Sample records for changed transcription factor-binding

  1. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  2. Modular Evolution of DNA-Binding Preference of a Tbrain Transcription Factor Provides a Mechanism for Modifying Gene Regulatory Networks

    PubMed Central

    Cheatle Jarvela, Alys M.; Brubaker, Lisa; Vedenko, Anastasia; Gupta, Anisha; Armitage, Bruce A.; Bulyk, Martha L.; Hinman, Veronica F.

    2014-01-01

    Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites. PMID:25016582

  3. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-05

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  4. Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.

    PubMed Central

    Smith, M R; Greene, W C

    1991-01-01

    The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173

  5. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development

    PubMed Central

    Nevil, Markus; Bondra, Eliana R.; Schulz, Katharine N.; Kaplan, Tommy; Harrison, Melissa M.

    2017-01-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5–17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions. PMID:28007888

  6. In vitro fluorescence studies of transcription factor IIB-DNA interaction.

    PubMed

    Górecki, Andrzej; Figiel, Małgorzata; Dziedzicka-Wasylewska, Marta

    2015-01-01

    General transcription factor TFIIB is one of the basal constituents of the preinitiation complex of eukaryotic RNA polymerase II, acting as a bridge between the preinitiation complex and the polymerase, and binding promoter DNA in an asymmetric manner, thereby defining the direction of the transcription. Methods of fluorescence spectroscopy together with circular dichroism spectroscopy were used to observe conformational changes in the structure of recombinant human TFIIB after binding to specific DNA sequence. To facilitate the exploration of the structural changes, several site-directed mutations have been introduced altering the fluorescence properties of the protein. Our observations showed that binding of specific DNA sequences changed the protein structure and dynamics, and TFIIB may exist in two conformational states, which can be described by a different microenvironment of W52. Fluorescence studies using both intrinsic and exogenous fluorophores showed that these changes significantly depended on the recognition sequence and concerned various regions of the protein, including those interacting with other transcription factors and RNA polymerase II. DNA binding can cause rearrangements in regions of proteins interacting with the polymerase in a manner dependent on the recognized sequences, and therefore, influence the gene expression.

  7. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    PubMed Central

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  8. Dynamic Changes in Nucleosome Occupancy Are Not Predictive of Gene Expression Dynamics but Are Linked to Transcription and Chromatin Regulators

    PubMed Central

    Huebert, Dana J.; Kuan, Pei-Fen; Keleş, Sündüz

    2012-01-01

    The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression. PMID:22354995

  9. DNA wrapping and distortion by an oligomeric homeodomain protein.

    PubMed

    Williams, Hannah; Jayaraman, Padma-Sheela; Gaston, Kevin

    2008-10-31

    Many transcription factors alter DNA or chromatin structure. Changes in chromatin structure are often brought about by the recruitment of chromatin-binding proteins, chromatin-modifying proteins, or other transcription co-activator or co-repressor proteins. However, some transcription factors form oligomeric assemblies that may themselves induce changes in DNA conformation and chromatin structure. The proline-rich homeodomain (PRH/Hex) protein is a transcription factor that regulates cell differentiation and cell proliferation, and has multiple roles in embryonic development. Earlier, we showed that PRH can repress transcription by multiple mechanisms, including the recruitment of co-repressor proteins belonging to the TLE family of chromatin-binding proteins. Our in vivo crosslinking studies have shown that PRH forms oligomeric complexes in cells and a variety of biophysical techniques suggest that the protein forms octamers. However, as yet we have little knowledge of the role played by PRH oligomerisation in the regulation of promoter activity or of the architecture of promoters that are regulated directly by PRH in cells. Here, we compare the binding of PRH and the isolated PRH homeodomain to DNA fragments with single and multiple PRH sites, using gel retardation assays and DNase I and chemical footprinting. We show that the PRH oligomer binds to multiple sites within the human Goosecoid promoter with high affinity and that the binding of PRH brings about DNA distortion. We suggest that PRH octamers wrap DNA in order to bring about transcriptional repression.

  10. Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster

    PubMed Central

    Gonsalves, Sarah E.; Moses, Alan M.; Razak, Zak; Robert, Francois; Westwood, J. Timothy

    2011-01-01

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions. PMID:21264254

  11. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.

    PubMed

    Gonsalves, Sarah E; Moses, Alan M; Razak, Zak; Robert, Francois; Westwood, J Timothy

    2011-01-14

    During heat shock (HS) and other stresses, HS gene transcription in eukaryotes is up-regulated by the transcription factor heat shock factor (HSF). While the identities of the major HS genes have been known for more than 30 years, it has been suspected that HSF binds to numerous other genes and potentially regulates their transcription. In this study, we have used a chromatin immunoprecipitation and microarray (ChIP-chip) approach to identify 434 regions in the Drosophila genome that are bound by HSF. We have also performed a transcript analysis of heat shocked Kc167 cells and third instar larvae and compared them to HSF binding sites. The heat-induced transcription profiles were quite different between cells and larvae and surprisingly only about 10% of the genes associated with HSF binding sites show changed transcription. There were also genes that showed changes in transcript levels that did not appear to correlate with HSF binding sites. Analysis of the locations of the HSF binding sites revealed that 57% were contained within genes with approximately 2/3rds of these sites being in introns. We also found that the insulator protein, BEAF, has enriched binding prior to HS to promoters of genes that are bound by HSF upon HS but that are not transcriptionally induced during HS. When the genes associated with HSF binding sites in promoters were analyzed for gene ontology terms, categories such as stress response and transferase activity were enriched whereas analysis of genes having HSF binding sites in introns identified those categories plus ones related to developmental processes and reproduction. These results suggest that Drosophila HSF may be regulating many genes besides the known HS genes and that some of these genes may be regulated during non-stress conditions.

  12. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.

    PubMed

    Sandmann, Gerhard; Mautz, Jürgen; Breitenbach, Jürgen

    2016-09-01

    In Nostoc PCC 7120, two different ketolases, CrtW and CrtO are involved in the formation of keto carotenoids from β-carotene. In contrast to other cyanobacteria, CrtW catalyzes the formation of monoketo echinenone whereas CrtO is the only enzyme for the synthesis of diketo canthaxanthin. This is the major photo protective carotenoid in this cyanobacterium. Under high-light conditions, basic canthaxanthin formation was transcriptionally up-regulated. Upon transfer to high light, the transcript levels of all investigated carotenogenic genes including those coding for phytoene synthase, phytoene desaturase and both ketolases were increased. These transcription changes proceeded via binding of the transcription factor NtcA to the promoter regions of the carotenogenic genes. The binding was absolutely dependent on the presence of reductants and oxo-glutarate. Light-stimulated transcript formation was inhibited by DCMU. Therefore, photosynthetic electron transport is proposed as the sensor for high-light and a changing redox state as a signal for NtcA binding.

  13. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  14. PRODORIC2: the bacterial gene regulation database in 2018

    PubMed Central

    Dudek, Christian-Alexander; Hartlich, Juliane; Brötje, David; Jahn, Dieter

    2018-01-01

    Abstract Bacteria adapt to changes in their environment via differential gene expression mediated by DNA binding transcriptional regulators. The PRODORIC2 database hosts one of the largest collections of DNA binding sites for prokaryotic transcription factors. It is the result of the thoroughly redesigned PRODORIC database. PRODORIC2 is more intuitive and user-friendly. Besides significant technical improvements, the new update offers more than 1000 new transcription factor binding sites and 110 new position weight matrices for genome-wide pattern searches with the Virtual Footprint tool. Moreover, binding sites deduced from high-throughput experiments were included. Data for 6 new bacterial species including bacteria of the Rhodobacteraceae family were added. Finally, a comprehensive collection of sigma- and transcription factor data for the nosocomial pathogen Clostridium difficile is now part of the database. PRODORIC2 is publicly available at http://www.prodoric2.de. PMID:29136200

  15. The Use of Protein-DNA, Chromatin Immunoprecipitation, and Transcriptome Arrays to Describe Transcriptional Circuits in the Dehydrated Male Rat Hypothalamus

    PubMed Central

    Qiu, Jing; Kleineidam, Anna; Gouraud, Sabine; Yao, Song Tieng; Greenwood, Mingkwan; Hoe, See Ziau; Hindmarch, Charles

    2014-01-01

    The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase. PMID:25144923

  16. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    PubMed

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  17. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  18. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  19. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  20. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  1. Acetaminophen-induced hepatotoxicity is associated with early changes in NF-kB and NF-IL6 DNA binding activity.

    PubMed

    Blazka, M E; Germolec, D R; Simeonova, P; Bruccoleri, A; Pennypacker, K R; Luster, M I

    Nuclear transcription factors, such as NF-kB and NF-IL6, are believed to play an important role in regulating the expression of genes that encode for products involved in tissue damage and inflammation and, thus, may represent early biomarkers for chemical toxicities. In the present study changes in DNA binding activity of these factors were examined in livers of mice administered hepatotoxic doses of acetaminophen (APAP). NF-kB and NF-IL6 DNA binding occurred constitutively in control mouse liver. However, within 4 hr following administration of hepatotoxic doses of APAP, their binding activities were transiently lost and is in contrast to AP-1 transcription factor where activation occurs under similar conditions. These changes corresponded with increased release of inflammatory mediators (IL-6, serum amyloid A) and increased levels of enzymatic markers of hepatocyte damage. Similarly, treatment of mice with gadolinium chloride, an inhibitor of Kupffer cell activation and known to protect against APAP-induced hepatotoxicity, reduced the observed pathophysiological response in the liver while altering the APAP-associated changes in NF-kB DNA binding activity. NF-kB was found predominantly in parenchymal and endothelial cells and was composed primarily of relatively inactive p50 homodimer subunits in control liver. Taken together, these studies suggest that hepatotoxicity is associated with early and complex changes in DNA binding activities of specific transcription factors. In particular, NF-kB and NF-IL6 may serve as negative regulators of hepatocyte-derived inflammatory mediators and is analogous to that previously observed in certain other cell systems such as B lymphocytes.

  2. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  3. Allosteric control of transcription in GntR family of transcription regulators: A structural overview.

    PubMed

    Jain, Deepti

    2015-07-01

    The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed. © 2015 International Union of Biochemistry and Molecular Biology.

  4. CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    PubMed Central

    Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC

    2008-01-01

    Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135

  5. Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.

    PubMed

    Kim, Yea Woon; Kim, AeRi

    2017-07-20

    Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).

  6. Identification of a factor in HeLa cells specific for an upstream transcriptional control sequence of an EIA-inducible adenovirus promoter and its relative abundance in infected and uninfected cells.

    PubMed Central

    SivaRaman, L; Subramanian, S; Thimmappaya, B

    1986-01-01

    Utilizing the gel electrophoresis/DNA binding assay, a factor specific for the upstream transcriptional control sequence of the EIA-inducible adenovirus EIIA-early promoter has been detected in HeLa cell nuclear extract. Analysis of linker-scanning mutants of the promoter by DNA binding assays and methylation-interference experiments show that the factor binds to the 17-nucleotide sequence 5' TGGAGATGACGTAGTTT 3' located between positions -66 and -82 upstream from the cap site. This sequence has been shown to be essential for transcription of this promoter. The EIIA-early-promoter specific factor was found to be present at comparable levels in uninfected HeLa cells and in cells infected with either wild-type adenovirus or the EIA-deletion mutant dl312 under conditions in which the EIA proteins are induced to high levels [7 or 20 hr after infection in the presence of arabinonucleoside (cytosine arabinoside)]. Based on the quantitation in DNA binding assays, it appears that the mechanism of EIA-activated transcription of the EIIA-early promoter does not involve a net change in the amounts of this factor. Images PMID:2942943

  7. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    PubMed

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  8. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  9. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8more » is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.« less

  10. Nucleosome regulatory dynamics in response to TGFβ

    PubMed Central

    Enroth, Stefan; Andersson, Robin; Bysani, Madhusudhan; Wallerman, Ola; Termén, Stefan; Tuch, Brian B.; De La Vega, Francisco M.; Heldin, Carl-Henrik; Moustakas, Aristidis; Komorowski, Jan; Wadelius, Claes

    2014-01-01

    Nucleosomes play important roles in a cell beyond their basal functionality in chromatin compaction. Their placement affects all steps in transcriptional regulation, from transcription factor (TF) binding to messenger ribonucleic acid (mRNA) synthesis. Careful profiling of their locations and dynamics in response to stimuli is important to further our understanding of transcriptional regulation by the state of chromatin. We measured nucleosome occupancy in human hepatic cells before and after treatment with transforming growth factor beta 1 (TGFβ1), using massively parallel sequencing. With a newly developed method, SuMMIt, for precise positioning of nucleosomes we inferred dynamics of the nucleosomal landscape. Distinct nucleosome positioning has previously been described at transcription start site and flanking TF binding sites. We found that the average pattern is present at very few sites and, in case of TF binding, the double peak surrounding the sites is just an artifact of averaging over many loci. We systematically searched for depleted nucleosomes in stimulated cells compared to unstimulated cells and identified 24 318 loci. Depending on genomic annotation, 44–78% of them were over-represented in binding motifs for TFs. Changes in binding affinity were verified for HNF4α by qPCR. Strikingly many of these loci were associated with expression changes, as measured by RNA sequencing. PMID:24771338

  11. Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis.

    PubMed

    Passamaneck, Yale J; Katikala, Lavanya; Perrone, Lorena; Dunn, Matthew P; Oda-Ishii, Izumi; Di Gregorio, Anna

    2009-11-01

    The notochord is a defining feature of the chordate body plan. Experiments in ascidian, frog and mouse embryos have shown that co-expression of Brachyury and FoxA class transcription factors is required for notochord development. However, studies on the cis-regulatory sequences mediating the synergistic effects of these transcription factors are complicated by the limited knowledge of notochord genes and cis-regulatory modules (CRMs) that are directly targeted by both. We have identified an easily testable model for such investigations in a 155-bp notochord-specific CRM from the ascidian Ciona intestinalis. This CRM contains functional binding sites for both Ciona Brachyury (Ci-Bra) and FoxA (Ci-FoxA-a). By combining point mutation analysis and misexpression experiments, we demonstrate that binding of both transcription factors to this CRM is necessary and sufficient to activate transcription. To gain insights into the cis-regulatory criteria controlling its activity, we investigated the organization of the transcription factor binding sites within the 155-bp CRM. The 155-bp sequence contains two Ci-Bra binding sites with identical core sequences but opposite orientations, only one of which is required for enhancer activity. Changes in both orientation and spacing of these sites substantially affect the activity of the CRM, as clusters of identical sites found in the Ciona genome with different arrangements are unable to activate transcription in notochord cells. This work presents the first evidence of a synergistic interaction between Brachyury and FoxA in the activation of an individual notochord CRM, and highlights the importance of transcription factor binding site arrangement for its function.

  12. Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans

    PubMed Central

    Boj, Sylvia F.; Servitja, Joan Marc; Martin, David; Rios, Martin; Talianidis, Iannis; Guigo, Roderic; Ferrer, Jorge

    2009-01-01

    OBJECTIVE The evolutionary conservation of transcriptional mechanisms has been widely exploited to understand human biology and disease. Recent findings, however, unexpectedly showed that the transcriptional regulators hepatocyte nuclear factor (HNF)-1α and -4α rarely bind to the same genes in mice and humans, leading to the proposal that tissue-specific transcriptional regulation has undergone extensive divergence in the two species. Such observations have major implications for the use of mouse models to understand HNF-1α– and HNF-4α–deficient diabetes. However, the significance of studies that assess binding without considering regulatory function is poorly understood. RESEARCH DESIGN AND METHODS We compared previously reported mouse and human HNF-1α and HNF-4α binding studies with independent binding experiments. We also integrated binding studies with mouse and human loss-of-function gene expression datasets. RESULTS First, we confirmed the existence of species-specific HNF-1α and -4α binding, yet observed incomplete detection of binding in the different datasets, causing an underestimation of binding conservation. Second, only a minor fraction of HNF-1α– and HNF-4α–bound genes were downregulated in the absence of these regulators. This subset of functional targets did not show evidence for evolutionary divergence of binding or binding sequence motifs. Finally, we observed differences between conserved and species-specific binding properties. For example, conserved binding was more frequently located near transcriptional start sites and was more likely to involve multiple binding events in the same gene. CONCLUSIONS Despite evolutionary changes in binding, essential direct transcriptional functions of HNF-1α and -4α are largely conserved between mice and humans. PMID:19188435

  13. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos

    PubMed Central

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-01-01

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915

  14. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos.

    PubMed

    Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L

    2017-04-20

    Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.

  15. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells

    PubMed Central

    Presman, Diego M.; Ganguly, Sourav; Schiltz, R. Louis; Johnson, Thomas A.; Karpova, Tatiana S.; Hager, Gordon L.

    2016-01-01

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR’s oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  16. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  17. A human transcription factor in search mode.

    PubMed

    Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos

    2016-01-08

    Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. DNA residence time is a regulatory factor of transcription repression

    PubMed Central

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  19. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  20. Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones

    PubMed Central

    Galasinski, Shelly K.; Lively, Tricia N.; Grebe de Barron, Alexandra; Goodrich, James A.

    2000-01-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression. PMID:10688640

  1. Acetyl coenzyme A stimulates RNA polymerase II transcription and promoter binding by transcription factor IID in the absence of histones.

    PubMed

    Galasinski, S K; Lively, T N; Grebe De Barron, A; Goodrich, J A

    2000-03-01

    Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.

  2. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  3. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  4. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  5. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914

  6. TAF(II)250: a transcription toolbox.

    PubMed

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  7. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  8. Large-scale turnover of functional transcription factor bindingsites in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Pollard, Daniel A.; Nix, David A.

    2006-07-14

    The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less

  9. Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq.

    PubMed

    Guertin, Michael J; Cullen, Amy E; Markowetz, Florian; Holding, Andrew N

    2018-04-17

    A key challenge in quantitative ChIP combined with high-throughput sequencing (ChIP-seq) is the normalization of data in the presence of genome-wide changes in occupancy. Analysis-based normalization methods were developed for transcriptomic data and these are dependent on the underlying assumption that total transcription does not change between conditions. For genome-wide changes in transcription factor (TF) binding, these assumptions do not hold true. The challenges in normalization are confounded by experimental variability during sample preparation, processing and recovery. We present a novel normalization strategy utilizing an internal standard of unchanged peaks for reference. Our method can be readily applied to monitor genome-wide changes by ChIP-seq that are otherwise lost or misrepresented through analytical normalization. We compare our approach to normalization by total read depth and two alternative methods that utilize external experimental controls to study TF binding. We successfully resolve the key challenges in quantitative ChIP-seq analysis and demonstrate its application by monitoring the loss of Estrogen Receptor-alpha (ER) binding upon fulvestrant treatment, ER binding in response to estrodiol, ER mediated change in H4K12 acetylation and profiling ER binding in patient-derived xenographs. This is supported by an adaptable pipeline to normalize and quantify differential TF binding genome-wide and generate metrics for differential binding at individual sites.

  10. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    PubMed

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  11. On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks

    PubMed Central

    Murugan, Rajamanickam; Kreiman, Gabriel

    2011-01-01

    The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410

  12. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  13. The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors

    PubMed Central

    Townsend, Philip D.; Jungwirth, Britta; Pojer, Florence; Bußmann, Michael; Money, Victoria A.; Cole, Stewart T.; Pühler, Alfred; Tauch, Andreas; Bott, Michael; Cann, Martin J.; Pohl, Ehmke

    2014-01-01

    The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition. PMID:25469635

  14. Architecture of the human regulatory network derived from ENCODE data.

    PubMed

    Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing Jane; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili; Batzoglou, Serafim; Sidow, Arend; Farnham, Peggy J; Myers, Richard M; Weissman, Sherman M; Snyder, Michael

    2012-09-06

    Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.

  15. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    PubMed Central

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  16. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  17. Genetic variation in the MITF promoter affects skin colour and transcriptional activity in black-boned chickens.

    PubMed

    Wang, G; Liao, J; Tang, M; Yu, S

    2018-02-01

    1. Microphthalmia-associated transcription factor (MITF) plays a pivotal role in melanocyte development by regulating the transcription of major pigmentation enzymes (e.g. TYR, TYRP1 and DCT). A single-nucleotide polymorphism (SNP), c.-638T>C, was identified in the MITF promoter, and genotyping of a population (n = 426) revealed that SNP c.-638T>C was associated with skin colour in black-boned chickens. 2. Individuals with genotypes CC and TC exhibited greater MTIF expression than those with genotype TT. Luciferase assays also revealed that genotype CC and TC promoters had higher activity levels than genotype TT. Expression of melanogenesis-related gene (TYR) was higher in the skin of chickens with the CC and CT genotype compared to TT chickens (P < 0.05). 3. Transcription factor-binding site analyses showed that the c.-638C allele contains a putative binding site for transcription factor sterol regulatory element-binding transcription factor 2, aryl hydrocarbon receptor nuclear translocator, transcription factor binding to IGHM enhancer 3 and upstream transcription factor 2. In contrast, the c.-638T allele contains binding sites for Sp3 transcription factor and Krüppel-like factor 1. 4. It was concluded that MITF promoter polymorphisms affected chicken skin colour. SNP c.-638T>C could be used for the marker-assisted selection of skin colour in black-boned chicken breeding.

  18. Changing Faces of Transcriptional Regulation Reflected by Zic3

    PubMed Central

    Winata, Cecilia Lanny; Kondrychyn, Igor; Deddens, J.C.; Korzh, Vladimir

    2015-01-01

    The advent of genomics in the study of developmental mechanisms has brought a trove of information on gene datasets and regulation during development, where the Zic family of zinc-finger proteins plays an important role. Genomic analysis of the modes of action of Zic3 in pluripotent cells demonstrated its requirement for maintenance of stem cells pluripotency upon binding to the proximal regulatory regions (promoters) of genes associated with cell pluripotency (Nanog, Sox2, Oct4, etc.) as well as cell cycle, proliferation, oncogenesis and early embryogenesis. In contrast, during gastrulation and neurulation Zic3 acts by binding the distal regulatory regions (enhancers, etc) associated with control of gene transcription in the Nodal and Wnt signaling pathways, including genes that act to break body symmetry. This illustrates a general role of Zic3 as a transcriptional regulator that acts not only alone, but in many instances in conjunction with other transcription factors. The latter is done by binding to adjacent sites in the context of multi-transcription factor complexes associated with regulatory elements. PMID:26085810

  19. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    PubMed

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  20. Constraints on the evolution of a doublesex target gene arising from doublesex’s pleiotropic deployment

    PubMed Central

    Luo, Shengzhan D.; Baker, Bruce S.

    2015-01-01

    “Regulatory evolution,” that is, changes in a gene’s expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSXF in females and DSXM in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues. PMID:25675536

  1. Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo

    PubMed Central

    Siepel, Adam; Lis, John T.

    2012-01-01

    DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity. PMID:22479205

  2. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  3. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  4. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    PubMed Central

    2014-01-01

    Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957

  5. From DNA binding to transcriptional activation: Is the TALE complete?

    PubMed

    Bobola, Nicoletta

    2017-09-04

    How transcription factors (TFs) control enhancer and promoter functions to effect changes in gene expression is an important question. In this issue, Hau et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701154) show that the TALE TF MEIS recruits the histone modifier PARP1/ARTD1 at promoters to decompact chromatin and activate transcription. © 2017 Bobola.

  6. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

    PubMed Central

    Joo, Yoo Jin; Ficarro, Scott B.; Soares, Luis M.; Chun, Yujin; Marto, Jarrod A.; Buratowski, Stephen

    2017-01-01

    TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations. PMID:29203645

  7. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions

    PubMed Central

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-01-01

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. PMID:27604871

  8. A novel Rieske-type protein derived from an apoptosis-inducing factor-like (AIFL) transcript with a retained intron 4 induces change in mitochondrial morphology and growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Yasuhiko, E-mail: 97318@ib.k.u-tokyo.ac.jp; Furuyama, Isao; Oda, Shoji

    2011-04-01

    Highlights: {yields} A novel major transcript, AIFL-I4, is found. {yields} Nuclear localization of AIFL-I4 induces mitochondrial morphology change and suppression of cell proliferation. {yields} AIFL-I4 mutant with a lesion in [2Fe-2S] cluster binding site does not induce these phenotypes. {yields} [2Fe-2S] cluster binding site is essential for these phenotypes. -- Abstract: Apoptosis-inducing factor-like (AIFL) protein contains a Rieske domain and pyridine nucleotide-disulfide oxidoreductase (Pyr{sub r}edox) domain that shows 35% homology to that of apoptosis-inducing factor (AIF) protein. We identified a novel major transcript of the medaka (Oryzias latipes) AIFL gene that retained intron 4 (AIFL-I4) in embryos and tissues frommore » adult fish. The product of this transcript, AIFL-I4 protein, lacked the Pyr{sub r}edox domain because of a nonsense codon in intron 4. Both AIFL-I4 and full-length AIFL (fAIFL) transcripts were highly expressed in the brain and late embryos, and relative fAIFL and AIFL-I4 expression levels differed among tissues. Transient expression of AIFL-I4 and fAIFL tagged with GFP showed that AIFL-I4 localized in the nucleus, while fAIFL localized throughout the cytoplasm. We also found that overexpression of AIFL-I4 induced a change in mitochondrial morphology and suppression of cell proliferation. AIFL-I4 mutant with a lesion in [2Fe-2S] cluster binding site of the Rieske domain did not induce these phenotypes. This report is the first to demonstrate nuclear localization of a Rieske-type protein translated from the AIFL gene. Our data suggested that the [2Fe-2S] cluster binding site was essential for the nuclear localization and involved in mitochondrial morphology and suppression of cell proliferation.« less

  9. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  10. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus

    Treesearch

    Lijun Liu; Trevor Ramsay; Matthew S. Zinkgraf; David Sundell; Nathaniel Robert Street; Vladimir Filkov; Andrew Groover

    2015-01-01

    Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors...

  11. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein.

    PubMed

    Shaikhali, Jehad; Davoine, Céline; Brännström, Kristoffer; Rouhier, Nicolas; Bygdell, Joakim; Björklund, Stefan; Wingsle, Gunnar

    2015-06-15

    The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL. © The Authors Journal compilation © 2015 Biochemical Society.

  12. A few nucleotide polymorphisms are sufficient to recruit nuclear factors differentially to the intron 1 of HPV-16 intratypic variants.

    PubMed

    López-Urrutia, Eduardo; Valdés, Jesús; Bonilla-Moreno, Raúl; Martínez-Salazar, Martha; Martínez-Garcia, Martha; Berumen, Jaime; Villegas-Sepúlveda, Nicolás

    2012-06-01

    The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. From carpet bombing to cruise missiles: the 'second-order' mechanisms used by transcription factors to ensure specific DNA binding in vivo.

    PubMed

    Kodadek, T

    1995-05-01

    Transcription factors generally have only modest specificity for their target sites, yet must find them in a sea of non-specific DNA. Some transcription factors are expressed at very high levels, to ensure that, despite losses to non-specific binding, the promoter is still occupied (the carpet-bombing strategy). Others increase their binding specificity by collaborating with other factors in a variety of ways.

  14. USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1.

    PubMed

    Maekawa, T; Sudo, T; Kurimoto, M; Ishii, S

    1991-09-11

    The transcription factor HIV-TF1, which binds to a region about 60 bp upstream from the enhancer of the human immunodeficiency virus-1 (HIV-1), was purified from human B cells. HIV-TF1 had a molecular weight of 39,000. Binding of HIV-TF1 to the HIV long terminal repeat (LTR) activated transcription from the HIV promoter in vitro. The HIV-TF1-binding site in HIV LTR was similar to the site recognized by upstream stimulatory factor (USF) in the adenovirus major late promoter. DNA-binding properties of HIV-TF1 suggested that HIV-TF1 might be identical or related to USF. Interestingly, treatment of purified HIV-TF1 by phosphatase greatly reduced its DNA-binding activity, suggesting that phosphorylation of HIV-TF1 was essential for DNA binding. The disruption of HIV-TF1-binding site induced a 60% decrease in the level of transcription from the HIV promoter in vivo. These results suggest that HIV-TF1 is involved in transcriptional regulation of HIV-1.

  15. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  16. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints

    PubMed Central

    Suciu, Maria C.; Telenius, Jelena

    2017-01-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine any k-mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. PMID:28904015

  17. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  18. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  19. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    PubMed Central

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  20. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers

    PubMed Central

    Eguchi, Asuka; Lee, Garrett O.; Wan, Fang; Erwin, Graham S.; Ansari, Aseem Z.

    2014-01-01

    Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate. PMID:25145439

  1. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  2. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    PubMed Central

    Biggar, Kyle K.

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival. PMID:29770276

  3. Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors

    PubMed Central

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia

    2012-01-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864

  4. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.

    PubMed

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia

    2011-12-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

  5. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    PubMed

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  6. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less

  7. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  8. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  9. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  10. NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression

    PubMed Central

    Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.

    2014-01-01

    Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505

  11. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.

    PubMed

    Díaz-Muñoz, Manuel D; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.

  12. Every which way--nanos gene regulation in echinoderms.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  13. Every which way – nanos gene regulation in echinoderms

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  14. YY1 as a controlling factor for the Peg3 and Gnas imprinted domains

    PubMed Central

    Kim, Jeong Do; Hinz, Angela K.; Choo, Jung Ha; Stubbs, Lisa; Kim, Joomyeong

    2007-01-01

    Imprinting Control Regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles of YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of Peg3-DMR (Differentially Methylated Regions). A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, for the control of these imprinted domains. PMID:17067777

  15. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis.

    PubMed

    Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J

    2018-01-04

    We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I.

    PubMed Central

    Evers, R; Grummt, I

    1995-01-01

    Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036

  17. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    PubMed

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression

    PubMed Central

    He, Xin; Samee, Md. Abul Hassan; Blatti, Charles; Sinha, Saurabh

    2010-01-01

    Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences. PMID:20862354

  19. The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally.

    PubMed

    García-Molinero, Varinia; García-Martínez, José; Reja, Rohit; Furió-Tarí, Pedro; Antúnez, Oreto; Vinayachandran, Vinesh; Conesa, Ana; Pugh, B Franklin; Pérez-Ortín, José E; Rodríguez-Navarro, Susana

    2018-03-29

    Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitment to SAGA-dominated genes and RP genes is significantly disturbed under heat shock, with Sus1 relocated to environmental stress-responsive genes in these conditions. Moreover, in contrast to recent results showing that SAGA deubiquitinating enzyme Ubp8 is dispensable for RNA synthesis, genomic run-on experiments demonstrate that Sus1 contributes to synthesis and stability of a wide range of transcripts. Our study provides support for a model in which SAGA/TREX-2 factor Sus1 acts as a global transcriptional regulator in yeast but has differential activity at yeast genes as a function of their transcription rate or during stress conditions.

  20. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  1. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed Central

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-01-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors. PMID:9973611

  2. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  3. Rapid evolution of cis-regulatory sequences via local point mutations

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Wray, G. A.

    2001-01-01

    Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.

  4. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    PubMed

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  5. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  6. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  7. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-07-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes.

  8. Identification of candidate transcription factor binding sites in the cattle genome

    USDA-ARS?s Scientific Manuscript database

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  9. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization.

    PubMed

    Sugio, Akiko; MacLean, Allyson M; Hogenhout, Saskia A

    2014-05-01

    Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Position specific variation in the rate of evolution in transcription factor binding sites

    PubMed Central

    Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B

    2003-01-01

    Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA. PMID:12946282

  11. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility.

    PubMed

    Theodorou, Vasiliki; Stark, Rory; Menon, Suraj; Carroll, Jason S

    2013-01-01

    Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen-ESR1-mediated interactions between cis-regulatory elements. Together, these experiments suggest that GATA3 directly impacts ESR1 enhancer accessibility, and may potentially explain the contribution of mutant-GATA3 in the heterogeneity of ESR1+ breast cancer.

  12. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility

    PubMed Central

    Theodorou, Vasiliki; Stark, Rory; Menon, Suraj; Carroll, Jason S.

    2013-01-01

    Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen–ESR1-mediated interactions between cis-regulatory elements. Together, these experiments suggest that GATA3 directly impacts ESR1 enhancer accessibility, and may potentially explain the contribution of mutant-GATA3 in the heterogeneity of ESR1+ breast cancer. PMID:23172872

  13. Measurements of nonlinear Hall-driven reconnection in the reversed field pinch

    NASA Astrophysics Data System (ADS)

    Tharp, Timothy D.

    Complex organisms are able to develop because of the complex regulatory systems that control their gene expression. The first step in this regulation, transcription initiation, is controlled by transcription factors. Transcription factors are modular proteins composed of two distinct domains, the DNA binding domain and the regulatory domain. These molecules are involved in a plethora of important biological processes including embryogenesis, development, cell health, and cancer. Tissue enriched transcription factors Nkx-2.5 and Gata4 are involved in cardiac development and cardiac health. In this thesis the DNA binding specificity of Nkx-2.5 will be analyzed using a high throughput double stranded DNA platform called Cognate Site Identifier (CSI) arrays (Chapter 2). The full DNA binding specificity of Nkx-2.5 and Nkx-2.5 mutants will be visualized using Sequence Specificity Landscapes (SSLs). In Chapter 3, the definition of binding specificity will be investigated by evaluating a number of different DNA binding folds by CSI and SSLs. CSI and SSLs will also be used to evaluate different pyrrole/imidazole hairpin polyamides in order to better characterize these small molecule DNA binding domains. CSI and SSL data will be applied to the genome in order to explain the biological function an artificial transcription factor. Chapter 4 will discuss the mechanism of nonspecific DNA binding. The historical means of predicting DNA binding will be challenged by utilizing high throughput experiments. The effect of salt concentration on both specific and nonspecific binding will also be investigated. Finally, in Chapter 5, a generation of Protein DNA Dimerizer will be discussed. A PDD that regulates transcription on genomic DNA by binding cooperatively with the heart IF Gata4 will be characterized. These studies provide understanding of, and a means to control, how transcription factors sample the endless sea of DNA in the genome in order to regulate gene expression with such wonderful specificity.

  14. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System

    PubMed Central

    Díaz-Muñoz, Manuel D.; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770

  15. Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response

    PubMed Central

    Zhong, Mei; Niu, Wei; Lu, Zhi John; Sarov, Mihail; Murray, John I.; Janette, Judith; Raha, Debasish; Sheaffer, Karyn L.; Lam, Hugo Y. K.; Preston, Elicia; Slightham, Cindie; Hillier, LaDeana W.; Brock, Trisha; Agarwal, Ashish; Auerbach, Raymond; Hyman, Anthony A.; Gerstein, Mark; Mango, Susan E.; Kim, Stuart K.; Waterston, Robert H.; Reinke, Valerie; Snyder, Michael

    2010-01-01

    Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles. PMID:20174564

  16. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    PubMed Central

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  17. Expression regulation by a methyl-CpG binding domain in an E. coli based, cell-free TX-TL system

    NASA Astrophysics Data System (ADS)

    Schenkelberger, M.; Shanak, S.; Finkler, M.; Worst, E. G.; Noireaux, V.; Helms, V.; Ott, A.

    2017-04-01

    Cytosine methylation plays an important role in the epigenetic regulation of eukaryotic gene expression. The methyl-CpG binding domain (MBD) is common to a family of eukaryotic transcriptional regulators. How MBD, a stretch of about 80 amino acids, recognizes CpGs in a methylation dependent manner, and as a function of sequence, is only partly understood. Here we show, using an Escherichia coli cell-free expression system, that MBD from the human transcriptional regulator MeCP2 performs as a specific, methylation-dependent repressor in conjunction with the BDNF (brain-derived neurotrophic factor) promoter sequence. Mutation of either base flanking the central CpG pair changes the expression level of the target gene. However, the relative degree of repression as a function of MBD concentration remains unaltered. Molecular dynamics simulations that address the DNA B fiber ratio and the handedness reveal cooperative transitions in the promoter DNA upon MBD binding that correlate well with our experimental observations. We suggest that not only steric hindrance, but also conformational changes of the BDNF promoter as a result of MBD binding are required for MBD to act as a specific inhibitory element. Our work demonstrates that the prokaryotic transcription machinery can reproduce features of epigenetic mammalian transcriptional regulatory elements.

  18. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.

    PubMed

    Schwessinger, Ron; Suciu, Maria C; McGowan, Simon J; Telenius, Jelena; Taylor, Stephen; Higgs, Doug R; Hughes, Jim R

    2017-10-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k -mer-based analysis of DNase footprints to determine any k -mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. © 2017 Schwessinger et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

    PubMed

    Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène

    2008-06-01

    The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.

  20. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-11-11

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.

  1. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed Central

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-01-01

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF. Images PMID:7501455

  2. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes. PMID:27855160

  3. Bioinformatics approaches to predict target genes from transcription factor binding data.

    PubMed

    Essebier, Alexandra; Lamprecht, Marnie; Piper, Michael; Bodén, Mikael

    2017-12-01

    Transcription factors regulate gene expression and play an essential role in development by maintaining proliferative states, driving cellular differentiation and determining cell fate. Transcription factors are capable of regulating multiple genes over potentially long distances making target gene identification challenging. Currently available experimental approaches to detect distal interactions have multiple weaknesses that have motivated the development of computational approaches. Although an improvement over experimental approaches, existing computational approaches are still limited in their application, with different weaknesses depending on the approach. Here, we review computational approaches with a focus on data dependency, cell type specificity and usability. With the aim of identifying transcription factor target genes, we apply available approaches to typical transcription factor experimental datasets. We show that approaches are not always capable of annotating all transcription factor binding sites; binding sites should be treated disparately; and a combination of approaches can increase the biological relevance of the set of genes identified as targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway

    PubMed Central

    René, Céline; Taulan, Magali; Iral, Florence; Doudement, Julien; L'Honoré, Aurore; Gerbon, Catherine; Demaille, Jacques; Claustres, Mireille; Romey, Marie-Catherine

    2005-01-01

    CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells. PMID:16170155

  5. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  6. Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

    PubMed

    Yoshii, Katsuhiro; Tajima, Fumihisa; Ishijima, Sumio; Sagami, Ikuko

    2015-01-20

    Neuronal PAS domain protein 2 (NPAS2) is a core clock transcription factor that forms a heterodimer with BMAL1 to bind the E-box in the promoter of clock genes and is regulated by various environmental stimuli such as heme, carbon monoxide, and NAD(P)H. In this study, we investigated the effects of pH and NADPH on the DNA binding activity of NPAS2. In an electrophoretic mobility shift (EMS) assay, the pH of the reaction mixture affected the DNA binding activity of the NPAS2/BMAL1 heterodimer but not that of the BMAL1/BMAL1 homodimer. A change in pH from 7.0 to 7.5 resulted in a 1.7-fold increase in activity in the absence of NADPH, and NADPH additively enhanced the activity up to 2.7-fold at pH 7.5. The experiments using truncated mutants revealed that N-terminal amino acids 1-61 of NPAS2 were sufficient to sense the change in both pH and NADPH. We further analyzed the kinetics of formation and DNA binding of the NPAS2/BMAL1 heterodimer at various pH values. In the absence of NADPH, a change in pH from 6.5 to 8.0 decreased the KD(app) value of the E-box from 125 to 22 nM, with an 8-fold increase in the maximal level of DNA binding for the NPAS2/BMAL1 heterodimer. The addition of NADPH resulted in a further decrease in KD(app) to 9 nM at pH 8.0. Furthermore, NPAS2-dependent transcriptional activity in a luciferase assay using NIH3T3 cells also increased with the pH of the culture medium. These results suggest that NPAS2 has a role as a pH and metabolite sensor in regulating circadian rhythms.

  7. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription.

    PubMed

    Liu, Zhihui; Lam, Norris; Thiele, Carol J

    2015-09-29

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.

  8. The H3-H4 N-Terminal Tail Domains Are the Primary Mediators of Transcription Factor IIIA Access to 5S DNA within a Nucleosome

    PubMed Central

    Vitolo, Joseph M.; Thiriet, Christophe; Hayes, Jeffrey J.

    2000-01-01

    Reconstitution of a DNA fragment containing a Xenopus borealis somatic type 5S rRNA gene into a nucleosome greatly restricts the binding of transcription factor IIIA (TFIIIA) to its cognate DNA sequence within the internal promoter of the gene. Removal of all core histone tail domains by limited trypsin proteolysis or acetylation of the core histone tails significantly relieves this inhibition and allows TFIIIA to exhibit high-affinity binding to nucleosomal DNA. Since only a single tail or a subset of tails may be primarily responsible for this effect, we determined whether removal of the individual tail domains of the H2A-H2B dimer or the H3-H4 tetramer affects TFIIIA binding to its cognate DNA site within the 5S nucleosome in vitro. The results show that the tail domains of H3 and H4, but not those of H2A and/or H2B, directly modulate the ability of TFIIIA to bind nucleosomal DNA. In vitro transcription assays carried out with nucleosomal templates lacking individual tail domains show that transcription efficiency parallels the binding of TFIIIA. In addition, we show that the stoichiometry of core histones within the 5S DNA-core histone-TFIIIA triple complex is not changed upon TFIIIA association. Thus, TFIIIA binding occurs by displacement of H2A-H2B–DNA contacts but without complete loss of the dimer from the nucleoprotein complex. These data, coupled with previous reports (M. Vettese-Dadey, P. A. Grant, T. R. Hebbes, C. Crane-Robinson, C. D. Allis, and J. L. Workman, EMBO J. 15:2508–2518, 1996; L. Howe, T. A. Ranalli, C. D. Allis, and J. Ausio, J. Biol. Chem. 273:20693–20696, 1998), suggest that the H3/H4 tails are the primary arbiters of transcription factor access to intranucleosomal DNA. PMID:10688663

  9. Reprogramming cell fate with a genome-scale library of artificial transcription factors.

    PubMed

    Eguchi, Asuka; Wleklinski, Matthew J; Spurgat, Mackenzie C; Heiderscheit, Evan A; Kropornicka, Anna S; Vu, Catherine K; Bhimsaria, Devesh; Swanson, Scott A; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J; Slukvin, Igor; Thomson, James A; Dutton, James R; Ansari, Aseem Z

    2016-12-20

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.

  10. TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes

    PubMed Central

    González, Abel D.; Espinosa, Vladimir; Vasconcelos, Ana T.; Pérez-Rueda, Ernesto; Collado-Vides, Julio

    2005-01-01

    Experimental data on the Escherichia coli transcriptional regulatory system has been used in the past years to predict new regulatory elements (promoters, transcription factors (TFs), TFs' binding sites and operons) within its genome. As more genomes of gamma-proteobacteria are being sequenced, the prediction of these elements in a growing number of organisms has become more feasible, as a step towards the study of how different bacteria respond to environmental changes at the level of transcriptional regulation. In this work, we present TRACTOR_DB (TRAnscription FaCTORs' predicted binding sites in prokaryotic genomes), a relational database that contains computational predictions of new members of 74 regulons in 17 gamma-proteobacterial genomes. For these predictions we used a comparative genomics approach regarding which several proof-of-principle articles for large regulons have been published. TRACTOR_DB may be currently accessed at http://www.bioinfo.cu/Tractor_DB, http://www.tractor.lncc.br/ or at http://www.cifn.unam.mx/Computational_Genomics/tractorDB. Contact Email id is tractor@cifn.unam.mx. PMID:15608293

  11. Reprogramming cell fate with a genome-scale library of artificial transcription factors

    PubMed Central

    Eguchi, Asuka; Wleklinski, Matthew J.; Spurgat, Mackenzie C.; Heiderscheit, Evan A.; Kropornicka, Anna S.; Vu, Catherine K.; Bhimsaria, Devesh; Swanson, Scott A.; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J.; Slukvin, Igor; Thomson, James A.; Dutton, James R.; Ansari, Aseem Z.

    2016-01-01

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices. PMID:27930301

  12. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed Central

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-01-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes. PMID:9199312

  13. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less

  14. TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors.

    PubMed

    Radebaugh, C A; Matthews, J L; Geiss, G K; Liu, F; Wong, J M; Bateman, E; Camier, S; Sentenac, A; Paule, M R

    1994-01-01

    The role of the Acanthamoeba castellanii TATA-binding protein (TBP) in transcription was examined. Specific antibodies against the nonconserved N-terminal domain of TBP were used to verify the presence of TBP in the fundamental transcription initiation factor for RNA polymerase I, TIF-IB, and to demonstrate that TBP is part of the committed initiation complex on the rRNA promoter. The same antibodies inhibit transcription in all three polymerase systems, but they do so differentially. Oligonucleotide competitors were used to evaluate the accessibility of the TATA-binding site in TIF-IB, TFIID, and TFIIIB. The results suggest that insertion of TBP into the polymerase II and III factors is more similar than insertion into the polymerase I factor.

  15. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  16. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    PubMed

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  18. COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development.

    PubMed

    Guo, L; Lynch, J; Nakamura, K; Fliegel, L; Kasahara, H; Izumo, S; Komuro, I; Agellon, L B; Michalak, M

    2001-01-26

    Calreticulin, a Ca(2+) binding chaperone of the endoplasmic reticulum, is also highly expressed in the embryonic heart, and knockout of the calreticulin gene is lethal during embryogenesis because of impaired cardiac development. The protein is down-regulated after birth, and elevated expression of calreticulin in newborn hearts is associated with severe cardiac pathology and death. Here we show that the transcription factor Nkx2.5 activates expression of the calreticulin gene in the heart. Binding of chicken ovalbumin upstream promoter-transcription factor 1 to the Nkx2.5 binding site suppresses transcription from the calreticulin promoter. Nkx2.5 and chicken ovalbumin upstream promoter-transcription factor 1 play antagonistic roles in regulating the expression of calreticulin during cardiac development. These studies indicate that cardiac-specific transcription factor Nkx2.5 plays a central role in activating calreticulin expression and that there is a cooperation between chicken ovalbumin upstream promoter-transcription factor 1 and Nkx2.5 at the calreticulin promoter.

  19. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    PubMed

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  20. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice

    PubMed Central

    Illendula, Anuradha; Pulikkan, John A.; Zong, Hongliang; Grembecka, Jolanta; Xue, Liting; Sen, Siddhartha; Zhou, Yunpeng; Boulton, Adam; Kuntimaddi, Aravinda; Gao, Yan; Rajewski, Roger A.; Guzman, Monica L.; Castilla, Lucio H.; Bushweller, John H.

    2015-01-01

    Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFβ-SMMHC (core binding factor β and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFβ for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFβ-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFβ-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers. PMID:25678665

  1. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family.

    PubMed

    Chirgadze, Y N; Boshkova, E A; Polozov, R V; Sivozhelezov, V S; Dzyabchenko, A V; Kuzminsky, M B; Stepanenko, V A; Ivanov, V V

    2018-01-07

    The mouse factor Zif268, known also as early growth response protein EGR-1, is a classical representative for the Cys2His2 transcription factor family. It is required for binding the RNA polymerase with operator dsDNA to initialize the transcription process. We have shown that only in this family of total six Zn-finger protein families the Zn complex plays a significant role in the protein-DNA binding. Electrostatic feature of this complex in the binding of factor Zif268 from Mus musculus with operator DNA has been considered. The factor consists of three similar Zn-finger units which bind with triplets of coding DNA. Essential contacts of the factor with the DNA phosphates are formed by three conservative His residues, one in each finger. We describe here the results of calculations of the electrostatic potentials for the Zn-Cys2His2 complex, Zn-finger unit 1, and the whole transcription factor. The potential of Zif268 has a positive area on the factor surface, and it corresponds exactly to the binding sites of each of Zn-finger units. The main part of these areas is determined by conservative His residues, which form contacts with the DNA phosphate groups. Our result shows that the electrostatic positive potential of this histidine residue is enhanced due to the Zn complex. The other contacts of the Zn-finger with DNA are related to nucleotide bases, and they are responsible for the sequence-specific binding with DNA. This result may be extended to all other members of the Cys2His2 transcription factor family.

  2. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators

    PubMed Central

    Polstein, Lauren R.; Perez-Pinera, Pablo; Kocak, D. Dewran; Vockley, Christopher M.; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Reddy, Timothy E.; Gersbach, Charles A.

    2015-01-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. PMID:26025803

  4. Ethanol-induced changes in Poly (ADP ribose) Polymerase and neuronal developmental gene expression

    PubMed Central

    Gavin, David P.; Kusumo, Handojo; Sharma, Rajiv P.; Guizzetti, Marina

    2016-01-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that elevated PARP enzymatic activity reduced PPARγ promoter binding, and this corresponded to decreased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. PMID:27497606

  5. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression.

    PubMed

    Gavin, David P; Kusumo, Handojo; Sharma, Rajiv P; Guizzetti, Marina

    2016-11-01

    Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. Published by Elsevier Ltd.

  6. A PIT-1 Homeodomain Mutant Blocks the Intranuclear Recruitment Of the CCAAT/Enhancer Binding Protein α Required for Prolactin Gene Transcription

    PubMed Central

    ENWRIGHT, JOHN F.; KAWECKI-CROOK, MARGARET A.; VOSS, TY C.; SCHAUFELE, FRED; DAY, RICHARD N.

    2010-01-01

    The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, in cluding CCAAT/enhancer binding protein α (C/ EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity. PMID:12554749

  7. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.

    PubMed

    Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C

    2017-09-01

    Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and UniProt. Common TFs like SP1, AP1 and NF-KB of the Amyloid beta precursor gene is easily detected using TFIS along with multiple binding sites. In another scenario of embryonic developmental process, TFs of the FOX family (FOXL1 and FOXC1) were also identified. TFIS is platform-independent which is publicly available along with its support and documentation at http://tfistool.appspot.com and http://www.bioinfoplus.com/tfis/ . TFIS is licensed under the GNU General Public License, version 3 (GPL-3.0).

  8. A Novel RNA Polymerase I Transcription Initiation Factor, TIF-IE, Commits rRNA Genes by Interaction with TIF-IB, Not by DNA Binding

    PubMed Central

    Al-Khouri, Anna Maria; Paule, Marvin R.

    2002-01-01

    In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE. PMID:11784852

  9. A novel RNA polymerase I transcription initiation factor, TIF-IE, commits rRNA genes by interaction with TIF-IB, not by DNA binding.

    PubMed

    Al-Khouri, Anna Maria; Paule, Marvin R

    2002-02-01

    In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.

  10. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  11. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291

  12. Transcriptional switches in the control of macronutrient metabolism.

    PubMed

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  13. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  14. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-03-15

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.

  15. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed Central

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-01-01

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715

  16. Molecular analysis of the differential hepatic expression of rat kininogen family genes.

    PubMed Central

    Chen, H M; Liao, W S

    1993-01-01

    Serum concentration of rat T1 kininogen increases 20- to 30-fold in response to acute inflammation, an induced hepatic synthesis regulated primarily at the transcriptional level. We have demonstrated by transient transfection analyses that rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs are highly responsive to interleukin-6 and dexamethasone. In these studies we examined the regulation of a highly homologous K kininogen gene promoter and showed that it is minimally induced under identical conditions. The basal expression of the KK/CAT construct was, however, five- to sevenfold higher than that of the analogous T1K/CAT construct. Promoter-swapping experiments to examine the molecular basis of this differentially regulated basal expression showed that at least two K kininogen promoter regions are important for conferring its high basal expression: a distal 19-bp region (C box) constituted a binding site for C/EBP family proteins, and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor 3 (HNF-3). While the C box in the K kininogen promoter was able to interact with C/EBP transcription factors, the T1 kininogen promoter C box could not. In addition, HNF-3 binding sites of the K kininogen promoter demonstrated stronger affinities than those of the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and are known to enhance transcription of liver-specific genes, these differences in their binding activities thus accounted for the K kininogen gene's higher basal expression. Our studies demonstrated that evolutionary divergence of a few critical nucleotides may lead to subtle changes in the binding affinities of a transcription factor to its recognition site, profoundly altering expression of the downstream gene. Images PMID:8413271

  17. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis

    PubMed Central

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421

  18. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    PubMed

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  19. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    PubMed

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  20. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1.

    PubMed

    Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook

    2002-07-26

    The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.

  1. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    PubMed Central

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P  < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  2. Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

    PubMed Central

    Kamenova, Ivanka; Warfield, Linda

    2014-01-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. PMID:24865972

  3. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Localization of TFIIB binding regions using serial analysis of chromatin occupancy

    PubMed Central

    Yochum, Gregory S; Rajaraman, Veena; Cleland, Ryan; McWeeney, Shannon

    2007-01-01

    Background: RNA Polymerase II (RNAP II) is recruited to core promoters by the pre-initiation complex (PIC) of general transcription factors. Within the PIC, transcription factor for RNA polymerase IIB (TFIIB) determines the start site of transcription. TFIIB binding has not been localized, genome-wide, in metazoans. Serial analysis of chromatin occupancy (SACO) is an unbiased methodology used to empirically identify transcription factor binding regions. In this report, we use TFIIB and SACO to localize TFIIB binding regions across the rat genome. Results: A sample of the TFIIB SACO library was sequenced and 12,968 TFIIB genomic signature tags (GSTs) were assigned to the rat genome. GSTs are 20–22 base pair fragments that are derived from TFIIB bound chromatin. TFIIB localized to both non-protein coding and protein-coding loci. For 21% of the 1783 protein-coding genes in this sample of the SACO library, TFIIB binding mapped near the characterized 5' promoter that is upstream of the transcription start site (TSS). However, internal TFIIB binding positions were identified in 57% of the 1783 protein-coding genes. Internal positions are defined as those within an inclusive region greater than 2.5 kb downstream from the 5' TSS and 2.5 kb upstream from the transcription stop. We demonstrate that both TFIIB and TFIID (an additional component of PICs) bound to internal regions using chromatin immunoprecipitation (ChIP). The 5' cap of transcripts associated with internal TFIIB binding positions were identified using a cap-trapping assay. The 5' TSSs for internal transcripts were confirmed by primer extension. Additionally, an analysis of the functional annotation of mouse 3 (FANTOM3) databases indicates that internally initiated transcripts identified by TFIIB SACO in rat are conserved in mouse. Conclusion: Our findings that TFIIB binding is not restricted to the 5' upstream region indicates that the propensity for PIC to contribute to transcript diversity is far greater than previously appreciated. PMID:17997859

  5. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  6. Coupled Evolution of Transcription and mRNA Degradation

    PubMed Central

    Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay

    2011-01-01

    mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast. PMID:21811398

  7. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    PubMed

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  8. Dense Bicoid hubs accentuate binding along the morphogen gradient

    PubMed Central

    Mir, Mustafa; Reimer, Armando; Haines, Jenna E.; Li, Xiao-Yong; Stadler, Michael; Garcia, Hernan

    2017-01-01

    Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient “hubs” of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors. PMID:28982761

  9. The fundamental ribosomal RNA transcription initiation factor-IB (TIF-IB, SL1, factor D) binds to the rRNA core promoter primarily by minor groove contacts.

    PubMed

    Geiss, G K; Radebaugh, C A; Paule, M R

    1997-11-14

    Acanthamoeba castellanii transcription initiation factor-IB (TIF-IB) is the TATA-binding protein-containing transcription factor that binds the rRNA promoter to form the committed complex. Minor groove-specific drugs inhibit TIF-IB binding, with higher concentrations needed to disrupt preformed complexes because of drug exclusion by bound TIF-IB. TIF-IB/DNA interactions were mapped by hydroxyl radical and uranyl nitrate footprinting. TIF-IB contacts four minor grooves in its binding site. TIF-IB and DNA wrap around each other in a right-handed superhelix of high pitch, so the upstream and downstream contacts are on opposite faces of the helix. Dimethyl sulfate protection assays revealed limited contact with a few guanines in the major groove. This detailed analysis suggests significant DNA conformation dependence of the interaction.

  10. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules

    PubMed Central

    2013-01-01

    Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445

  11. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

    PubMed

    de-Carvalho, Jorge; Rodrigues, Rogério M M; Tomé, Brigitte; Henriques, Sílvia F; Mira, Nuno P; Sá-Correia, Isabel; Ferreira, Guilherme N M

    2014-04-21

    A novel quartz crystal microbalance (QCM) analytical method is developed based on the transmission line model (TLM) algorithm to analyze the binding of transcription factors (TFs) to immobilized DNA oligoduplexes. The method is used to characterize the mechanical properties of biological films through the estimation of the film dynamic shear moduli, G and G, and the film thickness. Using the Saccharomyces cerevisiae transcription factor Haa1 (Haa1DBD) as a biological model two sensors were prepared by immobilizing DNA oligoduplexes, one containing the Haa1 recognition element (HRE(wt)) and another with a random sequence (HRE(neg)) used as a negative control. The immobilization of DNA oligoduplexes was followed in real time and we show that DNA strands initially adsorb with low or non-tilting, laying flat close to the surface, which then lift-off the surface leading to final film tilting angles of 62.9° and 46.7° for HRE(wt) and HRE(neg), respectively. Furthermore we show that the binding of Haa1DBD to HRE(wt) leads to a more ordered and compact film, and forces a 31.7° bending of the immobilized HRE(wt) oligoduplex. This work demonstrates the suitability of the QCM to monitor the specific binding of TFs to immobilized DNA sequences and provides an analytical methodology to study protein-DNA biophysics and kinetics.

  12. Structural dissection of an interaction between transcription initiation and termination factors implicated in promoter-terminator cross-talk.

    PubMed

    Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin

    2018-02-02

    Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Differential Transcription Factor Use by the KIR2DL4 Promoter Under Constitutive and IL-2/15-Treated Conditions

    PubMed Central

    Presnell, Steven R.; Zhang, Lei; Chlebowy, Corrin N.; Al-Attar, Ahmad; Lutz, Charles T.

    2012-01-01

    KIR2DL4 is unique among human KIR genes in expression, cellular localization, structure, and function, yet the transcription factors required for its expression have not been identified. Using mutagenesis, electrophoretic mobility shift assay, and co-transfection assays, we identified two redundant Runx binding sites in the 2DL4 promoter as essential for constitutive 2DL4 transcription, with contributions by a CRE site and initiator elements. IL-2-and IL-15-stimulated human NK cell lines increased 2DL4 promoter activity, which required functional Runx, CRE, and Ets sites. Chromatin immunoprecipitation experiments show that Runx3 and Ets1 bind the 2DL4 promoter in situ. 2DL4 promoter activity had similar transcription factor requirements in T cells. Runx, CRE, and Ets binding motifs are present in 2DL4 promoters from across primate species, but other postulated transcription factor binding sites are not preserved. Differences between 2DL4 and clonally-restricted KIR promoters suggest a model that explains the unique 2DL4 expression pattern in human NK cells. PMID:22467658

  14. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell

    PubMed Central

    Berthoumieux, Sara; de Jong, Hidde; Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Ropers, Delphine; Geiselmann, Johannes

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology. PMID:23340840

  15. Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva

    PubMed Central

    2013-01-01

    Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments. PMID:24047559

  16. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus.

    PubMed

    Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew

    2015-06-01

    Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  17. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  18. The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5).

    PubMed

    Müller, Miriam; Persson, Anja Bondke; Krueger, Katharina; Kirschner, Karin M; Scholz, Holger

    2017-07-01

    Insulin-like growth factor (IGF) binding proteins (IGFBPs) constitute a family of six secreted proteins that regulate the signaling of insulin-like growth factors (IGFs). IGFBP5 is the most conserved family member in vertebrates and the major IGF binding protein in bone. IGFBP5 is required for normal development of the musculoskeletal system, and various types of cancer frequently express high levels of IGFP5. Here we identify the gene encoding IGFBP5 as a novel downstream target of the Wilms tumor protein WT1. IGFBP5 and WT1 are expressed in an overlapping pattern in the condensing metanephric mesenchyme of embryonic murine kidneys. Down-regulation of WT1 by transfection with antisense vivo-morpholino significantly decreased Igfbp5 transcripts in murine embryonic kidney explants. Likewise, silencing of Wt1 in a mouse mesonephros-derived cell line reduced Igfbp5 mRNA levels by approximately 80%. Conversely, induction of the WT1(-KTS) isoform, whose role as transcriptional regulator has been firmly established, significantly increased IGFBP5 mRNA and protein levels in osteosarcoma cells. IGFBP5 expression was not significantly changed by WT1(+KTS) protein, which exhibits lower DNA binding affinity than the WT1(-KTS) isoform and has a presumed role in post-transcriptional gene regulation. Luciferase reporter constructs harboring 0.8 and 1.6 kilobases of the murine Igfbp5 promoter, respectively, were stimulated approximately 5-fold by co-transfection of WT1(-KTS). The WT1(+KTS) variant had no significant effect on IGFBP5 promoter activity. Binding of WT1(-KTS), but not of WT1(+KTS) protein, to the IGFBP5 promoter in human osteosarcoma cells was proven by chromatin immunoprecipitation (ChIP) and confirmed by electrophoretic mobility shift assay. These findings demonstrate that WT1 activates transcription of the IGFBP5 gene with possible implications for kidney development and bone (patho)physiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The E. coli Anti-Sigma Factor Rsd: Studies on the Specificity and Regulation of Its Expression

    PubMed Central

    Hofmann, Nina; Wurm, Reinhild; Wagner, Rolf

    2011-01-01

    Background Among the seven different sigma factors in E. coli σ70 has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting σ70-dependent transcription at the onset of stationary growth. Although binding of Rsd to σ70 has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. Methodology/Principal Findings We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with σ70, with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with σ38, the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and σ38- or σ70-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of σ70-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned out to be important for efficient rsd transcription. Conclusions/Significance The results contribute to a better understanding of the intricate mechanism of Rsd-mediated sigma factor specificity changes during stationary phase. PMID:21573101

  20. The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression.

    PubMed

    Hofmann, Nina; Wurm, Reinhild; Wagner, Rolf

    2011-05-06

    Among the seven different sigma factors in E. coli σ(70) has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting σ(70)-dependent transcription at the onset of stationary growth. Although binding of Rsd to σ(70) has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with σ(70), with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with σ(38), the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and σ(38)- or σ(70)-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of σ(70)-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned out to be important for efficient rsd transcription. The results contribute to a better understanding of the intricate mechanism of Rsd-mediated sigma factor specificity changes during stationary phase.

  1. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.

    PubMed

    Schnapp, A; Clos, J; Hädelt, W; Schreck, R; Cvekl, A; Grummt, I

    1990-03-25

    The murine ribosomal gene promoter contains two cis-acting control elements which operate in concert to promote efficient and accurate transcription initiation by RNA polymerase I. The start site proximal core element which is indispensable for promoter recognition by RNA polymerase I (pol I) encompasses sequences from position -39 to -1. An upstream control element (UCE) which is located between nucleotides -142 and -112 stimulates the efficiency of transcription initiation both in vivo and in vitro. Here we report the isolation and functional characterization of a specific rDNA binding protein, the transcription initiation factor TIF-IB, which specifically interacts with the core region of the mouse ribosomal RNA gene promoter. Highly purified TIF-IB complements transcriptional activity in the presence of two other essential initiation factors TIF-IA and TIF-IC. We demonstrate that the binding efficiency of purified TIF-IB to the core promoter is strongly enhanced by the presence in cis of the UCE. This positive effect of upstream sequences on TIF-IB binding is observed throughout the purification procedure suggesting that the synergistic action of the two distant promoter elements is not mediated by a protein different from TIF-IB. Increasing the distance between both control elements still facilitates stable factor binding but eliminates transcriptional activation. The results demonstrate that TIF-IB binding to the rDNA promoter is an essential early step in the assembly of a functional transcription initiation complex. The subsequent interaction of TIF-IB with other auxiliary transcription initiation factors, however, requires the correct spacing between the UCE and the core promoter element.

  2. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    PubMed

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2017-03-17

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structural and functional analysis of the YAP-binding domain of human TEAD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.

    2010-06-15

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less

  4. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements.

    PubMed

    Fisher, R P; Topper, J N; Clayton, D A

    1987-07-17

    Selective transcription of human mitochondrial DNA requires a transcription factor (mtTF) in addition to an essentially nonselective RNA polymerase. Partially purified mtTF is able to sequester promoter-containing DNA in preinitiation complexes in the absence of mitochondrial RNA polymerase, suggesting a DNA-binding mechanism for factor activity. Functional domains, required for positive transcriptional regulation by mtTF, are identified within both major promoters of human mtDNA through transcription of mutant promoter templates in a reconstituted in vitro system. These domains are essentially coextensive with DNA sequences protected from nuclease digestion by mtTF-binding. Comparison of the sequences of the two mtTF-responsive elements reveals significant homology only when one sequence is inverted; the binding sites are in opposite orientations with respect to the predominant direction of transcription. Thus mtTF may function bidirectionally, requiring additional protein-DNA interactions to dictate transcriptional polarity. The mtTF-responsive elements are arrayed as direct repeats, separated by approximately 80 bp within the displacement-loop region of human mitochondrial DNA; this arrangement may reflect duplication of an ancestral bidirectional promoter, giving rise to separate, unidirectional promoters for each strand.

  5. Scaffold attachment factor B suppresses HIV-1 infection of CD4+ cells by preventing binding of RNA polymerase II to HIV-1's long terminal repeat.

    PubMed

    Ma, Li; Sun, Li; Jin, Xia; Xiong, Si-Dong; Wang, Jian-Hua

    2018-06-10

    The 5' end of HIV-1 long terminal repeat (LTR) promoter plays an essential role in driving viral transcription and productive infection. Multiple host and viral factors regulate LTR activity and modulate HIV-1 latency. Manipulation of the HIV-1 LTR provides a potential therapeutic strategy for combating HIV-1 persistence. In this study, we identified an RNA-/DNA-binding protein, Scaffold Attachment Factor B (SAFB1) as a host-cell factor that represses HIV-1 transcription. We found that SAFB1 bound to HIV-1 5`-LTR and significantly repressed 5`-LTR-driven-viral transcription and HIV-1 infection of CD4 + T cells. Mechanistically, SAFB1-mediated repression of HIV-1 transcription and infection was independent of its RNA- and DNA-binding capacities, instead, by binding to phosphorylated RNA polymerase II (RNA pol II), SAFB1 blocked its recruitment to the HIV-1 LTR. Of note, the SAFB1-mediated repression of HIV-1 transcription from proviral DNA maintained HIV-1 latency in CD4 + T cells. In summary, our findings reveal that SAFB1 binds to HIV-1-LTR and physically interacts with phosphorylated RNA pol II, repressing HIV-1 transcription initiation and elongation. Our findings improve the understanding of host modulation of HIV-1 transcription and latency and provide a new host-cell target for improved anti-HIV-1 therapies. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer

    PubMed Central

    Drewell, Robert A.; Nevarez, Michael J.; Kurata, Jessica S.; Winkler, Lauren N.; Li, Lily; Dresch, Jacqueline M.

    2013-01-01

    Summary In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterio-posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function. PMID:24514265

  7. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  8. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: Tests of transcription factor involvement in nucleolar dominance.

    PubMed Central

    Frieman, M; Chen, Z J; Saez-Vasquez, J; Shen, L A; Pikaard, C S

    1999-01-01

    In interspecific hybrids or allopolyploids, often one parental set of ribosomal RNA genes is transcribed and the other is silent, an epigenetic phenomenon known as nucleolar dominance. Silencing is enforced by cytosine methylation and histone deacetylation, but the initial discrimination mechanism is unknown. One hypothesis is that a species-specific transcription factor is inactivated, thereby silencing one set of rRNA genes. Another is that dominant rRNA genes have higher binding affinities for limiting transcription factors. A third suggests that selective methylation of underdominant rRNA genes blocks transcription factor binding. We tested these hypotheses using Brassica napus (canola), an allotetraploid derived from B. rapa and B. oleracea in which only B. rapa rRNA genes are transcribed. B. oleracea and B. rapa rRNA genes were active when transfected into protoplasts of the other species, which argues against the species-specific transcription factor model. B. oleracea and B. rapa rRNA genes also competed equally for the pol I transcription machinery in vitro and in vivo. Cytosine methylation had no effect on rRNA gene transcription in vitro, which suggests that transcription factor binding was unimpaired. These data are inconsistent with the prevailing models and point to discrimination mechanisms that are likely to act at a chromosomal level. PMID:10224274

  9. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  10. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.

    PubMed

    Gerstein, Mark B; Lu, Zhi John; Van Nostrand, Eric L; Cheng, Chao; Arshinoff, Bradley I; Liu, Tao; Yip, Kevin Y; Robilotto, Rebecca; Rechtsteiner, Andreas; Ikegami, Kohta; Alves, Pedro; Chateigner, Aurelien; Perry, Marc; Morris, Mitzi; Auerbach, Raymond K; Feng, Xin; Leng, Jing; Vielle, Anne; Niu, Wei; Rhrissorrakrai, Kahn; Agarwal, Ashish; Alexander, Roger P; Barber, Galt; Brdlik, Cathleen M; Brennan, Jennifer; Brouillet, Jeremy Jean; Carr, Adrian; Cheung, Ming-Sin; Clawson, Hiram; Contrino, Sergio; Dannenberg, Luke O; Dernburg, Abby F; Desai, Arshad; Dick, Lindsay; Dosé, Andréa C; Du, Jiang; Egelhofer, Thea; Ercan, Sevinc; Euskirchen, Ghia; Ewing, Brent; Feingold, Elise A; Gassmann, Reto; Good, Peter J; Green, Phil; Gullier, Francois; Gutwein, Michelle; Guyer, Mark S; Habegger, Lukas; Han, Ting; Henikoff, Jorja G; Henz, Stefan R; Hinrichs, Angie; Holster, Heather; Hyman, Tony; Iniguez, A Leo; Janette, Judith; Jensen, Morten; Kato, Masaomi; Kent, W James; Kephart, Ellen; Khivansara, Vishal; Khurana, Ekta; Kim, John K; Kolasinska-Zwierz, Paulina; Lai, Eric C; Latorre, Isabel; Leahey, Amber; Lewis, Suzanna; Lloyd, Paul; Lochovsky, Lucas; Lowdon, Rebecca F; Lubling, Yaniv; Lyne, Rachel; MacCoss, Michael; Mackowiak, Sebastian D; Mangone, Marco; McKay, Sheldon; Mecenas, Desirea; Merrihew, Gennifer; Miller, David M; Muroyama, Andrew; Murray, John I; Ooi, Siew-Loon; Pham, Hoang; Phippen, Taryn; Preston, Elicia A; Rajewsky, Nikolaus; Rätsch, Gunnar; Rosenbaum, Heidi; Rozowsky, Joel; Rutherford, Kim; Ruzanov, Peter; Sarov, Mihail; Sasidharan, Rajkumar; Sboner, Andrea; Scheid, Paul; Segal, Eran; Shin, Hyunjin; Shou, Chong; Slack, Frank J; Slightam, Cindie; Smith, Richard; Spencer, William C; Stinson, E O; Taing, Scott; Takasaki, Teruaki; Vafeados, Dionne; Voronina, Ksenia; Wang, Guilin; Washington, Nicole L; Whittle, Christina M; Wu, Beijing; Yan, Koon-Kiu; Zeller, Georg; Zha, Zheng; Zhong, Mei; Zhou, Xingliang; Ahringer, Julie; Strome, Susan; Gunsalus, Kristin C; Micklem, Gos; Liu, X Shirley; Reinke, Valerie; Kim, Stuart K; Hillier, LaDeana W; Henikoff, Steven; Piano, Fabio; Snyder, Michael; Stein, Lincoln; Lieb, Jason D; Waterston, Robert H

    2010-12-24

    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

  11. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex

    PubMed Central

    Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.

    2014-01-01

    Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530

  12. Transcriptional activation of human mu-opioid receptor gene by insulin-like growth factor-I in neuronal cells is modulated by the transcription factor REST.

    PubMed

    Bedini, Andrea; Baiula, Monica; Spampinato, Santi

    2008-06-01

    The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.

  13. The glucocorticoid receptor regulates the binding of C/EPBbeta on the alpha-1-acid glycoprotein promoter in vivo.

    PubMed

    Savoldi, G; Fenaroli, A; Ferrari, F; Rigaud, G; Albertini, A; Di Lorenzo, D

    1997-12-01

    A complex interaction between the Glucocorticoid Receptor (GR), C/EBPbeta, and other transcription factors activate the Alpha-1 Acid Glycoprotein (AGP) promoter in HTC(JZ-1) rat hepatoma culture cells. This effect is mediated by the so-called Steroid Responsive Unit (SRU) of the AGP promoter that contains several binding sites for C/EBP transcription factors, some of which overlap with the Glucocorticoid Responsive Element (GRE). Our in vivo footprinting experiments revealed that the GRE- and the C/EBP-binding sites were already occupied glucocorticoid dependently in HTC(JZ-1) cells 10 min after dexamethasone administration (10(-6) M). Furthermore, local changes in the chromatine structure shown by the appearance of DNAse I hypersensitive sites (HS sites) also took place. These changes were probably dependent on a tissue-specific organization of the chromatine at the SRU because they were not detectable in a different glucocorticoid-responsive cell line (PC12) that did not express AGP. Here, we have also shown that withdrawal of dexamethasone or addition of the anti-glucocorticoid RU486 were able to revert the pattern induced by dexamethasone in vivo. The disappearance of the protected region and the hypersensitive sites, typical of the hormone activated promoter, confirmed the necessity of the GR to be bound by the agonist and the inability of the GR-antagonist complex to bind the DNA. By functional assays, we showed that the occupancy of the SRU by these transcriptional proteins in vivo correlated with the activation of the AGP gene transcription. With these results, we have shown that one of the functions of the GR to activate transcription of the AGP gene is to recruit C/EBPbeta and to maintain it bound at its target DNA sequences (SRU). This process was not accomplished by RU486.

  14. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  15. In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure.

    PubMed

    Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V

    2017-02-07

    Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.

  16. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.

    PubMed

    Jang, Ju-Won; Kim, Min-Kyu; Bae, Suk-Chul

    2018-04-20

    Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.

  17. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  18. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens

    PubMed Central

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.

    2016-01-01

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791

  19. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  20. The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein

    PubMed Central

    Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.

    2016-01-01

    Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968

  1. The yeast genome may harbor hypoxia response elements (HRE).

    PubMed

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  2. Transcriptional Networks in Epithelial-Mesenchymal Transition

    PubMed Central

    Venkov, Christo; Plieth, David; Ni, Terri; Karmaker, Amitava; Bian, Aihua; George, Alfred L.; Neilson, Eric G.

    2011-01-01

    Backround Epithelial-mesenchymal transition (EMT) changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis. Methods and Findings Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs) in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells. Conclusions Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts. PMID:21980432

  3. TRAF family member-associated NF-kappa B activator (TANK) expression increases in injured sensory neurons and is transcriptionally regulated by Sox11.

    PubMed

    Salerno, K M; Jing, X; Diges, C M; Davis, B M; Albers, K M

    2013-02-12

    Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Toward this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. Gain and loss of function studies have shown this increase is essential for normal axon regeneration. To determine how Sox11 impacts neuronal gene expression, DRG neurons were treated with Sox11 siRNA to identify potential transcriptional targets. One gene significantly reduced by Sox11 knockdown was TRAF (tumor necrosis factor (TNF) receptor-associated factor)-associated NF-κB activator (TANK). Here we show that TANK is expressed in DRG neurons, that TANK expression is increased in response to peripheral nerve injury and that Sox11 overexpression in vitro increases TANK expression. Injury and in vitro overexpression were also found to preferentially increase TANK transcript variant 3 and a larger TANK protein isoform. To determine if Sox11 regulates TANK transcription bioinformatic analysis was used to identify potential Sox-binding motifs within 5kbp of the TANK 5' untranslated region (UTR) across several mammalian genomes. Two sites in the mouse TANK gene were examined. Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5'-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. TRAF family member-associated NF-kappa B activator (TANK) expression increases in injured sensory neurons and is transcriptionally regulated by Sox11

    PubMed Central

    Salerno, Kathleen M.; Jing, Xiaotang; Diges, Charlotte M.; Davis, Brian M.; Albers, Kathryn M.

    2013-01-01

    Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Towards this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. Gain and loss of function studies have shown this increase is essential for normal axon regeneration. To determine how Sox11 impacts neuronal gene expression, DRG neurons were treated with Sox11 siRNA to identify potential transcriptional targets. One gene significantly reduced by Sox11 knockdown was TRAF (tumor necrosis factor (TNF) receptor-associated factor)-associated NF-κB activator (TANK). Here we show that TANK is expressed in DRG neurons, that TANK expression is increased in response to peripheral nerve injury and that Sox11 overexpression in vitro increases TANK expression. Injury and in vitro overexpression were also found to preferentially increase TANK transcript variant 3 and a larger TANK protein isoform. To determine if Sox11 regulates TANK transcription bioinformatic analysis was used to identify potential Sox binding motifs within 5 kbp of the TANK 5’ untranslated region (UTR) across several mammalian genomes. Two sites in the mouse TANK gene were examined. Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5’-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11. PMID:23201825

  5. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements

    PubMed Central

    Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649

  6. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    PubMed

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  7. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis

    PubMed Central

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-01-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination. PMID:26276832

  8. Identification of a domain within human TAF(I)48, a subunit of Selectivity Factor 1, that interacts with helix 2 of TBP.

    PubMed

    Xu, Shuping; Hori, Roderick T

    2004-09-01

    RNA polymerase I transcription in human cells requires Selectivity Factor 1, a multisubunit complex composed of the TATA-box-binding protein (TBP) and three TBP-associated factors (TAFs) called TAF(I)48, TAF(I)63 and TAF(I)110. Each of the Selectivity Factor 1 subunits binds directly to the other three components, but these interactions have not been characterized. This study is the initial identification and analysis of a TBP-binding domain within a Selectivity Factor 1 TAF. The interaction between human TBP and human TAF(I)48 was initially examined using the yeast two-hybrid assay, and a TBP-binding domain was identified in the carboxyl-terminus of human (h)TAF(I)48. Consistent with this result, the hTAF(I)48 carboxyl-terminus was able to bind directly to TBP in protein-protein interaction assays. When mutations were introduced into the hTAF(I)48 carboxyl-terminus, we identified changes in uncharged and positive residues that affect its interaction with TBP. By examining TBP mutants, residues within and adjacent to helix 2 of TBP, previously demonstrated to interact with subunits of other TBP-containing complexes [Transcription Factor IID (TFIID) and TFIIIB] were also found to diminish its affinity for the carboxyl-terminus of hTAF(I)48. The regions of hTAF(I)48 and TBP that interact are compared to those identified within other complexes containing TBP.

  9. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function.

    PubMed

    Ciolkowski, Ingo; Wanke, Dierk; Birkenbihl, Rainer P; Somssich, Imre E

    2008-09-01

    WRKY transcription factors have been shown to play a major role in regulating, both positively and negatively, the plant defense transcriptome. Nearly all studied WRKY factors appear to have a stereotypic binding preference to one DNA element termed the W-box. How specificity for certain promoters is accomplished therefore remains completely unknown. In this study, we tested five distinct Arabidopsis WRKY transcription factor subfamily members for their DNA binding selectivity towards variants of the W-box embedded in neighboring DNA sequences. These studies revealed for the first time differences in their binding site preferences, which are partly dependent on additional adjacent DNA sequences outside of the TTGACY-core motif. A consensus WRKY binding site derived from these studies was used for in silico analysis to identify potential target genes within the Arabidopsis genome. Furthermore, we show that even subtle amino acid substitutions within the DNA binding region of AtWRKY11 strongly impinge on its binding activity. Additionally, all five factors were found localized exclusively to the plant cell nucleus and to be capable of trans-activating expression of a reporter gene construct in vivo.

  10. The Transcription Elongation Factor CA150 Interacts with RNA Polymerase II and the Pre-mRNA Splicing Factor SF1

    PubMed Central

    Goldstrohm, Aaron C.; Albrecht, Todd R.; Suñé, Carles; Bedford, Mark T.; Garcia-Blanco, Mariano A.

    2001-01-01

    CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the α4-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript. PMID:11604498

  11. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.

    PubMed

    Goldstrohm, A C; Albrecht, T R; Suñé, C; Bedford, M T; Garcia-Blanco, M A

    2001-11-01

    CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.

  12. Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region.

    PubMed

    Koentjoro, Maharani Pertiwi; Adachi, Naruhiko; Senda, Miki; Ogawa, Naoto; Senda, Toshiya

    2018-03-01

    LysR-type transcriptional regulators (LTTRs) are among the most abundant transcriptional regulators in bacteria. CbnR is an LTTR derived from Cupriavidus necator (formerly Alcaligenes eutrophus or Ralstonia eutropha) NH9 and is involved in transcriptional activation of the cbnABCD genes encoding chlorocatechol degradative enzymes. CbnR interacts with a cbnA promoter region of approximately 60 bp in length that contains the recognition-binding site (RBS) and activation-binding site (ABS). Upon inducer binding, CbnR seems to undergo conformational changes, leading to the activation of the transcription. Since the interaction of an LTTR with RBS is considered to be the first step of the transcriptional activation, the CbnR-RBS interaction is responsible for the selectivity of the promoter to be activated. To understand the sequence selectivity of CbnR, we determined the crystal structure of the DNA-binding domain of CbnR in complex with RBS of the cbnA promoter at 2.55 Å resolution. The crystal structure revealed details of the interactions between the DNA-binding domain and the promoter DNA. A comparison with the previously reported crystal structure of the DNA-binding domain of BenM in complex with its cognate RBS showed several differences in the DNA interactions, despite the structural similarity between CbnR and BenM. These differences explain the observed promoter sequence selectivity between CbnR and BenM. Particularly, the difference between Thr33 in CbnR and Ser33 in BenM appears to affect the conformations of neighboring residues, leading to the selective interactions with DNA. Atomic coordinates and structure factors for the DNA-binding domain of Cupriavidus necatorNH9 CbnR in complex with RBS are available in the Protein Data Bank under the accession code 5XXP. © 2018 Federation of European Biochemical Societies.

  13. Sequence characterization of S100A8 gene reveals structural differences of protein and transcriptional factor binding sites in water buffalo and yak.

    PubMed

    Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K

    2011-01-01

    The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC

  14. Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers

    PubMed Central

    Shi, Jian

    2015-01-01

    Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363

  15. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

    PubMed Central

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-01-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. PMID:26067358

  16. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    PubMed

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-06-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  17. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  18. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA

    PubMed Central

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-01-01

    In Escherichia coli, the sigma factor σ70 directs RNA polymerase to transcribe growth-related genes, while σ38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ70, and the non-coding 6S RNA which binds to the RNA polymerase-σ70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. PMID:29686109

  19. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA.

    PubMed

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-05-31

    In Escherichia coli , the sigma factor σ 70 directs RNA polymerase to transcribe growth-related genes, while σ 38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ 70 , and the non-coding 6S RNA which binds to the RNA polymerase-σ 70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ 38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. Copyright © 2018 Lal et al.

  20. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif.

    PubMed

    Goldie, Belinda J; Fitzsimmons, Chantel; Weidenhofer, Judith; Atkins, Joshua R; Wang, Dan O; Cairns, Murray J

    2017-01-01

    While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

  1. Structural Switch of Lysyl-tRNA Synthetase Between Translation and Transcription

    PubMed Central

    Ofir-Birin, Yifat; Fang, Pengfei; Bennett, Steven P.; Zhang, Hui-Min; Wang, Jing; Rachmin, Inbal; Shapiro, Ryan; Song, Jing; Dagan, Arie; Pozo, Jorge; Kim, Sunghoon; Marshall, Alan G.; Schimmel, Paul; Yang, Xiang-Lei; Nechushtan, Hovav; Razin, Ehud; Guo, Min

    2013-01-01

    SUMMARY Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207-phosphorylation provokes a new conformer of LysRS that inactivates its translational, but activates its transcriptional function. The crystal structure of an MSC sub-complex established that LysRS is held in the MSC by binding to the N-terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap4A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. PMID:23159739

  2. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.

    PubMed

    Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel

    2006-04-28

    Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.

  3. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products.

    PubMed

    Tahirov, Tahir H; Bushweller, John

    2017-01-01

    The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.

  4. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    PubMed

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  7. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  8. Promoter architecture dictates cell-to-cell variability in gene expression.

    PubMed

    Jones, Daniel L; Brewster, Robert C; Phillips, Rob

    2014-12-19

    Variability in gene expression among genetically identical cells has emerged as a central preoccupation in the study of gene regulation; however, a divide exists between the predictions of molecular models of prokaryotic transcriptional regulation and genome-wide experimental studies suggesting that this variability is indifferent to the underlying regulatory architecture. We constructed a set of promoters in Escherichia coli in which promoter strength, transcription factor binding strength, and transcription factor copy numbers are systematically varied, and used messenger RNA (mRNA) fluorescence in situ hybridization to observe how these changes affected variability in gene expression. Our parameter-free models predicted the observed variability; hence, the molecular details of transcription dictate variability in mRNA expression, and transcriptional noise is specifically tunable and thus represents an evolutionarily accessible phenotypic parameter. Copyright © 2014, American Association for the Advancement of Science.

  9. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Modeling RNA polymerase interaction in mitochondria of chordates

    PubMed Central

    2012-01-01

    Background In previous work, we introduced a concept, a mathematical model and its computer realization that describe the interaction between bacterial and phage type RNA polymerases, protein factors, DNA and RNA secondary structures during transcription, including transcription initiation and termination. The model accurately reproduces changes of gene transcription level observed in polymerase sigma-subunit knockout and heat shock experiments in plant plastids. The corresponding computer program and a user guide are available at http://lab6.iitp.ru/en/rivals. Here we apply the model to the analysis of transcription and (partially) translation processes in the mitochondria of frog, rat and human. Notably, mitochondria possess only phage-type polymerases. We consider the entire mitochondrial genome so that our model allows RNA polymerases to complete more than one circle on the DNA strand. Results Our model of RNA polymerase interaction during transcription initiation and elongation accurately reproduces experimental data obtained for plastids. Moreover, it also reproduces evidence on bulk RNA concentrations and RNA half-lives in the mitochondria of frog, human with or without the MELAS mutation, and rat with normal (euthyroid) or hyposecretion of thyroid hormone (hypothyroid). The transcription characteristics predicted by the model include: (i) the fraction of polymerases terminating at a protein-dependent terminator in both directions (the terminator polarization), (ii) the binding intensities of the regulatory protein factor (mTERF) with the termination site and, (iii) the transcription initiation intensities (initiation frequencies) of all promoters in all five conditions (frog, healthy human, human with MELAS syndrome, healthy rat, and hypothyroid rat with aberrant mtDNA methylation). Using the model, absolute levels of all gene transcription can be inferred from an arbitrary array of the three transcription characteristics, whereas, for selected genes only relative RNA concentrations have been experimentally determined. Conversely, these characteristics and absolute transcription levels can be obtained using relative RNA concentrations and RNA half-lives known from various experimental studies. In this case, the “inverse problem” is solved with multi-objective optimization. Conclusions In this study, we demonstrate that our model accurately reproduces all relevant experimental data available for plant plastids, as well as the mitochondria of chordates. Using experimental data, the model is applied to estimate binding intensities of phage-type RNA polymerases to their promoters as well as predicting terminator characteristics, including polarization. In addition, one can predict characteristics of phage-type RNA polymerases and the transcription process that are difficult to measure directly, e.g., the association between the promoter’s nucleotide composition and the intensity of polymerase binding. To illustrate the application of our model in functional predictions, we propose a possible mechanism for MELAS syndrome development in human involving a decrease of Phe-tRNA, Val-tRNA and rRNA concentrations in the cell. In addition, we describe how changes in methylation patterns of the mTERF binding site and three promoters in hypothyroid rat correlate with changes in intensities of the mTERF binding and transcription initiations. Finally, we introduce an auxiliary model to describe the interaction between polysomal mRNA and ribonucleases. PMID:22873568

  11. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class

    PubMed Central

    Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar

    2016-01-01

    ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874

  12. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    PubMed

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  13. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollome, James; Martin, Elizabeth

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less

  14. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    PubMed

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    PubMed

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-04

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  17. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima

    PubMed Central

    Yin, Yimeng; Das, Pratyush K; Jolma, Arttu; Zhu, Fangjie; Popov, Alexander; Xu, You; Nilsson, Lennart

    2018-01-01

    Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS. PMID:29638214

  18. β-Amylase–Like Proteins Function as Transcription Factors in Arabidopsis, Controlling Shoot Growth and Development[C][W][OA

    PubMed Central

    Reinhold, Heike; Soyk, Sebastian; Šimková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K.; Monroe, Jonathan D.; Zeeman, Samuel C.

    2011-01-01

    Plants contain β-amylase–like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains—also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain’s glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function. PMID:21487098

  19. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development.

    PubMed

    Reinhold, Heike; Soyk, Sebastian; Simková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K; Monroe, Jonathan D; Zeeman, Samuel C

    2011-04-01

    Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.

  20. The atypical two-subunit σ factor from Bacillus subtilis is regulated by an integral membrane protein and acid stress.

    PubMed

    Davis, Maria C; Smith, Logan K; MacLellan, Shawn R

    2016-02-01

    Extracytoplasmic function (ECF) σ factors constitute a major component of the physicochemical sensory apparatus in bacteria. Most ECF σ factors are co-expressed with a negative regulator called an anti-σ factor that binds to its cognate σ factor and sequesters it from productive association with core RNA polymerase (RNAP). Anti-σ factors constitute an important element of signal transduction pathways that mediate an appropriate transcriptional response to changing environmental conditions. The Bacillus subtilis genome encodes seven canonical ECF σ factors and six of these are co-expressed with experimentally verified anti-σ factors. B. subtilis also expresses an ECF-like atypical two-subunit σ factor composed of subunits SigO and RsoA that becomes active after exposure to certain cell-wall-acting antibiotics and to growth under acidic conditions. This work describes the identification and preliminary characterization of a protein (RsiO, formerly YvrL) that constitutes the anti-σ factor cognate to SigO-RsoA. Synthesis of RsiO represses SigO-RsoA-dependent transcription initiation by binding the N-terminus of SigO under neutral (pH 7) conditions. Reconstitution of the SigO-RsoA-RsiO regulatory system into a heterologous host reveals that the imposition of acid stress (pH 5.4) abolishes the ability of RsiO to repress SigO-RsoA-dependent transcription and this correlates with loss of RsiO binding affinity for SigO. A current model for RsiO function indicates that RsiO responds, either directly or indirectly, to increased extracytoplasmic hydrogen ion concentration and becomes inactivated. This results in the release of SigO into the cytoplasm, where it productively associates with RsoA and core RNAP to initiate transcription from target promoters in the cell.

  1. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.

    PubMed

    Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre

    2004-09-17

    Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.

  2. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer.

    PubMed

    Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M

    2014-09-30

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.

  3. A screen for transcription factor targets of Glycogen Synthase Kinase-3 highlights an inverse correlation of NFκB and Androgen Receptor Signaling in Prostate Cancer

    PubMed Central

    Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.

    2014-01-01

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559

  4. Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine.

    PubMed Central

    White, R; Sjöberg, M; Kalkhoven, E; Parker, M G

    1997-01-01

    The oestrogen receptor is a member of the nuclear receptor family of transcription factors which, on binding the steroid hormone 17beta-oestradiol, interacts with co-activator proteins and stimulates gene expression. Replacement of a single tyrosine in the hormone-binding domain generated activated forms of the receptor which stimulated transcription in the absence of hormone. This increased activation is related to a decrease in hydrophobicity and a reduction in size of the side chain of the amino acid with which the tyrosine is replaced. Ligand-independent, in common with ligand-dependent transcriptional activation, requires an amphipathic alpha-helix at the C-terminus of the ligand-binding domain which is essential for the interaction of the receptor with a number of potential co-activator proteins. In contrast to the wild-type protein, constitutively active receptors were able to bind both the receptor-interacting protein RIP-140 and the steroid receptor co-activator SRC-1 in a ligand-independent manner, although in the case of SRC-1 this was only evident when the receptors were prebound to DNA. We propose, therefore, that this tyrosine is required to maintain the receptor in a transcriptionally inactive state in the absence of hormone. Modification of this residue may generate a conformational change in the ligand-binding domain of the receptor to form an interacting surface which allows the recruitment of co-activators independent of hormone binding. This suggests that this tyrosine may be a target for a different signalling pathway which forms an alternative mechanism of activating oestrogen receptor-mediated transcription. PMID:9135157

  5. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  6. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  7. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation.

    PubMed

    Bae, Jae-Bum; Park, Joo-Hong; Hahn, Mi-Young; Kim, Min-Sik; Roe, Jung-Hye

    2004-01-09

    sigmaR is a sigma factor for transcribing genes to defend cells against oxidative stresses in the antibiotic-producing bacterium Streptomyces coelicolor. The availability of sigmaR is regulated by RsrA, an anti-sigma factor, whose sigmaR-binding activity is regulated by redox changes in the environment, via thiol-disulfide exchange. We found that reduced RsrA contains zinc in a stoichiometric amount, whereas oxidized form has very little: 1 mol of zinc per mol of RsrA was released upon oxidation as monitored by a chromogenic Zn-chelator, 4-(2-pyridylazo)-resorcinol (PAR). Measurement of zinc bound in several RsrA mutants of various cysteine and histidine substitutions suggested that C3, H7, C41, and C44 serve as zinc-binding sites. The zinc-binding and sigmaR-binding activities of mutant proteins did not coincide, suggesting that zinc might not be absolutely required for the anti-sigma activity of RsrA. Zn-free apo-RsrA bound sigmaR and inhibited sigmaR-dependent transcription in vitro. Compared with Zn-RsrA, the anti-transcription activity of apo-RsrA was about threefold lower and its sigmaR-binding affinity decreased by about ninefold when measured by surface plasmon resonance analysis. Apo-RsrA was more sensitive to protease, suggesting that zinc allows RsrA to maintain a more compact structure, optimized for binding sigmaR. The cysteine pairs that form disulfide bonds were determined by MALDI-TOF mass spectrometry, revealing formation of the critical disulfide bond between C11 and one of the essential cysteine residues C41 or 44, most likely C44. An improved model for the mechanism of redox-modulation of RsrA was presented.

  8. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    PubMed

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.

  9. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Rodríguez-Pineda, F; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Briones-Velasco, M; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2018-05-01

    A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.

  10. PCB-INDUCED CHANGES IN THE DNA BINDING OF SEVERAL TRANSCRIPTION FACTORS IN THE DEVELOPING CEREBELLUM.

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) are a class of persistent chemical pollutants prevalent in the environment despite the ban of their use for decades. Disturbances in brain development and cognition are among the neurotoxic manifestations of PCBs. The cellular and molecular basis...

  11. Functional Domains of the TOL Plasmid Transcription Factor XylS

    PubMed Central

    Kaldalu, Niilo; Toots, Urve; de Lorenzo, Victor; Ustav, Mart

    2000-01-01

    The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions. PMID:10648539

  12. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts.

    PubMed

    Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2017-05-05

    The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue. Copyright © 2017. Published by Elsevier B.V.

  14. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    PubMed Central

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T.; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W.; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches. PMID:19906716

  15. Sequestration of cAMP response element-binding proteins by transcription factor decoys causes collateral elaboration of regenerating Aplysia motor neuron axons.

    PubMed

    Dash, P K; Tian, L M; Moore, A N

    1998-07-07

    Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.

  16. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    PubMed

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  17. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    PubMed

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  18. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  19. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  20. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  1. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Gurung, Buddha; Wan, Bingbing

    2013-04-08

    Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions asmore » an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.« less

  2. Structural properties of the promiscuous VP16 activation domain.

    PubMed

    Jonker, Hendrik R A; Wechselberger, Rainer W; Boelens, Rolf; Folkers, Gert E; Kaptein, Rob

    2005-01-25

    Herpes simplex virion protein 16 (VP16) contains two strong activation regions that can independently and cooperatively activate transcription in vivo. We have identified the regions and residues involved in the interaction with the human transcriptional coactivator positive cofactor 4 (PC4) and the general transcription factor TFIIB. NMR and biochemical experiments revealed that both VP16 activation regions are required for the interaction and undergo a conformational transition from random coil to alpha-helix upon binding to its target PC4. The interaction is strongly electrostatically driven and the binding to PC4 is enhanced by the presence of its amino-terminal domain. We propose models for binding of VP16 to the core domains of PC4 and TFIIB that are based on two independent docking approaches using NMR chemical shift changes observed in titration experiments. The models are consistent with results from site-directed mutagenesis and provide an explanation for the contribution of both acidic and hydrophobic residues for transcriptional activation by VP16. Both intrinsically unstructured activation domains are attracted to their interaction partner by electrostatic interactions, and adopt an alpha-helical conformation around the important hydrophobic residues. The models showed multiple distinct binding surfaces upon interaction with various partners, providing an explanation for the promiscuous properties, cooperativity, and the high activity of this activation domain.

  3. The transcription factor LEF-1 induces an epithelial–mesenchymal transition in MDCK cells independent of β-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Wakako; Ozawa, Masayuki, E-mail: mozawa@m.kufm.kagoshima-u.ac.jp

    2013-12-06

    Highlights: •The transcription factor LEF-1 induces an EMT in MDCK cells. •A mutant LEF-1 that cannot interact with β-catenin retained the ability. •The nuclear function of β-catenin was not necessary for the LEF-1-induced EMT. •The mRNA levels of Slug, ZEB1, and ZEB2 increased significantly in these cells. -- Abstract: The epithelial–mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell–cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. LEF-1 is a member of the lymphoid enhancer-binding factor/T-cell factor (LEF/TCF) family of DNA-binding transcription factors, which interactmore » with nuclear β-catenin and act as central transcriptional mediators of Wnt signaling. To investigate the role of LEF-1 in EMT, we generated stable LEF-1 transfectants using MDCK cells. The transfectants had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. These EMT changes were accompanied by the downregulation of an epithelial marker protein, E-cadherin, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin. Consistent with these observations, the mRNA levels of Slug, ZEB1, and ZEB2—EMT-related transcription factors—increased significantly. Although the N-terminally deleted mutant LEF-1 cannot interact with β-catenin, it retained the ability to induce EMT. Consistent with these observations, neither the expression of a dominant negative β-catenin/engrailed chimera, nor the expression of a cytoplasmic domain of E-cadherin that sequesters β-catenin from binding to LEF/TCF, reversed LEF-1-induced EMT. Together, these data indicated that the nuclear function of β-catenin was not necessary for the induction of Slug, ZEB1, and ZEB2 expression leading to EMT.« less

  4. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators and protein kinases

    USDA-ARS?s Scientific Manuscript database

    Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...

  5. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  6. The FOXP2 forkhead domain binds to a variety of DNA sequences with different rates and affinities.

    PubMed

    Webb, Helen; Steeb, Olga; Blane, Ashleigh; Rotherham, Lia; Aron, Shaun; Machanick, Philip; Dirr, Heini; Fanucchi, Sylvia

    2017-07-01

    FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    DOE PAGES

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; ...

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less

  8. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins.

    PubMed

    Plaisier, Christopher L; Lo, Fang-Yin; Ashworth, Justin; Brooks, Aaron N; Beer, Karlyn D; Kaur, Amardeep; Pan, Min; Reiss, David J; Facciotti, Marc T; Baliga, Nitin S

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.

  9. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    ERIC Educational Resources Information Center

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  10. Intrathecal administration of AYX2 DNA decoy produces a long-term pain treatment in rat models of chronic pain by inhibiting the KLF6, KLF9, and KLF15 transcription factors

    PubMed Central

    Klukinov, Michael; Harris, Scott; Manning, Donald C; Xie, Simon; Pascual, Conrado; Taylor, Bradley K; Donahue, Renee R; Yeomans, David C

    2017-01-01

    Background Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain. PMID:28814144

  11. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  12. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Treesearch

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  13. A novel bifunctional histone protein in Streptomyces: a candidate for structural coupling between DNA conformation and transcription during development and stress?

    PubMed Central

    Aldridge, Matthew; Facey, Paul; Francis, Lewis; Bayliss, Sion; Del Sol, Ricardo; Dyson, Paul

    2013-01-01

    Antibiotic-producing Streptomyces are complex bacteria that remodel global transcription patterns and their nucleoids during development. Here, we describe a novel developmentally regulated nucleoid-associated protein, DdbA, of the genus that consists of an N-terminal DNA-binding histone H1-like domain and a C-terminal DksA-like domain that can potentially modulate RNA polymerase activity in conjunction with ppGpp. Owing to its N-terminal domain, the protein can efficiently bind and condense DNA in vitro. Loss of function of this DNA-binding protein results in changes in both DNA condensation during development and the ability to adjust DNA supercoiling in response to osmotic stress. Initial analysis of the DksA-like activity of DdbA indicates that overexpression of the protein suppresses a conditional deficiency in antibiotic production of relA mutants that are unable to synthesise ppGpp, just as DksA overexpression in Escherichia coli can suppress ppGpp0 phenotypes. The null mutant is also sensitive to oxidative stress owing to impaired upregulation of transcription of sigR, encoding an alternative sigma factor. Consequently, we propose this bifunctional histone-like protein as a candidate that could structurally couple changes in DNA conformation and transcription during the streptomycete life-cycle and in response to stress. PMID:23525459

  14. Natural genetic variation of freezing tolerance in Arabidopsis.

    PubMed

    Hannah, Matthew A; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G; Hincha, Dirk K

    2006-09-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.

  15. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons

    DOE PAGES

    Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; ...

    2016-09-21

    The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissivemore » chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach gives a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.« less

  16. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  17. Krüppel-like factors are effectors of nuclear receptor signaling

    PubMed Central

    Knoedler, Joseph R.; Denver, Robert J.

    2015-01-01

    Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391

  18. CHANGES IN THE DNA-BINDING OF SEVERAL TRANSCRIPTION FACTORS IN THE DEVELOPING RAT CEREBELLUM BY PCBS.

    EPA Science Inventory

    PCBs are a class of persistent halogenated aromatic hydrocarbon chemical pollutants and considered as one of the major environmental contaminants resulting from intensive industrial use and inadequate disposal. In utero exposure to PCBs has been known to cause delayed neuronal de...

  19. Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes

    PubMed Central

    Kim, Eunha; Tyagi, Richa; Lee, Joo-Young; Park, Jina; Kim, Young-ran; Beon, Jiyoon; Chen, Po Yu; Cha, Jiyoung Y.; Snyder, Solomon H.; Kim, Seyun

    2013-01-01

    Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic protein. It displays both inositol phosphate kinase and phosphatidylinositol kinase catalytic activities. Noncatalytically, IPMK stabilizes the mammalian target of rapamycin complex 1 and acts as a transcriptional coactivator for CREB-binding protein/E1A binding protein p300 and tumor suppressor protein p53. Serum response factor (SRF) is a major transcription factor for a wide range of immediate early genes. We report that IPMK, in a noncatalytic role, is a transcriptional coactivator for SRF mediating the transcription of immediate early genes. Stimulation by serum of many immediate early genes is greatly reduced by IPMK deletion. IPMK stimulates expression of these genes, an influence also displayed by catalytically inactive IPMK. IPMK acts by binding directly to SRF and thereby enhancing interactions of SRF with the serum response element of diverse genes. PMID:24248338

  20. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains

    PubMed Central

    Brackley, Chris A.; Johnson, James; Kelly, Steven; Cook, Peter R.; Marenduzzo, Davide

    2016-01-01

    Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, minimal model: bivalent or multivalent red and green ‘transcription factors’ bind to cognate sites in strings of beads (‘chromatin’) to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster—red with red, green with green, but rarely red with green—to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains and contact maps much like those seen experimentally. This emergent ‘bridging-induced attraction’ proves to be a robust, simple and generic force able to organize interphase chromosomes at all scales. PMID:27060145

  1. Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization.

    PubMed

    Sanguino, Elena; Roglans, Núria; Rodríguez-Calvo, Ricardo; Alegret, Marta; Sánchez, Rosa M; Vázquez-Carrera, Manuel; Laguna, Juan C

    2006-04-01

    As ageing changes the activity of several transcription factors in the rat cortex, we were interested in determining whether similar changes also appear in the hippocampus of old rats. We determined by electrophoretic gel shift assays the binding activity of nuclear factor kappa B (NFkappaB), activator protein-1 (AP-1), peroxisome proliferator-activated receptor (PPAR), and liver X receptor (LXR) in cortex and hippocampus samples from young (3-month-old), and old (18-month-old) male and female Sprague-Dawley rats. NFkappaB activity increased in old male and female rats, though only in cortex samples, while AP-1 activity decreased only in the cortex and hippocampus of old female animals. LXR activity decreased in all conditions, except in old male cortexes; whereas PPAR activity only decreased in the hippocampus of old female rats. Decreases in AP-1 and PPAR activities restricted to old female rats did not result from an age-related decline in plasma 17beta-estradiol concentration, as their activities did not change in samples obtained from ovariectomized young female rats. Our results indicate that ageing induces a complex pattern of changes in the brain-binding activity of NFkappaB, AP-1, PPAR and LXR, depending on the anatomical origin of the samples (cortex or hippocampus), and the sex of the animals studied.

  2. ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data.

    PubMed

    Wu, Song; Wang, Jianmin; Zhao, Wei; Pounds, Stanley; Cheng, Cheng

    2010-06-03

    ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application. Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method. In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.

  3. Interaction of the Transactivation Domain of B-Myb with the TAZ2 Domain of the Coactivator p300: Molecular Features and Properties of the Complex

    PubMed Central

    Oka, Ojore; Waters, Lorna C.; Strong, Sarah L.; Dosanjh, Nuvjeevan S.; Veverka, Vaclav; Muskett, Frederick W.; Renshaw, Philip S.; Klempnauer, Karl-Heinz; Carr, Mark D.

    2012-01-01

    The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD) and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (Kd ∼1.0–10 µM) complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (∼1200 Å2). The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1), which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2. PMID:23300815

  4. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  5. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE PAGES

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...

    2015-02-16

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  6. Drosophila transcription factor Tramtrack69 binds MEP1 to recruit the chromatin remodeler NuRD.

    PubMed

    Reddy, B Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A A; Travers, Andrew A; Verrijzer, C Peter

    2010-11-01

    ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment.

  7. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes.

    PubMed

    Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein

    2018-06-04

    Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.

  8. DEREGULATION OF DUX4 AND ERG IN ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Zhang, Jinghui; McCastlain, Kelly; Yoshihara, Hiroki; Xu, Beisi; Chang, Yunchao; Churchman, Michelle L.; Wu, Gang; Li, Yongjin; Wei, Lei; Iacobucci, Ilaria; Liu, Yu; Qu, Chunxu; Wen, Ji; Edmonson, Michael; Payne-Turner, Debbie; Kaufmann, Kerstin B.; Takayanagi, Shin-ichiro; Wienholds, Erno; Waanders, Esmé; Ntziachristos, Panagiotis; Bakogianni, Sofia; Wang, Jingjing; Aifantis, Iannis; Roberts, Kathryn G.; Ma, Jing; Song, Guangchun; Easton, John; Mulder, Heather L.; Chen, Xiang; Newman, Scott; Ma, Xiaotu; Rusch, Michael; Gupta, Pankaj; Boggs, Kristy; Vadodaria, Bhavin; Dalton, James; Liu, Yanling; Valentine, Marcus L; Ding, Li; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda; Tabib, Yashodhan; Ochoa, Kerri; Devidas, Meenakshi; Pei, Deqing; Cheng, Cheng; Yang, Jun; Evans, William E.; Relling, Mary V.; Pui, Ching-Hon; Jeha, Sima; Harvey, Richard C.; Chen, I-Ming L; Willman, Cheryl L.; Marcucci, Guido; Bloomfield, Clara D.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Paietta, Elisabeth; Tallman, Martin S.; Stock, Wendy; Foster, Matthew C.; Racevskis, Janis; Rowe, Jacob M.; Luger, Selina; Kornblau, Steven M.; Shurtleff, Sheila A; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Dick, John E.; Hunger, Stephen P; Loh, Mignon L.; Downing, James R.; Mullighan, Charles G.

    2016-01-01

    Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function. PMID:27776115

  9. Identical genomic footprints of the adenovirus EIIa promoter are detected before and after EIa induction.

    PubMed Central

    Devaux, B; Albrecht, G; Kedinger, C

    1987-01-01

    Genomic DNase I footprinting was used to compare specific protein binding to the adenovirus type 5 early, EIa-inducible, EIIa promoter. Identical protection patterns of the promoter region were observed whether EIIa transcription was undetectable or fully induced. These results suggest that EIa-mediated transcriptional induction does not increase binding of limiting transcription factors to the promoter but rather that transactivation results from the proper interactions between factors already bound to their cognate sequences. Images PMID:2963956

  10. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding

    PubMed Central

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael

    2016-01-01

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin–MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro. The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin–RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. PMID:26976641

  11. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors. Published by Elsevier Inc.

  12. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    PubMed

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  13. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    PubMed Central

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis that SmZF1 acts as a transcription factor in S. mansoni. PMID:19901992

  14. The Reconstruction of Condition-Specific Transcriptional Modules Provides New Insights in the Evolution of Yeast AP-1 Proteins

    PubMed Central

    Goudot, Christel; Etchebest, Catherine

    2011-01-01

    AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5′ position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another. PMID:21695268

  15. DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways

    PubMed Central

    Mellström, Britt; Sahún, Ignasi; Ruiz-Nuño, Ana; Murtra, Patricia; Gomez-Villafuertes, Rosa; Savignac, Magali; Oliveros, Juan C.; Gonzalez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera-Matas, Alejandro; Errington, Michael L.; Maldonado, Rafael; DeFelipe, Javier; Jefferys, John G. R.; Bliss, Tim V. P.; Dierssen, Mara

    2014-01-01

    Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K+ channel interacting protein 3), is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Using genome-wide analysis, we show that DREAM regulates the expression of specific activity-dependent transcription factors in the hippocampus, including Npas4, Nr4a1, Mef2c, JunB, and c-Fos. Furthermore, DREAM regulates its own expression, establishing an autoinhibitory feedback loop to terminate activity-dependent transcription. Ablation of DREAM does not modify activity-dependent transcription because of gene compensation by the other KChIP family members. The expression of daDREAM in the forebrain resulted in a complex phenotype characterized by loss of recurrent inhibition and enhanced long-term potentiation (LTP) in the dentate gyrus and impaired learning and memory. Our results indicate that DREAM is a major master switch transcription factor that regulates the on/off status of specific activity-dependent gene expression programs that control synaptic plasticity, learning, and memory. PMID:24366545

  16. Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP.

    PubMed

    Gupta, Vinayak; Khan, Abrar A; Sasi, Binu K; Mahapatra, Nitish R

    2015-07-01

    Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein. © 2015 International Society for Neurochemistry.

  17. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    PubMed

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Zinc Finger Independent Genome-Wide Binding of Sp2 Potentiates Recruitment of Histone-Fold Protein Nf-y Distinguishing It from Sp1 and Sp3

    PubMed Central

    Finkernagel, Florian; Stiewe, Thorsten; Nist, Andrea; Suske, Guntram

    2015-01-01

    Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. PMID:25793500

  19. TATA Binding Protein Discriminates between Different Lesions on DNA, Resulting in a Transcription Decrease

    PubMed Central

    Coin, Frédéric; Frit, Philippe; Viollet, Benoit; Salles, Bernard; Egly, Jean-Marc

    1998-01-01

    DNA damage recognition by basal transcription factors follows different mechanisms. Using transcription-competition, nitrocellulose filter binding, and DNase I footprinting assays, we show that, although the general transcription factor TFIIH is able to target any kind of lesion which can be repaired by the nucleotide excision repair pathway, TATA binding protein (TBP)-TFIID is more selective in damage recognition. Only genotoxic agents which are able to induce kinked DNA structures similar to the one for the TATA box in its TBP complex are recognized. Indeed, DNase I footprinting patterns reveal that TBP protects equally 4 nucleotides upstream and 6 nucleotides downstream from the A-T (at position −29 of the noncoding strand) of the adenovirus major late promoter and from the G-G of a cisplatin-induced 1,2-d(GpG) cross-link. Together, our results may partially explain differences in transcription inhibition rates following DNA damage. PMID:9632775

  20. A C-Repeat Binding Factor Transcriptional Activator (CBF/DREB1) from European Bilberry (Vaccinium myrtillus) Induces Freezing Tolerance When Expressed in Arabidopsis thaliana

    PubMed Central

    Oakenfull, Rachael J.; Baxter, Robert; Knight, Marc R.

    2013-01-01

    Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function. PMID:23349799

  1. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    PubMed

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  2. Transcription factors as readers and effectors of DNA methylation.

    PubMed

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  3. Transcription factors as readers and effectors of DNA methylation

    PubMed Central

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2017-01-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease. PMID:27479905

  4. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    PubMed

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in Arabidopsis[W

    PubMed Central

    Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal

    2010-01-01

    The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772

  6. Selective inhibition of yeast regulons by daunorubicin: A transcriptome-wide analysis

    PubMed Central

    Rojas, Marta; Casado, Marta; Portugal, José; Piña, Benjamin

    2008-01-01

    Background The antitumor drug daunorubicin exerts some of its cytotoxic effects by binding to DNA and inhibiting the transcription of different genes. We analysed this effect in vivo at the transcriptome level using the budding yeast Saccharomyces cerevisiae as a model and sublethal (IC40) concentrations of the drug to minimise general toxic effects. Results Daunorubicin affected a minor proportion (14%) of the yeast transcriptome, increasing the expression of 195 genes and reducing expression of 280 genes. Daunorubicin down-regulated genes included essentially all genes involved in the glycolytic pathway, the tricarboxylic acid cycle and alcohol metabolism, whereas transcription of ribosomal protein genes was not affected or even slightly increased. This pattern is consistent with a specific inhibition of glucose usage in treated cells, with only minor effects on proliferation or other basic cell functions. Analysis of promoters of down-regulated genes showed that they belong to a limited number of transcriptional regulatory units (regulons). Consistently, data mining showed that daunorubicin-induced changes in expression patterns were similar to those observed in yeast strains deleted for some transcription factors functionally related to the glycolysis and/or the cAMP regulatory pathway, which appeared to be particularly sensitive to daunorubicin. Conclusion The effects of daunorubicin treatment on the yeast transcriptome are consistent with a model in which this drug impairs binding of different transcription factors by competing for their DNA binding sequences, therefore limiting their effectiveness and affecting the corresponding regulatory networks. This proposed mechanism might have broad therapeutic implications against cancer cells growing under hypoxic conditions. PMID:18667070

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahabieh, Matthew S., E-mail: dahabieh@interchange.ubc.ca; Ooms, Marcel, E-mail: marcel.ooms@mssm.edu; Malcolm, Tom, E-mail: tmalc1@yahoo.com

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutationsmore » in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.« less

  8. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    PubMed

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  9. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

    PubMed Central

    Bollinger, Lance M.; Witczak, Carol A.; Houmard, Joseph A.

    2014-01-01

    Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1. PMID:24920680

  10. Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*

    PubMed Central

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-01-01

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741

  11. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    PubMed

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  12. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance.

    PubMed

    Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita

    2017-04-01

    Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain.

    PubMed

    Viola, Ivana L; Uberti Manassero, Nora G; Ripoll, Rodrigo; Gonzalez, Daniel H

    2011-04-01

    The TCP domain is a DNA-binding domain present in plant transcription factors that modulate different processes. In the present study, we show that Arabidopsis class I TCP proteins are able to interact with a dyad-symmetric sequence composed of two GTGGG half-sites. TCP20 establishes symmetric interactions with the 5' half of each strand, whereas TCP11 interacts mainly with the 3' half. SELEX (systematic evolution of ligands by exponential enrichment) experiments with TCP15 and TCP20 indicated that these proteins have similar, although not identical, DNA-binding preferences and are able to interact with non-palindromic binding sites of the type GTGGGNCCNN. TCP11 shows a different DNA-binding specificity, with a preference for the sequence GTGGGCCNNN. The distinct DNA-binding properties of TCP11 are due to the presence of a threonine residue at position 15 of the TCP domain, a position that is occupied by an arginine residue in most TCP proteins. TCP11 also forms heterodimers with TCP15 that have increased DNA-binding efficiency. The expression in plants of a repressor form of TCP11 demonstrated that this protein is a developmental regulator that influences the growth of leaves, stems and petioles, and pollen development. The results suggest that changes in DNA-binding preferences may be one of the mechanisms through which class I TCP proteins achieve functional specificity.

  15. Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1

    PubMed Central

    Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting

    2015-01-01

    Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396

  16. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.

    PubMed

    Plass, Mireya; Rasmussen, Simon H; Krogh, Anders

    2017-04-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of regulation of post-transcriptional regulatory networks.

  17. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    PubMed Central

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of regulation of post-transcriptional regulatory networks. PMID:28410363

  18. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    ERIC Educational Resources Information Center

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  19. Inhibition of DNA binding of Sox2 by the SUMO conjugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuruzoe, Shu; Ishihara, Ko; Uchimura, Yasuhiro

    2006-12-29

    Sox2 is a member of the high mobility group (HMG) domain DNA-binding proteins for transcriptional control and chromatin architecture. The HMG domain of Sox2 binds the DNA to facilitate transactivation by the cooperative transcription factors such as Oct3/4. We report that mouse Sox2 is modified by SUMO at lysine 247. Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2. By contrast with the unmodified form, Sox2 fused to SUMO-1 did not augment transcription via the Fgf4 enhancer in the presence of Oct3/4. Further, SUMO-1-conjugated Sox2 at the lysine 247more » or at the carboxyl terminus reduced the binding to the Fgf4 enhancer. These indicate that Sox2 sumoylation negatively regulates its transcriptional role through impairing the DNA binding.« less

  20. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.

    PubMed

    Carlberg, Carsten; Molnár, Ferdinand

    2015-05-01

    Vitamin D3 is one of the few natural compounds that has, via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the transcription factor vitamin D receptor (VDR), a direct effect on gene regulation. For efficiently applying the therapeutic and disease-preventing potential of 1,25(OH)2D3 and its synthetic analogs, the key steps in vitamin D signaling need to be understood. These are the different types of molecular interactions with the VDR, such as (i) the complex formation of VDR with genomic DNA, (ii) the interaction of VDR with its partner transcription factors, (iii) the binding of 1,25(OH)2D3 or its synthetic analogs within the ligand-binding pocket of the VDR, and (iv) the resulting conformational change on the surface of the VDR leading to a change of the protein-protein interaction profile of the receptor with other proteins. This review will present the latest genome-wide insight into vitamin D signaling, and will discuss its therapeutic implications.

  1. RNA binding specificity of Ebola virus transcription factor VP30.

    PubMed

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  2. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    PubMed

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at http://www.jstacs.de/index.php/Dispom.

  3. Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior

    ERIC Educational Resources Information Center

    Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.

    2015-01-01

    The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…

  4. A Transcription Factor-Binding Domain of the Coactivator CBP Is Essential for Long-Term Memory and the Expression of Specific Target Genes

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Brindle, Paul K.; Abel, Ted; Wood, Marcelo A.; Attner, Michelle A.

    2006-01-01

    Transcriptional activation is a key process required for long-term memory formation. Recently, the transcriptional coactivator CREB-binding protein (CBP) was shown to be critical for hippocampus-dependent long-term memory and hippocampal synaptic plasticity. As a coactivator with intrinsic histone acetyltransferase activity, CBP interacts with…

  5. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE PAGES

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...

    2017-10-30

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  6. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  7. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  8. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  9. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  10. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  11. Inference of Expanded Lrp-Like Feast/Famine Transcription Factor Targets in a Non-Model Organism Using Protein Structure-Based Prediction

    PubMed Central

    Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  12. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  13. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

    PubMed Central

    Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  14. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    PubMed

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  15. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    PubMed Central

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  16. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    PubMed

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  17. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  18. Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family

    PubMed Central

    Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M

    2018-01-01

    Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642

  19. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  20. Transcription control and neuronal differentiation by agents that activate the LXR nuclear receptor family.

    PubMed

    Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E

    1999-09-10

    LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.

  1. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  2. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  3. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  4. Phosphorylation of ETS Transcription Factor ER81 in a Complex with Its Coactivators CREB-Binding Protein and p300

    PubMed Central

    Papoutsopoulou, Stamatia; Janknecht, Ralf

    2000-01-01

    The ETS protein ER81 is a DNA-binding factor capable of enhancing gene transcription and is implicated in cellular transformation, but presently the mechanisms of its actions are unclear. In this report, ER81 is shown to coimmunoprecipitate with the transcriptional coactivator CREB-binding protein (CBP) and the related p300 protein (together referred to as CBP/p300). Moreover, confocal laser microscopic studies demonstrated that ER81 and p300 colocalized to nuclear speckles. In vitro and in vivo interaction studies revealed that ER81 amino acids 249 to 429, which encompass the ETS DNA-binding domain, are responsible for binding to CBP/p300. However, mutation of a putative protein-protein interaction motif, LXXLL, in the ETS domain of ER81 did not affect interaction with CBP/p300, whereas DNA binding of ER81 was abolished. Furthermore, two regions within CBP, amino acids 451 to 721 and 1891 to 2175, are capable of binding to ER81. Consistent with the physical interaction between ER81 and the coactivators CBP and p300, ER81 transcriptional activity was potentiated by CBP/p300 overexpression. Moreover, an ER81-associated protein kinase activity was enhanced upon p300 overexpression. This protein kinase phosphorylates ER81 on serines 191 and 216, and mutation of these phosphorylation sites increased ER81 transcriptional activity in Mv1Lu cells but not in HeLa cells. Altogether, our data elucidate the mechanism of how ER81 regulates gene transcription, through interaction with the coactivators CBP and p300 and an associated kinase that may cell type specifically modulate the ability of ER81 to activate gene transcription. PMID:10982847

  5. Phosphorylation of Krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity.

    PubMed

    Dewi, Vitri; Kwok, Alister; Lee, Stella; Lee, Ming Min; Tan, Yee Mun; Nicholas, Hannah R; Isono, Kyo-ichi; Wienert, Beeke; Mak, Ka Sin; Knights, Alexander J; Quinlan, Kate G R; Cordwell, Stuart J; Funnell, Alister P W; Pearson, Richard C M; Crossley, Merlin

    2015-03-27

    Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail.

    PubMed

    Gupta, Kartik; Pilli, Vijaya Satish Sekhar; Aradhyam, Gopala Krishna

    2016-10-28

    Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.

  7. Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.

    PubMed

    Kusmierek, Maria; Dersch, Petra

    2018-02-01

    A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  9. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    PubMed

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.

  10. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.

    PubMed

    Turchi, L; Baima, S; Morelli, G; Ruberti, I

    2015-08-01

    The homeodomain-leucine zipper (HD-Zip) class of transcription factors is unique to plants. HD-Zip proteins bind to DNA exclusively as dimers recognizing dyad symmetric sequences and act as positive or negative regulators of gene expression. On the basis of sequence homology in the HD-Zip DNA-binding domain, HD-Zip proteins have been grouped into four families (HD-Zip I-IV). Each HD-Zip family can be further divided into subfamilies containing paralogous genes that have arisen through genome duplication. Remarkably, all the members of the HD-Zip IIγ and -δ clades are regulated by light quality changes that induce in the majority of the angiosperms the shade-avoidance response, a process regulated at multiple levels by auxin. Intriguingly, it has recently emerged that, apart from their function in shade avoidance, the HD-Zip IIγ and -δ transcription factors control several auxin-regulated developmental processes, including apical embryo patterning, lateral organ polarity, and gynoecium development, in a white-light environment. This review presents recent advances in our understanding of HD-Zip II protein function in plant development, with particular emphasis on the impact of loss-of-function HD-Zip II mutations on auxin distribution and response. The review also describes evidence demonstrating that HD-Zip IIγ and -δ genes are directly and positively regulated by HD-Zip III transcription factors, primary determinants of apical shoot development, known to control the expression of several auxin biosynthesis, transport, and response genes. Finally, the interplay between HD-Zip II and III transcription factors in embryo apical patterning and organ polarity is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD ▿ †

    PubMed Central

    Reddy, B. Ashok; Bajpe, Prashanth Kumar; Bassett, Andrew; Moshkin, Yuri M.; Kozhevnikova, Elena; Bezstarosti, Karel; Demmers, Jeroen A. A.; Travers, Andrew A.; Verrijzer, C. Peter

    2010-01-01

    ATP-dependent chromatin-remodeling complexes (remodelers) are essential regulators of chromatin structure and gene transcription. How remodelers can act in a gene-selective manner has remained enigmatic. A yeast two-hybrid screen for proteins binding the Drosophila transcription factor Tramtrack69 (TTK69) identified MEP1. Proteomic characterization revealed that MEP1 is a tightly associated subunit of the NuRD remodeler, harboring the Mi2 enzymatic core ATPase. In addition, we identified the fly homolog of human Deleted in oral cancer 1 (DOC1), also known as CDK2-associated protein 1 (CDK2AP1), as a bona fide NuRD subunit. Biochemical and genetic assays supported the functional association between MEP1, Mi2, and TTK69. Genomewide expression analysis established that TTK69, MEP1, and Mi2 cooperate closely to control transcription. The TTK69 transcriptome profile correlates poorly with remodelers other than NuRD, emphasizing the selectivity of remodeler action. On the genes examined, TTK69 is able to bind chromatin in the absence of NuRD, but targeting of NuRD is dependent on TTK69. Thus, there appears to be a hierarchical relationship in which transcription factor binding precedes remodeler recruitment. PMID:20733004

  12. The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human alpha 1(XI) collagen gene (COL11A1).

    PubMed

    Matsuo, Noritaka; Yu-Hua, Wang; Sumiyoshi, Hideaki; Sakata-Takatani, Keiko; Nagato, Hitoshi; Sakai, Kumiko; Sakurai, Mami; Yoshioka, Hidekatsu

    2003-08-29

    We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.

  13. Purification and characterization of human mitochondrial transcription factor 1.

    PubMed Central

    Fisher, R P; Clayton, D A

    1988-01-01

    We purified to near homogeneity a transcription factor from human KB cell mitochondria. This factor, designated mitochondrial transcription factor 1 (mtTF1), is required for the in vitro recognition of both major promoters of human mitochondrial DNA by the homologous mitochondrial RNA polymerase. Furthermore, it has been shown to bind upstream regulatory elements of the two major promoters. After separation from RNA polymerase by phosphocellulose chromatography, mtTF1 was chromatographed on a MonoQ anion-exchange fast-performance liquid chromatography column. Analysis of mtTF1-containing fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single major polypeptide with an Mr of approximately 25,000. Centrifugation in analytical glycerol gradients indicated a sedimentation coefficient of approximately 2.5 S, consistent with a monomeric 25-kilodalton protein. Finally, when the 25-kilodalton polypeptide was excised from a stained sodium dodecyl sulfate-polyacrylamide gel and allowed to renature, it regained DNA-binding and transcriptional stimulatory activities at both promoters. Although mtTF1 is the only mitochondrial DNA-binding transcription factor to be purified and characterized, its properties, such as a high affinity for random DNA and a weak specificity for one of its target sequences, may typify this class of regulatory proteins. Images PMID:3211148

  14. A mechanistic link between gene regulation and genome architecture in mammalian development.

    PubMed

    Bonora, Giancarlo; Plath, Kathrin; Denholtz, Matthew

    2014-08-01

    The organization of chromatin within the nucleus and the regulation of transcription are tightly linked. Recently, mechanisms underlying this relationship have been uncovered. By defining the organizational hierarchy of the genome, determining changes in chromatin organization associated with changes in cell identity, and describing chromatin organization within the context of linear genomic features (such as chromatin modifications and transcription factor binding) and architectural proteins (including Cohesin, CTCF, and Mediator), a new paradigm in genome biology was established wherein genomes are organized around gene regulatory factors that govern cell identity. As such, chromatin organization plays a central role in establishing and maintaining cell state during development, with gene regulation and genome organization being mutually dependent effectors of cell identity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme

    PubMed Central

    Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-01-01

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  16. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex

    PubMed Central

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.

    2014-01-01

    SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805

  17. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.

    PubMed

    Maity, Tuhin S; Jha, Ramesh K; Strauss, Charlie E M; Dunbar, John

    2012-07-01

    Understanding how binding of a transcription factor to an operator is influenced by the operator sequence is an ongoing quest. It facilitates discovery of alternative binding sites as well as tuning of transcriptional regulation. We investigated the behavior of the Escherichia coli Lac repressor (LacI) protein with a large set of lac O(1) operator variants. The 114 variants examined contained a mean of 2.9 (range 0-4) mutations at positions -4, -2, +2 and +4 in the minimally required 17 bp operator. The relative affinity of LacI for the operators was examined by quantifying expression of a GFP reporter gene and Rosetta structural modeling. The combinations of mutations in the operator sequence created a wide range of regulatory behaviors. We observed variations in the GFP fluorescent signal among the operator variants of more than an order of magnitude under both uninduced and induced conditions. We found that a single nucleotide change may result in changes of up to six- and 12-fold in uninduced and induced GFP signals, respectively. Among the four positions mutated, we found that nucleotide G at position -4 is strongly correlated with strong repression. By Rosetta modeling, we found a significant correlation between the calculated binding energy and the experimentally observed transcriptional repression strength for many operators. However, exceptions were also observed, underscoring the necessity for further improvement in biophysical models of protein-DNA interactions. © 2012 The Authors Journal compilation © 2012 FEBS.

  18. Multivalency regulates activity in an intrinsically disordered transcription factor

    PubMed Central

    Clark, Sarah; Myers, Janette B; King, Ashleigh; Fiala, Radovan; Novacek, Jiri; Pearce, Grant; Heierhorst, Jörg; Reichow, Steve L

    2018-01-01

    The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation. PMID:29714690

  19. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  20. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors.

    PubMed

    Martin-Malpartida, Pau; Batet, Marta; Kaczmarska, Zuzanna; Freier, Regina; Gomes, Tiago; Aragón, Eric; Zou, Yilong; Wang, Qiong; Xi, Qiaoran; Ruiz, Lidia; Vea, Angela; Márquez, José A; Massagué, Joan; Macias, Maria J

    2017-12-12

    Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways.

  1. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

    PubMed

    Rogers, Julia M; Bulyk, Martha L

    2018-04-25

    Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.

  2. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  3. The Initiation Factor TFE and the Elongation Factor Spt4/5 Compete for the RNAP Clamp during Transcription Initiation and Elongation

    PubMed Central

    Grohmann, Dina; Nagy, Julia; Chakraborty, Anirban; Klose, Daniel; Fielden, Daniel; Ebright, Richard H.; Michaelis, Jens; Werner, Finn

    2011-01-01

    Summary TFIIE and the archaeal homolog TFE enhance DNA strand separation of eukaryotic RNAPII and the archaeal RNAP during transcription initiation by an unknown mechanism. We have developed a fluorescently labeled recombinant M. jannaschii RNAP system to probe the archaeal transcription initiation complex, consisting of promoter DNA, TBP, TFB, TFE, and RNAP. We have localized the position of the TFE winged helix (WH) and Zinc ribbon (ZR) domains on the RNAP using single-molecule FRET. The interaction sites of the TFE WH domain and the transcription elongation factor Spt4/5 overlap, and both factors compete for RNAP binding. Binding of Spt4/5 to RNAP represses promoter-directed transcription in the absence of TFE, which alleviates this effect by displacing Spt4/5 from RNAP. During elongation, Spt4/5 can displace TFE from the RNAP elongation complex and stimulate processivity. Our results identify the RNAP “clamp” region as a regulatory hot spot for both transcription initiation and transcription elongation. PMID:21777815

  4. Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans

    PubMed Central

    McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan

    2010-01-01

    The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549

  5. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise.

    PubMed

    Dohm, G Lynis

    2002-08-01

    The amount of GLUT-4 protein is a primary factor in determining the maximal rate of glucose transport into skeletal muscle. Therefore, it is important that we understand how exercise regulates GLUT-4 expression so that therapeutic strategies can be designed to increase muscle glucose disposal as a treatment for diabetes. Muscle contraction increases the rates of GLUT-4 transcription and translation. Transcriptional control likely requires at least two DNA binding proteins, myocyte enhancer factor-2 and GLUT-4 enhancer factor, which bind to the promoter. Increased GLUT-4 expression may be mediated by the enzyme AMP-activated kinase, which is activated during exercise and has been demonstrated to increase GLUT-4 transcription. Further research needs to be done to investigate whether AMP-activated kinase activates myocyte enhancer factor-2 and GLUT-4 enhancer factor to increase transcription of the GLUT-4 gene.

  6. Molecular mechanisms of immunosuppression by cyclosporins.

    PubMed

    Zenke, G; Baumann, G; Wenger, R; Hiestand, P; Quesniaux, V; Andersen, E; Schreier, M H

    1993-06-23

    Despite the successful clinical application of the immunosuppressive drug cyclosporin A (CsA, Sandimmun), its precise mechanism of action in the process of T cell activation remains elusive. CsA binds to the high-affinity cytosolic receptor cyclophilin whose peptidyl-prolyl cis-trans isomerase activity is inhibited upon binding. The linkage of this effect with the inhibition of the T cell receptor-mediated signal transduction pathway, which leads to a suppression of lymphokine gene transcription, is still unclear. We analyzed the relationship between cyclophilin-binding and immunosuppressive activity (e.g., effect on IL-2 transcription) of cyclosporin derivatives in vitro. The results show that binding to cyclophilin is required, but not sufficient for immunosuppression. Cyclosporin analogues which completely lack immunosuppressive activity but fully retained their cyclophilin-binding capacity antagonize the immunosuppressive activity of CsA. These derivatives inhibit the isomerase activity of cyclophilin, which clearly demonstrates that inhibition of the cyclophilin isomerase activity does not lead to immunosuppression. In analogy to the other immunosuppressants of microbial origin, FK-506 and rapamycin, a specific structure of the "effector" domain of CsA, which is unrelated to the cyclophilin-binding domain, determines the biological activity. In the nucleus, CsA interferes with the DNA-binding of inducible transcription factors to their respective DNA motifs within lymphokine promoters by affecting intracellular translocation of transcription factor subunits.

  7. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor

    PubMed Central

    Chakravarti, Ananya; Camp, Kyle; McNabb, David S.

    2017-01-01

    Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation. PMID:28122000

  8. Chronic hypoxia up-regulates expression of adenosine A1 receptors in DDT1-MF2 cells.

    PubMed

    Hammond, Lucy C; Bonnet, Claire; Kemp, Paul J; Yates, Michael S; Bowmer, Christopher J

    2004-02-01

    As the first step to understand how chronic hypoxia might regulate smooth muscle function in health and disease, we have employed an established immortalised cell model of smooth muscle, DDT1-MF2 cells, to address the hypothesis that adenosine A1 receptor density is modulated by O2 availability. Maximal specific binding (Bmax) of the selective adenosine A1 receptor antagonist, [3H]-DPCPX, to cell membranes increased 3.5-fold from 0.48 +/- 0.02 pmol/mg to 1.7 +/- 0.5 pmol/mg protein after 16 hr of hypoxia and this effect was not accompanied by any statistically significant changes in either binding affinity (0.84 +/- 0.2 nM vs. 1.2 +/- 0.3 nM) or Hill coefficient (1.1 +/- 0.1 vs. 0.99 +/- 0.03). Hypoxia-evoked increases in membrane receptor density were paralleled in intact DDT1-MF2 cells. In addition, the increase in [3H]-DPCPX binding to intact cells was inhibited by co-incubation during hypoxia with the translational inhibitor cycloheximide, the transcriptional blocker actinomycin D and the NFkappaB inhibitor sulphasalazine. Together, these data show that adenosine A1 receptor density is modulated, at least in part, by O2-dependent activation of the transcription factor NFkappaB and adds to the list of processes dynamically regulated by ambient oxygen availability. Since hypoxia is an initiating factor in acute renal failure, similar changes in transcription may account for up-regulation of adenosine A1 receptors noted previously in the renal vasculature of rats with acute renal failure.

  9. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding.

    PubMed

    Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine

    2010-06-18

    Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.

  10. The sheep growth hormone gene polymorphism and its effects on milk traits.

    PubMed

    Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Paschino, Pietro; Vacca, Giuseppe Massimo

    2015-05-01

    Growth hormone (GH) is encoded by the GH gene, which may be single copy or duplicate in sheep. The two copies of the sheep GH gene (GH1/GH2-N and GH2-Z) were entirely sequenced in one 106 ewes of Sarda breed, in order to highlight sequence polymorphisms and investigate possible association between genetic variants and milk traits. Milk traits included milk yield, fat, protein, casein and lactose percentage. We evidenced 75 nucleotide changes. Transcription factor binding site prediction revealed two sequences potentially recognised by the pituitary-specific transcription factor POU1FI at the GH1/GH2-N gene, which were lost at the promoter of GH2-Z, which might explain the different tissues of expression of GH1/GH2-N (pituitary) and GH2-Z (placenta). Significant differences in milk traits were observed among genotypes at polymorphic loci only for the GH2-Z gene. Sheep with homozygote genotype ss748770547 CC had higher fat percentage (P < 0.01) than TT. SNP ss748770547 was part of a potential transcription factor binding site for C/EBP alpha (CCAAT/Enhancer Binding Protein), which is involved in the regulation of adipogenesis and adipoblast differentiation. SNP ss748770547, located in the GH2-Z gene 5' flanking region, may be a causal mutation affecting milk fat content. These findings might contribute to the knowledge of the sheep GH locus and might be useful in selection processes in sheep.

  11. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  12. Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis

    PubMed Central

    Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.

    2013-01-01

    The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626

  13. A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors

    PubMed Central

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.

    2015-01-01

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182

  14. Role of Architecture in the Function and Specificity of Two Notch-Regulated Transcriptional Enhancer Modules

    PubMed Central

    Liu, Feng; Posakony, James W.

    2012-01-01

    In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell–cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type–specific factors called “local activators.” The use of different “Su(H) plus local activator” motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer “architecture”—the number, order, spacing, and orientation of its component transcription factor binding motifs—in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the “non-SOP” cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor–factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities. PMID:22792075

  15. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae

    PubMed Central

    Korde, Asawari; Rosselot, Jessica M.; Donze, David

    2014-01-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746

  16. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase

    PubMed Central

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A.; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J.; O’Dwyer, Kathleen; Matthews, Steve J.; Paget, Mark S.

    2013-01-01

    RbpA is a small non–DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA–σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria. PMID:23605043

  17. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity.

    PubMed

    Sayou, Camille; Monniaux, Marie; Nanao, Max H; Moyroud, Edwige; Brockington, Samuel F; Thévenon, Emmanuel; Chahtane, Hicham; Warthmann, Norman; Melkonian, Michael; Zhang, Yong; Wong, Gane Ka-Shu; Weigel, Detlef; Parcy, François; Dumas, Renaud

    2014-02-07

    Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.

  18. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

    PubMed

    Hale, T K; Braithwaite, A W

    1999-08-20

    Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

  19. Myocardin-Related Transcription Factor A Activation by Competition with WH2 Domain Proteins for Actin Binding.

    PubMed

    Weissbach, Julia; Schikora, Franziska; Weber, Anja; Kessels, Michael; Posern, Guido

    2016-05-15

    The myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF)-mediated gene expression. Activation of MRTF-A occurs in response to alterations in actin dynamics and critically requires the dissociation of repressive G-actin-MRTF-A complexes. However, the mechanism leading to the release of MRTF-A remains unclear. Here we show that WH2 domains compete directly with MRTF-A for actin binding. Actin nucleation-promoting factors, such as N-WASP and WAVE2, as well as isolated WH2 domains, including those of Spire2 and Cobl, activate MRTF-A independently of changes in actin dynamics. Simultaneous inhibition of Arp2-Arp3 or mutation of the CA region only partially reduces MRTF-A activation by N-WASP and WAVE2. Recombinant WH2 domains and the RPEL domain of MRTF-A bind mutually exclusively to cellular and purified G-actin in vitro The competition by different WH2 domains correlates with MRTF-SRF activation. Following serum stimulation, nonpolymerizable actin dissociates from MRTF-A, and de novo formation of the G-actin-RPEL complex is impaired by a transferable factor. Our work demonstrates that WH2 domains activate MRTF-A and contribute to target gene regulation by a competitive mechanism, independently of their role in actin filament formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.

    PubMed

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J; Naef, Félix; Shore, David

    2014-08-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output. © 2014 Knight et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

    PubMed Central

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J.; Naef, Félix

    2014-01-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and −1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these “fragile” nucleosomes play an important role in regulating RPG transcriptional output. PMID:25085421

  2. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    PubMed Central

    Rydenfelt, Mattias; Cox, Robert Sidney; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings. PMID:24580252

  3. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication.

    PubMed

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G

    2011-05-06

    B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in Igh promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated Igh promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3' enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3' enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Direct interactions of OCA-B and TFII-I regulate immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter communication

    PubMed Central

    Ren, Xiaodi; Siegel, Rachael; Kim, Unkyu; Roeder, Robert G.

    2011-01-01

    Summary B cell-specific coactivator OCA-B, together with Oct-1/2, binds to octamer sites in promoters and enhancers to activate transcription of immunoglobulin (Ig) genes, although the mechanisms underlying their roles in enhancer-promoter communication are unknown. Here, we demonstrate a direct interaction of OCA-B with transcription factor TFII-I, which binds to DICE elements in IgH promoters, that affects transcription at two levels. First, OCA-B relieves HDAC3-mediated IgH promoter repression by competing with HDAC3 for binding to promoter-bound TFII-I. Second, and most importantly, Igh 3′enhancer-bound OCA-B and promoter-bound TFII-I mediate promoter-enhancer interactions, in both cis and trans, that are important for Igh transcription. These and other results reveal an important function for OCA-B in Igh 3′enhancer function in vivo and strongly favor an enhancer mechanism involving looping and facilitated factor recruitment rather than a tracking mechanism. PMID:21549311

  5. Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    PubMed Central

    Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.

    2011-01-01

    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882

  6. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    PubMed

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  8. SOX7 Suppresses Wnt Signaling by Disrupting β-Catenin/BCL9 Interaction.

    PubMed

    Fan, Rong; He, HaiYan; Yao, Wang; Zhu, YanFeng; Zhou, XunJie; Gui, MingTai; Lu, Jing; Xi, Hao; Deng, ZhongLong; Fan, Min

    2018-02-01

    The Wnt signaling is involved in angiogenesis and tumor development. β-catenin is the core component of the Wnt pathway, which mediates oncogenic transcription and regulated by a series of proteins. Sex-determining region Y-box 7 (SOX7) is a member of high-mobility-group transcription factor family, which inhibits oncogenic Wnt signaling in lots of tumor cells with unknown mechanism. By coimmunoprecipitation (co-IP) and super Topflash reporter assay, SOX7 can bind β-catenin and inhibit β-catenin/T cell factor (TCF)-mediated transcription. Meanwhile, B cell lymphoma 9 (BCL9) drives Wnt signaling path through direct binding-mediated β-catenin. Finally, we found that SOX7 inhibits oncogenic β-catenin-mediated transcription by disrupting the β-catenin/BCL9 interaction. Mechanistically, SOX7 compete with BCL9 to bind β-catenin. Our results show SOX7 inhibited Wnt signaling as suppressor and could be an important target for anticancer therapy.

  9. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation

    PubMed Central

    Grimmer, Matthew R.; Stolzenburg, Sabine; Ford, Ethan; Lister, Ryan; Blancafort, Pilar; Farnham, Peggy J.

    2014-01-01

    Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications. PMID:25122745

  10. The PPAR{gamma} coding region and its role in visceral obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boon Yin, Khoo; Institute for Research in Molecular Medicine; Najimudin, Nazalan

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPAR{gamma} is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPAR{gamma} coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPAR{gamma} studying, although mice and rat are frequently being used. The PPAR{gamma} is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte sizemore » and/or number through a complex interplay process called adipogenesis. However, the role of PPAR{gamma} in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.« less

  11. Biobehavioral modulation of the exosome transcriptome in ovarian carcinoma.

    PubMed

    Lutgendorf, Susan K; Thaker, Premal H; Arevalo, Jesusa M; Goodheart, Michael J; Slavich, George M; Sood, Anil K; Cole, Steve W

    2018-02-01

    Social factors in the patient macroenvironment have been shown to influence molecular events in the tumor microenvironment and thereby influence cancer progression. However, biomarkers providing a window into the longitudinal effects of biobehavioral factors on tumor biology over time are lacking. Exosome analysis is a novel strategy for in vivo monitoring of dynamic changes in tumor cells. This study examined exosomal profiles from patients with low or high levels of social support for epithelial-mesenchymal transition (EMT) polarization and gene expression related to inflammation and β-adrenergic signaling. Exosomes were isolated from plasma sampled from a series of 40 women before primary surgical resection of advanced-stage, high-grade ovarian carcinoma. Samples were selected for analysis on the basis of extremes of low and high levels of social support. After exosomal isolation and RNA extraction, a microarray analysis of the transcriptome was performed. Primary analyses identified significant upregulation of 67 mesenchymal-characteristic gene transcripts and downregulation of 63 epithelial-characteristic transcripts in patients with low social support; this demonstrated increased EMT polarization (P = .0002). Secondary analyses using promoter sequence bioinformatics supported a priori hypotheses linking low social support to 1) increased activity of cyclic adenosine monophosphate response element binding protein (CREB)/activating transcription factor (ATF) family transcription factors that mediate the β-adrenergic response to catecholamines via the cyclic adenosine monophosphate/protein kinase A signaling pathway (mean fold change for CREB: 2.24 ± 0.65; P = .0019; mean fold change for ATF: 2.00 ± 0.55; P = .0049) and 2) increased activity of the proinflammatory nuclear factor κB/Rel family of transcription factors (mean fold change: 2.10 ± 0.70; P = .0109). These findings suggest the possibility of leveraging exosomes as a noninvasive assessment of biobehavioral factors to help to direct personalized treatment approaches. Cancer 2018;124:580-6. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. The Yeast Copper Response Is Regulated by DNA Damage

    PubMed Central

    Dong, Kangzhen; Addinall, Stephen G.; Lydall, David

    2013-01-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798

  13. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    PubMed Central

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  14. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.

    PubMed

    Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi

    2016-01-04

    Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.

    PubMed

    Baldwin, Amy; Pirisi, Lucia; Creek, Kim E

    2004-04-01

    Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI and Ski interact in these cells. Ski levels dramatically decreased upon TGF-beta treatment of HKc/HPV16, and overexpression of Ski eliminated the ability of TGF-beta to inhibit the URR. Based on these studies, we propose that TGF-beta inhibition of HPV16 early gene expression is mediated by a decrease in Ski levels, which in turn dramatically reduces NFI activity.

  16. Transcriptional regulation of hepatic lipogenesis.

    PubMed

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  17. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  18. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  19. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  20. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.

    PubMed

    Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M

    2017-04-17

    Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.

  1. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    PubMed Central

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  2. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    PubMed

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  3. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    PubMed

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  4. Forkhead Box Transcription Factors of the FOXA Class Are Required for Basal Transcription of Angiotensin-Converting Enzyme 2

    PubMed Central

    Pedersen, Kim Brint; Chodavarapu, Harshita

    2017-01-01

    Angiotensin-converting enzyme 2 (ACE2) has protective effects on a wide range of morbidities associated with elevated angiotensin-II signaling. Most tissues, including pancreatic islets, express ACE2 mainly from the proximal promoter region. We previously found that hepatocyte nuclear factors 1α and 1β stimulate ACE2 expression from three highly conserved hepatocyte nuclear factor 1 binding motifs in the proximal promoter region. We hypothesized that other highly conserved motifs would also affect ACE2 expression. By systematic mutation of conserved elements, we identified five regions affecting ACE2 expression, of which two regions bound transcriptional activators. One of these is a functional FOXA binding motif. We further identified the main protein binding the FOXA motif in 832/13 insulinoma cells as well as in mouse pancreatic islets as FOXA2. PMID:29082356

  5. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  6. Analysis of the regulation of viral transcription.

    PubMed

    Gloss, Bernd; Kalantari, Mina; Bernard, Hans-Ulrich

    2005-01-01

    Despite the small genomes and number of genes of papillomaviruses, regulation of their transcription is very complex and governed by numerous transcription factors, cis-responsive elements, and epigenetic phenomena. This chapter describes the strategies of how one can approach a systematic analysis of these factors, elements, and mechanisms. From the numerous different techniques useful for studying transcription, we describe in detail three selected protocols of approaches that have been relevant in shaping our knowledge of human papillomavirus transcription. These are DNAse I protection ("footprinting") for location of transcription-factor binding sites, electrophoretic mobility shifts ("gelshifts") for analysis of bound transcription factors, and bisulfite sequencing for analysis of DNA methylation as a prerequisite for epigenetic transcriptional regulation.

  7. Multiple transcription factor codes activate epidermal wound–response genes in Drosophila

    PubMed Central

    Pearson, Joseph C.; Juarez, Michelle T.; Kim, Myungjin; Drivenes, Øyvind; McGinnis, William

    2009-01-01

    Wounds in Drosophila and mouse embryos induce similar genetic pathways to repair epidermal barriers. However, the transcription factors that transduce wound signals to repair epidermal barriers are largely unknown. We characterize the transcriptional regulatory enhancers of 4 genes—Ddc, ple, msn, and kkv—that are rapidly activated in epidermal cells surrounding wounds in late Drosophila embryos and early larvae. These epidermal wound enhancers all contain evolutionarily conserved sequences matching binding sites for JUN/FOS and GRH transcription factors, but vary widely in trans- and cis-requirements for these inputs and their binding sites. We propose that the combination of GRH and FOS is part of an ancient wound–response pathway still used in vertebrates and invertebrates, but that other mechanisms have evolved that result in similar transcriptional output. A common, but largely untested assumption of bioinformatic analyses of gene regulatory networks is that transcription units activated in the same spatial and temporal patterns will require the same cis-regulatory codes. Our results indicate that this is an overly simplistic view. PMID:19168633

  8. The Mediator Complex and Lipid Metabolism.

    PubMed

    Zhang, Yi; Xiaoli; Zhao, Xiaoping; Yang, Fajun

    2013-03-01

    The precise control of gene expression is essential for all biological processes. In addition to DNA-binding transcription factors, numerous transcription cofactors contribute another layer of regulation of gene transcription in eukaryotic cells. One of such transcription cofactors is the highly conserved Mediator complex, which has multiple subunits and is involved in various biological processes through directly interacting with relevant transcription factors. Although the current understanding on the biological functions of Mediator remains incomplete, research in the past decade has revealed an important role of Mediator in regulating lipid metabolism. Such function of Mediator is dependent on specific transcription factors, including peroxisome proliferator-activated receptor-gamma (PPARγ) and sterol regulatory element-binding proteins (SREBPs), which represent the master regulators of lipid metabolism. The medical significance of these findings is apparent, as aberrant lipid metabolism is intimately linked to major human diseases, such as type 2 diabetes and cardiovascular disease. Here, we briefly review the functions and molecular mechanisms of Mediator in regulation of lipid metabolism.

  9. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    PubMed Central

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  10. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    PubMed

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia.

    PubMed

    Walker, Logan C; Stevens, Jane; Campbell, Hamish; Corbett, Rob; Spearing, Ruth; Heaton, David; Macdonald, Donald H; Morris, Christine M; Ganly, Peter

    2002-06-01

    The RUNX1 (AML1, CBFA2) gene is a member of the runt transcription factor family, responsible for DNA binding and heterodimerization of other non-DNA binding transcription factors. RUNX1 plays an important part in regulating haematopoiesis and it is frequently disrupted by illegitimate somatic recombination in both acute myeloid and lymphoblastic leukaemia. Germline mutations of RUNX1 have also recently been described and are dominantly associated with inherited leukaemic conditions. We have identified a unique point mutation of the RUNX1 gene (A107P) in members of a family with autosomal dominant inheritance of thrombocytopenia. One member has developed acute myeloid leukaemia (AML).

  12. DNA breathing dynamics distinguish binding from nonbinding consensus sites for transcription factor YY1 in cells.

    PubMed

    Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny

    2012-11-01

    The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.

  13. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  14. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin

    PubMed Central

    Sowd, Gregory A.; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J.; Poeschla, Eric M.; Engelman, Alan N.

    2016-01-01

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies. PMID:26858452

  15. Regulation of the Hippo Pathway Transcription Factor TEAD.

    PubMed

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-11-01

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse

    PubMed Central

    Diehl, Adam G

    2018-01-01

    Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190

  17. Stk1-mediated phosphorylation stimulates the DNA-binding properties of the Staphylococcus aureus SpoVG transcriptional factor.

    PubMed

    Bischoff, Markus; Brelle, Solène; Minatelli, Sabrina; Molle, Virginie

    2016-05-13

    The stage V sporulation protein G (SpoVG) homolog of Staphylococcus aureus is a modulator of virulence factor synthesis and antibiotic resistance in this clinically important gram-positive pathogen. Here we demonstrate that SpoVG can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation positively affects its DNA-binding properties. Mass spectrometric analyses and site directed mutagenesis identified Thr4, Thr13, Thr24 and Ser41 as phospho-acceptors. Stk1-mediated phosphorylation markedly enhanced the DNA binding activity of SpoVG towards the promoter regions of target genes such as capA, lip, and nuc1. Similarly, trans-complementation of the S. aureus ΔyabJ-spoVG mutant SM148 with a SpoVG derivative that mimics constitutive phosphorylation, SpoVG_Asp, exhibited capA, lip, and nuc1 transcript levels that were comparable to the levels seen with the wild-type, whereas trans-complementation with a phosphoablative variant of SpoVG (SpoVG_Ala) produced transcript levels similar to the ones seen in SM148. Our data suggest that the expression/activity of this transcription factor is tightly controlled in S. aureus by transcriptional, post-transcriptional and post-translational mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    PubMed

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. Copyright © 2013. Published by Elsevier Ireland Ltd.

  19. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit

    PubMed Central

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O’Connell, Mary A.

    2013-01-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (C. chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent C. annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16–20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. PMID:24388515

  20. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    NASA Technical Reports Server (NTRS)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  1. Pumilio and nanos RNA-binding proteins counterbalance the transcriptional consequences of RB1 inactivation

    PubMed Central

    Miles, Wayne O; Dyson, Nicholas J

    2014-01-01

    The ability of the retinoblastoma protein (RB) tumor suppressor to repress transcription stimulated by the E2 promoter binding factors (E2F) is integral to its biological functions. Our recent report described a conserved feedback mechanism mediated by the RNA-binding proteins Pumilio and Nanos that increases in importance following RB loss and helps cells to tolerate deregulated E2F. PMID:27308363

  2. Pumilio and nanos RNA-binding proteins counterbalance the transcriptional consequences of RB1 inactivation.

    PubMed

    Miles, Wayne O; Dyson, Nicholas J

    2014-01-01

    The ability of the retinoblastoma protein (RB) tumor suppressor to repress transcription stimulated by the E2 promoter binding factors (E2F) is integral to its biological functions. Our recent report described a conserved feedback mechanism mediated by the RNA-binding proteins Pumilio and Nanos that increases in importance following RB loss and helps cells to tolerate deregulated E2F.

  3. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  4. A combinatorial approach to synthetic transcription factor‐promoter combinations for yeast strain engineering

    PubMed Central

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt‐Middleton, Heather; Hillson, Nathan J.; Deutsch, Samuel; Keasling, Jay D.

    2017-01-01

    Abstract Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain. PMID:29084380

  5. Regulation of expression of the ada gene controlling the adaptive response. Interactions with the ada promoter of the Ada protein and RNA polymerase.

    PubMed

    Sakumi, K; Sekiguchi, M

    1989-01-20

    The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada promoter even when the cysteine residue at position 321 of the protein was methylated. When the Ada protein with alanine at position 321 was methylated, it acquired the potential to bind to the ada promoter. These results are compatible with the notion that methylation of the cysteine residue at position 69 causes a conformational change of the Ada protein, thereby facilitating binding of the protein to the upstream regulatory sequence.

  6. Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation.

    PubMed

    Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J

    2016-10-01

    During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  8. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter.

    PubMed Central

    Clos, J; Buttgereit, D; Grummt, I

    1986-01-01

    A transcription factor that is specific for mouse rDNA has been partially purified from Ehrlich ascites cells. This factor [designated transcription initiation factor (TIF)-IB] is required for accurate in vitro synthesis of mouse rRNA in addition to RNA polymerase I and another regulatory factor, TIF-IA. TIF-IB activity is present in extracts both from growing and nongrowing cells in comparable amounts. Prebinding competition experiments with wild-type and mutant templates suggest that TIF-IB interacts with the core control element of the rDNA promoter, which is located immediately upstream of the initiation site. The specific binding of TIF-IB to the RNA polymerase I promoter is demonstrated by exonuclease III protection experiments. The 3' border of the sequences protected by TIF-IB is shown to be on the coding strand at position -21 and on the noncoding strand at position -7. The results suggest that direct binding of TIF-IB to sequences in the core promoter element is the mechanism by which this factor imparts promoter selectivity to RNA polymerase I. Images PMID:3456157

  9. CMX-8933, a peptide fragment of the glycoprotein ependymin, promotes activation of AP-1 transcription factor in mouse neuroblastoma and rat cortical cell cultures.

    PubMed

    Shashoua, V E; Adams, D; Boyer-Boiteau, A

    2001-10-19

    An 8-amino acid peptide fragment (CMX-8933) of Ependymin, a glycoprotein component of the extracellular fluid and cerebrospinal fluid of goldfish brain, was synthesized and tested for its capacity to activate AP-1 transcription factor in cell cultures. Dose-response and time-course studies of AP-1's binding to DNA were carried out in neuroblastoma (NB2a/dl) and primary rat brain cortical cultures using an electrophoretic mobility shift assay (EMSA). A 13-14-fold increase in AP-1's DNA binding was obtained when NB2a cells were incubated for 4 h with 6-10 microg/ml CMX-8933. Primary rat brain cortical cultures were much more sensitive to the effects of CMX-8933 than transformed (NB2a) cultures; here a 26.7+/-5.2-fold increase in binding was observed following a 3-h treatment with as little as 10 ng/ml peptide. These findings are consistent with an activation of this transcription factor, a characteristic that has been previously correlated with functional aspects of full-sized neurotrophic factors (nerve growth factor and brain-derived nerve growth factor) in neuronal differentiation and regeneration. Such data suggest a role for Ependymin in transcriptional control.

  10. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  11. Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors).

    PubMed

    Yunusova, Natalia V; Kondakova, Irina V; Kolomiets, Larisa A; Afanas'ev, Sergey G; Chernyshova, Alena L; Kudryavtsev, Igor V; Tsydenova, Anastasia A

    2018-06-01

    Metabolic syndrome (MS) is one of the leading risk factors for the development of cardiovascular diseases, type II diabetes mellitus and reproductive system diseases. Currently, not only cardiovascular disease and reproductive history risks related with MS are frequently discussed, but it has been also shown that MS is associated with increased risk of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer, biliary tract cancers and liver cancer for men). Further studies are required to understand the mechanisms of the involvement of MS components in the pathogenesis of malignant neoplasms. Changes in the expression of transcription and growth factors in the peripheral tissues as well as in cancer tissues of patients with MS were revealed. Transcription factors (AMP-activated protein kinase-1, STAT3, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ), leptin and adiponectin receptors seem to be the most promising molecular targets for the therapy of cancers associated with MS. © 2017 John Wiley & Sons Australia, Ltd.

  12. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression

    PubMed Central

    Sun, Xiaoji; Wang, Xuya; Tang, Zuojian; Grivainis, Mark; Kahler, David; Yun, Chi; Mita, Paolo; Fenyö, David

    2018-01-01

    Transposable elements (TEs) represent a substantial fraction of many eukaryotic genomes, and transcriptional regulation of these factors is important to determine TE activities in human cells. However, due to the repetitive nature of TEs, identifying transcription factor (TF)-binding sites from ChIP-sequencing (ChIP-seq) datasets is challenging. Current algorithms are focused on subtle differences between TE copies and thus bias the analysis to relatively old and inactive TEs. Here we describe an approach termed “MapRRCon” (mapping repeat reads to a consensus) which allows us to identify proteins binding to TE DNA sequences by mapping ChIP-seq reads to the TE consensus sequence after whole-genome alignment. Although this method does not assign binding sites to individual insertions in the genome, it provides a landscape of interacting TFs by capturing factors that bind to TEs under various conditions. We applied this method to screen TFs’ interaction with L1 in human cells/tissues using ENCODE ChIP-seq datasets and identified 178 of the 512 TFs tested as bound to L1 in at least one biological condition with most of them (138) localized to the promoter. Among these L1-binding factors, we focused on Myc and CTCF, as they play important roles in cancer progression and 3D chromatin structure formation. Furthermore, we explored the transcriptomes of The Cancer Genome Atlas breast and ovarian tumor samples in which a consistent anti-/correlation between L1 and Myc/CTCF expression was observed, suggesting that these two factors may play roles in regulating L1 transcription during the development of such tumors. PMID:29802231

  13. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  14. TRANSFAC: an integrated system for gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Hehl, R; Karas, H; Liebich, I; Matys, V; Meinhardt, T; Prüss, M; Reuter, I; Schacherer, F

    2000-01-01

    TRANSFAC is a database on transcription factors, their genomic binding sites and DNA-binding profiles (http://transfac.gbf.de/TRANSFAC/). Its content has been enhanced, in particular by information about training sequences used for the construction of nucleotide matrices as well as by data on plant sites and factors. Moreover, TRANSFAC has been extended by two new modules: PathoDB provides data on pathologically relevant mutations in regulatory regions and transcription factor genes, whereas S/MARt DB compiles features of scaffold/matrix attached regions (S/MARs) and the proteins binding to them. Additionally, the databases TRANSPATH, about signal transduction, and CYTOMER, about organs and cell types, have been extended and are increasingly integrated with the TRANSFAC data sources.

  15. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  16. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    PubMed Central

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  17. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1.

    PubMed

    Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J

    2002-03-08

    An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.

  18. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.

    PubMed

    Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2016-11-15

    AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.

  19. Structural insights into alternative splicing-mediated desensitization of jasmonate signaling.

    PubMed

    Zhang, Feng; Ke, Jiyuan; Zhang, Li; Chen, Rongzhi; Sugimoto, Koichi; Howe, Gregg A; Xu, H Eric; Zhou, Mingguo; He, Sheng Yang; Melcher, Karsten

    2017-02-14

    Jasmonate ZIM-domain (JAZ) transcriptional repressors play a key role in regulating jasmonate (JA) signaling in plants. Below a threshold concentration of jasmonoyl isoleucine (JA-Ile), the active form of JA, the C-terminal Jas motif of JAZ proteins binds MYC transcription factors to repress JA signaling. With increasing JA-Ile concentration, the Jas motif binds to JA-Ile and the COI1 subunit of the SCF COI1 E3 ligase, which mediates ubiquitination and proteasomal degradation of JAZ repressors, resulting in derepression of MYC transcription factors. JA signaling subsequently becomes desensitized, in part by feedback induction of JAZ splice variants that lack the C-terminal Jas motif but include an N-terminal cryptic MYC-interaction domain (CMID). The CMID sequence is dissimilar to the Jas motif and is incapable of recruiting SCF COI1 , allowing CMID-containing JAZ splice variants to accumulate in the presence of JA and to re-repress MYC transcription factors as an integral part of reestablishing signal homeostasis. The mechanism by which the CMID represses MYC transcription factors remains elusive. Here we describe the crystal structure of the MYC3-CMID JAZ10 complex. In contrast to the Jas motif, which forms a single continuous helix when bound to MYC3, the CMID adopts a loop-helix-loop-helix architecture with modular interactions with both the Jas-binding groove and the backside of the Jas-interaction domain of MYC3. This clamp-like interaction allows the CMID to bind MYC3 tightly and block access of MED25 (a subunit of the Mediator coactivator complex) to the MYC3 transcriptional activation domain, shedding light on the enigmatic mechanism by which JAZ splice variants desensitize JA signaling.

  20. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  1. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il; Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhancedmore » in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.« less

  2. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription.

    PubMed

    Muth, V; Nadaud, S; Grummt, I; Voit, R

    2001-03-15

    Mammalian rRNA genes are preceded by a terminator element that is recognized by the transcription termination factor TTF-I. In exploring the functional significance of the promoter-proximal terminator, we found that TTF-I associates with the p300/CBP-associated factor PCAF, suggesting that TTF-I may target histone acetyltransferase to the rDNA promoter. We demonstrate that PCAF acetylates TAF(I)68, the second largest subunit of the TATA box-binding protein (TBP)-containing factor TIF-IB/SL1, and acetylation enhances binding of TAF(I)68 to the rDNA promoter. Moreover, PCAF stimulates RNA polymerase I (Pol I) transcription in a reconstituted in vitro system. Consistent with acetylation of TIF-IB/SL1 being required for rDNA transcription, the NAD(+)-dependent histone deacetylase mSir2a deacetylates TAF(I)68 and represses Pol I transcription. The results demonstrate that acetylation of the basal Pol I transcription machinery has functional consequences and suggest that reversible acetylation of TIF-IB/SL1 may be an effective means to regulate rDNA transcription in response to external signals.

  3. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    PubMed Central

    Wenger, Aaron M.; Clarke, Shoa L.; Guturu, Harendra; Chen, Jenny; Schaar, Bruce T.; McLean, Cory Y.; Bejerano, Gill

    2013-01-01

    The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells. PMID:23382538

  4. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Courtney M.; Hu, Jianxin; Thomas, Reuben

    2017-03-28

    Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by themore » SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.« less

  5. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  6. Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.

    PubMed

    Silva, M V; Pasternack, L B; Kearns, D R

    1997-12-15

    Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.

  7. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis.

    PubMed

    Lichtinger, Monika; Ingram, Richard; Hannah, Rebecca; Müller, Dorothee; Clarke, Deborah; Assi, Salam A; Lie-A-Ling, Michael; Noailles, Laura; Vijayabaskar, M S; Wu, Mengchu; Tenen, Daniel G; Westhead, David R; Kouskoff, Valerie; Lacaud, Georges; Göttgens, Berthold; Bonifer, Constanze

    2012-11-14

    Cell fate decisions during haematopoiesis are governed by lineage-specific transcription factors, such as RUNX1, SCL/TAL1, FLI1 and C/EBP family members. To gain insight into how these transcription factors regulate the activation of haematopoietic genes during embryonic development, we measured the genome-wide dynamics of transcription factor assembly on their target genes during the RUNX1-dependent transition from haemogenic endothelium (HE) to haematopoietic progenitors. Using a Runx1-/- embryonic stem cell differentiation model expressing an inducible Runx1 gene, we show that in the absence of RUNX1, haematopoietic genes bind SCL/TAL1, FLI1 and C/EBPβ and that this early priming is required for correct temporal expression of the myeloid master regulator PU.1 and its downstream targets. After induction, RUNX1 binds to numerous de novo sites, initiating a local increase in histone acetylation and rapid global alterations in the binding patterns of SCL/TAL1 and FLI1. The acquisition of haematopoietic fate controlled by Runx1 therefore does not represent the establishment of a new regulatory layer on top of a pre-existing HE program but instead entails global reorganization of lineage-specific transcription factor assemblies.

  8. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis

    PubMed Central

    Lichtinger, Monika; Ingram, Richard; Hannah, Rebecca; Müller, Dorothee; Clarke, Deborah; Assi, Salam A; Lie-A-Ling, Michael; Noailles, Laura; Vijayabaskar, M S; Wu, Mengchu; Tenen, Daniel G; Westhead, David R; Kouskoff, Valerie; Lacaud, Georges; Göttgens, Berthold; Bonifer, Constanze

    2012-01-01

    Cell fate decisions during haematopoiesis are governed by lineage-specific transcription factors, such as RUNX1, SCL/TAL1, FLI1 and C/EBP family members. To gain insight into how these transcription factors regulate the activation of haematopoietic genes during embryonic development, we measured the genome-wide dynamics of transcription factor assembly on their target genes during the RUNX1-dependent transition from haemogenic endothelium (HE) to haematopoietic progenitors. Using a Runx1−/− embryonic stem cell differentiation model expressing an inducible Runx1 gene, we show that in the absence of RUNX1, haematopoietic genes bind SCL/TAL1, FLI1 and C/EBPβ and that this early priming is required for correct temporal expression of the myeloid master regulator PU.1 and its downstream targets. After induction, RUNX1 binds to numerous de novo sites, initiating a local increase in histone acetylation and rapid global alterations in the binding patterns of SCL/TAL1 and FLI1. The acquisition of haematopoietic fate controlled by Runx1 therefore does not represent the establishment of a new regulatory layer on top of a pre-existing HE program but instead entails global reorganization of lineage-specific transcription factor assemblies. PMID:23064151

  9. OsDREB2A, a Rice Transcription Factor, Significantly Affects Salt Tolerance in Transgenic Soybean

    PubMed Central

    Ma, Qi-bin; Yang, Cun-yi; Mu, Ying-hui; Suo, Hai-cui; Luo, Lai-hui; Nian, Hai

    2013-01-01

    The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress. PMID:24376625

  10. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  11. Diadenosine Tetraphosphate Hydrolase Is Part of the Transcriptional Regulation Network in Immunologically Activated Mast Cells▿

    PubMed Central

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-01-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap4A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap4A, suggesting that Ap4A is a second messenger in this context. For Ap4A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolize Ap4A, we provided here evidence that the “Nudix” type 2 gene product, Ap4A hydrolase, is responsible for Ap4A degradation following the immunological activation of mast cells. The knockdown of Ap4A hydrolase modulated Ap4A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap4A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the β-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap4A as a second messenger in the regulation of gene expression. PMID:18644867

  12. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells.

    PubMed

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-09-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.

  13. The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters

    PubMed Central

    Rietzschel, Nicole; Pierik, Antonio J.; Bill, Eckhard; Mühlenhoff, Ulrich

    2014-01-01

    Iron is an essential, yet at elevated concentrations toxic trace element. To date, the mechanisms of iron sensing by eukaryotic iron-responsive transcription factors are poorly understood. The Saccharomyces cerevisiae transcription factor Yap5, a member of the Yap family of bZIP stress response regulators, administrates the adaptive response to high-iron conditions. Despite the central role of the iron-sensing process for cell viability, the molecule perceived by Yap5 and the underlying regulatory mechanisms are unknown. Here, we show that Yap5 senses high-iron conditions by two Fe/S clusters bound to its activator domain (Yap5-AD). The more stable iron-regulatory Fe/S cluster at the N-terminal cysteine-rich domain (n-CRD) of Yap5 is detected in vivo and in vitro. The second cluster coordinated by the C-terminal CRD can only be shown after chemical reconstitution, since it is bound in a labile fashion. Both clusters are of the [2Fe-2S] type as characterized by UV/visible (UV/Vis), circular dichroism, electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. Fe/S cluster binding to Yap5-AD induces a conformational change that may activate transcription. The cluster-binding motif of the n-CRD domain is highly conserved in HapX-like transcription factors of pathogenic fungi and thus may represent a general sensor module common to many eukaryotic stress response regulators. PMID:25368382

  14. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  15. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    PubMed

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-06

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Differential utilization of TATA box-binding protein (TBP) and TBP-related factor 1 (TRF1) at different classes of RNA polymerase III promoters.

    PubMed

    Verma, Neha; Hung, Ko-Hsuan; Kang, Jin Joo; Barakat, Nermeen H; Stumph, William E

    2013-09-20

    In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.

  17. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched inmore » bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.« less

  18. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements.

    PubMed

    Cockerill, Peter N

    2016-12-01

    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers.

  19. Recurrent rewiring and emergence of RNA regulatory networks.

    PubMed

    Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin

    2017-04-04

    Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.

  20. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalentmore » interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.« less

  1. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors.

    PubMed

    van Verk, Marcel C; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    2008-04-01

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of transcription factors in which the WRKY sequence is followed by a GKK rather than a GQK sequence. The binding sequence of NtWRKY12 (WK box TTTTCCAC) deviated significantly from the consensus sequence (W box TTGAC[C/T]) shown to be recognized by WRKY factors with the GQK sequence. Mutation of the GKK sequence in NtWRKY12 into GQK or GEK abolished binding to the WK box. The WK(1) box is in close proximity to binding sites in the PR-1a promoter for transcription factors TGA1a (as-1 box) and Myb1 (MBSII box). Expression studies with PR-1a promoterbeta-glucuronidase (GUS) genes in stably and transiently transformed tobacco indicated that NtWRKY12 and TGA1a act synergistically in PR-1a expression induced by salicylic acid and bacterial elicitors. Cotransfection of Arabidopsis thaliana protoplasts with 35SNtWRKY12 and PR-1aGUS promoter fusions showed that overexpression of NtWRKY12 resulted in a strong increase in GUS expression, which required functional WK boxes in the PR-1a promoter.

  2. Induction of Cyclooxygenase-2 Expression by Hepatitis B Virus Depends on Demethylation-associated Recruitment of Transcription Factors to the Promoter

    PubMed Central

    2011-01-01

    Background The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. Results In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. Conclusion Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter. PMID:21401943

  3. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID

    PubMed Central

    Gupta, Kapil; Watson, Aleksandra A; Baptista, Tiago; Scheer, Elisabeth; Chambers, Anna L; Koehler, Christine; Zou, Juan; Obong-Ebong, Ima; Kandiah, Eaazhisai; Temblador, Arturo; Round, Adam; Forest, Eric; Man, Petr; Bieniossek, Christoph; Laue, Ernest D; Lemke, Edward A; Rappsilber, Juri; Robinson, Carol V; Devys, Didier

    2017-01-01

    General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function. PMID:29111974

  4. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    PubMed

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  5. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  6. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  7. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  8. Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression.

    PubMed

    Scassa, María E; Guberman, Alejandra S; Ceruti, Julieta M; Cánepa, Eduardo T

    2004-07-02

    Although the negative regulation of gene expression by insulin has been widely studied, the transcription factors responsible for the insulin effect are still unknown. The purpose of this work was to explore the molecular mechanisms involved in the insulin repression of the 5-aminolevulinate synthase (ALAS) gene. Deletion analysis of the 5'-regulatory region allowed us to identify an insulin-responsive region located at -459 to -354 bp. This fragment contains a highly homologous insulin-responsive (IRE) sequence. By transient transfection assays, we determined that hepatic nuclear factor 3 (HNF3) and nuclear factor 1 (NF1) are necessary for an appropriate expression of the ALAS gene. Insulin overrides the HNF3beta or HNF3beta plus NF1-mediated stimulation of ALAS transcriptional activity. Electrophoretic mobility shift assay and Southwestern blotting indicate that HNF3 binds to the ALAS promoter. Mutational analysis of this region revealed that IRE disruption abrogates insulin action, whereas mutation of the HNF3 element maintains hormone responsiveness. This dissociation between HNF3 binding and insulin action suggests that HNF3beta is not the sole physiologic mediator of insulin-induced transcriptional repression. Furthermore, Southwestern blotting assay shows that at least two polypeptides other than HNF3beta can bind to ALAS promoter and that this binding is dependent on the integrity of the IRE. We propose a model in which insulin exerts its negative effect through the disturbance of HNF3beta binding or transactivation potential, probably due to specific phosphorylation of this transcription factor by Akt. In this regard, results obtained from transfection experiments using kinase inhibitors support this hypothesis. Due to this event, NF1 would lose accessibility to the promoter. The posttranslational modification of HNF3 would allow the binding of a protein complex that recognizes the core IRE. These results provide a potential mechanism for the insulin-mediated repression of IRE-containing promoters.

  9. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  10. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  11. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation.

    PubMed

    Wawrzyńska, Anna; Lewandowska, Małgorzata; Sirko, Agnieszka

    2010-03-01

    Sulphur deficiency severely affects plant growth and their agricultural productivity leading to diverse changes in development and metabolisms. Molecular mechanisms regulating gene expression under low sulphur conditions remain largely unknown. AtSLIM1, a member of the EIN3-like (EIL) family was reported to be a central transcriptional regulator of the plant sulphur response, however, no direct interaction of this protein with any sulphur-responsive promoters was demonstrated. The focus of this study was on the analysis of a promoter region of UP9C, a tobacco gene strongly induced by sulphur limitation. Cloning and subsequent examination of this promoter resulted in the identification of a 20-nt sequence (UPE-box), also present in the promoters of several Arabidopsis genes, including three out of four homologues of UP9C. The UPE-box, consisting of two parallel tebs sequences (TEIL binding site), proved to be necessary to bind the transcription factors belonging to the EIL family and of a 5-nt conserved sequence at the 3'-end. The yeast one-hybrid analysis resulted in the identification of one transcription factor (NtEIL2) capable of binding to the UPE-box. The interactions of NtEIL2, and its homologue from Arabidopsis, AtSLIM1, with DNA were affected by mutations within the UPE-box. Transient expression assays in Nicotiana benthamiana have further shown that both factors, NtEIL2 and AtSLIM1, activate the UP9C promoter. Interestingly, activation by NtEIL2, but not by AtSLIM1, was dependent on the sulphur-deficiency of the plants.

  12. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    PubMed

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Application of Circular Dichroism Spectroscopy to the Analysis of the Interaction Between the Estrogen Receptor Alpha and Coactivators: The Case of Calmodulin.

    PubMed

    Miclet, Emeric; Bourgoin-Voillard, Sandrine; Byrne, Cillian; Jacquot, Yves

    2016-01-01

    The estrogen receptor α ligand-binding domain (ERα-LBD) binds the natural hormone 17β-estradiol (E2) to induce transcription and cell proliferation. This process occurs with the contribution of protein and peptide partners (also called coactivators) that can modulate the structure of ERα, and therefore its specificity of action. As with most transcription factors, ERα exhibits a high content of α helix, making it difficult to routinely run spectroscopic studies capable of deciphering the secondary structure of the different partners under binding conditions. Ca(2+)-calmodulin, a protein also highly structured in α-helix, is a key coactivator for ERα activity. Here, we show how circular dichroism can be used to study the interaction of ERα with Ca(2+)-calmodulin. Our approach allows the determination not only of the conformational changes induced upon complex formation but also the dissociation constant (K d) of this interaction.

  14. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2010-10-01

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2πR and the tracking mode of distal action will be favored when L < 2πR. The time required for the distal action will be minimum when L = 2πR where the typical value of R for the binding of histones will be R ~ 16 bps and L ~ 102 bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using the position weight matrices available with the JASPAR database indicates the presence of cis-acting elements with maximum probability at a distance of ~102 bps from the promoters which substantiates our theoretical predictions.

  15. Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects.

    PubMed

    Dwivedi, Yogesh; Rao, Jagadeesh Sridhara; Rizavi, Hooriyah S; Kotowski, Jacek; Conley, Robert R; Roberts, Rosalinda C; Tamminga, Carol A; Pandey, Ghanshyam N

    2003-03-01

    Cyclic adenosine monophosphate response element binding protein (CREB) is a transcription factor that, on phosphorylation by protein kinases, is activated, and in response, regulates the transcription of many neuronally expressed genes. In view of the recent observations that catalytic properties and/or expression of many kinases that mediate their physiological responses through the activation of CREB are altered in the postmortem brain of subjects who commit suicide (hereafter referred to as suicide subjects), we examined the status of CREB in suicidal behavior. These studies were performed in Brodmann area (BA) 9 and hippocampus obtained from 26 suicide subjects and 20 nonpsychiatric healthy control subjects. Messenger RNA levels of CREB and neuron-specific enolase were determined in total RNA by means of quantitative reverse transcriptase-polymerase chain reaction. Protein levels and the functional characteristics of CREB were determined in nuclear fractions by means of Western blot and cyclic adenosine monophosphate response element (CRE)-DNA binding activity, respectively. In the same nuclear fraction, we determined the catalytic activity of cyclic adenosine monophosphate-stimulated protein kinase A by means of enzymatic assay. We observed a significant reduction in messenger RNA and protein levels of CREB, CRE-DNA binding activity, and basal and cyclic adenosine monophosphate-stimulated protein kinase A activity in BA 9 and hippocampus of suicide subjects, without any change in messenger RNA levels of neuron-specific enolase in BA 9. Except for protein kinase A activity, changes in CREB expression and CRE-DNA binding activity were present in all suicide subjects, irrespective of diagnosis. These changes were unrelated to postmortem intervals, age, sex, or antidepressant treatment. Given the significance of CREB in mediating various physiological functions through gene transcription, our results of decreased expression and functional characteristics of CREB in postmortem brain of suicide subjects suggest that CREB may play an important role in suicidal behavior.

  16. Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability

    PubMed Central

    Seal, Ruth; Temperley, Richard; Wilusz, Jeffrey; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M. A.

    2005-01-01

    PARN, a poly(A)-specific ribonuclease, binds the 5′ cap-structure of mRNA and initiates deadenylation-dependent decay. Eukaryotic initiation factor 4E (eIF4E) also binds to the cap structure, an interaction that is critical for initiating cap-dependent translation. The stability of various mRNA transcripts in human cell lines is reduced under conditions of serum starvation as determined by both functional and chemical half-lives. Serum starvation also leads to enhanced cap association by PARN. In contrast, the 5′ cap occupancy by eIF4E decreases under serum-deprivation, as does the translation of reporter transcripts. Further, we show that PARN is a phosphoprotein and that this modification can be modulated by serum status. Taken together, these data are consistent with a natural competition existing at the 5′ cap structure between PARN and eIF4E that may be regulated by changes in post-translational modifications. These phosphorylation-induced changes in the interplay of PARN and eIF4E may determine whether the mRNA is translated or decayed. PMID:15653638

  17. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells

    PubMed Central

    Mencalha, Andre L.; Ferreira, Gerson M.; de Souza, Waldemir F.; Morgado-Díaz, José A.; Maia, Amanda M.; Corrêa, Stephany; Abdelhay, Eliana S. F. W.

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment. PMID:28107418

  18. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells.

    PubMed

    Pires, Bruno R B; Mencalha, Andre L; Ferreira, Gerson M; de Souza, Waldemir F; Morgado-Díaz, José A; Maia, Amanda M; Corrêa, Stephany; Abdelhay, Eliana S F W

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

  19. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing.

    PubMed

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J; Houghton, Janet A

    2016-12-06

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.

  20. The helical structure of DNA facilitates binding

    NASA Astrophysics Data System (ADS)

    Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-09-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction-diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsoo, E-mail: sungsoo.lee@utsouthwestern.edu; Wang, Ping-Yuan; Jeong, Yangsik

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to themore » nucleus and promotes LXR-dependent gene transcription through select enhancer elements. -- Highlights: Black-Right-Pointing-Pointer ORP1S translocates to the nucleus in response to sterol binding. Black-Right-Pointing-Pointer The sterols that best promote nuclear import of ORP1S are LXR agonists. Black-Right-Pointing-Pointer ORP1S binds to LXRs, enhances binding of LXRs to LXREs and promotes LXR-dependent transcription of apoE.« less

  2. Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program

    PubMed Central

    Baresic, Mario; Salatino, Silvia; Kupr, Barbara

    2014-01-01

    Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α. PMID:24912679

  3. Transcriptional activity of the homopurine-homopyrimidine repeat of the c-Ki-ras promoter is independent of its H-forming potential.

    PubMed Central

    Raghu, G; Tevosian, S; Anant, S; Subramanian, K N; George, D L; Mirkin, S M

    1994-01-01

    The mouse c-Ki-ras protooncogene promoter contains an unusual DNA element consisting of a 27 bp-long homopurine-homopyrimidine mirror repeat (H-motif) adjacent to a d(C-G)5 repeat. We have previously shown that in vitro these repeats may adopt H and Z conformations, respectively, causing nuclease and chemical hypersensitivity. Here we have studied the functional role of these DNA stretches using fine deletion analysis of the promoter and a transient transcription assay in vivo. We found that while the H-motif is responsible for approximately half of the promoter activity in both mouse and human cell lines, the Z-forming sequence exhibits little, if any, such activity. Mutational changes introduced within the homopurine-homopyrimidine stretch showed that its sequence integrity, rather than its H-forming potential, is responsible for its effect on transcription. Electrophoretic mobility shift assays revealed that the putative H-motif tightly binds several nuclear proteins, one of which is likely to be transcription factor Sp1, as determined by competition experiments. Southwestern hybridization studies detected two major proteins specifically binding to the H-motif: a 97 kD protein which presumably corresponds to Sp1 and another protein of 60 kD in human and 64 kD in mouse cells. We conclude that the homopurine-homopyrimidine stretch is required for full transcriptional activity of the c-Ki-ras promoter and at least two distinct factors, Sp1 and an unidentified protein, potentially contribute to the positive effect on transcription. Images PMID:8078760

  4. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements.

    PubMed

    Smith, C D; Baglia, L A; Curristin, S M; Ruddell, A

    1994-10-01

    Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.

  6. Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells

    PubMed Central

    Pu, Jiarui; Mei, Hong; Zhao, Jun; Huang, Kai; Zeng, Fuqing; Tong, Qiangsong

    2012-01-01

    Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells. PMID:22363633

  7. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages.

    PubMed Central

    Kim, S; Ip, H S; Lu, M M; Clendenin, C; Parmacek, M S

    1997-01-01

    The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs. PMID:9121477

  8. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.

    PubMed

    Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja

    2017-02-01

    Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.

  9. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  10. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    PubMed

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  11. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  12. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.

    2004-08-06

    Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene,more » and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less

  13. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  14. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    PubMed

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Programmable Oligomers Targeting 5′-GGGG-3′ in the Minor Groove of DNA and NF-κB Binding Inhibition

    PubMed Central

    Chenoweth, David M.; Poposki, Julie A.; Marques, Michael A.; Dervan, Peter B.

    2009-01-01

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5′-WGGGGW-3′, a core sequence in the DNA binding site of NF-κB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5′-WGGGGW-3′ site with high affinity. One of the oligomers (Im-Im-Im-Im-γ-PyBi-PyBi-β-Dp) was able to inhibit DNA binding by the transcription factor NF-κB. PMID:17095230

  16. The minimal promoter region of the dense-core vesicle protein IA-2: transcriptional regulation by CREB.

    PubMed

    Cai, Tao; Hirai, Hiroki; Xu, Huanyu; Notkins, Abner L

    2015-06-01

    IA-2 is a transmembrane protein found in the dense-core vesicles (DCV) of neuroendocrine cells and one of the major autoantigens in type 1 diabetes. DCV are involved in the secretion of hormones (e.g., insulin) and neurotransmitters. Stimulation of pancreatic β cells with glucose upregulates the expression of IA-2 and an increase in IA-2 results in an increase in the number of DCV. Little is known, however, about the promoter region of IA-2 or the transcriptional factors that regulate the expression of this gene. In the present study, we constructed eight deletion fragments from the upstream region of the IA-2 transcription start site and linked them to a luciferase reporter. By this approach, we have identified a short bp region (-216 to +115) that has strong promoter activity. We also identified a transcription factor, cAMP responsive element-binding protein (CREB), which binds to two CREB-related binding sites located in this region. The binding of CREB to these sites enhanced IA-2 transcription by more than fivefold. We confirmed these findings by site-directed mutagenesis, chromatin immunoprecipitation assays and RNAi inhibition. Based on these findings, we conclude that the PKA pathway is a critical, but not the exclusive signaling pathway involved in IA-2 gene expression.

  17. Tissue expression analysis, cloning and characterization of the 5'-regulatory region of the bovine FABP3 gene.

    PubMed

    Li, Anning; Wu, Lijuan; Wang, Xiaoyu; Xin, Yaping; Zan, Linsen

    2016-09-01

    Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3.

  18. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.

    PubMed

    Wang, Feifei; Tidei, Joseph J; Polich, Eric D; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I; Guo, Weixiang; Zhao, Xinyu

    2015-09-08

    The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.

  19. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-11-01

    PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.

  20. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

Top