we demonstrate that this teleconnection predominantly arose from changes in marine productivity, rather than changes in ventilation of the North Pacific, as was originally proposed. One possible interpretation is that the modern balance of El Nin??o-La Nin??a conditions that favors a shallow nutricline and high productivity today and during warm climate intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low productivity, El Nin??o-like conditions during cool climate intervals. ?? 2004 Geological Society of America.
Development of Middle Stone Age innovation linked to rapid climate change
Ziegler, Martin; Simon, Margit H.; Hall, Ian R.; Barker, Stephen; Stringer, Chris; Zahn, Rainer
2013-01-01
The development of modernity in early human populations has been linked to pulsed phases of technological and behavioural innovation within the Middle Stone Age of South Africa. However, the trigger for these intermittent pulses of technological innovation is an enigma. Here we show that, contrary to some previous studies, the occurrence of innovation was tightly linked to abrupt climate change. Major innovational pulses occurred at times when South African climate changed rapidly towards more humid conditions, while northern sub-Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These conditions led to humid pulses in South Africa and potentially to the creation of favourable environmental conditions. This strongly implies that innovational pulses of early modern human behaviour were climatically influenced and linked to the adoption of refugia. PMID:23695699
Development of Middle Stone Age innovation linked to rapid climate change.
Ziegler, Martin; Simon, Margit H; Hall, Ian R; Barker, Stephen; Stringer, Chris; Zahn, Rainer
2013-01-01
The development of modernity in early human populations has been linked to pulsed phases of technological and behavioural innovation within the Middle Stone Age of South Africa. However, the trigger for these intermittent pulses of technological innovation is an enigma. Here we show that, contrary to some previous studies, the occurrence of innovation was tightly linked to abrupt climate change. Major innovational pulses occurred at times when South African climate changed rapidly towards more humid conditions, while northern sub-Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These conditions led to humid pulses in South Africa and potentially to the creation of favourable environmental conditions. This strongly implies that innovational pulses of early modern human behaviour were climatically influenced and linked to the adoption of refugia.
NASA Astrophysics Data System (ADS)
Xu, Zhiqing; Fan, Ke; Wang, HuiJun
2017-09-01
The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination.
Fogwill, C J; Turney, C S M; Golledge, N R; Etheridge, D M; Rubino, M; Thornton, D P; Baker, A; Woodward, J; Winter, K; van Ommen, T D; Moy, A D; Curran, M A J; Davies, S M; Weber, M E; Bird, M I; Munksgaard, N C; Menviel, L; Rootes, C M; Ellis, B; Millman, H; Vohra, J; Rivera, A; Cooper, A
2017-01-05
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise.
Modeling and Observational Study of the Global Atmospheric Impacts of Antarctic Sea Ice Anomalies
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Hines, Keith M.
2004-01-01
A combined observational and modeling study considers the linkage between Antarctic sea ice and the climate of non-local latitudes. The observational component is based upon analyses of monthly station observations and the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (NNR). The modeling component consists of simulations of the NCAR Community Climate Model versions 2 (CCM2) and 3 (CCM3) and the recent Community Atmosphere Model (CAM2). A convenient mechanism for communication between the Antarctic region (particularly the Ross Sea area) and the tropics and Northern Hemisphere is examined. The first evidence of this teleconnection came from CCM2 simulations performed during an earlier NASA supported project. Annual-cycle simulations with and without Antarctic sea ice show statistically- significant responses in monsoon precipitation over central and northern China during the month of September. The changes in monsoon precipitation are physically consistent with an intensified southwest Pacific (Northern Hemisphere) subtropical high in response to all Antarctic sea ice being removed and replaced with open water at -1.9"C. The intensified high is the northernmost component of three primary anomalies. The southernmost anomaly includes the Ross Sea area, where sea ice has been removed. An earlier study by Peng and Domros had also found a link between Antarctic sea ice and the East Asian monsoon circulation. The current project has helped to understand the teleconnection.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.
2010-02-01
SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability, facilitating management in high risk seasons.
NASA Astrophysics Data System (ADS)
Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea
2014-05-01
Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. Given a documented strong relationship between high-latitude N. Atlantic blocking and the NAO, one would expect a predictive skill for the seasonal frequency of blocking comparable to that of the NAO. However, this remains elusive. Future efforts should be in the direction of reducing model biases not only in the mean but also in variability (band-passed variances).
Climate oscillations reflected in the microbiome of Arabian Sea sediments
NASA Astrophysics Data System (ADS)
Orsi, W. D.; Coolen, M.; He, L.; Wuchter, C.; Irigoien, X.; Hemingway, J. D.; Johnson, C.; Chust, G.; Moore, K.; Galy, V.; Giosan, L.
2016-12-01
More than 1029 microbial cells reside in marine sediment, but the forces underlying their vertical distribution are poorly understood. Sedimentary communities are shaped to a large extent through selection by the modern environment such as energy availability and porosity. However, some microbes within certain settings reflect depositional conditions suggesting they have experienced no or weak selection after burial. Here, we show that in sediments underlying the Arabian Sea oxygen minimum zone (OMZ), the stratigraphy of some subsisting bacteria records their selection to changing paleo-environmental conditions over relatively short (e.g., centennial to millennial) timescales. We performed the highest resolved sedimentary metagenomic profile to date and coupled it with multiple paleoceanographic proxies. Despite being vertically separated, bacterial communities deposited under recurring low-oxygen conditions are more similar to one another than those deposited under higher oxygen. Furthermore, genomic potential for denitrification recurringly correlates with OMZ strength and paleo-denitrification proxies. In contrast, the genomic potential for oxygen-dependent metabolism, specifically genes encoding mono-oxygenases, is correlated with bioturbated sediment intervals deposited under higher oxygen concentrations. These patterns correlate strongly with the strength of the OMZ whose strength is teleconnected to North Atlantic climate. While the primary electron acceptors nitrate and nitrite are depleted at the sediment surface, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the denitrifier groups. Fermentation has thus enabled the long-term subsistence of these bacteria whose stratigraphy serves as a proxy for changing paleoceanographic conditions and potential climate feedback mechanisms.
Saenger, C.; Cronin, T.; Thunell, R.; Vann, C.
2006-01-01
Long-term chronologies of precipitation can provide a baseline against which twentieth-century trends in rainfall can be evaluated in terms of natural variability and anthropogenic influence. However, there are relatively few methods to quantitatively reconstruct palaeoprecipitation and river discharge compared with proxies of other climatic factors, such as temperature. We developed autoregressive and least squares statistical models relating Chesapeake Bay salinity to river discharge and regional precipitation records. Salinity in northern and central parts of the modern Chesapeake Bay is influenced largely by seasonal, interannual and decadal variations in Susquehanna River discharge, which in turn are controlled by regional precipitation patterns. A power regressive discharge model and linear precipitation model exhibit well-defined decadal variations in peak discharge and precipitation. The utility of the models was tested by estimating Holocene palaeoprecipitation and Susquehanna River palaeodischarge, as indicated by isotopically derived palaeosalinity reconstructions from Chesapeake Bay sediment cores. Model results indicate that the early-mid Holocene (7055-5900 yr BP) was drier than the late Holocene (1500 yr BP - present), the 'Mediaeval Warm Period' (MWP) (1200-600 yr BP) was drier than the 'Little Ice Age' (LIA) (500-100 yr BP), and the twentieth century experienced extremes in precipitation possibly associated with changes in ocean-atmosphere teleconnections. ?? 2006 Edward Arnold (Publishers) Ltd.
Realism of the Indian Ocean Dipole in CMIP5 models, and the Implication for Climate Projections
NASA Astrophysics Data System (ADS)
Weller, E.; Cai, W.; Cowan, T.
2012-12-01
An assessment of how well climate models simulate the Indian Ocean Dipole (IOD) is undertaken using coupled models that have partaken in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to CMIP3 models, no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during its peak season in austral spring (September-October-November, or SON). The majority of CMIP5 models generate a larger variance of sea surface temperature (SST) in the Sumatra-Java upwelling region and an IOD amplitude that is far greater than what is observed. Although the relationship between precipitation and the tropical Indian Ocean SST is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD-rainfall teleconnection and IOD amplitude in the model present-day climate. The diversity of the simulated IOD amplitudes in CMIP5 (and CMIP3) models which tend to be overly large, results in a wide range of future modelled SON rainfall trends over IOD-influenced regions. Our results highlight the importance of realistically simulating the present-day IOD properties and the caveat that needs to be exercised in interpreting climate projections in the IOD-affected regions.
Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years
NASA Astrophysics Data System (ADS)
Cavazos, T.; Rivas, D.
2007-05-01
We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.
Climate variations and changes in mass of three glaciers in western North America
Hodge, S.M.; Trabant, D.C.; Krimmel, R.M.; Heinrichs, T.A.; March, R.S.; Josberger, E.G.
1998-01-01
Time series of net and seasonal mass balances for three glaciers in western North America, one in the Pacific Northwest and two in Alaska, show various relationships to Pacific hemisphere climate indexes. During the winter season the two coastal, maritime-regime glaciers, over 2000 km apart, are affected almost identically, albeit inversely, by atmospheric and oceanic conditions in both the tropical and North Pacific. The two Alaska glaciers, only 350 km apart, have almost no coherence. Lag correlations show that in winter the maritime glaciers are influenced by concurrent conditions in the North Pacific, but by conditions in the tropical Pacific in August-September of the prior northern summer. The winter balance variations contain interannual El Nino-Southern Oscillation variability superimposed on North Pacific interdecadal variability; the interdecadal 1976-77 climate regime shift is clearly evident. The summer balances and the continental-regime glacier have a general lack of correlations, with no clear, strong, consistent patterns, probably a result of being influenced more by local processes or by circulation patterns outside the Pacific Ocean basin. The results show the Pacific Northwest is strongly influenced by conditions in the tropical Pacific, but that this teleconnection has broken down in recent years, starting in 1989. During the seven years since then (1989-95), all three glaciers have shown, for the first time, coherent signals, which were net mass loss at the highest rate in the entire record. The authors' results agree with those of other recent studies that suggest these recent years are unusual and may be a signature of climate warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.; Mysak, L.A.
The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less
NASA Astrophysics Data System (ADS)
Randerson, J. T.
2016-12-01
Recent work has established that year-to-year variability in drought and fire within the Amazon responds to a dual forcing from ocean-atmosphere interactions in the tropical Pacific and North Atlantic. Teleconnections between the Pacific and the Amazon are strongest between October and March, when El Niño contributes to below-average precipitation during the wet season. A reduced build-up of soil moisture during the wet season, in turn, may limit water availability and transpiration in tropical forests during the following dry season, lowering surface humidity, drying fuels, and allowing fires to spread more easily through the understory. The delayed influence of soil moisture through this land - atmosphere coupling provides a means to predict fire season severity 3-6 months before the onset of the dry season. With the aim of creating new opportunities for forest conservation, we have developed an experimental seasonal fire forecasting system for the Amazon. The 2016 fire season severity forecast, released in June by UCI and NASA, predicts unusually high risk across eastern Peru, northern Bolivia, and Brazil. Several surface and satellite data streams confirm that El Niño teleconnections had a significant impact on wet season hydrology within the Amazon. Rainfall observations from the Global Precipitation Climatology Centre provided evidence that cumulative precipitation deficits during August-April were 1 to 2 standard deviations below the long-term mean for most of the basin. These observations were corroborated by strong negative terrestrial water storage anomalies measured by the Gravity Recovery and Climate Experiment, and by fluorescence and vegetation index observations from other sensors that indicated elevated canopy stress. By August 3rd, satellite observations showed above average fire activity in most, but not all, forecast regions. Using additional satellite observations that become available later this year, we plan to describe the full spatial and temporal pattern of fires within the Amazon during the 2016 dry season and evaluate the success of our forecast. As a part of this analysis, we will compare fires from 2016 with other years of extreme drought (i.e., 2005 and 2010), and assess how trends in land use, including regional changes in deforestation, modify El Niño-driven fire risk.
Evaluation of blocking performance in ensemble seasonal integrations
NASA Astrophysics Data System (ADS)
Casado, M. J.; Doblas-Reyes, F. J.; Pastor, M. A.
2003-04-01
EVALUATION OF BLOCKING PERFOMANCE IN ENSEMBLE SEASONAL INTEGRATIONS M. J. Casado (1), F. J. Doblas-Reyes (2), A. Pastor (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, mjcasado@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int Climate models have shown a robust inability to reliably predict blocking onset and frequency. This systematic error has been evaluated using multi-model ensemble seasonal integrations carried out in the framework of the Prediction Of climate Variations On Seasonal and interanual Timescales (PROVOST) project and compared to a blocking features assessment of the NCEP re-analyses. The PROVOST GCMs are able to adequately reproduce the spatial NCEP teleconnection patterns over the Northern Hemisphere, being notorious the great spatial correlation coefficient with some of the corresponding NCEP patterns. In spite of that, the different models show a consistent underestimation of blocking frequency which may impact on the ability to predict the seasonal amplitude of the leading modes of variability over the Northern Hemisphere.
Seasonal Storminess in the North Pacific, Bering Sea, and Alaskan Regions
NASA Astrophysics Data System (ADS)
Shippee, N. J.; Atkinson, D. E.; Walsh, J. E.; Partain, J.; Gottschalck, J.; Marra, J.
2012-12-01
Annually, extra-tropical cyclones present a high impact natural hazard to the North Pacific, Bering Sea, and Alaskan regions. In these regions, extensive subsistence and commercial fishing, new oil and gas field development, tourism, growing interest in and exploitation of new commercial shipping potential, and increasing military and Coast Guard activity, all represent potential parties impacted by storms in these waters. It is of interest to many parties to begin developing capacity to provide some indication of storm activity at a monthly- to seasonal-outlook (30 to 90 days) timeframe. Using storm track data from NOAA's Climate Prediction Center for the North Pacific and Alaskan region, an experimental seasonal storminess outlook product, using eigen-based methods similar to the operational seasonal temperature and precipitation products currently produced at NOAA CPC, has been created and tested in hindcast mode using predicted states of ENSO, the Pacific Decadal Oscillation (PDO), the Pacific-North American Pattern (PNA), and the Arctic Oscillation (AO). A sample of the seasonal storminess outlook product will be shown along with a discussion of the utility of individual teleconnection patterns in the generation of the product.
El Niño and its impact on fire weather conditions in Alaska
Hess, Jason C.; Scott, Carven A.; Hufford, Gary L.; Fleming, Michael D.
2001-01-01
Examining the relationship of El Niño to weather patterns in Alaska shows wide climate variances that depend on the teleconnection between the tropics and the northern latitudes. However, the weather patterns exhibited in Alaska during and just after moderate to strong El Niño episodes are generally consistent: above normal temperature and precipitation along the Alaskan coast, and above normal temperature and below normal precipitation in the interior, especially through the winter. The warm, dry conditions in the Alaskan interior increase summer wildfire potential. Statistics on the area burned since 1940 show that 15 out of 17 of the biggest fire years occurred during a moderate to strong El Niño episode. These 15 years account for nearly 63% of the total area burned over the last 58 years. Evidence points to increased dry thunderstorms and associated lightning activity during an El Niño episode; the percentage of total area burned by lightning caused fires during five episodes increased from a normal of less than 40% to a high of about 96%.
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.
Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-11-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption
NASA Astrophysics Data System (ADS)
Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-11-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.
Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption
Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu
2016-01-01
Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874
Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series
NASA Astrophysics Data System (ADS)
Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.
2017-12-01
Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101.
NASA Astrophysics Data System (ADS)
Thiaw, W. M.
2013-12-01
The ability of coupled climate models from the national multi-model ensemble (NMME) dataset to reproduce the basic state and interannual variability of precipitation in West Africa and associated teleconnections is examined. The analysis is for the period 1982-2010 for most of the models, which corresponds to the NMME hindcast period, except for the CFS version 1 (CFSv1) which covers the period 1981-2009. The satellite based CPC African Rainfall Climatology (ARC2) data is used as proxy for observed rainfall and to validate the models. We examine rainfall patterns throughout the year. Models are able to reproduce the north-south migration of precipitation from winter and spring when the area of maximum precipitation is located in Central Africa and the Gulf of Guinea region to the summer when it is in northern Sub-Saharan Africa, and the later return to the south. Models also appropriately place precipitation over the Gulf of Guinea region during the equinoxes in MAM and OND. However, there are considerable differences in the representation of the intensities and locations of the rainfall. Three of the models including the two versions of the NCEP CFS and the NASA models also have a systematic dry (wet) bias over the Sahel (Gulf of Guinea region) during the summer rainfall season, while the others show alternating wet and dry biases across West Africa. All models have spatially averaged values of standard deviation lower than that observed. Models are also able to reproduce to some extent the main features of the precipitation variability maximum, but again with deficiencies in the amplitudes and locations. The areas of highest variability are generally depicted, but there are significant differences among the models, and even between the two versions of the CFS. Teleconnections in the models are investigated by first conducting an EOF in the precipitation anomaly fields and then perform a regression of the first or second EOF time series onto the global SST. Focusing on JAS rainfall season, only the CFSv1 and the NASA models were able to depict the dipole pattern between the Sahel and the Gulf of Guinea rainfall. However, none of the models was able to reproduce the observed upward trend of Sahel rainfall in the last decade. The relationship to SST is also examined. The observed influence of tropical north Atlantic SST on the Sahel rainfall is only partially represented even in the CFSv1, while the NASA model inconsistently emphasizes the role of the tropical South Atlantic. A majority of the models show a partial ENSO teleconnection combined with the tropical south Atlantic mode. However, observations indicate that the influence of ENSO on northern Sub-Saharan summer rainfall has been very weak over the past 30 years. Results for MAM, and OND are also presented. The influence of model errors on the predictions of African rainfall is presented. Canonical correlation analysis (CCA) is employed to correct the model simulations. A new ensemble based on models corrected forecasts is then formed and the results are presented.
A Generalized Framework for Non-Stationary Extreme Value Analysis
NASA Astrophysics Data System (ADS)
Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.
2017-12-01
Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA accessible to a broader audience.
NASA Technical Reports Server (NTRS)
Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell
2014-01-01
Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Hoerling, M. P.; Hoell, A.; Verdin, J. P.; Robertson, F. R.; Alured, D.; Liebmann, B.
2013-12-01
As the earth's population, industry, and agricultural systems continue to expand and increase demand for limited hydrologic resources, developing better tools for monitoring, analyzing and perhaps even predicting decadal variations in precipitation will enable the climate community to better inform important policy and management decisions. To this end, in support of the development and humanitarian relief efforts of the US Agency for International Development, USGS, NOAA, UC Santa Barbara, and NASA scientists have been exploring global precipitation trends using observations and new ensembles of atmospheric general circulation model (AGCM) simulations from the ECHAM5, GFSv2, CAM4 and GMAO models. This talk summarizes this work, and discusses how combined analyses of AGCM simulations and observations might lead to credible decadal projections, for some regions and seasons, based on the strength of the Indo-Pacific warming signal. Focusing on the late boreal spring, a critical period for food insecure Africa, we begin by linearly decomposing 1900-2012 sea surface temperatures (SST) into components loading strongly in the Indo-Western Pacific and Eastern Pacific. Eastern Pacific (EP) SST variations are based on regressions with three time series: the first and second principal components of equatorial Pacific SST and the Pacific Decadal Oscillation. These influences are removed from Indo-Pacific SSTs, and the Indo-Western Pacific (IWP) SST variations are defined by the 1st principal component of the residuals, which we refer to as the Indo-West Pacific Warming Signal (IWPWS). The pattern of IWPWS SST changes resembles recent assessments of centennial warming, and identifies rapid warming in the equatorial western Pacific and north and south Pacific convergence zones. The circulation impacts of IWP and EP SST forcing are explored in two ways. First, assuming linear SST forcing relationships, IWP and EP decompositions of ECHAM5, GFS, CAM4 and GMAO AGCM simulations are presented. These results suggest that a substantial component of the recent Walker circulation intensification has been related to the IWPWS. The IWPWS warming extends from just north of Papua New Guinea to just west of Hawaii, and appears associated with SLP, wind and rainfall responses consistent with enhanced Indo-Pacific convection. These decomposition results are compared with a set of numerical simulation experiments based on the ECHAM5 and GFS models forced with characteristic IWP and EP SST for 1983-1996 and 1999-2012. The talk concludes with a tentative discussion of the decadal predictability associated with the IWPWS. Using both observed and model-simulated precipitation, we briefly explore potential IWPWS drought teleconnection regions in the Americas, Asia, Middle East, and Eastern Africa. Figure 1. Western Pacific and Eastern Pacific SST changes between 1999-2012 and 1983-1996. Figure 2. Western Pacific and Eastern Pacific GPCP precipitation changes between 1999-2012 and 1983-1996.
NASA Astrophysics Data System (ADS)
Chang, Hai-Ru; Webster, Peter J.
1990-11-01
A fully nonlinear model is used to reexamine the impact of a zonally varying basic state on the propagation characteristics of latitudinally equatorially trapped modes. Linear studies have shown that such modes are longitudinally trapped in regions of negative stretching deformation of the equatorial time-mean zonal flow (i.e., where Ux < 0) forming `accumulation' regions of wave action flux. Furthermore, the accumulation regions tend to act as local emanation regions to the extratropics. These physical communications between the tropics and extratropics are referred to as fast teleconnections due to their rapidity (periods of days to weeks) compared to the much slower climatological differences in the mean states such as occur between El Niño and La Niña. The latter form of communication between low and high latitudes, which is induced by very low frequency SST changes, is referred to as a slow teleconnection.It is generally found that accumulation and emanation regions are present in the nonlinear regime with much the same character as with the linear model. The similarity exists even when realistic forcing functions are used with amplitudes and temporal and spatial characteristics that correspond to impulsive convection in the western Pacific Ocean. A description of the convection is given. A diagnosis of the linear and nonlinear results shows that, in the tropics, the linear advection by the mean flow plays a dominant role and probably is the reason for the great similarity of the linear and nonlinear tropical atmosphere. However, there are some differences between the linear and nonlinear results. Nonlinear waves appear to propagate more rapidly through the maximum westerlies along the equator and with less difficulty than linear waves. The differences that do occur arise from the nonlinear changes in the tropical mass field, especially in the accumulation zone. Differences between linear and nonlinear responses in the midlatitude response to equatorial forcing appear to reflect changes in the tropics. Nonlinear maxima occur poleward of the region of tropical westerlies but only after accumulation has occurred along the equator.The results of the study are used to discuss the problem of why there is considerable similarity between simple linear models and more sophisticated nonlinear models. Such similarity would probably explain why the NMC and the NEPRF global models exhibit phase locked responses in the middle latitudes to imposed and impulsive tropical forcing. The role of fast teleconnenions in the longer term general circulation of the atmosphere is discussed, especially during El Niño and La Niña. Whereas an aggregate role for the fast teleconnections in producing very slowly evolving climate features remains obscure, it does appear that the accumulation-emanation theory may infer different routings for transient communications between the tropics and higher latitudes and vice vera depending upon the state of the basic flow.
NASA Astrophysics Data System (ADS)
Siderius, C.; Gannon, K. E.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D.
2018-01-01
The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and impacts beyond agriculture is limited. We examine the hydrological response and impact pathways of the 2015/2016 El Niño in eastern and southern Africa, focusing on Botswana, Kenya, and Zambia. We use in situ and remotely sensed time series of precipitation, river flow, and lake levels complemented by qualitative insights from interviews with key organizations in each country about awareness, impacts, and responses. Our results show that drought conditions prevailed in large parts of southern Africa, reducing runoff and contributing to unusually low lake levels in Botswana and Zambia. Key informants characterized this El Niño through record high temperatures and water supply disruption in Botswana and through hydroelectric load shedding in Zambia. Warnings of flood risk in Kenya were pronounced, but the El Niño teleconnection did not materialize as expected in 2015/2016. Extreme precipitation was limited and caused localized impacts. The hydrological impacts in southern Africa were severe and complex, strongly exacerbated by dry antecedent conditions, recent changes in exposure and sensitivity and management decisions. Improved understanding of hydrological responses and the complexity of differing impact pathways can support design of more adaptive, region-specific management strategies.
Degefu, Mekonnen Adnew; Bewket, Woldeamlak
2017-04-01
This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.
An observational and modeling study of the regional impacts of climate variability
NASA Astrophysics Data System (ADS)
Horton, Radley M.
Climate variability has large impacts on humans and their agricultural systems. Farmers are at the center of this agricultural network, but it is often agricultural planners---regional planners, extension agents, commodity groups and cooperatives---that translate climate information for users. Global climate models (GCMs) are a leading tool for understanding and predicting climate and climate change. Armed with climate projections and forecasts, agricultural planners adapt their decision-making to optimize outcomes. This thesis explores what GCMs can, and cannot, tell us about climate variability and change at regional scales. The question is important, since high-quality regional climate projections could assist farmers and regional planners in key management decisions, contributing to better agricultural outcomes. To answer these questions, climate variability and its regional impacts are explored in observations and models for the current and future climate. The goals are to identify impacts of observed variability, assess model simulation of variability, and explore how climate variability and its impacts may change under enhanced greenhouse warming. Chapter One explores how well Goddard Institute for Space Studies (GISS) atmospheric models, forced by historical sea surface temperatures (SST), simulate climatology and large-scale features during the exceptionally strong 1997--1999 El Nino Southern Oscillation (ENSO) cycle. Reasonable performance in this 'proof of concept' test is considered a minimum requirement for further study of variability in models. All model versions produce appropriate local changes with ENSO, indicating that with correct ocean temperatures these versions are capable of simulating the large-scale effects of ENSO around the globe. A high vertical resolution model (VHR) provides the best simulation. Evidence is also presented that SST anomalies outside the tropical Pacific may play a key role in generating remote teleconnections even during El Nino events. Based on the results from Chapter One, the analysis is expanded in several ways in Chapter Two. To gain a more complete and statistically meaningful understanding of ENSO, a 25 year time period is used instead of a single event. To gain a fuller understanding of climate variability, additional patterns are analyzed. Finally analysis is conducted at the regional scales that are of interest to farmers and agricultural planners. Key findings are that GISS ModelE can reproduce: (1) the spatial pattern associated with two additional related modes, the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO); (2) rainfall patterns in Indonesia; and (3) dynamical features such as sea level pressure (SLP) gradients and wind in the study regions. When run in coupled mode, the same model reproduces similar modes spatially but with reduced variance and weak teleconnections. Since Chapter Two identified Western Indonesia as the region where GCMs hold the most promise for agricultural applications, in Chapter Three a finer spatial and temporal scale analysis of ENSO's effects is presented. Agricultural decision-making is also linked to ENSO's climate effects. Early rainy season precipitation and circulation, and same-season planting and harvesting dates, are shown to be sensitive to ENSO. The locus of ENSO convergence and rainfall anomalies is shown to be near the axis of rainy season establishment, defined as the 6--8 mm/day isohyet, an approximate threshold for irrigated rice cultivation. As the axis tracks south and east between October and January, so do ENSO anomalies. Circulation anomalies associated with ENSO are shown to be similar to those associated with rainfall anomalies, suggesting that long lead-time ENSO forecasts may allow more adaptation than 'wait and see' methods, with little loss of forecast skill. Additional findings include: (1) rice and corn yields are lower (higher) during dry (wet) trimesters and El Nino (La Nina) years; and (2) a statistically significant negative relationship exists between malaria cases and ENSO. The final chapter adds climate change to the climate variability story. Under high CO2, the model able to capture ENSO dynamics---an atmospheric model coupled to the Cane-Zebiak ocean model ('C4' here)---generates more El Nino-like mean conditions in the tropical Pacific. These changes produce a 4x larger increase in maximum precipitation with warming in C4 than an atmospheric model with a slab ocean (Q4), dramatically enhancing the Pacific Hadley and Walker circulations, and through positive feedbacks, increasing the global temperature. Near Nordeste warming alone (Q4) produces added rainfall, which in C4 is partially cancelled out by El Nino-like changes in the Walker Cell. Both Q4 and C4 produce small changes in Indonesia, although C4 generates large circulation and precipitation anomalies over the Western Indian Ocean. C4 changes in the midlatitudes produce a very strong Pacific North American pattern (PNA) response that dominates a small positive AO change associated with Q4. These PNA changes produce increased rainfall over the Southeastern United States (SEUS) in C4. AO and NAO-like variability are also found to increase with enhanced CO2. This thesis highlights how climate variability influences regional climate variability, with an emphasis on four regions: Nordeste, Brazil, Western Indonesia, the Southeastern United States (SEUS), and the Mediterranean. It links El Nino-driven delay in the onset of rainy season drivers in Western Indonesia to decision-making about when to plant the year's largest crop. In a coupled configuration, the GISS GCM produces strong El Nino-like changes with global warming. This result suggests that the impacts---climatological and agricultural---of climate change may ultimately exceed the impacts of current variability. Somewhat paradoxically, these results indicate that one of the central manifestations of climate change is likely to be changes in patterns of climate variability and their regional impacts.
A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core
NASA Astrophysics Data System (ADS)
Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.
2017-12-01
Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.
NASA Astrophysics Data System (ADS)
Roop, H. A.; Levy, R. H.; Vandergoes, M.; Dunbar, G. B.; Howarth, J. D.; Lorrey, A.; Phipps, S. J.
2016-12-01
Comprehensive understanding of natural climate-system dynamics requires high-resolution paleoclimate records extending beyond the instrumental period. This is particularly the case for the sparsely-instrumented Southern Hemisphere mid-latitudes, where the timing and amplitude of regional and hemispheric-scale climatic events are poorly constrained. Here we present a 1,350-year record of hydroclimatic variability and regional circulation derived from an annually laminated sediment record from Lake Ohau, South Island, New Zealand (44.23°S, 169.85°E). The climate of New Zealand is influenced by climatological patterns originating in both the tropics (e.g. El-Niño-Southern Oscillation, Interdecadal Pacific Oscillation) and the Antarctic (Southern Annular Mode, SAM). Utilizing the annually resolved Lake Ohau hydroclimate record in combination with a tree-ring record of summer temperature from Oroko Swamp, New Zealand (Cook et al., 2002), we generate a circulation index for the Western South Island of New Zealand. This index utilizes the temperature and precipitation anomalies defined by the Regional Climate Regime Classification scheme for New Zealand to assign synoptic scale circulation patterns to 25-year intervals from 900-2000 AD. This circulation index shows significant periods of change, most notably 835 - 985 AD when northerly airflow dominated and from 1385 - 1710 AD when strong southerly airflow persisted. Comparisons with regional SAM and ENSO reconstructions show that dry, warm conditions at Lake Ohau are consistently associated with strengthened tropical teleconnections to New Zealand and a positive SAM, while cold and wet conditions are driven by increased southerly airflow and negative phase SAM. A persistent negative SAM dominates the Little Ice Age (LIA; 1385-1710 AD) interval in the Western South Island. This same period coincides with the Northern Hemisphere LIA.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Francois; Goosse, Hugues; Graham, Nicholas E.
The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko–Malawi region, while the bimodal seasonal cycle characterizing the Challa–Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, theremore » is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa–Naivasha region than for the Masoko–Malawi region. At the inter-annual timescale, last-millennium Challa–Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. Furthermore, this means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections.« less
Klein, Francois; Goosse, Hugues; Graham, Nicholas E.; ...
2016-07-13
The multi-decadal to centennial hydroclimate changes in East Africa over the last millennium are studied by comparing the results of forced transient simulations by six general circulation models (GCMs) with published hydroclimate reconstructions from four lakes: Challa and Naivasha in equatorial East Africa, and Masoko and Malawi in southeastern inter-tropical Africa. All GCMs simulate fairly well the unimodal seasonal cycle of precipitation in the Masoko–Malawi region, while the bimodal seasonal cycle characterizing the Challa–Naivasha region is generally less well captured by most models. Model results and lake-based hydroclimate reconstructions display very different temporal patterns over the last millennium. Additionally, theremore » is no common signal among the model time series, at least until 1850. This suggests that simulated hydroclimate fluctuations are mostly driven by internal variability rather than by common external forcing. After 1850, half of the models simulate a relatively clear response to forcing, but this response is different between the models. Overall, the link between precipitation and tropical sea surface temperatures (SSTs) over the pre-industrial portion of the last millennium is stronger and more robust for the Challa–Naivasha region than for the Masoko–Malawi region. At the inter-annual timescale, last-millennium Challa–Naivasha precipitation is positively (negatively) correlated with western (eastern) Indian Ocean SST, while the influence of the Pacific Ocean appears weak and unclear. Although most often not significant, the same pattern of correlations between East African rainfall and the Indian Ocean SST is still visible when using the last-millennium time series smoothed to highlight centennial variability, but only in fixed-forcing simulations. Furthermore, this means that, at the centennial timescale, the effect of (natural) climate forcing can mask the imprint of internal climate variability in large-scale teleconnections.« less
NASA Astrophysics Data System (ADS)
Zinke, Jens; Browning, Stuart A.; Hoell, Andrew; Goodwin, Ian D.
2017-04-01
The Maritime Continent (MC) is the hydrological power house of the planet being collocated within the Indo-Pacific Warm Pool, where sea surface temperatures (SST) exceed 28°C associated with strong convective rainfall year-round. The convective activity over the Maritime Continent associated with the El Niño-Southern Oscillation (ENSO) is intimately linked to large- scale variations in the climate system and global rainfall-drought patterns. New research has shown that during both El Niño and La Niña events the global impacts in terms of atmospheric circulation and precipitation were more severe when the SST anomalies in the westernmost Pacific (WP; 0-10°N, 130-150°E) were strongly opposing those in the central Pacific (Niño4 region; 5°S-5°N, 160-210°E) than when the west Pacific SST anomalies were near neutral. This temperature gradient is referred to as the West Pacific Gradient (WPG; Hoell and Funk, 2013; Zinke et al., 2015). A positive WPG is when WP SST anomalies are colder than those in the central Pacific, thus El-Niño-like conditions prevail. Recent changes in the WPG towards a negative phase, combined with strong WP warming after the Indo-Pacific climate regime shift of the late 1990s, are driving significant thermal anomalies from the Indonesian seas to the southern coast of Western Australia and along the southwest Pacific (Zinke et al., 2015). The reconstruction of the WPG for the past Millennium might provide novel insights into past tropical climate variability since more long proxy archives are available to assess the WPG than for the Niño3.4 region. WPG variability over the past millennium is reconstructed using an experimental paleoclimate based reanalysis (PaleoR). PaleoR is analogous to modern reanalysis products, but constrained by paleoclimate data instead of meteorological observations (Goodwin et al., 2014). PaleoR employs an offline assimilation scheme where each year (or decade) is individually reconstructed by using information from a multivariate proxy data array to select best matching analogues from the Last Millennial Ensemble simulations (LME; Otto-Bliesner et al., 2015). The PaleoR approach preserves dynamical relationships between ocean and atmospheric variables and accommodates periods of non-stationary teleconnections. Our results reveal a sustained positive WPG between AD 1250 to 1650 (a period that Goodwin et al. 2014 identified as being persistent El Niño like) and a mostly negative WPG between AD 1650 and 2000, the latter interrupted by multi-decadal periods with a positive WPG centered around 1760, 1830 and 1900. The periods between AD 1125-1175 and 1185-1250 were characterized by a negative WPG (a period that Goodwin et al. 2014 identified as being persistent La Niña like) with positive WPG excursions in decades around AD 1000-1050, 1100 and 1175. We investigate the spatial climate anomaly fields for periods of sustained positive and negative WPG to reveal potential global climate teleconnections in terms of SST, rainfall, winds and sea-level pressure during the past Millennium. References Goodwin et al. 2014, P. Natl. A. Sci., 111, 14716-14721 Hoell and Funk 2013, J. Clim., 26, 9545-9562 Otto-Bliesner et al., 2015, B. Am. Meteorol. Soc., doi:10.1175/BAMS-D-14-00233.1 Zinke et al. 2015, Nature Communications, 6:8562, doi: 10.1038/ncomms9562
Effects of Medieval Warm Period and Little Ice Age on the hydrology of Mediterranean region
NASA Astrophysics Data System (ADS)
Markonis, Y.; Kossieris, P.; Lykou, A.; Koutsoyiannis, D.
2012-04-01
Medieval Warm Period (950 - 1250) and Little Ice Age (1450 - 1850) are the most recent periods that reflect the magnitude of natural climate variability. As their names suggest, the first one was characterized by higher temperatures and a generally moister climate, while the opposite happened during the second period. Although their existence is well documented for Northern Europe and North America, recent findings suggest strong evidence in lower latitudes as well. Here we analyze qualitatively the influence of these climatic fluctuations on the hydrological cycle all over the Mediterranean basin, highlighting the spatial characteristics of precipitation and runoff. We use both qualitative estimates from literature review in the field of paleoclimatology and statistical analysis of proxy data series. We investigate possible regional patterns and possible tele-connections with large scale atmospheric circulation phenomena such as North Atlantic Oscillation, Siberian High, African Sahel Rainfall and Indian Monsoon.
Statistics of Atmospheric Circulations from Cumulant Expansions
NASA Astrophysics Data System (ADS)
Marston, B.; Sabou, F.
2010-12-01
Large-scale atmospheric flows are not so nonlinear as to preclude their direct statistical simulation (DSS) by systematic expansions in equal-time cumulants. Such DSS offers a number of advantages: (i) Low-order statistics are smoother in space and stiffer in time than the underlying instantaneous flows, hence statistically stationary or slowly varying fixed points can be described with fewer degrees of freedom and can also be accessed rapidly. (ii) Convergence with increasing resolution can be demonstrated. (iii) Finally and most importantly, DSS leads more directly to understanding, by integrating out fast modes, leaving only the slow modes that contain the most interesting information. This makes the approach ideal for simulating and understanding modes of the climate system, including changes in these modes that are driven by climate change. The equations of motion for the cumulants form an infinite hierarchy. The simplest closure is to set the third and higher order cumulants to zero. We extend previous work (Marston, Conover, and Schneider 2008) along these lines to two-layer models of the general circulation which has previously been argued to be only weakly nonlinear (O'Gorman and Schneider, 2006). Equal-time statistics so obtained agree reasonably well with those accumulated by direct numerical simulation (DNS) reproducing efficiently the midlatitude westerlies and storm tracks, tropical easterlies, and non-local teleconnection patterns (Marston 2010). Low-frequency modes of variability can also be captured. The primitive equation model of Held & Suarez, with and without latent heat release, is investigated, providing a test of whether DSS accurately reproduces the responses to simple climate forcings as found by DNS.
An east-west climate see-saw in the Mediterranean during the last 2.6 ka: evidence and mechanisms
NASA Astrophysics Data System (ADS)
Roberts, C.; Moreno-Caballud, A.; Valero-Garces, B. L.; Luterbacher, J.; Xoplaki, E.; Allcock, S. L.
2012-12-01
Global precipitation anomalies during the Common Era show a spatial coherency that appears to be about an order of magnitude lower (i.e. smaller) than for temperature changes, as some areas became wetter while others experienced drought (Seager et al., 2007, Quat. Sci. Rev. 26, 2322-36). The Mediterranean basin (10°W-40°E; 30°-45°N) is influenced by some of the main mechanisms acting upon the global climate system and its regional water resources are sensitive to hydro-climatic variations. Reconstructing the timing, intensity, and patterns of hydrological variability in the Mediterranean is important for testing spatial-temporal coherency in palaeo-precipitation, and for understanding underlying climate forcing mechanisms. The region offers a broad spectrum of documentary information and natural archives which allow high-resolution climate reconstructions (Luterbacher et al., 2012, In: Lionello et al. (eds) The Mediterranean Climate: from past to future. Elsevier, pp. 87-185). During the period of instrumental records, the NAO has strongly influenced inter-annual precipitation variations in the western Mediterranean, while parts of the eastern basin have shown an anti-phase relationship in precipitation and atmospheric pressure. A wide array of proxy-climate data from Iberia and Morocco indicate overall drier conditions during the Medieval Climate Anomaly (MCA) and a generally wetter climate in the Little Ice Age (LIA)(Moreno et al., 2012, Quat. Sci. Rev. 43, 16-32). This pattern is consistent with strong NAO forcing of western Mediterranean climate over the last 1.1 ka (Trouet et al., 2009; Science 324, 78-80). High-resolution palaeolimnological evidence from central Anatolia exhibit an opposite pattern, implying that an east-west climate see-saw operated in the Mediterranean basin during the LIA and MCA (Roberts et al., 2012; Glob. Planet. Change 84-85, 23-34). However, the strongest evidence for higher (lower) winter season precipitation during the MCA (LIA) does not come from the southeast sector of the Mediterranean basin, as would be expected from the pattern of NAO forcing seen during the instrumental period. Prior to the MCA, many proxy-climate records show changes of significantly larger amplitude than during the last millennium, notably during and after the Roman period. However, absolute chronologies become less precise with dating errors of ±>50 yr (Dermody et al., 2012; Clim. Past 8, 637-651), making correlations less robust. Before 2.6 ka BP, i.e. coincident with the northern European grenzhorizont, proxy-climate records from the Mediterranean show changes which imply a significant shift in atmospheric boundary conditions (e.g. radiative forcing). It is clear that hydro-climatic trends have been non-uniform across the Mediterranean in recent millennia. The contrasting spatio-temporal patterns across the basin appear to have been determined by a combination of different climate modes along with major physical geographical controls, not by NAO forcing alone, and/or the character of the NAO and its teleconnections have been non-stationary.
Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene
NASA Astrophysics Data System (ADS)
Christensen, B. A.; Renema, W.; Henderiks, J.; De Vleeschouwer, D.; Groeneveld, J.; Castañeda, I. S.; Reuning, L.; Bogus, K.; Auer, G.; Ishiwa, T.; McHugh, C.; Gallagher, S. J.; Fulthorpe, C.; Expedition 356 Scientists, I.
2016-12-01
Our understanding of the onset of aridity in Australia and associated mechanisms is limited by the availability of long, continuous climate archives, particularly for the NW shelf in the Pliocene. Five sites were cored and logged on IODP Expedition 356, western Australian margin. Analysis of the natural gamma ray (NGR) suite of downhole logs, provide insights to the timing and rate of climate change. NGR data provide an outstanding tool to assess continental humidity (K%) and aridity (Th/K, Uppm); interpretations are supported with clay mineral data. We show progressive constriction of the Indonesian Throughflow (ITF) and the emerging Maritime Continent drove Australian climate to become drier and more variable. We identify 3 intervals of latest Miocene through early Pleistocene change: sudden onset of humidity at 5.5 Ma (Humid Interval), followed by decreased humidity (Transition Interval) and establishment of the NW dust pathway (Arid Interval) at 2.3 Ma. The Humid Interval is associated with the Western Pacific Warm Pool (WPWP) expansion west to the South China Sea and higher Indian Ocean SSTs. Our study of the NW region confirms wetter climates ringed the arid center during the early Pliocene. Reduced moisture availability began at 3.3 Ma, coincident with cooling in the WPWP and elsewhere, global atmospheric circulation constriction and Indian Ocean subsurface freshening and cooling, a direct response to ITF constriction. Greatest aridity and the onset of the modern dust pathway, documented in Th/K and Uppm logs beginning 2.3 Ma, is coincident with orbitally- controlled climatic change, and reorganization of Indian Ocean circulation. Our data indicate Australian climate is driven by tectonic and oceanographic changes in the ITF. Such changes altered regional atmospheric moisture transport and Indian Ocean circulation patterns and led to a shift from Pacific to Indian Ocean influence on theNW Australian climate, well after the intensification of northern hemisphere glaciation. We conclude that the Maritime Continent is the switchboard modulating teleconnections between monsoonal and glacial climate systems.
Future loss of Arctic sea-ice cover could drive a substantial decrease in California's rainfall.
Cvijanovic, Ivana; Santer, Benjamin D; Bonfils, Céline; Lucas, Donald D; Chiang, John C H; Zimmerman, Susan
2017-12-05
From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.
2016-12-01
The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most of the current ESMs with frequent deep-sea convection events in the control state predict a permanent shut down of this convection under climate change in the 21st century. We propose that the preindustrial convective state of the Southern Ocean and its evolution under climate warming will have implications for the SO-tropical teleconnections.
NASA Astrophysics Data System (ADS)
Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark
2014-05-01
Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power output at a local level and a tool that wind farm developers could use to inform site selection. A particular priority was to assess how the potential wind power outputs over a 25-30 year windfarm lifetime in less windy, but resource-stable regions, compare with those from windier but more variable sites.
The Biogeophysical Climatic Impacts of Anthropogenic Land Use Change during the Holocene
NASA Astrophysics Data System (ADS)
Smith, Clare; Singarayer, Joy; Valdes, Paul; Kaplan, Jed; Branch, Nicholas
2016-04-01
The first agricultural societies were established around 10ka BP and had spread across much of Europe and southern Asia by 5.5ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011*) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1,000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high-latitudes winds led to remote teleconnections. *Kaplan, Jed O., Kristen M. Krumhardt, and Niklaus Zimmermann. "The prehistoric and preindustrial deforestation of Europe." Quaternary Science Reviews 28.27 (2009): 3016-3034. Kaplan, J. O., K. M. Krumhardt, E. C. Ellis, W. F. Ruddiman, C. Lemmen, and K. K. Goldewijk (2011), Holocene carbon emissions as a result of anthropogenic land cover change, The Holocene, 21(5), 775-791
Florida wildfire activity and atmospheric teleconnections
S.L. Goodrick
2009-01-01
Since 1991, the Florida Division of Forestry has been making seasonal fire severity forecasts based on arelationship between area burned in Florida and El NiñoâSouthern Oscillation (ENSO). The...
Improving seasonal forecast through the state of large-scale climate signals
NASA Astrophysics Data System (ADS)
Samale, Chiara; Zimmerman, Brian; Giuliani, Matteo; Castelletti, Andrea; Block, Paul
2017-04-01
Increasingly uncertain hydrologic regimes are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. In fact, forecasts are usually skillful over short lead time (from hours to days), but predictability tends to decrease on longer lead times. The forecast lead time might be extended by using climate teleconnection, such as El Nino Southern Oscillation (ENSO). Despite the ENSO teleconnection is well defined in some locations such as Western USA and Australia, there is no consensus on how it can be detected and used in other river basins, particularly in Europe, Africa, and Asia. In this work, we propose the use of the Nino Index Phase Analysis for capturing the state of multiple large-scale climate signals (i.e., ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, Dipole Mode Index). This climate state information is used for distinguishing the different phases of the climate signals and for identifying relevant teleconnections between the observations of Sea Surface Temperature (SST) that mostly influence the local hydrologic conditions. The framework is applied to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Preliminary results show high correlations between SST and three to six months ahead precipitation in the Lake Como basin. This forecast represents a valuable information to partially anticipate the summer water availability, ultimately supporting the improvement of the Lake Como operations.
NASA Astrophysics Data System (ADS)
Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I.
2016-12-01
Annual grapevine growth and development are intimately linked with growing season weather conditions. Shifts in circulation patterns resulting from atmospheric teleconnections to changes in sea surface temperature (SST) anomalies associated with El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events can alter seasonal weather across Australia. Both ENSO and IOD events tend to peak in austral spring, when vine and berry development is especially critical and susceptible to damage. To investigate the impacts of ENSO and IOD events on the Australian wine grape growing sector, historical gridded climate data and annual vineyard grape maturity data from a variety of wine growing regions was collected and analysed. The greatest impacts on grape maturity were found when La Niña and IOD positive events occurred in tandem. During these events, significantly dry and hot conditions persist throughout the wine grape growing season, suggesting that the IOD overrides the ENSO signal. These conditions lead to a rapid, compressed growing season, which can cause logistical complications during harvest and impact grape and wine quality. Warming of equatorial SSTs in the Indian Ocean are likely to enhance the amplitude of IOD positive events, which has serious implications for wine grape production in Australia, highlighting the importance of this research.
Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing
NASA Astrophysics Data System (ADS)
Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.
2015-12-01
Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.
Challenges and opportunities for improved understanding of regional climate dynamics
NASA Astrophysics Data System (ADS)
Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga
2018-01-01
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.
NASA Technical Reports Server (NTRS)
Asoka, Akarsh; Gleeson, Tom; Wada, Yoshihide; Mishra, Vimal
2017-01-01
The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm/yr and increased by 1 to 2 cm/yr in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.
NASA Astrophysics Data System (ADS)
Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.
2017-12-01
An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.
NASA Astrophysics Data System (ADS)
Curtis, Scott; Gamble, Douglas W.
2016-07-01
Precipitation totals in the greater Caribbean are known to be affected by interannual variability. In particular, dry conditions in the spring-summer have been physically linked to the positive phase of North Atlantic Oscillation (NAO) in the literature. In this study, it was found through regression analysis that an active Madden-Julian Oscillation (MJO) in winter geographically focused over the Maritime Continent contributes to a positive NAO in March via the generation of Rossby waves in the Northern Hemisphere. Specifically, a negative Pacific-North American pattern develops in the winter and transitions to an Atlantic pattern in spring. The positive NAO is a transient feature of this evolving wave train, but a center of significant positive 200 hPa geopotential heights is entrenched over the southeast U.S. throughout the February to May time period and is manifested as high pressure at the surface. The southern flank of this system increases the speeds of the trade winds and leads to a cooling of the Caribbean sea surface temperatures and, thus, convection suppression and reduced precipitation. Thus, this study advances our understanding of the climate of the greater Caribbean by using climate teleconnections to relate the MJO to rainfall in the region.
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Chan, P. H.
1983-01-01
Attention is given to the low-frequency variability of outgoing longwave radiation (OLR) fluctuations, their possible correlations over different parts of the globe, and their relationships with teleconnections obtained from other meteorological parameters, for example, geopotential and temperature fields. Simultaneous relationships with respect to the Southern Oscillation (Namais, 1978; Barnett, 1981) signal and the reference OLR fluctuation over the equatorial central Pacific are investigated. Emphasis is placed on the relative importance of the Southern Oscillation (SO) signal over preferred regions. Using lag cross-correlation statistics, possible lagged relationships between the tropics and midlatitudes and their relationships with the SO are then investigated. Only features that are consistent with present knowledge of the dynamics of the system are emphasized. Certain features which may not meet rigorous statistical significance tests but yet are either expected a priori from independent observations or are predicted from dynamical theories are also explored.
The role of barotropic oscillations within atmospheres of highly variable refractive index
NASA Technical Reports Server (NTRS)
Paegle, J.; Paegle, J. N.; Yan, H.
1983-01-01
Among the various energy transfer mechanisms that might be relevant for teleconnections between tropical and higher latitudes, Rossby wave propagation is certainly one of the most important. In view of this, it is of interest to understand how the propagation of Rossby waves might be affected by ambient flows which locally may be unable to sustain oscillations due to vorticity gradients. This concept is re-examined based on the observation that there are large areas over the Pacific where the upper tropospheric absolute vorticity and its horizontal gradient are small. These key areas for teleconnections might be suspected to be unfavorable to the local propagation of Rossby waves. Results of integrations of the barotropic vorticity equation on the sphere are presented to show the role that regions with small absolute vorticity gradient play in this problem. Implications regarding the maintenance of blocks and the influence of divergent effects are also addressed.
The vegetation outlook (VegOut): a new method for predicting vegetation seasonal greenness
Tadesse, T.; Wardlow, B.; Hayes, M.; Svoboda, M.; Brown, J.
2010-01-01
The vegetation outlook (VegOut) is a geospatial tool for predicting general vegetation condition patterns across large areas. VegOut predicts a standardized seasonal greenness (SSG) measure, which represents a general indicator of relative vegetation health. VegOut predicts SSG values at multiple time steps (two to six weeks into the future) based on the analysis of "historical patterns" (i.e., patterns at each 1 km grid cell and time of the year) of satellite, climate, and oceanic data over an 18-year period (1989 to 2006). The model underlying VegOut capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation, ENSO) expressed over the 18-year data record and also considers several environmental characteristics (e.g., land use/cover type and soils) that influence vegetation's response to weather conditions to produce 1 km maps that depict future general vegetation conditions. VegOut provides regionallevel vegetation monitoring capabilities with local-scale information (e.g., county to sub-county level) that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. In this paper, the VegOut approach is discussed and a case study over the central United States for selected periods of the 2008 growing season is presented to demonstrate the potential of this new tool for assessing and predicting vegetation conditions.
Response of wheat yield in Spain to large-scale patterns
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepcion
2016-04-01
Crops are vulnerable to extreme climate conditions as drought, heat stress and frost risk. In previous study we have quantified the influence of these climate conditions for winter wheat in Spain (Hernandez-Barrera et al. 2015). The climate extremes respond to large-scale atmospheric and oceanic patterns. Therefore, a question emerges in our investigation: How large-scale patterns affect wheat yield? Obtaining and understanding these relationships require different approaches. In this study, we first obtained the leading mode of observed wheat yield variability to characterize the common variability over different provinces in Spain. Then, the wheat variability is related to different modes of mean sea level pressure, jet stream and sea surface temperature by using Partial Least-Squares, which captures the relevant climate drivers accounting for variations in wheat yield from sowing to harvesting. We used the ERA-Interim reanalysis data and the Extended Reconstructed Sea Surface Temperature (SST) (ERSST v3b). The derived model provides insight about the teleconnections between wheat yield and atmospheric and oceanic circulations, which is considered to project the wheat yield trend under global warming using outputs of twelve climate models corresponding to the Coupled Models Intercomparison Project phase 5 (CMIP5). Hernandez-Barrera S., C. Rodríguez-Puebla and A.J. Challinor. Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology (submitted)
Understanding the Central Equatorial African long-term drought using AMIP-type simulations
NASA Astrophysics Data System (ADS)
Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay
2018-02-01
Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.
NASA Technical Reports Server (NTRS)
Pascolini-Campbell, M.; Seager, Richard; Pinson, Ariane; Cook, Benjamin I.
2017-01-01
Study region: The Upper Rio Grande (URG) flows from its headwaters in Colorado, U.S., and provides an important source of water to millions of people in the U.S. states of Colorado, New Mexico, Texas, and also Mexico. Study focus: We reassess the explanatory power of the relationship of sea surface temperatures (SST) on URG streamflow variability on interannual to interdecadal timescales. We find a significant amount of the variance of spring-summer URG streamflow cannot be fully explained by SST. New hydrological insights: We find that the interdecadal teleconnection between SST and streamflow is more clear than on interannual timescales. The highest ranked years tend to be clustered during positive phases of the Pacific Decadal Oscillation (PDO). During the periods of decadal high flow (1900-1920, and 1979-1995), Pacific SST resembles a positive PDO pattern and the Atlantic a negative Atlantic Multidecadal Oscillation (AMO) pattern; an interbasin pattern shown in prior studies to be conducive to high precipitation and streamflow. To account for the part of streamflow variance not explained by SST, we analyze atmospheric Reanalysis data for the months preceding the highest spring-summer streamflow events. A variety of atmospheric configurations are found to precede the highest flow years through anomalous moisture convergence. This lack of consistency suggests that, on interannual timescales, weather and not climate can dominate the generation of high streamflow events.
Atmospheric teleconnections between the Arctic and the Baltic Sea regions
NASA Astrophysics Data System (ADS)
Jakobson, L.; Jakobson, E.
2017-12-01
The observed enhanced warming of the Arctic, referred to as the AA, is expected to be related to further changes that impact mid-latitudes and the rest of the world. Our aim is to clarify how the climatic parameters in the Baltic Sea and Arctic regions are associated. Knowledge of such connections helps to define regions in the Arctic that could be with higher extent associated with the Baltic Sea region climate change. We used monthly mean reanalysis data from NCEP-CFSR and ERA-Interim. The strongest teleconnections between the same parameter (temperature, SLP, specific humidity, wind speed) at the Baltic Sea region and the Arctic are found in winter, but they are clearly affected by the Arctic Oscillation (AO) index. After removal of the AO index variability, correlations in winter were everywhere below ±0.5, while in other seasons there remained regions with strong (|R|>0.5, p<0.002) correlations. Strong correlations are also present between different climate variables at the Baltic Sea region and different regions of the Arctic. Temperature from 1000 to 500 hPa level at the Baltic Sea region have a strong negative correlation with the Greenland sector (the region between 20 - 80W and 55 - 80N) during all seasons except summer. The positive temperature anomaly of mild winter at the Greenland sector shifts towards east during the next seasons, reaching to Scandinavia/Baltic Sea region in summer. The Greenland sector is the region which gives the most significant correlations with the climatic parameters (temperature, wind speed, specific humidity, SLP) of the Baltic Sea region. These relationships can be explained by the AO index variability only in winter. In other seasons there has to be other influencing factors. The results of this study are valuable for selecting regions in the Arctic that have statistically the largest effect on climate in the Baltic Sea region.
The CEOP Inter-Monsoon Studies (CIMS)
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2003-01-01
Prediction of climate relies on models, and better model prediction depends on good model physics. Improving model physics requires the maximal utilization of climate data of the past, present and future. CEOP provides the first example of a comprehensive, integrated global and regional data set, consisting of globally gridded data, reference site in-situ observations, model location time series (MOLTS), and integrated satellite data for a two-year period covering two complete annual cycles of 2003-2004. The monsoon regions are the most important socio-economically in terms of devastation by floods and droughts, and potential impacts from climate change md fluctuatinns nf the hydrologic cyc!e. Scientifically, it is most challenging, because of complex interactions of atmosphere, land and oceans, local vs. remote forcings in contributing to climate variability and change in the region. Given that many common features, and physical teleconnection exist among different monsoon regions, an international research focus on monsoon must be coordinated and sustained. Current models of the monsoon are grossly inadequate for regional predictions. For improvement, models must be confronted with relevant observations, and model physic developers must be made to be aware of the wealth of information from existing climate data, field measurements, and satellite data that can be used to improve models. Model transferability studles must be conducted. CIMS is a major initiative under CEOP to engage the modeling and the observational communities to join in a coordinated effort to study the monsoons. The objectives of CIMS are (a) To provide a better understanding of fundamental physical processes (diurnal cycle, annual cycle, and intraseasonal oscillations) in monsoon regions around the world and (b) To demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. In this talk, I will present the basic concepts of CIMS and the key scientific problems facing monsoon climates and provide examples of common monsoon features, and possible monsoon induced teleconnections linking different parts of the world.
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.
2013-01-01
Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.
NASA Astrophysics Data System (ADS)
Halfar, J.; Steffen, H.; Kronz, A.; Steneck, R. S.; Adey, W.; Lebednik, P. A.
2009-05-01
We present the first continuous high-resolution record of Mg/Ca variations within an encrusting coralline red alga of the species Clathromorphum nereostratum from Amchitka Island, Aleutian Islands. Mg/Ca ratios of individual growth increments were analyzed by measuring a single point electron microprobe transect yielding a resolution of 15 samples/year on average, generating a continuous record from 1830 to 1967 of algal Mg/Ca variations. Results show that Mg/Ca ratios in the high-Mg calcite skeleton display pronounced annual cyclicity and archive late spring to late fall sea surface temperature (SST) corresponding to the main season of algal growth. Mg/Ca values correlate well to local SST (ERSSTJun-Nov, 1902-1967; r = 0.73 for 5-year mean), as well as to an air temperature record from the same region. Our data correlate well to a shorter Mg/Ca record from a second site, corroborating the ability of the alga to reliably record regional environmental signals. In addition, Mg/Ca ratios relate well to a 29-year stable oxygen isotope time series measured on the same sample, which provides additional support for the use of Mg as a paleotemperature proxy in coralline red algae, that is, unlike stable oxygen isotopes, not influenced by salinity fluctuations. High spatial correlation to large-scale SST variability in the North Pacific is observed, with patterns of strongest correlation following the direction of major oceanographic features (i.e., the signature of the Alaska Current and the Alaskan Stream), which play a key role in the exchange of water masses between the North Pacific and the Bering Sea through Aleutian Island passages. The time series further displays significant teleconnections with the signature of the Pacific Decadal Oscillation in the northeast Pacific and the Atlantic Multidecadal Oscillation.
A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change
NASA Technical Reports Server (NTRS)
Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev
2007-01-01
This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.
NASA Astrophysics Data System (ADS)
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Werner, Johannes; Donner, Reik V.
2017-04-01
The increasing availability of high-resolution North Atlantic paleoclimate proxies allows to not only study local climate variations in time, but also temporal changes in spatial variability patterns across the entire region possibly controlled by large-scale coherent variability modes such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. In this study, we use functional paleoclimate network analysis [1,2] to investigate changes in the statistical similarity patterns among an ensemble of high-resolution terrestrial paleoclimate records from Northern Europe included in the Arctic 2k data base. Specifically, we construct complex networks capturing the mutual statistical similarity of inter-annual temperature variability recorded in tree ring records, ice cores and lake sediments for multidecadal time windows covering the last two millenia. The observed patterns of co-variability are ultimately connected to the North Atlantic atmospheric circulation and most prominently to multidecadal variations of the NAO. Based on the inferred networks, we study the dynamical similarity between regional clusters of archives defined according to present-day inter-annual temperature variations across the study region. This analysis identifies those time-dependent inter-regional linkages that are most informative about the leading-order North Atlantic climate variability according to a recent NAO reconstruction for the last millenium [3]. Based on these linkages, we extend the existing reconstruction to obtain qualitative information on multidecadal to centennial scale North Atlantic climate variability over the last two millenia. In general, we find a tendency towards a dominating positive NAO phase interrupted by pronounced and extended intervals of negative NAO. Relatively rapid transitions between both types of behaviour are present during distinct periods including the Little Ice Age, the Medieval Climate Anomaly and for the Dark Ages Little Ice Age. [1] K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Climate Dynamics 41, 3-19, 2013 [2] J.L. Oster, N.P. Kelley: Tracking regional and global teleconnections recorded by western North American speleothem records. Quaternary Science Reviews 149, 18-33, 2016 [3] P. Ortega, F. Lehner, D. Swingedouw, V. Masson-Delmotte, C.C. Raible, M. Casado, P. Yiou: A model-tested North Atlantic Oscillation reconstruction for the past millenium. Nature 523, 71-74, 2015
NASA Astrophysics Data System (ADS)
Xiao, M.
2016-12-01
Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and these will be important to further understand the possible geophysical processes linking the teleconnections of each climate index on the seasonal extreme precipitation in the Poyang Lake basin.
NASA Astrophysics Data System (ADS)
François, Baptiste; Raynaud, Damien; Hingray, Benoit; Creutin, Jean-Dominique
2017-04-01
Integration of Variable Renewable Energy (VRE) sources in the electricity system is a challenge because of temporal and spatial fluctuations of their power generation resulting from their driving weather variables (i.e. solar radiation wind speed, precipitation, and temperature). Very few attention was paid to low frequency variability (i.e. from annual to decades) even though it may have significant impact on energy system and energy market Following the current increase in electricity supplied by VRE generation, one could ask the question about the risk of ending up in a situation in which the level of production of one or more VRE is exceptionally low or exceptionally high for a long period of time and/or over a large area. What would be the risk for an investor if the return on investment has been calculated on a high energy production period? What would be the cost in term of carbon emission whether the system manager needs to turn on coal power plant to satisfy the demand? Such dramatic events would definitely impact future stakeholder decision to invest in a particular energy source or another. Weather low frequency variability is mainly governed by large-scale teleconnection patterns impacting the climate at global scale such as El Niño - Southern Oscillation (ENSO) in the tropics and in North America or the North Atlantic Oscillation (hereafter, NAO) in North America and Europe. Teleconnection pattern's influence on weather variability cascades to VRE variability and ends up by impacting electricity system. The aim of this study is to analysis the impact of the NAO on VRE generation in Europe during the winter season. The analysis is carried out over the twentieth century (i.e. from 1900 to 2010), in order to take into account climate low frequency variability, and for a set of 12 regions covering a large range of climates in Europe. Weather variable time series are obtained by using the ERA20C reanalysis and the SCAMP model (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions, Raynaud et al. 2016). The analysis is performed for solar, wind and run-of-the river energy sources taken individually. For NAO sensitive regions, results shown important deviations between power generation distributions obtained either for strongly positive or strongly negative NAO events. We also used the optimal VRE combination provided by the 100 % solution project (http://thesolutionsproject.org/). We then discuss over the 12 considered regions the vulnerability to NAO events for the energy mix suggested by the 100 % solution project. Reference: Raynaud, D., Hingray, B., Zin, I., Anquetin, S., Debionne, S., Vautard, R., 2016. Atmospheric analogues for physically consistent scenarios of surface weather in Europe and Maghreb. Int. J. Climatol. doi:10.1002/joc.4844
NASA Astrophysics Data System (ADS)
Santo, Fátima E.; Ramos, Alexandre M.; de Lima, M. Isabel P.; Trigo, Ricardo M.
2013-04-01
Changes in the precipitation regimes are expected to be accompanied by variations in the occurrence of extreme events, which in turn could be related to low frequency variability. The impact on the society and environment requires that the regional specificities are understood. For mainland Portugal, this work reports the results of the analysis of trends in selected precipitation indices calculated from daily precipitation data from 57 meteorological stations, recorded in the period 1941-2007; additionally we have also investigated the correlations between these indices and several modes of low frequency variability over the area. We focus on exploring regional differences and seasonal variations in the intensity, frequency and duration of extreme precipitation events. The precipitation indices were assessed at the seasonal scale and calculated at both the station and regional scales. Results sometimes highlight marked changes in seasonal precipitation and show that: i) trends in spring and autumn have opposite signals: statistically significant drying trends in the spring are accompanied by a reduction in precipitation extremes; in autumn, wetting trends are detected for all precipitation indices, although overall they are not significant at the 5% level; ii) there seems to be a tendency for a reduction in the duration of the rainy season; iii) the North Atlantic Oscillation (NAO) is the mode of variability that has the highest influence on precipitation extremes over mainland Portugal, particularly in the winter and autumn, and is one of the most important teleconnection patterns in all seasons. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).
ENSO-driven energy budget perturbations in observations and CMIP models
Mayer, Michael; Fasullo, John T.; Trenberth, Kevin E.; ...
2016-03-19
Various observation-based datasets are employed to robustly quantify changes in ocean heat content (OHC), anomalous ocean–atmosphere energy exchanges and atmospheric energy transports during El Niño-Southern Oscillation (ENSO). These results are used as a benchmark to evaluate the energy pathways during ENSO as simulated by coupled climate model runs from the CMIP3 and CMIP5 archives. The models are able to qualitatively reproduce observed patterns of ENSO-related energy budget variability to some degree, but key aspects are seriously biased. Area-averaged tropical Pacific OHC variability associated with ENSO is greatly underestimated by all models because of strongly biased responses of net radiation atmore » top-of-the-atmosphere to ENSO. The latter are related to biases of mean convective activity in the models and project on surface energy fluxes in the eastern Pacific Intertropical Convergence Zone region. Moreover, models underestimate horizontal and vertical OHC redistribution in association with the generally too weak Bjerknes feedback, leading to a modeled ENSO affecting a too shallow layer of the Pacific. Vertical links between SST and OHC variability are too weak even in models driven with observed winds, indicating shortcomings of the ocean models. Furthermore, modeled teleconnections as measured by tropical Atlantic OHC variability are too weak and the tropical zonal mean ENSO signal is strongly underestimated or even completely missing in most of the considered models. In conclusion, results suggest that attempts to infer insight about climate sensitivity from ENSO-related variability are likely to be hampered by biases in ENSO in CMIP simulations that do not bear a clear link to future changes.« less
Ocean-Atmosphere Interaction in Climate Changes
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1999-01-01
The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface temperature anomalies with the cyclonic wind anomalies toward the coast. The results led to a new study which identifies decadal ocean variations in the Northeast Pacific. Three studies of oceanic responses to wind forcing caused by the seasonal change of monsoons, the passage of a typhoon, and the 1997 El Nino, were successfully conducted. Besides wind forcing, we continue to examine new techniques for estimating thermal and hydrologic fluxes, through the inverse ocean mixed-layer model, through divergence of atmospheric water transport, and by direct retrieval from radiances observed by microwave radiometers. Greenhouse warming has been linked to water vapor measured by two spaceborne sensors in two studies. In the first study, strong baroclinicity and deep convection were found to transport water vapor to the upper atmosphere and increase greenhouse trapping over the storm tracks of the North Pacific and Atlantic. In another study, the annual cycle of greenhouse warming were related to sea surface temperature (SST) and integrated water vapor, and the latitudinal dependence of the magnitudes and phases of the annual cycles were compared.
The biogeophysical climatic impacts of anthropogenic land use change during the Holocene
NASA Astrophysics Data System (ADS)
Smith, M. Clare; Singarayer, Joy S.; Valdes, Paul J.; Kaplan, Jed O.; Branch, Nicholas P.
2016-04-01
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June-July-August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were -0.22 at 1850 CE, -0.11 at 2 ka BP, and -0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of -0.83 at 1850 CE, -0.58 at 2 ka BP, and -0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.
Climate change enhances interannual variability of the Nile river flow
NASA Astrophysics Data System (ADS)
Siam, Mohamed S.; Eltahir, Elfatih A. B.
2017-04-01
The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Liu, Chen; Chen, Haishan
2018-02-01
The northernmost margin of East Asian summer monsoon (EASM) could well reflect wet/dry climate variability in the EASM marginal zone (northern China). The study shows that EASM occurs in northern China from Meiyu period to midsummer, and it is also the advancing period of the northern margin of EASM (NMEASM) before the 43rd pentad. NMEASM activity exhibits multi-scale variability, at cycles of 2-3-yr, 4-6-yr and 9-12-yr, which respond not only to EASM intensity but also to westerly circulation anomaly, exhibiting the mid-latitude Eurasian waves and the high-latitude Eurasian teleconnection (EU) patterns. The positive anomalies of Silk Road pattern and EU pattern in recent two decades contribute to the enhanced west-ridge and east-trough anomaly around 120°E over northern China, leading to divergence of moisture flux and north wind anomaly, which is helpful for southward western pacific subtropical high (WPSH) and southward NMEASM. Negative Eurasian pattern along subtropical Jet leads to anticyclone anomaly over south of the Yangtze River, deep trough and north wind anomaly along the west coast of the subtropical Pacific, contributing to southward WPSH and NMEASM at the cycle of 4-6-yr. Remote forcing sources of these anomalous Eurasian waves include North Europe, north of Caspian Sea, Central Asia, Tibetan Plateau and the west of Lake Baikal; the south of Lake Baikal is a local forcing region. The Tibetan Plateau heating and snow cover could modulate Eurasian wave pattern at multi-scale, which could be used as prediction reference of multi-scale NMEASM.
High-resolution proxy record of Holocene climate from a loess section in Southwestern Nebraska, USA
Miao, X.; Mason, J.A.; Johnson, W.C.; Wang, Hongfang
2007-01-01
Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from an exceptionally thick section of the Holocene Bignell Loess near Wauneta, Southwestern Nebraska, in the central Great Plains. The Wauneta section has excellent age control, based on optically stimulated luminescence (OSL) and radiocarbon dating, and records multiple episodes of rapid loess deposition alternating with slower deposition and soil formation. The lowermost and uppermost OSL ages obtained from the Bignell Loess are 10,250 ?? 610??years (5.9??m depth) and 100 ?? 10??years (0.1??m depth), respectively. As a result, the Holocene has been temporally confined. Stratigraphically, the Bignell Loess overlies the Late Pleistocene Peoria Loess (deposited ??? 21-14??ka), and the two units are separated by the Brady Soil which is distinguished by its color and other pedogenic features. L*a*b* color parameters and organic carbon content of Bignell Loess are sensitive proxies to differentiate drought-induced aeolian sediment layers from the intercalated soil horizons. Soil organic carbon-derived ??13C data suggest that the C3-dominated floral environment during Peoria Loess deposition shifted dramatically to a C4-dominated environment during Brady Soil formation in response to a warming trend. Even greater C4 abundance characterized the late Holocene. High-resolution ??13C data support the contention that C3 vs. C4 vegetation change in the Holocene reflects ecosystem response to frequent vegetation disturbance under arid conditions. Time series analysis reveals that ??13C and color parameters display high frequency variation with periodicities of 103-118??years and 103??years, respectively. Similar periodicities were also reported in studies of North Dakota lakes, though the physical mechanism responsible is uncertain. Comparison of Bignell Loess color and tropical Pacific sea surface temperatures (SSTs) allows evaluation of a proposed teleconnection between drought in the Great Plains and La Nin??a-like conditions in the tropical Pacific. The loess color index and eastern tropical Pacific SST display broad similarities through the late Pleistocene and Holocene that are consistent with this teleconnection. On the other hand, drought centered at 3800??years ago is not consistent with the teleconnection, and the end of early Holocene aridity at the Wauneta section, around 6500??years ago, is much earlier than the corresponding rise in SST and increase in El Nin??o frequency in the eastern tropical Pacific. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Yang, Zifan; Wang, Bin; Ma, Wenqian
2017-09-01
To examine the combined effects of the different spatial patterns of the Arctic Oscillation (AO)-related sea level pressure (SLP) anomalies and the El Niño-Southern Oscillation (ENSO)-related sea surface temperature (SST) anomalies on the wintertime surface temperature anomalies over East Asia, a nonlinear method based on self-organizing maps is employed. Investigation of identified regimes reveals that the AO can affect East Asian temperature anomalies when there are significant SLP anomalies over the Arctic Ocean and northern parts of Eurasian continent. Analogously, ENSO is found to affect East Asian temperature anomalies when significant SST anomalies are present over the tropical central Pacific. The regimes with the warmest and coldest temperature anomalies over East Asia are both associated with the negative phase of the AO. The ENSO-activated, Pacific-East Asian teleconnection pattern could affect the higher latitude continental regions when the impact of the AO is switched off. When the spatial patterns of the AO and ENSO have significant, but opposite, impacts on the coastal winds, no obvious temperature anomalies can be observed over south China. Further, the circulation state with nearly the same AO and Niño3 indices may drive rather different responses in surface temperature over East Asia. The well-known continuous weakening (recovery) of the East Asian winter monsoon that occurred around 1988 (2009) can be attributed to the transitions of the spatial patterns of the SLP anomalies over the Arctic Ocean and Eurasian continent, through their modulation on the occurrences of the Ural and central Siberian blocking events.
Climate teleconnections, weather extremes, and vector-borne disease outbreaks
USDA-ARS?s Scientific Manuscript database
Fluctuations in climate lead to extremes in temperature, rainfall, flooding, and droughts. These climate extremes create ideal ecological conditions that promote mosquito-borne disease transmission that impact global human and animal health. One well known driver of such global scale climate fluctua...
The East Asian Jet Stream and Asian-Pacific-American Climate
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
2000-01-01
The upper-tropospheric westerly jet stream over subtropical East Asia and western Pacific, often referred to as East Asian Jet (EAJ), is an important atmospheric circulation system in the Asian-Pacific-American (APA) region during winter. It is characterized by variabilities on a wide range of time scales and exerts a strong impact on the weather and climate of the region. On the synoptic scale, the jet stream is closely linked to many phenomena such as cyclogenesis, frontogenesis, blocking, storm track activity, and the development of other atmospheric disturbances. On the seasonal time scale, the variation of the EAJ determines many characteristics of the seasonal transition of the atmospheric circulation especially over East Asia. The variabilities of the EAJ on these time scales have been relatively well documented. It has also been understood since decades ago that the interannual. variability of the EAJ is associated with many climate signals in the APA region. These signals include the persistent anomalies of the East Asian winter monsoon and the changes in diabatic heating and in the Hadley circulation. However, many questions remain for the year-to-year variabilities of the EAJ and their relation to the APA climate. For example, what is the relationship between the EAJ and El Nino/Southern Oscillation (ENSO)? Will the EAJ and ENSO play different roles in modulating the APA climate? How is the jet stream linked to the non-ENSO-related sea surface temperature (SST) anomalies and to the Pacific/North American (PNA) teleconnection pattern?
Characteristics of southern California atmospheric rivers
NASA Astrophysics Data System (ADS)
Harris, Sarah M.; Carvalho, Leila M. V.
2018-05-01
Atmospheric rivers (ARs) are channels of high water vapor flux that transport moisture from low to higher latitudes on synoptic timescales. In areas of topographical variability, ARs may lead to high-intensity precipitation due to orographic forcing. ARs landfalling along North America's west coast are linked to extreme events including those leading to flooding and landslides. In southern California (SCA), proper AR forecasting is important for regional water resources as well as hazard mitigation and as the area's annual precipitation totals occur from relatively few storms per season, any changes to storm frequency and/or intensity may have dramatic consequences. Yet, as most regional AR studies focus on the Pacific Northwest, there is little information about SCA ARs. We develop an algorithm to identify ARs landfalling on North America's west coast between 1979 and 2013 within total precipitable water reanalysis fields. ARs are then categorized according to landfall region. To determine and differentiate the characteristics and spatial distributions of ARs affecting these areas, we examine lag composites of various atmospheric variables for each landfall region. SCA ARs differ from ARs landfalling farther north in the days prior to landfall with the position and amplitude of a trough offshore from the Asian continent and ridge over Alaska, as well as the displacement and eastward extension of the jet core that potentially guides AR moisture southwards. The relationships between AR landfalls and the El Niño/Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the Pacific/North American Teleconnection Pattern (PNA) are also investigated.
The effects of the Indo-Pacific warm pool on the stratosphere
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang
2017-03-01
Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.
A network-base analysis of CMIP5 "historical" experiments
NASA Astrophysics Data System (ADS)
Bracco, A.; Foudalis, I.; Dovrolis, C.
2012-12-01
In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...
2016-10-22
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate
NASA Astrophysics Data System (ADS)
Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min
2018-03-01
Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.
Attribution of changes in precipitation patterns in African rainforests
NASA Astrophysics Data System (ADS)
Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.
2013-12-01
The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general circulation model (AGCM) simulations within the weather@home project, and analysing statistics of precipitation in the dry season of the Congo Basin rainforests. Because observed data sets in that region are of very poor quality we show how validation methods not only relying on such data have been used to investigate the applicability of PEA analysis from large model ensembles to this tropical region. Additionally we will present results for the same region but generated with a very large ensemble of regional climate simulations which allows analysing the importance of a realistic simulation of small scale precipitation processes for attribution studies in a tropical climate. We highlight that PEA analysis has the potential to provide valuable scientific evidence of recent or anticipated climatological changes in the water cycle, especially in regions with sparse observational data and unclear projections of future changes. However, the strong influence of SST tele-connection patterns on tropical precipitation provides more challenges in the set-up of attribution studies than studies on mid-latitude rainfall.
Antarctic mesocyclone regimes from satellite and conventional data
NASA Astrophysics Data System (ADS)
Fitch, Mark; Carleton, Andrew M.
1992-03-01
Mesoscale vortices in the Antarctic, poleward of 50°S, are examined in the synoptic context for the Ross Sea sector (100°E eastward to 80°W) for transition and winter months of 1988, using DMSP (Defense Meteorological Satellite Program) thermal infrared (TIR) images. Mesoscale vortices are classified and tracked and the dominant characteristics, such as life span, speed of movement and preferred geographical locations of formation, are defined and discussed. A "superposed epoch" (compositing) method utilizing 1000 and 500mb height data identifies the dominant synoptic regimes in which mesoscale vortices tend to develop. This analysis indicates that during active or outbreak periods, a negative thickness anomaly ("cold pool") is located northeast of the Ross Sea, and mesoscale vortices tend to occur on the poleward side of that anomaly. In addition, an enhanced trough-ridge pattern is evident for the Ross Sea sector compared with the composite pattern for inactive, or dearth, periods. The active periods of mesoscale vortices appear to originate from Antarctica, possibly via the persistent katabatic outflows from the ice sheet, rather than from teleconnections to lower latitudes. Analysis of Automatic Weather Station (AWS) data for the Ross Sea region supports this notion, at least for individual cases. Confirmation of these findings for the corresponding months of additional years is continuing.
Relationships between surface solar radiation and wheat yield in Spain
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepción
2017-04-01
Here we examine the role of solar radiation to describe wheat-yield variability in Spain. We used Partial Least Square regression to capture the modes of surface solar radiation that drive wheat-yield variability. We will show that surface solar radiation introduces the effects of teleconnection patterns on wheat yield and also it is associated with drought and diurnal temperature range. We highlight the importance of surface solar radiation to obtain models for wheat-yield projections because it could reduce uncertainty with respect to the projections based on temperatures and precipitation variables. In addition, the significance of the model based on surface solar radiation is greater than the previous one based on drought and diurnal temperature range (Hernandez-Barrera et al., 2016). According to our results, the increase of solar radiation over Spain for 21st century could force a wheat-yield decrease (Hernandez-Barrera et al., 2017). Hernandez-Barrera S., Rodríguez-Puebla C. and Challinor A.J. 2016 Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology. DOI: 10.1007/s00704-016-1779-9 Hernandez-Barrera S., Rodríguez-Puebla C. 2017 Wheat yield in Spain and associated solar radiation patterns. International Journal of Climatology. DOI: 10.1002/joc.4975
The 2015-16 El Nino - Manifestation and US Impacts
NASA Astrophysics Data System (ADS)
Farnham, D. J.; Lall, U.; Meschke, L.; Sutter, S.; Sayeed, S.; Orozco, L.; Jain, S.; Barry, O.; Montano, R.; Kirby, T., Jr.; Caraveo, B.; Homa, K.
2016-12-01
The impacts of ENSO, especially in the USA, are well studied. Given the past success at forecasting El Niño events and identifying their teleconnections to different parts of the country, there is a relatively well publicized understanding of the potential impacts, and the possible directions of management response. Consequently, a special course at Columbia University took advantage of the ongoing El Niño event in Winter/Spring 2016 to assess the forecasts of the potential impacts, forms of forecast-related communication, and the actual outcomes in selected sectors and regions of the USA. The students reviewed past literature and were exposed to webinars from leading scientists, NOAA specialists, and water managers from across the country. From their research and observations, the students developed a series of papers documenting and assessing the trajectory of the El Niño event with respect to climate forecasting, impacts in a specific location, and/or impacts on a specific sector. This presentation will highlight the findings of the group as well as consider the process of conducting such a course. Key points covered by the student research were: 1) the accuracy of forecasts of the significant teleconnections, and where and what may be responsible for the divergence from expectation; 2) how the forecasts were communicated by NOAA and others, and how they were manifest in formal and informal media; 3) the impacts on the water systems in California and Florida, and how water agencies adapted; 4) impacts on marine biology, fisheries and coral reef bleaching; 5) impacts on the skiing industry in the Western USA; 6) changes in the spatio-temporal influenza outcomes; 7) impacts on the winter/spring vegetable and orange production in California and Florida; and 8) an assessment of the overall economic impacts.
NASA Astrophysics Data System (ADS)
Nobre, Paulo; Srukla, J.
1996-10-01
Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.
Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben
2015-01-01
Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity.
Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben
2015-01-01
Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity. PMID:25923109
NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations
NASA Astrophysics Data System (ADS)
Wang, Xiaofan; Li, Jianping; Sun, Cheng; Liu, Ting
2017-04-01
The North Atlantic Oscillation (NAO) is one of the most prominent teleconnection patterns in the Northern Hemisphere and has recently been found to be both an internal source and useful predictor of the multidecadal variability of the Northern Hemisphere mean surface temperature (NHT). In this study, we examine how well the variability of the NAO and NHT are reproduced in historical simulations generated by the 40 models that constitute Phase 5 of the Coupled Model Intercomparison Project (CMIP5). All of the models are able to capture the basic characteristics of the interannual NAO pattern reasonably well, whereas the simulated decadal NAO patterns show less consistency with the observations. The NAO fluctuations over multidecadal time scales are underestimated by almost all models. Regarding the NHT multidecadal variability, the models generally represent the externally forced variations well but tend to underestimate the internal NHT. With respect to the performance of the models in reproducing the NAO-NHT relationship, 14 models capture the observed decadal lead of the NAO, and model discrepancies in the representation of this linkage are derived mainly from their different interpretation of the underlying physical processes associated with the Atlantic Multidecadal Oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC). This study suggests that one way to improve the simulation of the multidecadal variability of the internal NHT lies in better simulation of the multidecadal variability of the NAO and its delayed effect on the NHT variability via slow ocean processes.
A Linkage of Recent Arctic Summer Sea Ice and Snowfall Variability of Japan
NASA Astrophysics Data System (ADS)
Iwamoto, K.; Honda, M.; Ukita, J.
2014-12-01
In spite of its mid-latitude location, Japan has a markedly high amount of snowfall, which owes much to the presence of cold air-break from Siberia and thus depends on the strength of the Siberian high and the Aleutian low. With this background this study examines the relationship between interannual variability and spatial patterns of snowfall in Japan with large-scale atmospheric and sea ice variations. The lag regression map of the winter snowfall in Japan on the time series of the Arctic SIE from the preceding summer shows a seesaw pattern in the snowfall, suggesting an Arctic teleconnection to regional weather. From the EOF analyses conducted on the snowfall distribution in Japan, we identify two modes with physical significance. The NH SIC and SLP regressed on PC1 show a sea ice reduction in the Barents and Kara Seas and anomalous strength of the Siberia high as discussed in Honda et al. (2009) and other studies, which support the above notion that the snowfall variability of Japan is influenced by Arctic sea ice conditions. Another mode is related to the AO/NAO and the hemispheric scale double sea-ice seesaw centered over the sub-Arctic region: one between the Labrador and Nordic Seas in the Atlantic and the other between the Okhotsk and Bering Seas from the Pacific as discussed in Ukita et al. (2007). Together, observations point to a significant role of the sea-ice in determining mid-latitude regional climate and weather patterns.
How Climate Change Affected US Impacts of the 2015-16 El Niño
NASA Astrophysics Data System (ADS)
Hoerling, M. P.; Quan, X. W.
2016-12-01
The unusually dry America Southwest winter of 2015-16 is examined in the context of El Niño driving, global ocean forcing, and human-induced climate change. The El Niño event was among the strongest of the last century, as measured by NINO3.4 sea surface temperatures (SSTs). Seasonal forecasts, guided partly by historical effects of the strong 1982-83 and 1997-98 El Niños, called for abundant rains in southern California and the America Southwest. These were seen as likely, though not certain. Yet, November-April 2016 precipitation over southern California, Arizona, and western New Mexico ranked in the lower tercile of historical data, and the prevailing multiyear drought instead intensified. We present a causal storyline for winter precipitation over the America Southwest. We first diagnose if the particular "face" of the 2015-16 El Niño caused the unexpected dryness over the America Southwest. While NINO3.4 anomalies were similar among the three El Niños, the 2015-16 event had stronger warmth over the central equatorial Pacific and less warmth in the far east Pacific. However, atmospheric models forced by central to east tropical Pacific SSTs alone reveal that such distinctions among the three strongest El Niños were of little consequence for America Southwest rainfall, each driving very wet conditions. We next diagnose impacts of global SSTs on America Southwest precipitation. Whereas little difference is found for either the 1982-83 or 1997-98 simulated impacts compared to their east Pacific forcing experiments, a much weaker wet signal occurs in 2015-16 simulations. The latter was immersed in the warmest global ocean in the instrumental record, and the unusually high SSTs of the tropical warm pools were especially important in weakening El Niño's impact on the America Southwest. To isolate effects of El Niño co-acting with climate change, historical coupled model simulations are used to construct analogues for strong El Niños at various time slices of the past century. These reveal transformation of the El Niño teleconnection and a diminished wet signal in the American Southwest in the current climate versus earlier decades. This change is different from a superposition of an El Niño teleconnection and trend, but instead results from an interplay of climate change and El Niño forcing itself.
NASA Astrophysics Data System (ADS)
Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.
2016-12-01
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg, A. et al. Scientific Reports 6(2016). 10 Hughen, K. A., et al., Radiocarbon 46, 1161-1187 (2004). 11 Anderson, R. F. et al. Science 323, 1443-1448, doi:10.1126/science.1167441 (2009).
NASA Astrophysics Data System (ADS)
Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje
2017-12-01
Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO-mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.
NASA Astrophysics Data System (ADS)
Li, S.; Elison Timm, O.
2016-12-01
Kona lows (KLs) are a type of seasonal cut-off cyclones in the North Pacific around the Hawaiian Islands during the cold season month (Oct.-Apr.). KL are important for the annual rainfall budget of the Hawaiian Islands. In this study, the relationship between KLs and North Pacific climate variability was analyzed in order to understand the interannual variations in the number of KLs. The main objectives were (1) to identify mechanisms that control the activity of KL during the recent decades, and (2) to test the stability of the statistical relationships with respect to decadal-scale variability and/or climate shifts. Our study is based on the new data set of KL counts from 1979-2014 (Kaiser, 2014, Univ. Hawaii). For the analysis of large-scale climate pattern, ERA-interim 6-hourly data from 1979-2014 were used including sea level pressure, geopotential heights of the 500hPa level, potential vorticity and zonal wind at 250hPa. We derived cold season averages for the mean and 8-16 day synoptic variability. Standard climate indices for tropical-extratropical climate variability included NINO3.4 and PDO index, and NPO index. The results from the linear correlation analysis show that local 8-16day PV250 variability north of Hawaii can represent Kona Low activity between 1979-2014. KL activity and PV250 variability had both a negative correlation with NINO3.4 index. However, the correlation with NINO3.4 index has diminished after 1995. This shift in correlation coincides with transition of the PDO index from a positive value to negative value during 1990's. Our results suggest that a negative PDO can reduce the ENSO influence on Kona Low activity by modulating the upper zonal jet response. We investigated further the relationship between NPO and Kona Low activity. A strong correlation with the NPO index was found. Two factors that control the time-dependent impacts of ENSO on the KL activity. After the mid-1990s the central tropical Pacific SST were more closely tied to the extratropical NPO mode. In order to test if the results are applicable in the context of paleoclimate applications, where the stability of tropical-extratropical teleconnection mechanisms is crucial for the interpretation of paleoclimate proxy data, we tested the robustness of our results in the TraCE-21ka simulation during the Holocene.
Impact of climate variability on vector-borne disease transmission
USDA-ARS?s Scientific Manuscript database
We will discuss the impact of climate variability on vector borne diseases and demonstrate that global climate teleconnections can be used to anticipate and forecast, in the case of Rift Valley fever, epidemics and epizootics. In this context we will examine significant worldwide weather anomalies t...
Interhemispheric ice-sheet synchronicity during the last glacial maximum
Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard
2011-01-01
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.
Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard
2011-12-02
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.
NASA Astrophysics Data System (ADS)
Li, Yue; Song, Yougui; Fitzsimmons, Kathryn E.; Chang, Hong; Orozbaev, Rustam; Li, Xinxin
2018-03-01
The extensive loess deposits of the Eurasian mid-latitudes provide important terrestrial archives of Quaternary climatic change. As yet, however, loess records in Central Asia are poorly understood. Here we investigate the grain size and magnetic characteristics of loess from the Nilka (NLK) section in the Ili Basin of eastern Central Asia. Weak pedogenesis suggested by frequency-dependent magnetic susceptibility (χfd%) and magnetic susceptibility (MS) peaks in primary loess suggest that MS is more strongly influenced by allogenetic magnetic minerals than pedogenesis, and may therefore be used to indicate wind strength. This is supported by the close correlation between variations in MS and proportions of the sand-sized fraction. To further explore the temporal variability in dust transport patterns, we identified three grain size end-members (EM1, mode size 47.5 µm; EM2, 33.6 µm; EM3, 18.9 µm) which represent distinct aerodynamic environments. EM1 and EM2 are inferred to represent grain size fractions transported from proximal sources in short-term, near-surface suspension during dust outbreaks. EM3 appears to represent a continuous background dust fraction under non-dust storm conditions. Of the three end-members, EM1 is most likely the most sensitive recorder of wind strength. We compare our EM1 proportions with mean grain size from the Jingyuan section in the Chinese loess plateau, and assess these in the context of modern and Holocene climate data. Our research suggests that the Siberian High pressure system is the dominant influence on wind dynamics, resulting in loess deposition in the eastern Ili Basin. Six millennial-scale cooling (Heinrich) events can be identified in the NLK loess records. Our grain size data support the hypothesis that the Siberian High acts as teleconnection between the climatic systems of the North Atlantic and East Asia in the high northern latitudes, but not for the mid-latitude westerlies.
NASA Astrophysics Data System (ADS)
Conte, M. H.; Urrego, D. H.; Charles-Dominique, P.; Giraudeau, J.; Martinez, P.; Bush, M. B.; Huang, Y.; Russell, J. M.; Gaucher, P.
2013-12-01
Model projections of future climate predict changes in ocean-atmosphere processes that will affect the organization of the Atlantic Intertropical Convergence Zone (ITCZ) and ENSO, and in turn, precipitation patterns over much of South America. The northeastern Amazon is particularly sensitive to ITCZ and ENSO organization, and experiences major episodes of drought and rainfall extremes due to interannual variability in ITCZ intensity and position. Hence understanding Holocene climate variability in the northeastern Amazon, and its phasing with other South American records, can provides new insights into past ITCZ organization and Atlantic-Pacific teleconnections. Lac Toponowini is a landslide-dammed lake in the undisturbed highland rainforest of French Guiana (Guyane). Toponowini sediments are finely varved, with pronounced light-dark couplets that appear to reflect alternating wet and dry season conditions. High-resolution X-Ray Fluorescence (XRF) profiling reveals that the couplets consist of bands of weathered clays and organic-rich material containing co-precipitated sulfides and platinum group elements (PGEs), sourced from gold deposits in the watershed. Mobility of PGEs is highly sensitive to hydrology and groundwater chemistry, and subtle variations in PGE flux and composition in Lac Toponowini appears to track past hydrologic conditions. Of note is the inverse correlation between the Pd/Pb ratio in Toponowini sediments and the %Ti record of fluvial input into the Cariaco Basin (Peterson and Haug 2006, Palaeogeog. Palaeoclim. Palaeoecol. 234, 97-113), which suggests antiphasing between rainfall in northern South America and French Guiana, consistent with ITCZ migration forced by multidecadal Atlantic variability. The carbon isotopic composition (δ13C) of terrestrial leaf waxes exhibits a maximum at ~1500 years BP, consistent with pollen evidence (Ledru 2001, Rev. Paleobot. Palynol. 115, 161-176) for ecosystem adaptations indicative of drier conditions in central Guyane at this time. New data on wax hydrogen isotopic composition will provide further insights into late Holocene precipitation patterns complementing pollen, carbon isotope and elemental proxies.
Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd
2010-01-01
Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link bridging between the different climate regimes from the tropical Pacific to the North Atlantic and onto the European continent.
NASA Astrophysics Data System (ADS)
Kravitz, B.; Mills, C.; Rasch, P. J.; Wang, H.; Yoon, J. H.
2016-12-01
The role of Arctic amplification, including observed decreases in sea ice concentration, thickness, and extent, with potential for exciting downstream atmospheric responses in the mid-latitudes, is a timely issue. We identify the role of the regionality of autumn sea ice loss on downstream mid-latitude responses using engineering methodologies adapted to climate modeling, which allow for multiple Arctic sea regions to be perturbed simultaneously. We evaluate downstream responses in various climate fields (e.g., temperature, precipitation, cloud cover) associated with perturbations in the Beaufort/Chukchi Seas and the Kara/Barents Seas. Simulations suggest that the United States response is primarily linked to sea ice changes in the Beaufort/Chukchi Seas, whereas Eurasian response is primarily due to Kara/Barents sea ice coverage changes. Downstream effects are most prominent approximately 6-10 weeks after the initial perturbation (sea ice loss). Our findings suggest that winter mid-latitude storms (connected to the so-called "Polar Vortex") are linked to sea ice loss in particular areas, implying that further sea ice loss associated with climate change will exacerbate these types of extreme events.
NASA Astrophysics Data System (ADS)
Turney, C. S. M.; Haberle, S.; Fink, D.; Kershaw, A. P.; Barbetti, M.; Barrows, T. T.; Black, M.; Cohen, T. J.; Corrège, T.; Hesse, P. P.; Hua, Q.; Johnston, R.; Morgan, V.; Moss, P.; Nanson, G.; van Ommen, T.; Rule, S.; Williams, N. J.; Zhao, J.-X.; D'Costa, D.; Feng, Y.-X.; Gagan, M.; Mooney, S.; Xia, Q.
2006-10-01
The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric teleconnection and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright
The 'Blue-Shift' in midlatitude dynamics in a Changing Climate
NASA Astrophysics Data System (ADS)
Carvalho, L. V.
2013-12-01
Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with low and upper level circulation. This research uses two sources of data: global daily Climate Forecast System Reanalysis (CFSR) (1979- 2010) and the Geophysical Fluid Dynamics Laboratory (GFDL) global daily simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Two sets of simulations are investigated: the Historic and Pi-control runs. Here the term ';blue-shift' is used to indicate long-term increase in the amplitude of the synoptic scale relatively to the annual cycle amplitude derived from wavelet analysis as an analogy to the definition commonly used in physics (i.e., a shift toward shorter wavelengths of the spectral lines). It is shown that the blue-shift has been observed in midlatitudes of some continental areas of the Northern Hemisphere and North Pacific but in relatively higher latitudes in the Southern Hemisphere. Tropical areas and high latitudes of the Northern Hemisphere have experienced opposite trend (red-shift). Moreover, the pattern of the blue and red-shifts exhibits seasonal changes. References: Cannon, F., L. M. V. Carvalho, C. Jones, B. Bookhagen, 2013: Multi-Annual Variations in Winter Westerly Disturbance Activity Affecting the Himalaya. Submitted to Climate Dynamics
NASA Astrophysics Data System (ADS)
Wahl, Eugene R.; Amrhein, Dan E.; Smerdon, Jason E.; Ammann, Caspar M.
2010-05-01
A key question in late-Holocene climate dynamics is the role of dominant modes in influencing climates in teleconnected regions of the world. For example, it has recently been proposed that ENSO had a key role in influencing the extended period of largely positive-phase NAO during ~1100-1400 CE (Trouet et al., 2009, Science, 324, 78). Fundamental to understanding the global and regional climatological roles of dominant modes are primary data on the variations of the modes themselves, in particular paleoclimate data that greatly extend instrumental-period information. Establishing records of ENSO indices that span the past millennium has proven difficult, and well-verified reconstructions produced to date have non-trivial differences (cf., e.g., Braganza et al., 2009, Journal of Geophysical Research, 114, D05106). This presentation examines important general questions regarding reconstructions of modal indices, including ENSO: is it best (1) to focus on proxy evidence from the most strongly influenced (or most strongly teleconnected) areas, (2) to combine proxy data from a large regional network encompassing the primary area of modal activity and teleconnections (e.g., around the Pacific Rim in the case of ENSO), or (3) to use climate field reconstruction (CFR) methods that assimilate up-to-global-scale proxy information? A systematic suite of reconstruction simulation experiments (RSEs), derived from NCAR CSM 1.4 millennium transient model output, is explored to test the various strengths and weaknesses of these three approaches for reconstructing the NINO3 index. By doing this, NINO3 reconstruction fidelity can be gauged over the entire simulated millennium via comparison to the known model target; such comparisons are restricted to brief "validation" periods in real-world reconstructions due to the length of the instrumental record. For strategies (1) and (2), pseudoproxies are formed by adding white noise to the model output (seasonally-appropriate precipitation or temperature) at the simulated proxy locations, so that the correlation of the noise-added time series to the original CSM output emulates that of real-world proxy information to local instrumental climate data. White noise is considered a reasonable first-order approximation of random process in these two strategies, since all predictands and predictors used in the reconstruction algorithms are "pre-whitened" by removal of AR1 persistence, following dendrochronological methods. For strategy (3), pseudoproxies are similarly sampled at locations that approximate proxy availability in real-world CFR applications; white noise at a signal-to-noise ratio of 0.25 (by variance) is added (real-world noise characteristics are likely more complex than the model adopted in this case). Monte Carlo replication of the simulated reconstructions is then generated from multiple pseudoproxy noise realizations, and thus a probabilistic characterization of the uncertainty involved in the reconstruction process is derived. The results of these experiments indicate that exploitation of low-noise proxy data (i.e., proxy information that closely tracks its associated teleconnected climatic variable) from the most-strongly teleconnected areas (strategy 1) is a preferable method for ENSO index reconstruction, in comparison to adding additional proxy information from less-strongly teleconnected areas (strategy 2). Average reconstruction fidelity was reduced by strategy (2) and the width of the estimated credible intervals (CIs) was widened relative to those generated using strategy (1). The use of CFR methods, strategy (3), further enhances the width of the simulated CIs, even to the point of suggesting possible loss of reconstruction significance (at the 95% level) for a brief period. Given these widened CIs, however, the CFR method shows the highest reconstruction fidelity overall (restricted to the 19th and 20th centuries), suggesting it might be a preferable method along with strategy (1). The enhanced performance of the CFR method during this time is due at least in part to the fact that the CFR reconstructions better capture the 20th century trend than the reconstructions in strategies (1) and (2) (note that the pre-whitening process leaves the trend largely intact), and may also be due to the greater proxy richness exploited in the CFR method. This enhanced performance during the real-world time of calibration and verification should also lead to the caveat that it might suggest performance during such a limited period that gives an over-optimistic view of its true potential over the full millennium.
NASA Astrophysics Data System (ADS)
Church, T. M.; Sedwick, P. N.; Sholkovitz, E. R.
2011-12-01
Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with low and upper level circulation. This research uses two sources of data: global daily Climate Forecast System Reanalysis (CFSR) (1979- 2010) and the Geophysical Fluid Dynamics Laboratory (GFDL) global daily simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Two sets of simulations are investigated: the Historic and Pi-control runs. Here the term ';blue-shift' is used to indicate long-term increase in the amplitude of the synoptic scale relatively to the annual cycle amplitude derived from wavelet analysis as an analogy to the definition commonly used in physics (i.e., a shift toward shorter wavelengths of the spectral lines). It is shown that the blue-shift has been observed in midlatitudes of some continental areas of the Northern Hemisphere and North Pacific but in relatively higher latitudes in the Southern Hemisphere. Tropical areas and high latitudes of the Northern Hemisphere have experienced opposite trend (red-shift). Moreover, the pattern of the blue and red-shifts exhibits seasonal changes. References: Cannon, F., L. M. V. Carvalho, C. Jones, B. Bookhagen, 2013: Multi-Annual Variations in Winter Westerly Disturbance Activity Affecting the Himalaya. Submitted to Climate Dynamics
NASA Astrophysics Data System (ADS)
A, A.; Gleeson, T. P.; Wada, Y.; Mishra, V.
2017-12-01
The availability and depletion of groundwater resources - a possible threat to food and water security - are impacted by both pumping and climate variability, although the relative importance of these two drivers is rarely quantified. Here we show that long-term change in the monsoon precipitation is a major driver of groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. GRACE and observation well data show that groundwater storage has declined in north India with a rate of 2 cm/year and increased in the south India by 1 to 2 cm/year during the period of 2002-2013. A large fraction of total variability in groundwater storage is influenced by precipitation in northcentral and southern India. Groundwater storage variability in the northwestern India is mainly explained by variability in abstraction for irrigation, which is influenced by precipitation. Declines in precipitation in north India is linked with the Indian Ocean warming, suggesting a previously unrecognised teleconnection between ocean temperatures and groundwater storage. These results have strong implications for management of groundwater resources under current and future climate conditions in India.
Spatial clustering and meteorological drivers of summer ozone in Europe
NASA Astrophysics Data System (ADS)
Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.
2017-04-01
We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested but do not seem to exert a large impact on the variability of surface O3 over most regions. The identification of these independent regions where surface ozone presents a coherent behaviour and responds similarly to specific meteorological modes of variability has multiple applications. For instance, the performance of chemical transport models (CTMs) and chemistry-climate models (CCMs) can be separately assessed over such regions to identify areas where they present large biases that need to be corrected. Our results can also be used to test the models' sensitivity to the day-to-day changing meteorology and to climate change over specific regions.
Geography of blizzards in the conterminous United States, 1959--2000
NASA Astrophysics Data System (ADS)
Schwartz, Robert Michael
2001-07-01
Many individuals think of tornadoes and hurricanes when considering weather-related storms. However, winter storms and blizzards have potential impacts on millions of people and effects on the social landscape such as fatalities, injuries, and economic consequences. Additionally, these storms can last from a few hours to over a week. This study established a climatology of blizzards in the conterminous United States from 1959-2000 utilizing data from Storm Data to identify the spatial and temporal patterns of blizzards. The annual probability of a blizzard on a county level was calculated to give the empirical probability of having a blizzard in any given winter season. Additionally, the number of blizzards were compared to the El Nino Southern Oscillation (ENSO) teleconnection by running a linear regression to check for correlation. Finally, the social impacts of blizzards studied included the population affected, fatalities, injuries, property damage, crop damage, and federal disaster declarations. Maps were produced utilizing MapInfo and ArcView Geographic Information Systems (GIS) to summarize regional differences and temporal trends. There were 438 blizzards analyzed in the study with an annual mean of 10.7 blizzards per winter season with the majority of storms occurring in the northern Plains states of North Dakota, South Dakota, and western Minnesota. Time series analysis indicated an increase in the number of blizzards over the 41-year period while there was no linear trend of the area affected by blizzards. Annual probabilities of a blizzard were as high as 76% for Cavalier, Rolette, Steele, Towner, and Traill Counties in North Dakota. The ENSO teleconnection and the number of blizzards on the national scale suggested a negative correlation with fewer blizzards during El Nino episodes. Social impacts indicated blizzards affected 26.3 million per season with 16 fatalities and 49 injuries per season reported to Storm Data . The total population affected each winter did not show a linear trend. An average winter reported 551 million in property damage and 26 million in crop damage according to Storm Data. The number of declared disasters or emergencies due to blizzards has been increasing, especially in the 1990s.
NASA Astrophysics Data System (ADS)
Royer, Aurélien; Malaizé, Bruno; Lécuyer, Christophe; Queffelec, Alain; Charlier, Karine; Caley, Thibaut; Lenoble, Arnaud
2017-01-01
In neotropical regions, fossil bat guano accumulated over time as laminated layers in caves, hence providing a high-resolution temporal record of terrestrial environmental changes. Additionally, cave settings have the property to preserve such organic sediments from processes triggered by winds (deflation, abrasion and sandblasting) and intense rainfall (leaching away). This study reports both stable carbon and nitrogen isotope compositions of frugivorous bat guano deposited in a well-preserved stratigraphic succession of Blanchard Cave on Marie-Galante, Guadeloupe. These isotopic data are discussed with regard to climate changes and its specific impact on Eastern Caribbean vegetation during the Late Pleistocene from 40 to 10 ka cal. BP. Guano δ13C values are higher than modern ones, suggesting noticeable vegetation changes. This provides also evidence for overall drier environmental conditions during the Pleistocene compared to today. Meanwhile, within this generally drier climate, shifts between wetter and drier conditions can be observed. Large temporal amplitudes in both δ13C and δ15N variations reaching up to 5.9‰ and 16.8‰, respectively, also indicate these oceanic tropical environments have been highly sensitive to regional or global climatic forcing. Stable isotope compositions of bat guano deposited from 40 to 35 ka BP, the Last Glacial Maximum and the Younger-Dryas reveal relatively wet environmental conditions whereas, at least from the end of the Heinrich event 1 and the Bølling period the region experienced drier environmental conditions. Nevertheless, when considering uncertainties in the model age, the isotopic record of Blanchard Cave show relatively similar variations with known proxy records from the northern South America and Central America, suggesting thus that the Blanchard Cave record is a robust proxy of past ITCZ migration. Teleconnections through global atmospheric pattern suggest that islands of the eastern Caribbean Basin could be also under the influence of a bipolar temperature gradients that impact the mean location of the ITCZ, with a Southern Hemisphere imprint during the glacial period and a more significant role of Northern Hemisphere during the last deglaciation.
Atmospheric Teleconnections From Cumulants
NASA Astrophysics Data System (ADS)
Sabou, F.; Kaspi, Y.; Marston, B.; Schneider, T.
2011-12-01
Multi-point cumulants of fields such as vorticity provide a way to visualize atmospheric teleconnections, complementing other approaches such as the method of empirical orthogonal functions (EOFs). We calculate equal-time two-point cumulants of the vorticity from NCEP reanalysis data during the period 1980 -- 2010 and from direct numerical simulation (DNS) using an idealized dry general circulation model (GCM) (Schneider and Walker, 2006). Extratropical correlations seen in the NCEP data are qualitatively reproduced by the model. Three- and four-point cumulants accumulated from DNS quantify departures of the probability distribution function from a normal distribution, shedding light on the efficacy of direct statistical simulation (DSS) of atmosphere dynamics by cumulant expansions (Marston, Conover, and Schneider, 2008; Marston 2011). Lagged-time two-point cumulants between temperature gradients and eddy kinetic energy (EKE), accumulated by DNS of an idealized moist aquaplanet GCM (O'Gorman and Schneider, 2008), reveal dynamics of storm tracks. Regions of enhanced baroclinicity (as found along the eastern boundary of continents) lead to a local enhancement of EKE and a suppression of EKE further downstream as the storm track self-destructs (Kaspi and Schneider, 2011).
Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao
2018-05-01
In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.
Computational data sciences for assessment and prediction of climate extremes
NASA Astrophysics Data System (ADS)
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
NASA Astrophysics Data System (ADS)
Gao, Tao; Si, Yaobing; Yu, Xiao; Wulan; Yang, Peng; Gao, Jing
2018-02-01
This study analyzed the atmospheric evolutionary characteristics of insufficient rainfall that leads to spring drought in Inner Mongolia, China. The results revealed that a weakened western Pacific subtropical high and an enlarged North Polar vortex with a western position of the East Asian trough generally result in unfavorable moisture transportation for spring precipitation in IM. It was found that an abnormal sea surface temperature in several crucial ocean areas triggers an irregular atmospheric circulation over the Eurasian continent and the Pacific region. Lower sea surface temperature (SST) during the previous autumn over tropical regions of the central-eastern Pacific and Indian oceans induce a strong Walker circulation, corresponding to a weak and southeastward-retreating subtropical high over the western Pacific during the following winter and spring. Another crucial area is the central region of the North Atlantic Ocean. Abnormally low SST of the ocean area during the preceding autumn causes the Scandinavian teleconnection pattern (the index of which is issued on the website of the Climate Prediction Center, USA) changes to a positive phase, which leads to a weak westerly over the Eurasian continent. In this case, the easterly over the North Pole becomes stronger than normal, resulting in an extended North Polar vortex during the following spring. In addition, SST differences during the previous December between the middle-eastern tropical and the northwestern regions of the Pacific Ocean reflect variations of the Pacific Decadal Oscillation, causing the East Asian trough to move to a western position during the following spring.
Large Scale Processes and Extreme Floods in Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.
2016-12-01
Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).
NASA Astrophysics Data System (ADS)
Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio
2018-03-01
Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
NASA Astrophysics Data System (ADS)
Izquierdo, Rebeca; Alarcón, Marta; Aguillaume, Laura; Àvila, Anna
2014-06-01
The North Atlantic Oscillation (NAO) has been identified as one of the atmospheric patterns which mostly influence the temporal evolution of precipitation and temperature in the Mediterranean area. Recently, the Western Mediterranean Oscillation (WeMO) has also been proposed to describe the precipitation variability in the eastern Iberian Peninsula. This paper examines whether the chemical signature and/or the chemical deposition amounts recorded over NE Iberian Peninsula are influenced by these climatic variability patterns. Results show a more relevant role of the WeMO compared to NAO in the deposition of either marine (Cl-, Na+, Mg2+) or anthropogenic pollutants (H+, NH4+, NO3- and SO42-). A cluster classification of provenances indicated that in winter (December to March) fast Atlantic air flows correspond to positive WeMO indices, while negative WeMOi are associated to Northeastern and Southwestern circulations. The negative phase of WeMO causes the entry of air masses from the Mediterranean into the Iberian Peninsula, that are enriched with marine ions and ions of anthropogenic origin (NH4+, NO3- and SO42-). For these later, this suggests the advection over the Mediterranean of polluted air masses from southern Europe and the scavenging and deposition of this pollution by precipitation during the WeMO negative phases. This will carry transboundary pollutants to the NE Iberian Peninsula. However, local pollutants may also contribute, as precipitation events from the Mediterranean and the Atlantic (associated to both WeMO phases) may incorporate emissions that accumulate locally during the winter anticyclonic episodes typical of the region.
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang
2018-06-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.
NASA Astrophysics Data System (ADS)
Selker, J. S.; Higgins, C. W.; Tai, L. C. M.
2014-12-01
The linkage between large-scale manipulation of land cover and resulting patterns of precipitation has been a long-standing problem. For example, what is the impact of the Columbia River project's 2,700 km^2 irrigated area (applying approximately 300 m^3/s) on the down-wind continental rainfall in North America? Similarly, can we identify places on earth where planting large-scale runoff-reducing forests might increase down-wind precipitation, thus leading to magnified carbon capture? In this talk we present an analytical Lagrangian framework for the prediction of incremental increases in down-wind precipitation due to land surface evaporation and transpiration. We compare these predictions to recently published rainfall recycling values from the literature. Focus is on the Columbia basin (Pacific Northwest of hte USA), with extensions to East Africa. We further explore the monitoring requirements for verification of any such impact, and see if the planned TAHMO African Observatory (TAHMO.org) has the potential to document any such processes over the 25-year and 1,000 km scales.
Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns
NASA Astrophysics Data System (ADS)
Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard
2013-04-01
Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later timing of ice-on, a decrease of ice duration by 11.0 days and a 5.8 days earlier ice-off. The sensitivity of ice duration and ice-off to rising air temperatures was increasing at Lake Neusiedl. This effect of warming could not be verified for the timing of ice-on. Ice-on at Lake Neusiedl showed a significant relation to EAP (yearly index; R=0.33). Ice duration and ice-off were influenced significantly by the winter indices of MO for Algiers and Cairo (R=-0.48 and -0.45), NAO (R=-0.42 and -0.37), and EAP (R=-0.31 and -0.48).
NASA Astrophysics Data System (ADS)
Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.
2014-12-01
Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas like events. Estimates from quantitative climate proxies such as chironomids will help constrain these patterns and further our understanding of climate teleconnections on Quaternary timescales.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild
2016-04-01
The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a synchronous bi-polar Little Ice Age (LIA). In conclusion, our work shows the potential of novel analytical and numerical tools to improve the robustness and resolution of lake sediment-based paleoclimate reconstructions beyond the current state-of-the-art.
NASA Astrophysics Data System (ADS)
Wedgbrow, C. S.; Wilby, R. L.; Fox, H. R.; O'Hare, G.
2002-02-01
Future climate change scenarios suggest enhanced temporal and spatial gradients in water resources across the UK. Provision of seasonal forecast statistics for surface climate variables could alleviate some negative effects of climate change on water resource infrastructure. This paper presents a preliminary investigation of spatial and temporal relationships between large-scale North Atlantic climatic indices, drought severity and river flow anomalies in England and Wales. Potentially useful predictive relationships are explored between winter indices of the Polar-Eurasian (POL) teleconnection pattern, the North Atlantic oscillation (NAO), North Atlantic sea surface temperature anomalies (SSTAs), and the summer Palmer drought severity index (PDSI) and reconstructed river flows in England and Wales. Correlation analyses, coherence testing and an index of forecast potential, demonstrate that preceding winter values of the POL index, SSTA (and to a lesser extent the NAO), provide indications of summer and early autumn drought severity and river flow anomalies in parts of northwest, southwest and southeast England. Correlation analyses demonstrate that positive winter anomalies of T1, POL index and NAO index are associated with negative PDSI (i.e. drought) across eastern parts of the British Isles in summer (r < 0.51). Coherence tests show that a positive winter SSTA (1871-1995) and POL index (1950-95) have preceded below-average summer river flows in the northwest and southwest of England and Wales in 70 to 100% of summers. The same rivers have also experienced below-average flows during autumn following negative winter phases of the NAO index in 64 to 93% of summers (1865-1995). Possible explanations for the predictor-predictand relationships are considered, including the memory of groundwater, and ocean-atmosphere coupling, and regional manifestations of synoptic rainfall processes. However, further research is necessary to increase the number of years and predictor variables from which it is possible to derive rules that may be useful for forecasting.
Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa M.; Rhines, P. B.
2010-01-01
Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.
NASA Astrophysics Data System (ADS)
Keys, Patrick; Wang-Erlandsson, Lan; Gordon, Line
2016-04-01
In hydrology, there are many spatial units of analysis that allow for the quantification of relevant processes, including the river basin (surface water) and the capture zone (groundwater). Our research provides a new unit that can be applied to atmospheric water, called the precipitationshed. We define the precipitationshed as the upwind land and ocean area that contributes evaporation to a given location's precipitation. Building off of much existing scholarly work, we have advanced the field of moisture recycling by defining the method for calculating precipitationshed boundaries, and through our analysis have found that there are persistent inter-annual sources of moisture for many places on the planet. The precipitationshed represents a new way of thinking about hydrological tele-connections across a landscape, region, or continent. We describe three ways in which the precipitationshed has been applied to important societal issues: the vulnerability of rainfall dependent societies, the analysis of moisture recycling as an ecosystem service, and the relationship between dry and wet year rainfall in megacity precipitationsheds. Our analysis reveals some important insights. First, the pressures of demographic and land-use change within the precipitationsheds of many agricultural regions globally potentially increases their vulnerability to future reductions in rainfall. Second, by classifying moisture recycling as an ecosystem service, we are able to better understand how hitherto unconnected places in a region are in fact geophysically connected. Third, we find that many megacities receive more dry season rainfall from land than in wet years, suggesting that these urban areas are particularly reliant, and exposed, to the land-use decisions that take place in their precipitationsheds. In this presentation, we aim to discuss the strengths and weaknesses of the precipitationshed concept, the challenges ahead for understanding how society can use the concept, and what important scientific questions remain to be understood.
Simulating a 40-year flood event climatology of Australia with a view to ocean-land teleconnections
NASA Astrophysics Data System (ADS)
Schumann, Guy J.-P.; Andreadis, Konstantinos; Stampoulis, Dimitrios; Bates, Paul
2015-04-01
We develop, for the first time, a proof-of-concept version for a high-resolution global flood inundation model to generate a flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent at a native 1 km resolution. The objectives of our study includes (1) deriving an inundation climatology for a continent (Australia) as a demonstrator case to understand the requirements for expanding globally; (2) developing a test bed to assess the potential and value of current and future satellite missions (GRACE, SMAP, ICESat-2, AMSR-2, Sentinels and SWOT) in flood monitoring; and (3) answering science questions such as the linking of inundation to ocean circulation teleconnections. We employ the LISFLOOD-FP hydrodynamic model to generate a flood inundation climatology. The model will be built from freely available SRTM-derived data (channel widths, bank heights and floodplain topography corrected for vegetation canopy using ICESat canopy heights). Lakes and reservoirs are represented and channel hydraulics are resolved using actual channel data with bathymetry inferred from hydraulic geometry. Simulations are run with gauged flows and floodplain inundation climatology are compared to observations from GRACE, flood maps from Landsat, SAR, and MODIS. Simulations have been completed for the entire Australian continent. Additionally, changes in flood inundation have been correlated with indices related to global ocean circulation, such as the El Niño Southern Oscillation index. We will produce data layers on flood event climatology and other derived (default) products from the proposed model including channel and floodplain depths, flow direction, velocity vectors, floodplain water volume, shoreline extent and flooded area. These data layers will be in the form of simple vector and raster formats. Since outputs will be large in size we propose to upload them onto Google Earth under the GEE API license.
Atlas of point correlations at 30 mb and between 500 and 30 mb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loon, H. van; Shea, D.J.
1992-12-01
The National Center for Atmospheric Research has issued a technical note (Shea et al. 1992) with point correlations (teleconnections) on the 30-mb surface and between 500 and 30 mb. The correlations are for the two-month means January-February, March-April, July-August, and November-December, which were chosen because of these characteristics of the intraseasonal change in the stratosphere: (a) At 30 mb the annual cooling at higher latitudes often ends in December, which therefore is on an average-the coldest month at these latitudes. (b) Major midwinter warnings, during which the polar low is replaced by a high, nearly all occur in January-February. (c)more » The final (spring) warming of the lower stratosphere takes place in March-April. The correlations are based on two well-known datasets: the monthly mean temperatures and geopotential heights at 30 mb, derived from the daily historical maps from the Stratospheric Research Group, 11 monthly mean geopotential heights at 500 mb from the National Meteorological Center, Washington, D.C. The 500- and 30-mb heights span the years 1957-1988, and the 30-mb temperatures, the years 1964-1988. The teleconnection maps cover the region between 15[degrees]N and the North Pole. Correlations were also computed for the two halves of the period to spot any differences between them, but there were only minor or no differences. Examples of the point correlations are described below to indicate the type of material available in the technical note. The 5% local significance level for a sample of 31 is r= 0.36, and for n = 16 it is r= 0.52. The January 30-mb mean map should be used as a reference for the correlations. The technical note is available free of charge from NCAR, Information and Education Outreach Program, P.O. Box 3000, Boulder, CO 80307.« less
NASA Astrophysics Data System (ADS)
Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.
2017-12-01
The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.
NASA Astrophysics Data System (ADS)
Duan, Fucai; Wang, Yongjin; Liao, Zebo; Chen, Shitao; Zhang, Weihong; Shao, Qingfeng
2018-06-01
Despite the links of Asian monsoon with climates at high northern and southern latitudes, it remains unclear that at which time and to what extent the Asian monsoon variation is dominated by one of the two drivers throughout a Greenland Stadial (GS) to Greenland Interstadial (GI) cycle. Here we provide a Chinese stalagmite δ18O record to study their teleconnections throughout the GS-6 to GI-5.2 cycle. The resemblance between the stalagmite and Greenland records, in timing, duration and abruptness of GI-5.2, supports that the occurrence and termination of GIs are paced by the northern driving force. During the intervals of GI-5.2 and GS-6, however, the Asian monsoon fluctuated concomitantly with variation in temperature over Antarctica, instead of over Greenland. This covariation indicates dominant influences of the Antarctic climate during the climatically stable intervals of stadials and interstadials. This study updates our knowledge on mechanical dynamics of the Asian monsoon change and global climate change throughout a GS to GI cycle.
Moreno, Patricio I; Vilanova, I; Villa-Martínez, R; Garreaud, R D; Rojas, M; De Pol-Holz, R
2014-07-10
Late twentieth-century instrumental records reveal a persistent southward shift of the Southern Westerly Winds during austral summer and autumn associated with a positive trend of the Southern Annular Mode (SAM) and contemporaneous with glacial recession, steady increases in atmospheric temperatures and CO2 concentrations at a global scale. However, despite the clear importance of the SAM in the modern/future climate, very little is known regarding its behaviour during pre-Industrial times. Here we present a stratigraphic record from Lago Cipreses (51°S), southwestern Patagonia, that reveals recurrent ~200-year long dry/warm phases over the last three millennia, which we interpret as positive SAM-like states. These correspond in timing with the Industrial revolution, the Mediaeval Climate Anomaly, the Roman and Late Bronze Age Warm Periods and alternate with cold/wet multi-centennial phases in European palaeoclimate records. We conclude that SAM-like changes at centennial timescales in southwestern Patagonia represent in-phase interhemispheric coupling of palaeoclimate over the last 3,000 years through atmospheric teleconnections.
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Siegmund, Jonatan F.; Donges, Jonathan F.; Donner, Reik V.
2017-04-01
The El Nino Southern Oscillation (ENSO) with its positive (El Nino) and negative (La Nina) phases is known to trigger climatic responses in various parts of the Earth, an effect commonly attributed to teleconnectivity. A series of studies has demonstrated that El Nino periods exhibits a relatively broad variety of spatial patterns, which can be classified into two main flavors termed East Pacific (EP, canonical) and Central Pacific (CP, Modoki) El Nino, and that both subtypes can trigger distinct climatic responses like droughts vs. precipitation increases at the regional level. More recently, a similar discrimination of La Nina periods into two different flavors has been reported, and it is reasonable to assume that these different expressions are equally accompanied by differential responses of regional climate variability in particularly affected regions. In this work, we study in great detail the imprints of both types of El Nino and La Nina periods in extremal seasonal precipitation sums during fall (SON), winter (DJF) and spring (MAM) around the peak time of the corresponding ENSO phase. For this purpose, we employ a recently developed objective classification of El Nino and La Nina periods into their two respective flavors based on global teleconnectivity patterns in daily surface air temperature anomalies as captured by the associated climate network representations (Wiedermann et al., 2016). In order to study the statistical relevance of the timing of different El Nino and La Nina types on that of seasonal precipitation extremes around the globe (according to the GPCC data set as a reference), we utilize event coincidence analysis (Donges et al., 2016), a new powerful yet conceptually simple and intuitive statistical tool that allows quantifying the degree of simultaneity of distinct events in pairs of time series. Our results provide a comprehensive overview on ENSO related imprints in regional seasonal precipitation extremes. We demonstrate that key interlinkages between ENSO phases and droughts as well as extremely wet seasons depend crucially on the specific type of El Nino and La Nina event, highlighting the importance of correctly attributing the corresponding flavors when aiming to anticipate the likelihood of precipitation extremes. Straightforward upcoming extensions of the present work will address the imprints of ENSO types and flavors on extremes at different time scales that can be found in other relevant climate variables such as air temperature or more complex drought indices, as well as an assessment of the representation of the empirically found statistical relationships in contemporary climate models operated in hindcast as well as RCP scenario modes. M. Wiedermann, A. Radebach, J.F. Donges, J. Kurths, R.V. Donner: A climate network-based index to discriminate different types of El Nino and La Nina. Geophysical Research Letters, 43, 069119 (2016) J.F. Donges, C.-F. Schleussner, J.F. Siegmund, R.V. Donner: Event coincidence analysis for quantifying statistical interrelationships between event time series - On the role of extreme flood events as possible drivers of epidemics. European Physical Journal - Special Topics, 225(3), 471-487 (2016)
Seasonal Forecast Skill And Teleconnections Over East Africa
NASA Astrophysics Data System (ADS)
MacLeod, D.; Palmer, T.
2017-12-01
Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.
Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature
NASA Astrophysics Data System (ADS)
Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier
2018-02-01
The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.
NASA Astrophysics Data System (ADS)
Lauterbach, S.; Plessen, B.; Dulski, P.; Mingram, J.; Prasad, S.
2013-12-01
A pronounced trend from a predominantly wet climate during the early Holocene towards significantly drier conditions since the mid-Holocene, mainly attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, climate in the adjacent regions of mid-latitude arid Central Asia, located north and northwest of the Tibetan Plateau, is supposed to have been characterized by pronounced dry conditions during the early Holocene, wet conditions during the mid-Holocene and a rather moderate drying during the late Holocene, which is mainly attributed to the complex interplay between the mid-latitude Westerlies and the ASM. However, although mid-latitude Central Asia thus might represent a key region for the understanding of teleconnections between the ASM system and the Westerlies, knowledge about past climate development in this region is still ambiguous due to the limited number of high-resolution palaeoclimate records. Hence, new well-dated and highly resolved palaeoclimate records from this region are expected to provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, a sediment core of about 6.25 m length has been recovered from alpine Lake Chatyr Kol (40°36' N, 75°14' E, 3530 m a. s. l., surface area ~170 km2, maximum depth ~20 m), located in the Central Tian Shan of Kyrgyzstan. Sediment microfacies analysis on large-scale petrographic thin sections reveals continuously sub-mm scale laminated sediments throughout the record except for the uppermost ca. 60 cm. Microsedimentological characterization of these laminae, which are most probably of annual origin, is still in progress but according to first radiocarbon dates and laminae countings, the sediment record covers at least the last 10 000 years, thus representing a unique palaeoclimate archive from this region. In addition, first results of geochemical (μXRF, TOC, TIC) and isotopic (δ15N, δ13Corg) analyses indicate significant shifts parallel to changes in sediment microfacies around 8000-9000 and around 2000-3000 cal. a BP, most probably reflecting regional palaeoclimatic and environmental changes, but further work is necessary to fully explore the potential of this exceptional lake sediment record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin, D; Bromwich, DH; Russell, LM
West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation formore » this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud radars and high spectral resolution lidar and a complete aerosol suite at McMurdo that have relevance to the WAIS as well. At the same time, we will send basic radiometric, surface energy balance, and upper air equipment directly to the WAIS to make the first well calibrated climatological suite of measurements seen in this extremely remote but globally critical region in more than 40 years.« less
NASA Astrophysics Data System (ADS)
Lehmann, E.
2016-12-01
On interannual time scales the atmosphere affects significantly fluctuations in the geodetic quantity of length-of-day (LOD). This effect is directly proportional to perturbations in the relative angular momentum of the atmosphere (AAM) computed from zonal winds. During El Niño events tropospheric westerlies increase due to elevated sea surface temperatures (SST) in the Pacific inducing peak anomalies in relative AAM and correspondingly, in LOD. However, El Niño events affect LOD variations differently strong and the causes of this varying effect are yet not clear. Here, we investigate the LOD-El Niño relationship in the 20th and 21st century (1982-2100) whether the quantity of LOD can be used as a geophysical tool to assess variability and change in a future climate. In our analysis we applied a windowed discrete Fourier transform on all de-seasonalized data to remove climatic signals outside of the El Niño frequency band. LOD (data: IERS) was related in space and time to relative AAM and SSTs (data: ERA-40 reanalysis, IPCC ECHAM05-OM1 20C, A1B). Results from mapped Pearson correlation coefficients and time frequency behavior analysis identified a teleconnection pattern that we term the EN≥65%-index. The EN≥65%-index prescribes a significant change in variation in length-of-day of +65% and more related to (1) SST anomalies of >2° in the Pacific Niño region (160°E-80°W, 5°S-5°N), (2) corresponding stratospheric warming anomalies of the quasi-biennial oscillation (QBO), and (3) strong westerly winds in the lower equatorial stratosphere. In our analysis we show that the coupled atmosphere-ocean conditions prescribed in the EN≥65%-index apply to the extreme El Niño events of 19982/83 and 1997/98, and to 75% of all El Niño events in the last third of the 21st century. At that period of time the EN≥65%-index describes a projected altered base state of the equatorial Pacific that shows almost continuous El Niño conditions under climate warming.
Dynamics of Extreme Floods in Southeast and South Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; Lall, U.
2015-12-01
Many extreme floods result from a causal chain, where exceptional rain and floods in water basins from different sizes are related to large scale, anomalous and persistent patterns in atmospheric and oceanic circulation. Organized moisture plumes from oceanic sources are often implicated. One could use an Eulerian-Lagrangian climate model to test a causal chain hypothesis, but the parameterization and testing of such a model covering convection and transport continues to be a challenge. Consequently, empirical data based studies can be useful to establish the need to formally model such events using this approach. Here we consider two flood-prone regions in Southeast and South Brazil as case studies. A hypothesis of the causal chain of extreme floods in these regions is investigated by means of observed streamflow and reanalysis data and some machine learning tools. The signatures of the organization of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the integrated moisture flux and its divergence field and storm track data, so that a better understanding of the relations between the flood magnitude and duration, strength of moisture convergence and role of regional moisture recycling or teleconnected moisture is established. Persistent patterns and anomalies in the sea surface temperature (SST) field in the Pacific and Atlantic oceans that may be associated with disturbances in the atmospheric circulation and with the flood dynamics are investigated through composite analysis. Finally, machine learning algorithms for nonlinear dimension reduction are employed to visualize and understand some of the spatio-temporal patterns of the dominated climate variables in a reduced dimensional space. Prospects for prediction are discussed.
A Teleconnection between the West Siberian Plain and the ENSO Region
NASA Astrophysics Data System (ADS)
Liess, S.; Agrawal, S.; Chatterjee, S.; Kumar, V.
2017-12-01
This study presents a mechanism that links the El Niño/Southern Oscillation (ENSO) to extratropical waves that are deflected from the Northern Hemisphere polar regions and travel southeastward over Central Asia toward the west Pacific warm pool during northern winter. The initial wave pattern resembles the well-known East Atlantic-West Russia pattern. Here we show its influence on the ENSO region. We identify a tripole pattern between the West Siberian Plain and the two centers of action of ENSO with a graph-based approach. It indicates that the background state of ENSO with respect to global sea level pressure (SLP) has a significant negative correlation to the West Siberian Plain. The correlation with the background state, which is defined by the sum of the two centers of action of ENSO, is higher than each of the pairwise correlations with either of the ENSO centers alone. We define the centers with a clustering algorithm that detects regions with similar characteristics. The normalized monthly SLP time series for the two centers of ENSO (around Darwin, Australia and Tahiti) are area-averaged and the sum of both regions is considered as the background state of ENSO. This wave train can be detected throughout the troposphere and the lower stratosphere. Its origins can be traced back to atmospheric wave activity triggered by convection over the subtropical North Atlantic that emanates wave activity toward the West Siberian Plain. The same wave train also propagates to the central Pacific Ocean around Tahiti and can be used to predict the background state over the ENSO region. This background state also modifies the subtropical bridge between the tropical east Pacific and the subtropical North Atlantic, thus leading to a circumglobal wave train.
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
NASA Astrophysics Data System (ADS)
Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.
2018-02-01
The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.
South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annamalai, H; Hamilton, K; Sperber, K R
In this paper we use the extensive integrations produced for the IPCC Fourth Assessment Report (AR4) to examine the relationship between ENSO and the monsoon at interannual and decadal timescales. We begin with an analysis of the monsoon simulation in the 20th century integrations. Six of the 18 models were found to have a reasonably realistic representation of monsoon precipitation climatology. For each of these six models SST and anomalous precipitation evolution along the equatorial Pacific during El Nino events display considerable differences when compared to observations. Out of these six models only four (GFDL{_}CM{_}2.0, GFDL{_}CM{_}2.1, MRI, and MPI{_}ECHAM5) exhibitmore » a robust ENSO-monsoon contemporaneous teleconnection, including the known inverse relationship between ENSO and rainfall variations over India. Lagged correlations between the all-India rainfall (AIR) index and Nino3.4 SST reveal that three models represent the timing of the teleconnection, including the spring predictability barrier which is manifested as the transition from positive to negative correlations prior to the monsoon onset. Furthermore, only one of these three models (GFDL{_}CM{_}2.1) captures the observed phase lag with the strongest anticorrelation of SST peaking 2-3 months after the summer monsoon, which is partially attributable to the intensity of simulated El Nino itself. We find that the models that best capture the ENSO-monsoon teleconnection are those that correctly simulate the timing and location of SST and diabatic heating anomalies in the equatorial Pacific, and the associated changes to the equatorial Walker Circulation during El Nino events. The strength of the AIR-Nino3.4 SST correlation in the model runs waxes and wanes to some degree on decadal timescales. The overall magnitude and timescale for this decadal modulation in most of the models is similar to that seen in observations. However, there is little consistency in the phase among the realizations, suggesting a lack of predictability of the decadal modulation of the monsoon-ENSO relationship. The analysis was repeated for each of the four models using results from integrations in which the atmospheric CO{sub 2} concentration was raised to twice pre-industrial values. From these ''best'' models in the double CO{sub 2} simulations there are increases in both the mean monsoon rainfall over the Indian sub-continent (by 5-25%) and in its interannual variability (5-10%). We find for each model that the ENSO-monsoon correlation in the global warming runs is very similar to that in the 20th century runs, suggesting that the ENSO-monsoon connection will not weaken as global climate warms. This result, though plausible, needs to be taken with some caution because of the diversity in the simulation of ENSO variability in the coupled models we have analyzed. The implication of the present results for monsoon prediction are discussed.« less
Drivers of pluvial lake distributions in western North America
NASA Astrophysics Data System (ADS)
Ibarra, D. E.; Oster, J. L.; Winnick, M.; Caves, J. K.; Ritch, A. J.; Chamberlain, C. P.; Maher, K.
2016-12-01
The distribution of large inland lakes in western North America during the Plio-Pleistocene is intimately linked to the regional hydroclimate and moisture delivery dynamics. We investigate the climatological conditions driving terminal basin lakes in western North America during the mid-Pliocene warm period and the latest Pleistocene glacial maximum. Lacustrine deposits and geologic proxies suggest that lakes and wet conditions persisted during both warm and cold periods in the southwest, despite dramatically different global climate, ice sheet configuration and pCO2 levels. We use two complementary methods to quantify the hydroclimate drivers of terminal basin lake levels. First, a quantitative proxy-model comparison is conducted using compilations of geologic proxies and an ensemble of climate models. We utilize archived climate model simulations of the Last Glacial Maximum (21 ka, LGM) and mid-Pliocene (3.3 Ma) produced by the Paleoclimate Modelling Intercomparison Project (PMIP and PlioMIP). Our proxy network is made up of stable isotope records from caves, soils and paleosols, lake deposits and shorelines, glacier chronologies, and packrat middens. Second, we forward model the spatial distribution of lakes in the region using a Budyko framework to constrain the water balance for terminally draining watersheds, and make quantitative comparisons to mapped lacustrine shorelines and outcrops. Cumulatively these two approaches suggest that reduced evaporation and moderate increases in precipitation, relative to modern, drove moderate to large pluvial lakes during the LGM in the Great Basin. In contrast, larger precipitation increases appear to be the primary driver of lake levels during the mid-Pliocene in the southwest, with this spatial difference suggesting a role for El Niño teleconnections. These results demonstrate that during past periods of global change patterns of `dry-gets-drier, wet-gets-wetter' do not hold true for western North America.
NASA Astrophysics Data System (ADS)
Margalef, O.; Cacho, I.; Pla-Rabes, S.; Cañellas-Boltà, N.; Pueyo, J. J.; Sáez, A.; Pena, L. D.; Valero-Garcés, B. L.; Rull, V.; Giralt, S.
2015-04-01
Marine Isotope Stage 3 (MIS 3, 59.4-27.8 kyr BP) is characterized by the occurrence of rapid millennial-scale climate oscillations known as Dansgaard-Oeschger cycles (DO) and by abrupt cooling events in the North Atlantic known as Heinrich events. Although both the timing and dynamics of these events have been broadly explored in North Atlantic records, the response of the tropical and subtropical latitudes to these rapid climatic excursions, particularly in the Southern Hemisphere, still remains unclear. The Rano Aroi peat record (Easter Island, 27° S) provides a unique opportunity to understand atmospheric and oceanic changes in the South Pacific during these DO cycles because of its singular location, which is influenced by the South Pacific Anticyclone (SPA), the Southern Westerlies (SW), and the Intertropical Convergence Zone (ITCZ) linked to the South Pacific Convergence Zone (SPCZ). The Rano Aroi sequence records 6 major events of enhanced precipitation between 38 and 65 kyr BP. These events are compared with other hydrological records from the tropical and subtropical band supporting a coherent regional picture, with the dominance of humid conditions in Southern Hemisphere tropical band during Heinrich Stadials (HS) 5, 5a and 6 and other Stadials while dry conditions prevailed in the Northern tropics. This antiphased hydrological pattern between hemispheres has been attributed to ITCZ migration, which in turn might be associated with an eastward expansion of the SPCZ storm track, leading to an increased intensity of cyclogenic storms reaching Easter Island. Low Pacific Sea Surface Temperature (SST) gradients across the Equator were coincident with the here-defined Rano Aroi humid events and consistent with a reorganization of Southern Pacific atmospheric and oceanic circulation also at higher latitudes during Heinrich and Dansgaard-Oeschger stadials.
Global decadal climate variability driven by Southern Ocean convection
NASA Astrophysics Data System (ADS)
Marinov, I.; Cabre, A.
2016-02-01
Here we suggest a set of new "teleconnections" by which the Southern Ocean (SO) can induce anomalies in the tropical oceans and atmosphere. A 5000-year long control simulation in a coupled atmosphere-ocean model (CM2Mc, a low-resolution GFDL model) shows a natural, highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process happens naturally, with different frequencies and durations of convection across the majority of CMIP5 under preindustrial forcing (deLavergne et al., 2014). In our model, oscillations in Weddell Sea convection drive multidecadal variability in SO and global SSTs, as well as SO heat storage, with convective decades warm due to the heat released from the Circumpolar Deep Water and non-convective decades cold due to subsurface heat storage. Convective pulses drive local SST and sea ice variations south of 60S, immediately triggering changes in the Ferrell and Hadley cells, atmospheric energy budget and cross-equatorial heat exchange, ultimately influencing the position of the Intertropical Convergence Zone and rain patterns in the tropics. Additionally, the SO convection pulse is propagated to the tropics and the North Atlantic MOC via oceanic pathways on relatively fast (decadal) timescales, in agreement with recent observational constraints. Open sea convection is the major mode of Antarctic Bottom Water (AABW) formation in the CMIP5 models. Future improvements in the representation of shelf convection and sea-ice interaction in the SO are a clear necessity. These model improvements should render the AABW representation more realistic, and might influence (a) the connectivity of the SO with the rest of the planet, as described above and (b) the oceanic and global carbon cycle, of which the AABW is a fundamental conduit.
NASA Astrophysics Data System (ADS)
Bauch, H. A.; Zhuravleva, A.
2017-12-01
Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.
Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Paasche, Øyvind
2016-04-01
The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.
NASA Astrophysics Data System (ADS)
Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi
2016-04-01
Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. First, we present our newly established method which can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only GCM/RCM simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the UK 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change is of similar magnitude using either observed or seasonal forecast SSTs. While FAR is assumed to be independent from event-specific dynamic contributions due to anomalous circulation patterns as a first approximation, the risk of an event to occur under current conditions is clearly a function of the state of the atmosphere. The shorter the event, the more it is a result of chaotic internal weather variability. Hence we are interested to (1) attribute the event to thermodynamic and dynamic causes and to (2) establish a sensible time-scale for which we can make a useful and potentially robust attribution statement with regard to event-specific dynamics. Having tested the dynamic response of our model to SST conditions in January 2014, we find that observed SSTs are required to establish a discernible link between anomalous ocean temperatures and the atmospheric circulation over the North Atlantic in general and the UK in particular. However, for extreme events occurring under strongly anomalous SST patterns, associated with known low-frequency climate modes such as El Nino or La Nina, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.
NASA Astrophysics Data System (ADS)
Lee, Yun-Young
2017-04-01
West Pacific (WP) teleconnection pattern is one of the well-known primary modes of boreal winter low-frequency variability (LFV) resolved in 500 hPa geopotential height and its phase and amplitude strongly influence regional weather conditions including temperature and rainfall extremes [Baxter and Nigam, 2015; Hsu and Wallace, 1985; Linkin and Nigam, 2008; Mo and Livezey, 1986; Thompson and Wallace, 1998; Wallace and Gutzler, 1981]. This study primary aims to evaluate individual 11 GCMs seasonal hindcasts employed as members of multi-model ensemble (MME) produced in APEC Climate Center (APCC) in representing WP. For the extensive and comprehensive evaluation, this study applied seven verification metrics in three scopes: (a) temporal representation of observed indices, (b) spatial mode separation in the Northern Hemisphere (NH), and (c) regional mode isolated in the preset longitudinal domain. Verification results display quite large inter-model spread. Some models mimic observed index variability while others display large bias of index variability compared to climatology. Basic north-south dipole pattern is mostly well reproduced in both rotated and unrotated loading modes. However, each individual seasonal forecast model exhibits slightly different behavior (e.g. amplification/weakening, zonal and meridional shift, downstream extension and so forth) in representing spatial structure of WP. When taking all 7 metrics into account, one Europe (CMCC) model, one Oceania (POAMA) model and two North America (NASA and NCEP) models are classified as relatively good performers while PNU is classified as a matchless poor performer out of 11. Least WP representing skill of PNU is sort of consistent with the largest bias of NH total variability. This study further tries to examine winter mean biases of individual models and figure out how mean bias is linked to WP representation in model world. Model bias of winter climatology is investigated focusing on six large scale phenomena: East Asian winter monsoon (EAWM), Atlantic dipole, Pacific/Atlantic jets and Pacific/Atlantic Hadley circulations. Changes in structure and amplitude of them are diagnosed in terms of root mean square error, pattern correlation, intensity bias, zonal displacement and/or downstream extension. There is consistent strengthening/downstream extension of Atlantic jet and absence of southern divergence cell of Atlantic Hadley in most seasonal prediction models. It is demonstrated that WP representation has something to do with bias of Atlantic winter climatology (Atlantic dipole and Atlantic jet) from scatter plot and regression analysis. This implies the importance of realistic simulation of winter climatology further upstream for better WP representation. A fundamental conclusion of this study is that the representation of primary WP features varies among individual models of APCC-MME and it is significantly dependent on the deficiencies of some winter mean climatological patterns.
Predictable and unpredictable modes of seasonal mean precipitation over Northeast China
NASA Astrophysics Data System (ADS)
Ying, Kairan; Frederiksen, Carsten S.; Zhao, Tianbao; Zheng, Xiaogu; Xiong, Zhe; Yi, Xue; Li, Chunxiang
2018-04-01
This study investigates the patterns of interannual variability that arise from the potentially predictable (slow) and unpredictable (intraseasonal) components of seasonal mean precipitation over Northeast (NE) China, using observations from a network of 162 meteorological stations for the period 1961-2014. A variance decomposition method is applied to identify the sources of predictability, as well as the sources of prediction uncertainty, for January-February-March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December (OND). The averaged potential predictability (ratio of slow to total variance) of NE China precipitation has the highest value of 0.32 during JAS and lowest value of 0.1 in AMJ. Possible sources of seasonal prediction for the leading predictable precipitation EOF modes come from the SST anomalies in the Japan Sea, as well as the North Atlantic during JFM, the Indian Ocean SST in AMJ, and the eastern tropical Pacific SST in JAS and OND. The prolonged linear trend, which is seen in the principal component time series of the leading predictable mode in JFM and OND, may also serve as a source of predictability. The Polar-Eurasia and Northern Annular Mode atmospheric teleconnection patterns are closely connected with the leading and the second predictable mode of JAS, respectively. The Hadley cell circulation is closely related to the leading predictable mode of OND. The leading/second unpredictable precipitation modes for all these four seasons show a similar monopole/dipole structure, and can be largely attributed to the intraseasonal variabilities of the atmosphere.
Why did the 2015/16 El Niño Fail to Bring Excessive Precipitation to California?
NASA Astrophysics Data System (ADS)
Jong, B. T.; Ting, M.; Seager, R.; Lee, D. E.
2016-12-01
California has experienced severe drought in recent years posing great challenges to water resources, agriculture, and land management. El Niño, as the prime sources of seasonal to interannual climate predictability, offers the potential of alleviation of drought in California. Here, El Niño's impacts on California winter precipitation are examined. Our results, based on the observations during 1901-2010, show that El Niño's influence on precipitation strengthens from early to late winter even as El Niño weakens. The cause of the nonlinear relationship between sea surface temperature anomaly (SSTA) amplitude and teleconnection strength is the late winter warming of the climatological mean SST over the tropical eastern Pacific, allowing more active and eastward extending tropical deep convection anomaly. The 2015/16 El Niño, one of the strongest events in recent history, did not bring the heavy precipitation to California anticipated based on model forecasts and experience with the previous two strong El Niños, 1982/83 and 1997/98. North American Multi-Model Ensemble (NMME) 3-month average forecasts of SST from February 1 2016, models overestimated the Niño3 SSTA, compared to what actually occurred and, consistently, forecast heavier than observed California precipitation. The too high Niño3 SSTA drove too strong deep convection anomalies in the eastern tropical Pacific, triggering a too strong teleconnection that made the forecast California precipitation too wet. Thus, the faster than forecast decay in Niño3 SST anomalies at the end of the 2015/16 El Niño is one possible reason why the event failed to bring excess precipitation to California in the late winter. Controlled GCM experiments support this hypothesis and show that the teleconnection forced by the multimodel mean forecast of 2016 February-March-April SSTAs is stronger than the one forced by the observed SSTAs. Within the NMME those models that more correctly forecast the decay of El Niño 2015/16 also more correctly forecast modest precipitation anomalies over California.
NASA Astrophysics Data System (ADS)
Seibert, Mathias; Merz, Bruno; Apel, Heiko
2017-03-01
The Limpopo Basin in southern Africa is prone to droughts which affect the livelihood of millions of people in South Africa, Botswana, Zimbabwe and Mozambique. Seasonal drought early warning is thus vital for the whole region. In this study, the predictability of hydrological droughts during the main runoff period from December to May is assessed using statistical approaches. Three methods (multiple linear models, artificial neural networks, random forest regression trees) are compared in terms of their ability to forecast streamflow with up to 12 months of lead time. The following four main findings result from the study. 1. There are stations in the basin at which standardised streamflow is predictable with lead times up to 12 months. The results show high inter-station differences of forecast skill but reach a coefficient of determination as high as 0.73 (cross validated). 2. A large range of potential predictors is considered in this study, comprising well-established climate indices, customised teleconnection indices derived from sea surface temperatures and antecedent streamflow as a proxy of catchment conditions. El Niño and customised indices, representing sea surface temperature in the Atlantic and Indian oceans, prove to be important teleconnection predictors for the region. Antecedent streamflow is a strong predictor in small catchments (with median 42 % explained variance), whereas teleconnections exert a stronger influence in large catchments. 3. Multiple linear models show the best forecast skill in this study and the greatest robustness compared to artificial neural networks and random forest regression trees, despite their capabilities to represent nonlinear relationships. 4. Employed in early warning, the models can be used to forecast a specific drought level. Even if the coefficient of determination is low, the forecast models have a skill better than a climatological forecast, which is shown by analysis of receiver operating characteristics (ROCs). Seasonal statistical forecasts in the Limpopo show promising results, and thus it is recommended to employ them as complementary to existing forecasts in order to strengthen preparedness for droughts.
Trade wind inversion variability, dynamics and future change in Hawai'i
NASA Astrophysics Data System (ADS)
Cao, Guangxia
Using 1979-2003 radiosonde data at Hilo and Lihu'e, Hawai'i, the trade-wind inversion (TWI) is found to occur approximately 82% of the time at each station, with average base heights of 2225 +/- 14.3 m (781.9 +/- 1.4 hPa) for Hilo and 2076 +/- 12.5 m (798.8 +/- 1.2 hPa) for Lihu'e. A Weather Research and Forecast (WRF) meso-scale meteorological simulation suggests that island topography and heating contribute to the lifting of the TWI base at Hilo. Inversion base height has a September maximum and a secondary maximum in April. Frequency of inversion occurrence is significantly higher during winters and lower during summers of El Nino years. During the period of 1979-2003, the inversion frequency of occurrence is on upward trend at Hilo for spring (MAM), summer (JJA), and fall (SON) seasons and at Lihu'e for all seasons and for annual values. Composite analysis shows that patterns of geopotential height (GPH), air temperature, u- and v-wind, omega wind, relative and specific humidity, upward longwave radiation flux, net longwave radiation flux, precipitable water, convective precipitation rate, and total cloud cover significantly respond to the TWI base height. For example, the GPH pattern contains a distinctive Pacific North America Teleconnection (PNA) signature, and the magnitudes of PNA centers over 45°N, 165°W for the difference between none and inversion is over 40 m at 200 hPa and 25 m at 850 hPa. The monthly composites show that months with lower (higher) inversion base height and higher (lower) inversion occurrence frequency are linked with the following characteristics: lower (higher) GPH anomalies centered at 30°N, 160°W, lower (higher) temperature anomalies within 300--700 hPa, stronger (weaker) easterly at low levels and northerly anomaly over Hawai'i, and small upward (downward) vertical wind or rising (sinking) motion north of Hawai'i. Using the above characteristics to study the Community Climate System Model (CCSM) composites leads to the prediction that the TWI under increased CO2 forcing atmosphere will be lower in base height and more frequently.
The ENSO Effect on the Temporal and Spatial Distribution of Global Lightning Activity
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.
2007-01-01
The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0
Cold Episodes, Their Precursors and Teleconnections in the Central Peruvian Andes (1958-2009)
NASA Astrophysics Data System (ADS)
Sulca, J. C.; Vuille, M. F.; Trasmonte, G.; Silva, Y.; Takahashi, K.
2014-12-01
The Mantaro valley (MV) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during the austral summer (January-March), which strongly damage crops. However, little is known about the causes and impacts of such cold episodes in the MV. The main goal of this study is thus to characterize cold episodes in the MV and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MV daily minimum temperature for the period 1958-2009 from Huayao station, located within the MV was used. We defined a cold episode as the period when daily minimum temperature drops below the 10-percentile for at least one day. Several gridded reanalysis and satellite products were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events for same period. Cold episodes in the MV are associated with positive OLR anomalies, which extend over much of the central Andes, indicating reduced convective cloud cover during these extremes, but also affirm the large-scale nature of these events. At the same time, northeastern Brazil (NEB) registers negative OLR anomalies, strong convective activity and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. Further, it is associated with a weakening of the Bolivian High - Nordeste Low (BH-NL) system at upper levels, but also influenced by a low-level migratory high-pressure center develops at 30°S, 50°W; propagating from mid- to low latitudes as part of an extratropical Rossby wave train. In conclusion, cold episodes in the MV appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection. The reduced cloud cover in turn results from a robust large-scale pattern of westerly wind anomalies over central Peruvian Andes, inhibiting moisture influx, convective activity and hence cloud formation. At the same time NEB registers strong convective activity and enhanced cloud cover. This dipole is caused by a weakening of BH-NL system at upper levels, which is associated with a low-level migratory high-pressure center, propagating from mid- to low latitudes as part of an extratropical Rossby wave train.