Changing global essential medicines norms to improve access to AIDS treatment: lessons from Brazil.
Nunn, A; Fonseca, E Da; Gruskin, S
2009-01-01
Brazil's large-scale, successful HIV/AIDS treatment programme is considered by many to be a model for other developing countries aiming to improve access to AIDS treatment. Far less is known about Brazil's important role in changing global norms related to international pharmaceutical policy, particularly international human rights, health and trade policies governing access to essential medicines. Prompted by Brazil's interest in preserving its national AIDS treatment policies during World Trade Organisation trade disputes with the USA, these efforts to change global essential medicines norms have had important implications for other countries, particularly those scaling up AIDS treatment. This paper analyses Brazil's contributions to global essential medicines policy and explains the relevance of Brazil's contributions to global health policy today.
Changing global essential medicines norms to improve access to AIDS treatment: Lessons from Brazil
Nunn, A.; Fonseca, E. Da; Gruskin, S.
2009-01-01
Brazil's large-scale, successful HIV/AIDS treatment programme is considered by many to be a model for other developing countries aiming to improve access to AIDS treatment. Far less is known about Brazil's important role in changing global norms related to international pharmaceutical policy, particularly international human rights, health and trade policies governing access to essential medicines. Prompted by Brazil's interest in preserving its national AIDS treatment policies during World Trade Organisation trade disputes with the USA, these efforts to change global essential medicines norms have had important implications for other countries, particularly those scaling up AIDS treatment. This paper analyses Brazil's contributions to global essential medicines policy and explains the relevance of Brazil's contributions to global health policy today. PMID:19333805
NASA Technical Reports Server (NTRS)
Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.
1993-01-01
Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.
Terrestrial essential climate variables (ECVs) at a glance
Stitt, Susan; Dwyer, John; Dye, Dennis; Josberger, Edward
2011-01-01
The Global Terrestrial Observing System, Global Climate Observing System, World Meteorological Organization, and Committee on Earth Observation Satellites all support consistent global land observations and measurements. To accomplish this goal, the Global Terrestrial Observing System defined 'essential climate variables' as measurements of atmosphere, oceans, and land that are technically and economically feasible for systematic observation and that are needed to meet the United Nations Framework Convention on Climate Change and requirements of the Intergovernmental Panel on Climate Change. The following are the climate variables defined by the Global Terrestrial Observing System that relate to terrestrial measurements. Several of them are currently measured most appropriately by in-place observations, whereas others are suitable for measurement by remote sensing technologies. The U.S. Geological Survey is the steward of the Landsat archive, satellite imagery collected from 1972 to the present, that provides a potential basis for deriving long-term, global-scale, accurate, timely and consistent measurements of many of these essential climate variables.
Energy Literacy: A Natural and Essential Part of a Solutions-Based Approach to Climate Literacy
NASA Astrophysics Data System (ADS)
Inman, M. M.
2011-12-01
As with climate science topics, many Americans have misconceptions or gaps in understanding related to energy topics. Recent literacy efforts are geared to address these gaps in understanding. The U.S. Global Change Research Program's recently published "Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education" offers a welcome complement to the Climate Literacy Essential Principles released in 2008. Research and experience suggest that education, communication and outreach about global climate change and related topics is best done using a solutions-based approach. Energy is a natural and effective topic to frame these solutions around. Used as a framework for designing curricula, Energy Literacy naturally leads to solutions-based approaches to Climate Change education. An inherently interdisciplinary topic, energy education must happen in the context of both the natural and social sciences. The Energy Literacy Essential Principles reflect this and open the door to curriculum that integrates the two.
Transforming Academic Globalization into Globalization for All
ERIC Educational Resources Information Center
Ramalhoto, M. F.
2006-01-01
Driving innovation and continuous improvement with regard to ecological, environmental and human sustainability is essential for win-win globalization. That calls for research on strategic and monitoring planning to manage globalization and technological and scientific change. This paper describes a new basic function of the university institution…
M-Learning--On Path to Integration with Organisation Systems
ERIC Educational Resources Information Center
Srivastava, Shilpa; Gulati, Ved Prakash
2014-01-01
Learning is essential in organizations for them to survive. However, given the changing environment owing to global inter-connectedness, mobile workforce, global unpredictability and complexities, the learning approach must also change. Today the Learning and Development unit must be able to facilitate collaborative work, develop learning…
Current Climate Variability & Change
NASA Astrophysics Data System (ADS)
Diem, J.; Criswell, B.; Elliott, W. C.
2013-12-01
Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'
A roadmap for improving the representation of photosynthesis in Earth System Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Alistair; Medlyn, Belinda E.; Dukes, Jeffrey S.
Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty projections of global carbon fluxes.
A roadmap for improving the representation of photosynthesis in Earth System Models
Rogers, Alistair; Medlyn, Belinda E.; Dukes, Jeffrey S.; ...
2016-11-28
Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty projections of global carbon fluxes.
Long-Term Monitoring of Global Climate Forcings and Feedbacks
NASA Technical Reports Server (NTRS)
Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)
1993-01-01
A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.
NASA Astrophysics Data System (ADS)
Do, Hong; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth; Senerivatne, Sonia
2017-04-01
In-situ observations of daily streamflow with global coverage are a crucial asset for understanding large-scale freshwater resources which are an essential component of the Earth system and a prerequisite for societal development. Here we present the Global Streamflow Indices and Metadata archive (G-SIM), a collection indices derived from more than 20,000 daily streamflow time series across the globe. These indices are designed to support global assessments of change in wet and dry extremes, and have been compiled from 12 free-to-access online databases (seven national databases and five international collections). The G-SIM archive also includes significant metadata to help support detailed understanding of streamflow dynamics, with the inclusion of drainage area shapefile and many essential catchment properties such as land cover type, soil and topographic characteristics. The automated procedure in data handling and quality control of the project makes G-SIM a reproducible, extendible archive and can be utilised for many purposes in large-scale hydrology. Some potential applications include the identification of observational trends in hydrological extremes, the assessment of climate change impacts on streamflow regimes, and the validation of global hydrological models.
Ad hoc committee on global climate issues: Annual report
Gerhard, L.C.; Hanson, B.M.B.
2000-01-01
The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.
Can the global carbon budget be balanced?
Markewich, Helaine W.; Bliss, Norman B.; Stallard, Robert F.; Sundquist, Eric T.
1997-01-01
The Mississippi Basin Carbon Project of the U.S. Geological Survey (USGS) is an effort to examine interactions between the global carbon cycle and human-induced changes to the land surface, such as farming and urbanization. Investigations in the Mississippi River basin will provide the data needed for calculating the global significance of land-use changes on land-based carbon cycling. These data are essential for predicting and mitigating the effects of global environmental change.The Mississippi Basin Carbon Project is focused on the third largest river system in the world. The Mississippi River and its tributaries drain more than 40% of the conterminous United States. The basin includes areas that typify vast regions of the Earth's surface that have undergone human development.
ERIC Educational Resources Information Center
King, John T.; Thorpe, Steve
2012-01-01
In January 2007, the Oregon State Board of Education mandated a new Oregon diploma that strengthened high school graduation requirements with the aim of improving student readiness for college and career. Among the major changes was a requirement that students demonstrate proficiency in nine "essential skills" that included the…
NASA Astrophysics Data System (ADS)
Niepold, F.; Karsten, J. L.
2009-12-01
Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009
Diffusion of knowledge and globalization in the web of twentieth century science
NASA Astrophysics Data System (ADS)
Naumis, G. G.; Phillips, J. C.
2012-08-01
Scientific communication is an essential part of modern science: whereas Archimedes worked alone, Newton (correspondence with Hooke, 1676) acknowledged that “If I have seen a little further, it is by standing on the shoulders of Giants.” How is scientific communication reflected in the patterns of citations in scientific papers? How have these patterns changed in the 20th century, as both means of communication and individual transportation changed rapidly, compared to the earlier post-Newton 18th and 19th centuries? Here we discuss a diffusive model for scientific communications, based on a unique 2009 scientometric study of 25 million papers and 600 million citations that encapsulates the epistemology of modern science. The diffusive model predicts and explains, using no adjustable parameters, a surprisingly universal internal structure in the development of scientific research, which is essentially constant across the natural sciences, but which because of globalization changed qualitatively around 1960. Globalization corresponds physically to anomalous diffusion, which has been observed near the molecular glass transition, and can enhance molecular diffusion by factors as large as 100.
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Crawford, James; Ham, Seung-Hee; Zhang, Bo; Kato, Seiji; Voulgarakis, Apostolos; Chen, Gao; Fairlie, Duncan; Duncan, Bryan; Yantosca, Robert
2017-01-01
Clouds directly affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. This effect is an important component of global tropospheric chemistry-climate interaction, and its understanding is thus essential for predicting the feedback of climate change on tropospheric chemistry.
Global climate change attitudes and perceptions among south American zoo visitors.
Luebke, Jerry F; Clayton, Susan; Kelly, Lisa-Anne DeGregoria; Grajal, Alejandro
2015-01-01
There is a substantial gap between the scientific evidence for anthropogenic climate change and the human response to this evidence. Perceptions of and responses to climate change can differ among regions of the world, as well as within countries. Therefore, information about the public's attitudes and perceptions related to climate change is essential to the development of relevant educational resources. In the present study, zoo visitors in four South American countries responded to a questionnaire regarding their attitudes and perceptions toward global climate change. Results indicated that most respondents are already highly concerned about global climate change and are interested in greater engagement in pro-environmental behaviors. Visitors also perceive various obstacles to engagement in climate change mitigation behaviors. We discuss the results of our study in terms of addressing visitors' climate change attitudes and perceptions within the social and emotional context of zoo settings. © 2015 Wiley Periodicals, Inc.
Population risk perceptions of global warming in Australia.
Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley
2010-11-01
According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of global warming. A high proportion of respondents reported that they perceived that global warming would worsen, were concerned that it would affect them and their families and had already made changes in their lives because of it. These findings support a readiness in the population to deal with global warming. Future research and programs are needed to investigate population-level strategies for future action. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
An online education approach to population health in a global society.
Utley-Smith, Queen
2017-07-01
Health professions education content must keep pace with the ever-evolving and changing health care system. Population-based health care is advocated as a way to improve health outcomes, particularly in a technologically advanced health system like the United States. At the same time, global health knowledge is increasingly valued in health professions education, including nursing. This article describes the design and implementation of an online population health course with a global viewpoint intended to accommodate the need for improved knowledge and skill application for graduate nurses. Attention was also given to faculty efficiency during the process of design and implementation. This population-global health course was piloted in a renovated master's curriculum for two semesters. Administering a Course Improvement Survey after initial course offerings assisted faculty to assess and target essential course changes. Data were collected from 106 registered nurse graduate students. Population and global health course objectives were met and students identified areas for course enhancement. Students (90%-94%) reported achieving increased knowledge of population health and global health. Like other creative works, the first rendition of a course requires pedagogical adjustments and editing. Formal student input, when built into the design and implementation of a course can assist faculty to be efficient when crafting essential course changes for subsequent semesters. Data from the survey showed that major population and global subject matter was being grasped by students, the data also revealed that tweaking specific online strategies like making all course content mobile would enhance the course. The course development process and course improvement evaluation for this Population Health in a Global Society course proved valuable in the education of nurses, and helped maintain faculty work efficiency. © 2017 Wiley Periodicals, Inc.
The effects of climate change associated abiotic stresses on maize phytochemical defenses
USDA-ARS?s Scientific Manuscript database
Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...
Streamflow response to climate and landuse changes in a coastal watershed in North Carolina
S. Qi; G. Sun; Y. Wang; S.G. McNulty; J.A. Moore Myers
2009-01-01
It is essential to examine the sensitivity of hydrologic responses to climate and landuse change across different physiographic regions in order to formulate sound water management policies for local response to projected global change. This study used the a simulation model to examine the potential impacts of climate and landuse changes on streamflow of the...
Kishore, Sandeep P; Blank, Evan; Heller, David J; Patel, Amisha; Peters, Alexander; Price, Matthew; Vidula, Mahesh; Fuster, Valentin; Onuma, Oyere; Huffman, Mark D; Vedanthan, Rajesh
2018-02-06
The World Health Organization (WHO) Model List of Essential Medicines (EML) is a key tool for improving global access to medicines for all conditions, including cardiovascular diseases (CVDs). The WHO EML is used by member states to determine their national essential medicine lists and policies and to guide procurement of medicines in the public sector. Here, we describe our efforts to modernize the EML for global CVD prevention and control. We review the recent history of applications to add, delete, and change indications for CVD medicines, with the aim of aligning the list with contemporary clinical practice guidelines. We have identified 4 issues that affect decisions for the EML and may strengthen future applications: 1) cost and cost-effectiveness; 2) presence in clinical practice guidelines; 3) feedback loops; and 4) community engagement. We share our lessons to stimulate others in the global CVD community to embark on similar efforts. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Crowding-in: how Indian civil society organizations began mobilizing around climate change.
Ylä-Anttila, Tuomas; Swarnakar, Pradip
2017-06-01
This paper argues that periodic waves of crowding-in to 'hot' issue fields are a recurring feature of how globally networked civil society organizations operate, especially in countries of the Global South. We elaborate on this argument through a study of Indian civil society mobilization around climate change. Five key mechanisms contribute to crowding-in processes: (1) the expansion of discursive opportunities; (2) the event effects of global climate change conferences; (3) the network effects created by expanding global civil society networks; (4) the adoption and innovation of action repertoires; and (5) global pressure effects creating new opportunities for civil society. Our findings contribute to the world society literature, with an account of the social mechanisms through which global institutions and political events affect national civil societies, and to the social movements literature by showing that developments in world society are essential contributors to national mobilization processes. © London School of Economics and Political Science 2017.
ERIC Educational Resources Information Center
Ward, Jane
2010-01-01
The world's political leaders failed to agree a fair, ambitious and legally binding accord that would protect the planet from catastrophic global warming at the United Nations' Copenhagen conference on climate change. This makes grassroots action all the more essential to save the world from devastating climate change. The UK Government championed…
Solar influences on global change
NASA Technical Reports Server (NTRS)
1994-01-01
Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.
Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi
2016-01-01
Background A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. Principal Findings Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change. Conclusion and Significance ‘Whole-genome’ regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression. PMID:27997556
NASA Astrophysics Data System (ADS)
Bhattacharya, Devarati
Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex science phenomenon.
Public health preparedness for the impact of global warming on human health.
Wassel, John J
2009-01-01
To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact. Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as "global warming," "climate change," "human health," "public health," and "preparedness." Sixty-seven journal articles were reviewed. The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations. We must begin "greening" our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.
Sparkle L. Malone; Mirela G. Tulbure; Antonio J. Perez-Luque; Timothy J. Assal; Leah L. Bremer; Debora P. Drucker; Vicken Hillis; Sara Varela; Michael L. Goulden
2016-01-01
Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and...
Undergraduate Climate Education: Motivations, Strategies, Successes, and Support
ERIC Educational Resources Information Center
Kirk, Karin B.; Gold, Anne U.; Ledley, Tamara Shapiro; Sullivan, Susan Buhr; Manduca, Cathryn A.; Mogk, David W.; Wiese, Katryn
2014-01-01
Climate literacy is an essential component of a strategy to comprehend and confront the grand challenge of global climate change. However, scientific complexity, societal implications, and political associations make climate change a difficult but important topic to teach. In this paper we report on the results of a survey of undergraduate faculty…
USDA-ARS?s Scientific Manuscript database
Accurate estimates of terrestrial carbon sequestration is essential for evaluating changes in the carbon cycle due to global climate change. In a recent assessment of 26 carbon assimilation models at 39 FLUXNET tower sites across the United States and Canada, all models failed to adequately compute...
Selenium deficiency risk predicted to increase under future climate change
Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.
2017-01-01
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487
Selenium deficiency risk predicted to increase under future climate change.
Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E
2017-03-14
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.
CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 3
2008-03-01
describes essentials for requirements development and management. In addi- tion to providing training, eLearning and consulting services, she speaks at and...information, support sense- making, enable collaborative decision making, and effect changes in the physical environment. For example, the Global ...across layers, which enables effective use of resources and helps enforce security and confiden- tiality policies. Global Data Space DDS provides a
Flight movement inventory : SAGE-AERO2K
DOT National Transportation Integrated Search
2004-04-28
A global air traffic emissions database is an essential tool for both policy makers and climate change : scientists. Since the last comprehensive aircraft emissions inventories were developed in 1992, an : update is necessary. This need is being addr...
[Globalization and infectious diseases].
Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata
2011-01-01
Globalization is a phenomenon characteristic of present times. It can be considered in various aspects: economic, environmental changes, demographic changes, as well as the development of new technologies. All these aspects of globalization have a definite influence on the emergence and spread of infectious diseases. Economic aspects ofglobalization are mainly the trade development, including food trade, which has an impact on the spread of food-borne diseases. The environmental changes caused by intensive development of industry, as a result of globalization, which in turn affects human health. The demographic changes are mainly people migration between countries and rural and urban areas, which essentially favors the global spread of many infectious diseases. While technological advances prevents the spread of infections, for example through better access to information, it may also increase the risk, for example through to create opportunities to travel into more world regions, including the endemic regions for various diseases. The phenomenon ofglobalization is also closely associated with the threat of terrorism, including bioterrorism. It forces the governments of many countries to develop effective programs to protect and fight against this threat.
Development of a natural practice to adapt conservation goals to global change.
Heller, Nicole E; Hobbs, Richard J
2014-06-01
Conservation goals at the start of the 21st century reflect a combination of contrasting ideas. Ideal nature is something that is historically intact but also futuristically flexible. Ideal nature is independent from humans, but also, because of the pervasiveness of human impacts, only able to reach expression through human management. These tensions emerge in current management rationales because scientists and managers are struggling to accommodate old and new scientific and cultural thinking, while also maintaining legal mandates from the past and commitments to preservation of individual species in particular places under the stresses of global change. Common management goals (such as integrity, wilderness, resilience), whether they are forward looking and focused on sustainability and change, or backward looking and focused on the persistence and restoration of historic states, tend to create essentialisms about how ecosystems should be. These essentialisms limit the options of managers to accommodate the dynamic, and often novel, response of ecosystems to global change. Essentialisms emerge because there is a tight conceptual coupling of place and historical species composition as an indicator of naturalness (e.g., normal, healthy, independent from humans). Given that change is increasingly the norm and ecosystems evolve in response, the focus on idealized ecosystem states is increasingly unwise and unattainable. To provide more open-ended goals, we propose greater attention be paid to the characteristics of management intervention. We suggest that the way we interact with other species in management and the extent to which those interactions reflect the interactions among other biotic organisms, and also reflect our conservation virtues (e.g., humility, respect), influences our ability to cultivate naturalness on the landscape. We call this goal a natural practice (NP) and propose it as a framework for prioritizing and formulating how, when, and where to intervene in this period of rapid change. © 2014 Society for Conservation Biology.
Synthesis in land change science: methodological patterns, challenges, and guidelines.
Magliocca, Nicholas R; Rudel, Thomas K; Verburg, Peter H; McConnell, William J; Mertz, Ole; Gerstner, Katharina; Heinimann, Andreas; Ellis, Erle C
Global and regional economic and environmental changes are increasingly influencing local land-use, livelihoods, and ecosystems. At the same time, cumulative local land changes are driving global and regional changes in biodiversity and the environment. To understand the causes and consequences of these changes, land change science (LCS) draws on a wide array synthetic and meta-study techniques to generate global and regional knowledge from local case studies of land change. Here, we review the characteristics and applications of synthesis methods in LCS and assess the current state of synthetic research based on a meta-analysis of synthesis studies from 1995 to 2012. Publication of synthesis research is accelerating, with a clear trend toward increasingly sophisticated and quantitative methods, including meta-analysis. Detailed trends in synthesis objectives, methods, and land change phenomena and world regions most commonly studied are presented. Significant challenges to successful synthesis research in LCS are also identified, including issues of interpretability and comparability across case-studies and the limits of and biases in the geographic coverage of case studies. Nevertheless, synthesis methods based on local case studies will remain essential for generating systematic global and regional understanding of local land change for the foreseeable future, and multiple opportunities exist to accelerate and enhance the reliability of synthetic LCS research in the future. Demand for global and regional knowledge generation will continue to grow to support adaptation and mitigation policies consistent with both the local realities and regional and global environmental and economic contexts of land change.
The Fourth National Climate Assessment: Progress and Next Steps
NASA Astrophysics Data System (ADS)
Reidmiller, D.; Lewis, K.; Reeves, K.
2017-12-01
The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.
A decade of insights into grassland ecosystem responses to global environmental change
Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.
2017-01-01
Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.
Time to go global: a consultation on global health competencies for postgraduate doctors.
Walpole, Sarah C; Shortall, Clare; van Schalkwyk, May Ci; Merriel, Abi; Ellis, Jayne; Obolensky, Lucy; Casanova Dias, Marisa; Watson, Jessica; Brown, Colin S; Hall, Jennifer; Pettigrew, Luisa M; Allen, Steve
2016-09-01
Globalisation is having profound impacts on health and healthcare. We solicited the views of a wide range of stakeholders in order to develop core global health competencies for postgraduate doctors. Published literature and existing curricula informed writing of seven global health competencies for consultation. A modified policy Delphi involved an online survey and face-to-face and telephone interviews over three rounds. Over 250 stakeholders participated, including doctors, other health professionals, policymakers and members of the public from all continents of the world. Participants indicated that global health competence is essential for postgraduate doctors and other health professionals. Concerns were expressed about overburdening curricula and identifying what is 'essential' for whom. Conflicting perspectives emerged about the importance and relevance of different global health topics. Five core competencies were developed: (1) diversity, human rights and ethics; (2) environmental, social and economic determinants of health; (3) global epidemiology; (4) global health governance; and (5) health systems and health professionals. Global health can bring important perspectives to postgraduate curricula, enhancing the ability of doctors to provide quality care. These global health competencies require tailoring to meet different trainees' needs and facilitate their incorporation into curricula. Healthcare and global health are ever-changing; therefore, the competencies will need to be regularly reviewed and updated. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Kevin M. Potter; Robert M. Jetton; Andrew Bower; Douglass F. Jacobs; Gary Man; Valerie D. Hipkins; Murphy Westwood
2017-01-01
Genetic diversity provides the essential basis for the adaptation and resilience of tree species to environmental stress and change. The genetic conservation of tree species is an urgent global necessity as forest conversion and fragmentation continue apace, damaging insects and pathogens are transported between continents, and climate change alters local habitat...
Challenges of coordinating global climate observations - Role of satellites in climate monitoring
NASA Astrophysics Data System (ADS)
Richter, C.
2017-12-01
Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.
NASA Astrophysics Data System (ADS)
Groisman, Pavel; Shugart, Herman; Kicklighter, David; Henebry, Geoffrey; Tchebakova, Nadezhda; Maksyutov, Shamil; Monier, Erwan; Gutman, Garik; Gulev, Sergey; Qi, Jiaguo; Prishchepov, Alexander; Kukavskaya, Elena; Porfiriev, Boris; Shiklomanov, Alexander; Loboda, Tatiana; Shiklomanov, Nikolay; Nghiem, Son; Bergen, Kathleen; Albrechtová, Jana; Chen, Jiquan; Shahgedanova, Maria; Shvidenko, Anatoly; Speranskaya, Nina; Soja, Amber; de Beurs, Kirsten; Bulygina, Olga; McCarty, Jessica; Zhuang, Qianlai; Zolina, Olga
2017-12-01
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts.
Rising temperatures reduce global wheat production
USDA-ARS?s Scientific Manuscript database
Crop models are essential to assess the threat of climate change for food production but have not been systematically tested against temperature experiments, despite demonstrated uncertainty in temperature response. Herein, we compare 30 different wheat crop models against field experiments in which...
Genome-environment associations in sorghum landraces predict adaptive traits
USDA-ARS?s Scientific Manuscript database
Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these ...
Synergies and trade-offs between food security and biodiversity conservation
NASA Astrophysics Data System (ADS)
Molotoks, Amy
2016-04-01
Human land use activities have transformed a large proportion of the world's land surface and in particular, the expansion of agriculture has been a major driver in global land use change. The conversion of natural ecosystems to crop and pasture lands has contributed significantly to deforestation and associated biodiversity loss through habitat destruction. This loss has raised concerns about associated loss of ecological functions which directly support over one billion people worldwide. Furthermore, agriculture itself is heavily reliant on a number of ecosystem services which are essential for crop production. It is therefore essential that the global problems of food insecurity and biodiversity loss are not viewed independently as the methods used to address one will necessarily involve choices affecting the other. This poster will examine the relationship between food security provision and biodiversity hotspots by using global spatial datasets of land use and conservation value.
Decadal- to Orbital-Scale Links Between Climate, Productivity and Denitrification on the Peru Margin
NASA Astrophysics Data System (ADS)
Higginson, M. J.; Altabet, M. A.; Herbert, T. D.
2002-12-01
Denitrification is the predominant global loss term for combined nitrogen and can exert a major control on its oceanic inventory, global productivity and atmospheric CO2. Our prior work demonstrates that proxy records for changing denitrification, oxygenation and productivity in the recent geological past in the Arabian Sea exhibit unprecedented similarity with abrupt climate fluctuations recorded in high-latitude ice-cores. Since the Peru Margin and Arabian Sea together constitute almost two-thirds of global marine water-column denitrification, changes in concert in these two regions could potentially have effected rapid global climate changes through an oceanic mechanism. The Peru Margin is intimately coupled to the Equatorial Pacific, source of El Ni&ño-La Niña SST, productivity and precipitation anomalies. Here, biogeochemical cycles are especially sensitive to abrupt climatic changes on decadal time-scales by virtue of this ENSO coupling. The purpose of our research is to investigate whether longer changes in tropical Pacific oceanography represent a 'scaling up' of anomalous ENSO conditions, modulated by both internal (e.g. nutrient inventory or WPWP heat budget) and external (e.g. orbital) forcing throughout the last glacial/inter-glacial cycle. Here we present first results of a detailed investigation of recently-recovered sediments from ODP Site 1228 on the Peru margin upper continental slope, in an attempt to capture some of the essential aspects of ENSO-like variability. Despite the existing availability of high quality sediment cores from this margin, little detailed paleoclimatic information currently exists because of poor sedimentary carbonate preservation (exacerbated post-recovery) which has limited generation of essential chronostratigraphic controls. Instead, we rely on the development and novel application of compound-specific AMS dating verified and supplemented by intermittent foraminiferal and bulk-carbon AMS dates, a magnetic paleo-intensity record and tephra layers to tie our records to established global chronologies for abrupt climate change. Based on this age model, we present records of nitrogen isotopic values (δ15N), chlorin and alkenone abundances, and alkenone-derived (Uk'37) SSTs for the last glacial-interglacial cycle. We extrapolate these new nitrogen isotopic results in the context of global marine denitrification. By constraining the loss term for marine nitrate at decadal-to-millennial timescales within the principal major regions of global denitrification, we make a first attempt to reconcile the records of atmospheric CO2 trapped in ice-cores with such rapid changes in global nutrient inventory.
Declining oxygen in the global ocean and coastal waters.
Breitburg, Denise; Levin, Lisa A; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P; Conley, Daniel J; Garçon, Véronique; Gilbert, Denis; Gutiérrez, Dimitri; Isensee, Kirsten; Jacinto, Gil S; Limburg, Karin E; Montes, Ivonne; Naqvi, S W A; Pitcher, Grant C; Rabalais, Nancy N; Roman, Michael R; Rose, Kenneth A; Seibel, Brad A; Telszewski, Maciej; Yasuhara, Moriaki; Zhang, Jing
2018-01-05
Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems. Copyright © 2018, American Association for the Advancement of Science.
Postmodernism versus Professionalism in Higher Education. Thematic Reflections on Higher Education
ERIC Educational Resources Information Center
Milliken, John
2004-01-01
A global paradigm shift is taking place at the beginning of the Twenty-First Century, which is resulting in massive changes in the frames of reference about the ways of life, work, and society and how they are viewed and organized. This shift is essentially a sweeping set of worldwide changes in the public domain which challenges the prevailing…
Local and global structural drivers for the photoactivation of the orange carotenoid protein
Gupta, Sayan; Guttman, Miklos; Leverenz, Ryan L.; ...
2015-09-18
Here, photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined tomore » only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.« less
Local and global structural drivers for the photoactivation of the orange carotenoid protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Sayan; Guttman, Miklos; Leverenz, Ryan L.
Here, photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined tomore » only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.« less
Large-river delta-front estuaries as natural “recorders” of global environmental change
Bianchi, Thomas S.; Allison, Mead A.
2009-01-01
Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both “drivers” and “recorders” of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence (“drive”) the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean—an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov). PMID:19435849
Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity
NASA Astrophysics Data System (ADS)
Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.
2017-12-01
Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.
Ziska, Lewis H.; Bunce, James A.; Shimono, Hiroyuki; Gealy, David R.; Baker, Jeffrey T.; Newton, Paul C. D.; Reynolds, Matthew P.; Jagadish, Krishna S. V.; Zhu, Chunwu; Howden, Mark; Wilson, Lloyd T.
2012-01-01
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO2) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO2 to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO2 and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO2 responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change. PMID:22874755
Ziska, Lewis H; Bunce, James A; Shimono, Hiroyuki; Gealy, David R; Baker, Jeffrey T; Newton, Paul C D; Reynolds, Matthew P; Jagadish, Krishna S V; Zhu, Chunwu; Howden, Mark; Wilson, Lloyd T
2012-10-22
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO(2)) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO(2) to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO(2) and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO(2) responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.
Burggren, Warren
2018-05-10
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.
Essential biodiversity variables
Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, Robert J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; Coops, N.C.; Dulloo, E.; Faith, D.P.; Freyhof, J.; Gregory, R.D.; Heip, C.; Höft, R.; Hurtt, G.; Jetz, W.; Karp, D.S.; McGeoch, M.A.; Obura, D.; Onada, Y.; Pettorelli, N.; Reyers, B.; Sayre, R.; Scharlemann, J.P.W.; Stuart, S.N.; Turak, E.; Walpole, M.; Wegmann, M.
2013-01-01
Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.
Enhancing Diversity in Vocational Education. Information Series No. 351.
ERIC Educational Resources Information Center
Bowen, Blannie E.; Jackson, Gary B.
Vocational education can play a significant role in achieving the ideals of a diverse society. Although workplace changes and global economics make vocational education essential, an increasingly diverse population includes groups that have not traditionally participated extensively in vocational education. Philosophical and attitudinal changes…
Dewan, Michael C; Rattani, Abbas; Fieggen, Graham; Arraez, Miguel A; Servadei, Franco; Boop, Frederick A; Johnson, Walter D; Warf, Benjamin C; Park, Kee B
2018-04-27
OBJECTIVE Worldwide disparities in the provision of surgical care result in otherwise preventable disability and death. There is a growing need to quantify the global burden of neurosurgical disease specifically, and the workforce necessary to meet this demand. METHODS Results from a multinational collaborative effort to describe the global neurosurgical burden were aggregated and summarized. First, country registries, third-party modeled data, and meta-analyzed published data were combined to generate incidence and volume figures for 10 common neurosurgical conditions. Next, a global mapping survey was performed to identify the number and location of neurosurgeons in each country. Finally, a practitioner survey was conducted to quantify the proportion of disease requiring surgery, as well as the median number of neurosurgical cases per annum. The neurosurgical case deficit was calculated as the difference between the volume of essential neurosurgical cases and the existing neurosurgical workforce capacity. RESULTS Every year, an estimated 22.6 million patients suffer from neurological disorders or injuries that warrant the expertise of a neurosurgeon, of whom 13.8 million require surgery. Traumatic brain injury, stroke-related conditions, tumors, hydrocephalus, and epilepsy constitute the majority of essential neurosurgical care worldwide. Approximately 23,300 additional neurosurgeons are needed to address more than 5 million essential neurosurgical cases-all in low- and middle-income countries-that go unmet each year. There exists a gross disparity in the allocation of the surgical workforce, leaving large geographic treatment gaps, particularly in Africa and Southeast Asia. CONCLUSIONS Each year, more than 5 million individuals suffering from treatable neurosurgical conditions will never undergo therapeutic surgical intervention. Populations in Africa and Southeast Asia, where the proportion of neurosurgeons to neurosurgical disease is critically low, are especially at risk. Increasing access to essential neurosurgical care in low- and middle-income countries via neurosurgical workforce expansion as part of surgical system strengthening is necessary to prevent severe disability and death for millions with neurological disease.
Rovin, Kimberly; Hardee, Karen; Kidanu, Aklilu
2013-09-01
Global climate change is felt disproportionately in the world's most economically disadvantaged countries. As adaption to an evolving climate becomes increasingly salient on national and global scales, it is important to assess how people at the local-level are already coping with changes. Understanding local responses to climate change is essential for helping countries to construct strategies to bolster resilience to current and future effects. This qualitative research investigated responses to climate change in Ethiopia; specifically, how communities react to and cope with climate variation, which groups are most vulnerable, and the role of family planning in increasing resilience. Participants were highly aware of changing climate effects, impacts of rapid population growth, and the need for increased access to voluntary family planning. Identification of family planning as an important adaptation strategy supports the inclusion of rights-based voluntary family planning and reproductive health into local and national climate change adaptation plans.
Improving the representation of photosynthesis in Earth system models
NASA Astrophysics Data System (ADS)
Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.
2015-12-01
Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.
Microwave sensing technology issues related to a global change technology architecture trade study
NASA Technical Reports Server (NTRS)
Campbell, Thomas G.; Shiue, Jim; Connolly, Denis; Woo, Ken
1991-01-01
The objectives are to enable the development of lighter and less power consuming, high resolution microwave sensors which will operate at frequencies from 1 to 200 GHz. These systems will use large aperture antenna systems (both reflector and phased arrays) capable of wide scan angle, high polarization purity, and utilize sidelobe suppression techniques as required. Essentially, the success of this technology program will enable high resolution microwave radiometers from geostationary orbit, lightweight and more efficient radar systems from low Earth orbit, and eliminate mechanical scanning methods to the fullest extent possible; a main source of platform instability in large space systems. The Global Change Technology Initiative (GCTI) will develop technology which will enable the use of satellite systems for Earth observations on a global scale.
The Lifespan Self-Esteem Scale: Initial Validation of a New Measure of Global Self-Esteem.
Harris, Michelle A; Donnellan, M Brent; Trzesniewski, Kali H
2018-01-01
This article introduces the Lifespan Self-Esteem Scale (LSE), a short measure of global self-esteem suitable for populations drawn from across the lifespan. Many existing measures of global self-esteem cannot be used across multiple developmental periods due to changes in item content, response formats, and other scale characteristics. This creates a need for a new lifespan scale so that changes in global self-esteem over time can be studied without confounding maturational changes with alterations in the measure. The LSE is a 4-item measure with a 5-point response format using items inspired by established self-esteem scales. The scale is essentially unidimensional and internally consistent, and it converges with existing self-esteem measures across ages 5 to 93 (N = 2,714). Thus, the LSE appears to be a useful measure of global self-esteem suitable for use across the lifespan as well as contexts where a short measure is desirable, such as populations with short attention spans or large projects assessing multiple constructs. Moreover, the LSE is one of the first global self-esteem scales to be validated for children younger than age 8, which provides the opportunity to broaden the field to include research on early formation and development of global self-esteem, an area that has previously been limited.
Understanding Global Change: Tools for exploring Earth processes and biotic change through time
NASA Astrophysics Data System (ADS)
Bean, J. R.; White, L. D.; Berbeco, M.
2014-12-01
Teaching global change is one of the great pedagogical challenges of our day because real understanding entails integrating a variety of concepts from different scientific subject areas, including chemistry, physics, and biology, with a variety of causes and impacts in the past, present, and future. With the adoption of the Next Generation Science Standards, which emphasize climate change and other human impacts on natural systems, there has never been a better time to provide instructional support to educators on these topics. In response to this clear need, the University of California Museum of Paleontology, in collaboration with the National Center for Science Education, developed a new web resource for teachers and students titled "Understanding Global Change" (UGC) that introduces the drivers and impacts of global change. This website clarifies the connections among deep time, modern Earth system processes, and anthropogenic influences, and provides K-16 instructors with a wide range of easy-to-use tools, strategies, and lesson plans for communicating these important concepts regarding global change and the basic Earth systems processes. In summer 2014, the UGC website was field-tested during a workshop with 25 K-12 teachers and science educators. Feedback from participants helped the UGC team develop and identify pedagogically sound lesson plans and instructional tools on global change. These resources are accessible through UGC's searchable database, are aligned with NGSS and Common Core, and are categorized by grade level, subject, and level of inquiry-based instruction (confirmation, structured, guided, open). Providing a range of content and tools at levels appropriate for teachers is essential because our initial needs assessment found that educators often feel that they lack the content knowledge and expertise to address complex, but relevant global change issues, such as ocean acidification and deforestation. Ongoing needs assessments and surveys of teacher confidence when teaching global change content will continue to drive UGC resource development as the site expands in the future.
Assessing the impact of planted forests on the global forest economy
Joseph Buongiorno; Shushuai Zhu
2014-01-01
Background: Planted forests are increasingly important in world forestry, natural resources conservation, and climate change policies. There is great interest in their potential for carbon sequestration and conservation of natural forests while they remain an essential source of fuelwood and industrial roundwood. Methods:...
Surface water change as a significant contributor to global evapotranspiration change
NASA Astrophysics Data System (ADS)
Zhan, S.; Song, C.
2017-12-01
Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in global ET trend studies and should also be included in global water budget studies.
NASA Astrophysics Data System (ADS)
Berhe, Asmeret Asefaw; Barnes, Rebecca T.; Six, Johan; Marín-Spiotta, Erika
2018-05-01
Most of Earth's terrestrial surface is made up of sloping landscapes. The lateral distribution of topsoil by erosion controls the availability, stock, and persistence of essential elements in the terrestrial ecosystem. Over the last two decades, the role of soil erosion in biogeochemical cycling of essential elements has gained considerable interest from the climate, global change, and biogeochemistry communities after soil erosion and terrestrial sedimentation were found to induce a previously unaccounted terrestrial sink for atmospheric carbon dioxide. More recent studies have highlighted the role of erosion in the persistence of organic matter in soil and in the biogeochemical cycling of elements beyond carbon . Here we synthesize available knowledge and data on how erosion serves as a major driver of biogeochemical cycling of essential elements. We address implications of erosion-driven changes in biogeochemical cycles on the availability of essential elements for primary production, on the magnitude of elemental exports downstream, and on the exchange of greenhouse gases from the terrestrial ecosystem to the atmosphere. Furthermore, we explore fates of eroded material and how terrestrial mass movement events play major roles in modifying Earth's climate.
Satellite Sensed Skin Sea Surface Temperature
NASA Technical Reports Server (NTRS)
Donlon, Craig
1997-01-01
Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to be confidently detected. Some of these activities are focussed to develop and deploy instrumentation suitable for the collection of precise in situ measurements of the SSST which can be used to improve the accuracy of satellite measurements, while others develop techniques to generate improved global analyses of sea surface temperature using historical data.
Preface--Environmental issues related to oil and gas exploration and production
Kharaka, Yousif K.; Otton, James K.
2007-01-01
Energy is the essential commodity that powers the expanding global economy. Starting in the 1950s, oil and natural gas became the main sources of primary energy for the rapidly increasing world population (Edwards, 1997). In 2003, petroleum was the source for 62.1% of global energy, and projections by energy information administration (EIA) indicate that oil and gas will continue their dominance, supplying 59.5% of global energy in 2030 (EIA, 2007). Unfortunately petroleum and coal consumption carry major detrimental environmental impacts that may be regional or global in scale, including air pollution, global climate change and oil spills. This special volume of Applied Geochemistry, devoted to “Environmental Issues Related to Oil and Gas Exploration and Production”, does not address these major impacts directly because air pollution and global climate change are issues related primarily to the burning of petroleum and coal, and major oil spills generally occur during ocean transport, such as the Exxon Valdez 1989 spill of 42,000 m3 (260,000 bbl) oil into Prince William Sound, Alaska.
Teaching Old Dogs New Tricks: On the Continuing Education of Teachers.
ERIC Educational Resources Information Center
Bates, Richard
The emergence of globalization and its impact on knowledge, communications, economies, social structures, and institutions such as education is rapidly changing the context, content, and methods of teachers' work. Consequently, the continuing professional development of teachers, especially in Australia with its aging teacher force, is essential.…
Protesting on Twitter: Citizenship and Empowerment from Public Education
ERIC Educational Resources Information Center
Saura, Geo; Muñoz-Moreno, José-Luis; Luengo-Navas, Julián; Martos, José-Manuel
2017-01-01
The use of social networks for protest purposes has been an essential element in recent global protests against the economic measures of privatization of public services. Social networks are changing political communication, mobilization and organization of collective protests. Taking into account the relationship between collective protests and…
Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.
2014-01-01
Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923
Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J
2014-05-13
Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.
Tabachnick, Walter J
2016-09-29
The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.
Assessing and managing freshwater ecosystems vulnerable to global change
Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.
2014-01-01
Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016
NASA Astrophysics Data System (ADS)
Li, Qiuping; Ma, Mingguo; Wu, Xiaodan; Yang, Hong
2018-01-01
Land surface albedo is an essential parameter in regional and global climate models, and it is markedly influenced by land cover change. Variations in the albedo can affect the surface radiation budget and further impact the global climate. In this study, the interannual variation of albedo from 2002 to 2016 was estimated on the global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. The presence and causes of the albedo changes for each specific region were also explored. From 2002 to 2016, the MODIS-based albedo decreased globally, snow cover declined by 0.970 (percent per pixel), while the seasonally integrated normalized difference vegetation index increased by 0.175. Some obvious increases in the albedo were detected in Central Asia, northeastern China, parts of the boreal forest in Canada, and the temperate steppe in North America. In contrast, noticeable decreases in the albedo were found in the Siberian tundra, Europe, southeastern Australia, and northeastern regions of North America. In the Northern Hemisphere, the greening trend at high latitudes made more contribution to the decline in the albedo. However, the dramatic fluctuation of snow-cover at midlatitudes predominated in the change of albedo. Our analysis can help to understand the roles that vegetation and snow cover play in the variation of albedo on global and regional scales.
Gregg, Watson W; Rousseaux, Cécile S
2014-09-01
Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998-2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales.
A global, 30-m resolution land-surface water body dataset for 2000
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.
2014-12-01
Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).
Megatrends for the information age.
Aburdene, P
1994-01-01
The 1990s are a decade characterized by change. Technological advances and health care reform are changing the demand for and provision of biomedical information, while political, economic, and social change are transforming the larger environment. There are four important megatrends shaping the global future: the new world order, the renaissance of the arts, the triumph of the individual, and the decade of women in leadership. Preparing to take advantage of the opportunities created by these changes is essential for organizations to survive and for individuals to become leaders. PMID:8136755
Dymova, Natalya; Hanumara, R. Choudary; Gagnon, Ronald N.
2009-01-01
Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies. PMID:19696393
Dymova, Natalya; Hanumara, R Choudary; Enander, Richard T; Gagnon, Ronald N
2009-10-01
Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies.
Climate change implications and use of early warning systems for global dust storms
Harriman, Lindsey M.
2014-01-01
With increased changes in land cover and global climate, early detection and warning of dust storms in conjunction with effective and widespread information broadcasts will be essential to the prevention and mitigation of future risks and impacts. Human activities, seasonal variations and long-term climatic patterns influence dust storms. More research is needed to analyse these factors of dust mobilisation to create more certainty for the fate of vulnerable populations and ecosystems in the future. Early warning and communication systems, when in place and effectively implemented, can offer some relief to these vulnerable areas. As an issue that affects many regions of the world, there is a profound need to understand the potential changes and ultimately create better early warning systems for dust storms.
Virtual Soil Monoliths: Blending Traditional and Web-Based Educational Approaches
ERIC Educational Resources Information Center
Krzic, Maja; Strivelli, Rachel A.; Holmes, Emma; Grand, Stephanie; Dyanatkar, Saeed; Lavkulich, Les M.; Crowley, Chris
2013-01-01
Since soil plays a crucial role in all aspects of global environmental change, it is essential that post-secondary institutions provide students with a strong foundation in soil science concepts including soil classification. The onset of information technology (IT) and web-based multimedia have opened new avenues to better incorporate…
Expect the Unexpected: International Short-Term Study Course Pedagogies and Practices
ERIC Educational Resources Information Center
Roholt, Ross VeLure; Fisher, Colleen
2013-01-01
Given the United States' population changes and the increasing impact of globalization, international context and experience in the MSW curriculum are essential. Gaining popularity as a vehicle for such experience are short-term international courses, defined as educational trips outside the United States lasting from 1 to 3 weeks. To achieve…
The Essential Work of Democracy
ERIC Educational Resources Information Center
Bush, George W.
2004-01-01
Nothing is more important to America's future than teaching children the skills they need to be successful. Every child must receive a quality education if America is to be a prosperous and hopeful country. The rapidly changing global economy is creating new industries that compete for highly skilled workers from around the world, and young people…
ERIC Educational Resources Information Center
Hidalgo, Cecilia
2016-01-01
Interdisciplinarity and knowledge networking are at the core of current global, regional, and national initiatives concerning climate. Both scientifc knowledge and public participation are essential to enhance the capacity of different sectors and governments to respond to challenges posed by climate variability and change. Exchange and bridge…
The Ideal State Postsecondary Data System: 15 Essential Characteristics and Required Functionality
ERIC Educational Resources Information Center
Ewell, Peter; L'Orange, Hans
2009-01-01
A rapidly changing global economy, shifting demographics, and concerns about our ability to maintain a competitive workforce have focused national attention on the educational systems of America's states, highlighting their critical role in ensuring a productive and creative future for our country. As a result, Americas colleges and universities…
L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H. Wan; L. B. Zhang; J. L. Niu; Y. H. Sang; J. J He
2015-01-01
Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...
The impact of first-generation biofuels on the depletion of the global phosphorus reserve.
Hein, Lars; Leemans, Rik
2012-06-01
The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.
Essential ocean variables for global sustained observations of biodiversity and ecosystem changes.
Miloslavich, Patricia; Bax, Nicholas J; Simmons, Samantha E; Klein, Eduardo; Appeltans, Ward; Aburto-Oropeza, Octavio; Andersen Garcia, Melissa; Batten, Sonia D; Benedetti-Cecchi, Lisandro; Checkley, David M; Chiba, Sanae; Duffy, J Emmett; Dunn, Daniel C; Fischer, Albert; Gunn, John; Kudela, Raphael; Marsac, Francis; Muller-Karger, Frank E; Obura, David; Shin, Yunne-Jai
2018-04-05
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Linking microscopic and macroscopic response in disordered solids
NASA Astrophysics Data System (ADS)
Hexner, Daniel; Liu, Andrea J.; Nagel, Sidney R.
2018-06-01
The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of the bonds due to an applied distortion such as compression in the case of the bulk modulus or shear in the case of the shear modulus. However, the distortion need not be global. Here we introduce a local modulus, Li, associated with changing the equilibrium length of a single bond, i , in the network. We show that Li is useful for understanding many aspects of the mechanical response of the entire system. It allows an efficient computation of how the removal of any bond changes the global properties such as the bulk and shear moduli. Furthermore, it allows a prediction of the distribution of these changes and clarifies why the changes of these two moduli due to removal of a bond are uncorrelated; these are the essential ingredients necessary for the efficient manipulation of network properties by bond removal.
Rapid response to climate change in a marginal sea.
Schroeder, K; Chiggiato, J; Josey, S A; Borghini, M; Aracri, S; Sparnocchia, S
2017-06-22
The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a long-term record (1993-2016) of the thermohaline properties of the Intermediate Water that crosses the Sicily Channel, showing increasing temperature and salinity trends much stronger than those observed at intermediate depths in the global ocean. We investigate the causes of the observed trends and in particular determine the role of a changing climate over the Eastern Mediterranean, where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.
NASA Astrophysics Data System (ADS)
Wold, Kari
Successfully interacting with those from different cultures is essential to excel in any field, particularly when global, transnational collaborations in the workplace are increasingly common. However, many higher education students in engineering are not explicitly taught how to display the global competency skills desired by future employers. To display global competency skills means students must be able to visibly respect and recognize differences among those from different cultures. Global competency also means students must be able to show they can adjust their behaviors and integrate others' ideas when working with those with cultural backgrounds other than their own. While these skills are now deemed essential for future engineers, many institutions are struggling with determining which strategies and activities are universally effective to allow students to practice the global competency skills now crucial for success. Immersing engineering students in interactive role-playing simulations in transnational environments is one way institutions are encouraging students to illustrate and develop global competency skills. Role-playing simulations in transnational education provide environments where students adopt roles, interact with other students, and together explore and address realistic global problems. However, no studies have addressed whether or how role-playing simulations can help develop global competency in transnational engineering courses, students' perceptions regarding whether they change their abilities to display global competency in those environments, and their perspectives the effectiveness of using role-playing simulations for this purpose. To address this gap, this study assesses the impact of two subsequent role-playing simulations involving nuclear energy policy in a transnational course involving engineering students from the University of Virginia in Charlottesville, Virginia, and from Technische Universitat Dortmund in Dortmund, Germany. The differences in students' self-reports regarding whether their behaviors showing global competency skills changed were insignificant from pretests and posttests. However, data obtained from observations, surveys, and interviews showed students did increase their abilities to display global competency, and they believed role-playing simulations were useful in helping them do so. Findings from this study inform program designers and instructors on how to help students display, and improve their abilities to display, the global competency skills that will help them succeed in the world that awaits them.
Zhuang, Wan-E; Yang, Liyang
2018-02-01
Dissolved organic matter (DOM) is an important component in the biogeochemistry and ecosystem function of aquatic environments at the highly populated land-ocean interface. The mobilization and transformation of DOM at this critical interface are increasingly affected by a series of notable global changes such as the increasing storm events, intense human activities, and accelerating glacier loss. This review provides an overview of the changes in the quantity and quality of DOM under the influences of multiple global changes. The profound implications of changing DOM for aquatic ecosystem and human society are further discussed, and future research needs are suggested for filling current knowledge gaps. The fluvial export of DOM is strongly intensified during storm events, which is accompanied with notable changes in the chemical composition and reactivity of DOM. Land use not only changes the mobilization of natural DOM source pools within watersheds but also adds DOM of distinct chemical composition and reactivity from anthropogenic sources. Glacier loss brings highly biolabile DOM to downstream water bodies. The changing DOM leads to significant changes in heterotrophic activity, CO 2 out gassing, nutrient and pollutant biogeochemistry, and disinfection by-product formation. Further studies on the source, transformations, and downstream effects of storm DOM, temporal variations of DOM and its interactions with other pollutants in human-modified watersheds, photo-degradability of glacier DOM, and potential priming effects, are essential for better understanding the responses and feedbacks of DOM at the land-ocean interface under the impacts of global changes.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
Does Watching Help? In Search of the Theory of Change for Education Monitoring
ERIC Educational Resources Information Center
Post, David
2015-01-01
In 2015 Education for All (EFA), concludes its 25-year cycle, and the Global Monitoring Report (GMR) publishes its final assessment of triumph and defeat in reaching the six EFA goals. Before the United Nations adopts new Sustainable Development Goals, it is essential to consider the underlying theories of monitoring. This essay addresses two…
ERIC Educational Resources Information Center
Asabere, Nana; Togo, Gilbert; Acakpovi, Amevi; Torby, Wisdom; Ampadu, Kwame
2017-01-01
Information and Communication Technologies (ICT) has changed the way we communicate and carry out certain daily activities. Globally, ICT has become an essential means for disseminating information. Using Accra Technical University in Ghana as a case study, this paper proposes an ICT model called Awareness Incentives Demand and Support (AIDS). Our…
Recovery dynamics and climate change effects to future New England forests
Matthew J. Duveneck; Jonathan R. Thompson; Eric J. Gustafson; Yu Liang; Arjan M. G. de Bruijn
2017-01-01
Context. Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to...
Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)
2000-01-01
The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.
NASA Astrophysics Data System (ADS)
He, Hao; Liang, Xin-Zhong; Lei, Hang; Wuebbles, Donald J.
2016-03-01
A consistent modeling framework with nested global and regional chemical transport models (CTMs) is used to separate and quantitatively assess the relative contributions to projections of future U.S. ozone pollution from the effects of emissions changes, climate change, long-range transport (LRT) of pollutants, and differences in modeling design. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, a regional CTM's representation of present-day U.S. ozone pollution is notably improved, especially relative to results from the regional CTM with fixed LBCs or from the global CTM alone. This nested system of global and regional CTMs projects substantial surface ozone trends for the 2050's: 6-10 ppb decreases under the 'clean' A1B scenario and ∼15 ppb increases under the 'dirty' A1Fi scenario. Among the total trends of future ozone, regional emissions changes dominate, contributing negative 25-60% in A1B and positive 30-45% in A1Fi. Comparatively, climate change contributes positive 10-30%, while LRT effects through changing chemical LBCs account for positive 15-20% in both scenarios, suggesting introducing dynamic LBCs could influence projections of the U.S. future ozone pollution with a magnitude comparable to effects of climate change alone. The contribution to future ozone projections due to differences in modeling design, including model formulations, emissions treatments, and other factors between the global and the nested regional CTMs, is regionally dependent, ranging from negative 20% to positive 25%. It is shown that the model discrepancies for present-day simulations between global and regional CTMs can propagate into future U.S. ozone projections systematically but nonlinearly, especially in California and the Southeast. Therefore in addition to representations of emissions change and climate change, accurate treatment of LBCs for the regional CTM is essential for projecting the future U.S. ozone pollution.
NPOESS, Essential Climates Variables and Climate Change
NASA Astrophysics Data System (ADS)
Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.
2008-12-01
Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.
The credibility challenge for global fluvial flood risk analysis
NASA Astrophysics Data System (ADS)
Trigg, M. A.; Birch, C. E.; Neal, J. C.; Bates, P. D.; Smith, A.; Sampson, C. C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; Ward, P. J.; Winsemius, H. C.; Salamon, P.; Dottori, F.; Rudari, R.; Kappes, M. S.; Simpson, A. L.; Hadzilacos, G.; Fewtrell, T. J.
2016-09-01
Quantifying flood hazard is an essential component of resilience planning, emergency response, and mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently, efforts have intensified to estimate flood risk globally to better allow consistent and equitable decision making. Global flood hazard models are now a practical reality, thanks to improvements in numerical algorithms, global datasets, computing power, and coupled modelling frameworks. Outputs of these models are vital for consistent quantification of global flood risk and in projecting the impacts of climate change. However, the urgency of these tasks means that outputs are being used as soon as they are made available and before such methods have been adequately tested. To address this, we compare multi-probability flood hazard maps for Africa from six global models and show wide variation in their flood hazard, economic loss and exposed population estimates, which has serious implications for model credibility. While there is around 30%-40% agreement in flood extent, our results show that even at continental scales, there are significant differences in hazard magnitude and spatial pattern between models, notably in deltas, arid/semi-arid zones and wetlands. This study is an important step towards a better understanding of modelling global flood hazard, which is urgently required for both current risk and climate change projections.
Marchetti, Enrico; Capone, Pasquale; Freda, Daniela
2016-01-01
Climate change is a global emergency that influences human health and occupational safety. Global warming characterized by an increase in temperature of the ambience and humidity affects human health directly impairing body thermoregulation with serious consequences: dehydration, fatigue, heat stroke and even death. Several studies have demonstrated negative effects of climate change on working populations in a wide variety of workplaces with particular regard to outdoor and uncooled indoor workplaces. Most vulnerable workers are outdoor workers in tropical and subtropical countries usually involved in heavy labor during hot seasons. Many of the consequences therefore, regarding working people are possible, even without health symptoms by reducing work productivity. The scope of this review is to investigate effects of climate change on workers both in relation to health and work productivity. This study has been realized by analyzing recent international literature. In order to reduce negative effects of climate change on working populations it is essential to implement preventive measures with a multidisciplinary strategy limiting health risks and improving work productivity.
Climate forcings and feedbacks
NASA Technical Reports Server (NTRS)
Hansen, James
1993-01-01
Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption or an El Nino.
Global safe anaesthesia and surgery initiatives: implications for anaesthesia in the Pacific region.
Cooper, M G; Wake, P B; Morriss, W W; Cargill, P D; McDougall, R J
2016-05-01
In 2015 three major events occurred for global anaesthesia and surgery. In January, the World Bank published Disease Control Priorities 3rd edition (DCP 3rd edition). This volume, Essential Surgery, highlighted the cost effective role of anaesthesia and surgery in global health. In April, the Lancet Commission on Global Surgery released its report "Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development". The report focuses on five key areas to promote change including: access to timely surgery, surgical workforce and procedural capability, surgical volume, data collection such as perioperative mortality rate, and financial protection. In May, the 68th World Health Assembly (WHA) voted in favour of Resolution A68/31: Strengthening emergency and essential surgical and anaesthesia care as a component of universal health coverage. The resolution was passed unanimously and it is the first time that surgery and anaesthesia have received such prominence at WHA level. These three events all have profound implications for the provision and access of safe anaesthesia and surgery in the Pacific region in the next 15 years. This article considers some of the regional factors that affect these five key areas, especially with regard to anaesthetic specialist workforce density in different parts of the region. There are many challenges to improve anaesthesia access, safety, and workforce density in the Pacific region. Future efforts, initiatives and support will help address these problems.
NASA Astrophysics Data System (ADS)
Fuchs, Richard; Prestele, Reinhard; Verburg, Peter H.
2018-05-01
The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30-100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5° grid cells was substantially larger than net changes in all parts of the world. As 0.5° grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as an empirical database for land change dynamics that can be applied in Earth system models and integrated assessment models.
Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.
2011-01-01
This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy (2007). When science strategies that cover these other components are developed, coordinated implementation will be necessary to achieve Bureau-level synergies and optimize capabilities and expertise.In October 2010, USGS realigned its management and budget structure to implement its 2007 Science Strategy. The new organizational structure, in which “Global Change” is one of seven key mission areas, lends itself to the advancement of the established six strategic goals. USGS global change science is formally represented by the “Climate and Land-Use Change” Mission Area in the FY 2012 budget (USGS, 2011).This plan was developed by the USGS Global Change Science Strategy Planning Team (SSPT) appointed by the USGS Director on March 4, 2010 and charged with developing a Global Change Science Strategy for the coming decade (McNutt, 2010). USGS managers and science staff are the main audience for this science strategy. This document is also intended to serve as the foundation for consistent USGS collaboration and communication with partners and stakeholders.
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2014-05-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.
Erskine-Ogden, Jennifer; Grotkopp, Eva; Rejmánek, Marcel
2016-04-01
Revealing biological differences between invasive and noninvasive species is essential for predicting species' distribution changes with global environmental change. While most research has focused on differences between invasive and noninvasive species under favorable conditions using herbaceous species, invasive woody angiosperms are also of great ecological concern. Our study focused on how growth and allocation may change for invasive and noninvasive, mediterranean, woody angiosperms under future conditions caused by global change, specifically increased nitrogen deposition and drought. We tested how seedling functional traits differed between invasive and noninvasive woody angiosperms under different experimental conditions in a greenhouse setting. We compared growth rates and allocation patterns using two levels of soil nitrogen and three levels of watering. We also examined trait log response ratios to increases in nitrogen and increases in water. Our study sampled angiosperm trees and shrubs, incorporating congeneric/confamilial relationships through 13 phylogenetically controlled contrasts. Three functional traits were highly and positively associated with plant invasiveness for most conditions studied: seedling plant mass, leaf area, and height. Invasive species also had significantly higher root mass ratios at low water regardless of nitrogen input. Invasive and noninvasive species had similar log response ratios to increases in nitrogen and watering for studied traits. Mediterranean, woody, invasive species' larger mass, leaf area, and early height advantage under elevated nitrogen input and increased root production in drought conditions may lead to increased invasion of these species with expected global climate change. © 2016 Botanical Society of America.
Being global in public health practice and research: complementary competencies are needed.
Cole, Donald C; Davison, Colleen; Hanson, Lori; Jackson, Suzanne F; Page, Ashley; Lencuch, Raphael; Kakuma, Ritz
2011-01-01
Different sets of competencies in public health, global health and research have recently emerged, including the Core Competencies for Public Health in Canada (CCPHC). Within this context, we believe it is important to articulate competencies for globalhealth practitioners-educators and researchers that are in addition to those outlined in the CCPHC. In global health, we require knowledge and skills regarding: north-south power dynamics, linkages between local and global health problems, and the roles of international organizations. We must be able to work responsibly in low-resource settings, foster self-determination in a world rife with power differentials, and engage in dialogue with stakeholders globally. Skills in cross-cultural communication and the ability to critically self-reflect on one's own social location within the global context are essential. Those in global health must be committed to improving health equity through global systems changes and be willing to be mentored and to mentor others across borders. We call for dialogue on these competencies and for development of ways to assess both their demonstration in academic settings and their performance in global health practice and research.
ERIC Educational Resources Information Center
McNeill, Katherine L.; Pimentel, Diane Silva
2010-01-01
Argumentation is a core practice of science and has recently been advocated as an essential goal of science education. Our research focuses on the discourse in urban high school science classrooms in which the teachers used the same global climate change curriculum. We analyzed transcripts from three teachers' classrooms examining both the…
ERIC Educational Resources Information Center
Brown, I. Foster
2008-01-01
Learning to question is essential for determining pathways of conservation and development in southwestern Amazonia during a time of rapid global environmental change. Teaching such an approach in graduate science programs in regional universities can be done using play-acting and simulation exercises. Multiple working hypotheses help students…
Long-term soil monitoring at U.S. Geological Survey reference watersheds
McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa
2014-01-01
Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.
ERIC Educational Resources Information Center
Thurman, Becky A.
2009-01-01
Quality education is imperative in preparing students in the United States to succeed in a competitive and ever-changing global society. Critical thinking, an essential component of a quality educational program, has been identified as a key 21st Century skill. However, research indicates a gap in educational preparedness between high school and…
ERIC Educational Resources Information Center
Dehmel, Alexandra
2014-01-01
Continuous vocational education and training (CVET) for all is essential to respond to increased global competition and changing technological and socioeconomic requirements. What can be done to make use of the full potential that CVET has to offer individuals, enterprises, society and the economy? How can participation in CVET be increased and…
Climate change induced by Southern Hemisphere desertification
NASA Astrophysics Data System (ADS)
Wang, Ye; Yan, Xiaodong
2017-12-01
Some 10-20% of global dry-lands are already degraded, and the ongoing desertification threatens the world's poorest populations. Studies on desertification effects are essential for humans to adapt to the environmental challenges posed by desertification. Given the importance of the much larger southern ocean to the global climate and the Southern Hemisphere (SH) climate changes in phase with those in the north, the biogeophysical effects of the SH desertification on climate are assessed using an Earth system model of intermediate complexity, MPM-2. This analysis focuses on differences in climate among the averages of simulations with desert expansion in different latitude bands by year 2000. The localized desertification causes significant global changes in temperature and precipitation as well as surface albedo. On the global scale, cooling dominates the SH desertification effects. However, the biogeophysical effects are most significant in regions with desertification, and the cooling is also prominent in northern mid-latitudes. Desert expansion in 15°-30°S reveals statistically most significant cooling and increased precipitation over the forcing regions during spring. The global and regional scale responses from desertification imply the climate teleconnection and address the importance of the effects from the SH which are contingent on the location of the forcing. Our study indicates that biogeophysical mechanisms of land cover changes in the SH need to be accounted for in the assessment of land management options especially for latitude band over 15°-30°S.
Global Precipitation Measurement. Report 1; Summary of the First GPM Partners Planning Workshop
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Mehta, Amita; Smith, Eric A. (Editor); Adams, W. James (Editor)
2002-01-01
This report provides a synopsis of the proceedings of the First Global Precipitation Measurement (GPM) Partners Planning Workshop held at the University of Maryland, College Park, from May 16 to 18, 2001. GPM consists of a multi-member global satellite constellation (i.e., an international set of satellite missions) and the accompanying scientific research program, with the main goal of providing frequent, accurate, and globally distributed precipitation measurements essential in understanding several fundamental issues associated with the global water and energy cycle (GWEC). The exchange of scientific and technical information at this and subsequent GPM workshops between representatives from around the world represents a key step in the formulation phase of GPM mission development. The U.S. National Aeronautics and Space Agency (NASA), the National Space Development Agency of Japan (NASDA), and other interested agencies from nations around the world seek to observe, understand, and model the Earth system to learn how it is changing and what consequences these changes have on life, particularly as they pertain to hydrological processes and the availability of fresh water resources. GWEN processes are central to a broader understanding of the Earth system.
Heard, Brent R; Miller, Shelie A
2016-11-15
The unbroken global refrigerated supply chain, or cold chain, is rapidly expanding in developing countries. In addition to increasing the energy intensity of the food system, the expanded cold chain may facilitate changes in the global diet, food waste patterns, food production and distribution, and shopping habits. The sustainability impacts of many of these changes chain are unknown, given the complexity of interacting social, economic, and technical factors. The current literature surrounding the environmental impacts of refrigeration in the food system focuses on the direct impacts of energy use and coolant emissions, and lacks a critical evaluation of the accompanying systemic societal changes that potentially carry greater environmental impacts. This review examines the cold chain as a transformative technology, identifying key intrinsic, indirect, and external factors that will favorably, unfavorably, or ambiguously impact the environmental profile of the food system. The review identifies key interactions and feedbacks between the cold chain, food production and consumption decisions, infrastructure development, and the global environment which are largely unexamined and in need of empirical data. Viewing cold chain expansion from this broader perspective is essential to understanding the changing impacts of the food system in developing countries and may inform future sustainability planning.
Plasma is a strategic resource.
Strengers, Paul F W; Klein, Harvey G
2016-12-01
Plasma-derived medicinal products (PDMPs) such as immunoglobulins and clotting factors are listed by the World Health Organization as essential medicines. These and other PDMPs are crucial for the prophylaxis and treatment of patients with bleeding disorders, immune deficiencies, autoimmune and inflammatory diseases, and a variety of congenital deficiency disorders. While changes in clinical practice in developed countries have reduced the need for red blood cell transfusions thereby significantly reducing the collection volumes of whole blood and recovered plasma suitable for fractionation, the need for PDMPs worldwide continues to increase. The majority of plasma supplies for the manufacture of PDMPs is met by the US commercial plasma industry. However, geographic imbalance in the collection of plasma raises concerns that local disruptions of plasma supplies could result in regional and global shortages of essential PDMPs. Plasma, which fits the definition of a strategic resource, that is, "an economically important raw material which is subject to a higher risk of supply interruption," should be considered a strategic resource comparable to energy and drinking water. Plasma collections should be increased outside the United States, including in low- and middle-income countries. The need for capacity building in these countries is an essential part to strengthen quality plasma collection. This will require changes in national and regional policies. We advocate the need for the restoration of an equitable balance of the international plasma supply to reduce the risk of supply shortages worldwide. Strategic independence of plasma should be endorsed on a global level. © 2016 AABB.
Folguera, Guillermo; Bastías, Daniel A; Caers, Jelle; Rojas, José M; Piulachs, Maria-Dolors; Bellés, Xavier; Bozinovic, Francisco
2011-07-01
Global climate change is one of the greatest threats to biodiversity; one of the most important effects is the increase in the mean earth surface temperature. However, another but poorly studied main characteristic of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We experimentally tested the effects of environmental temperature variability on characteristics associated to the fitness (body mass balance, growth rate, and survival), metabolic rate (VCO(2)) and molecular traits (heat shock protein expression, Hsp70), in an ectotherm, the terrestrial woodlouse Porcellio laevis. Our general hypotheses are that higher values of thermal amplitude may directly affect life-history traits, increasing metabolic cost and stress responses. At first, results supported our hypotheses showing a diversity of responses among characters to the experimental thermal treatments. We emphasize that knowledge about the cellular and physiological mechanisms by which animals cope with environmental changes is essential to understand the impact of mean climatic change and variability. Also, we consider that the studies that only incorporate only mean temperatures to predict the life-history, ecological and evolutionary impact of global temperature changes present important problems to predict the diversity of responses of the organism. This is because the analysis ignores the complexity and details of the molecular and physiological processes by which animals cope with environmental variability, as well as the life-history and demographic consequences of such variability. Copyright © 2011 Elsevier Inc. All rights reserved.
Time series of Essential Climate Variables from Satellite Data
NASA Astrophysics Data System (ADS)
Werscheck, M.
2010-09-01
Climate change is a fact. We need to know how the climate system will develop in future and how this will affect workaday life. To do this we need climate models for prediction of the future on all time scales, and models to assess the impact of the prediction results to the various sectors of social and economic life. With this knowledge we can take measures to mitigate the causes and adapt to changes. Prerequisite for this is a careful and thorough monitoring of the climate systems. Satellite data are an increasing & valuable source of information to observe the climate system. For many decades now satellite data are available to derive information about our planet earth. EUMETSAT is the European Organisation in charge of the exploitation of satellite data for meteorology and (since the year 2000) climatology. Within the EUMETSAT Satellite Application Facility (SAF) Network, comprising 8 initiatives to derive geophysical parameters from satellite, the Satellite Application Facility on Climate Monitoring (CM SAF) is especially dedicated to provide climate relevant information from satellite data. Many products as e.g. water vapour, radiation at surface and top of atmosphere, cloud properties are available, some of these for more then 2 decades. Just recently the European Space Agency (ESA) launched the Climate Change Initiative (CCI) to derive Essential Climate Variables (ECVs) from satellite data, including e.g. cloud properties, aerosol, ozone, sea surface temperature etc.. The presentation will give an overview on some relevant European activities to derive Essential Climate Variables from satellite data and the links to Global Climate Observing System (GCOS), the Global Satellite Intercalibration System (GSICS) as well as the Sustained Co-ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE CM).
Does Polar Research Matter? (Invited)
NASA Astrophysics Data System (ADS)
Holmes, R.
2009-12-01
Climate change is one of the most serious challenges facing humanity. The polar regions are being disproportionately impacted, particularly in the Arctic where warming is greatly amplified. Moreover, there are strong feedbacks from the polar regions to the global climate system and sea level, so changes at the poles have global ramifications. Not surprisingly, polar research is often justified because of its relevance to global climate change. In spite of this, where are the “solutions” in the polar regions? For example, a scientist interested in climate change who studies tropical forests can work toward preserving the forests since deforestation is one of the main contributors to anthropogenic climate change. Are there similar direct solutions in polar regions? I will suggest that the answer is no, since the human controlled causes of climate change take place far removed from the poles. On the other hand, polar research has been absolutely essential for educating the public about climate change: the combination of important science and dramatic stories and images have captured the public’s attention more than for science originating in other regions. I will draw examples from several IPY projects that reached a broad public audience, and suggest that public education and outreach is the most important thing polar scientists can do to “make a difference” with respect to solving the climate crisis because environmental literacy (and an educated electorate) has been the factor that has most limited progress.
Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay
2012-01-01
The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833
Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto
2018-06-01
Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.
2016-12-01
Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.
Nava, Alessandra; Shimabukuro, Juliana Suieko; Chmura, Aleksei A; Luz, Sérgio Luiz Bessa
2017-12-15
Environmental changes have a huge impact on the emergence and reemergence of certain infectious diseases, mostly in countries with high biodiversity and serious unresolved environmental, social, and economic issues. This article summarizes the most important findings with special attention to Brazil and diseases of present public health importance in the country such as Chikungunya, dengue fever, yellow fever, Zika, hantavirus pulmonary syndrome, leptospirosis, leishmaniasis, and Chagas disease. An extensive literature review revealed a relationship between infectious diseases outbreaks and climate change events (El Niño, La Niña, heatwaves, droughts, floods, increased temperature, higher rainfall, and others) or environmental changes (habitat fragmentation, deforestation, urbanization, bushmeat consumption, and others). To avoid or control outbreaks, integrated surveillance systems and effective outreach programs are essential. Due to strong global and local influence on emergence of infectious diseases, a more holistic approach is necessary to mitigate or control them in low-income nations.
Rapid coupling between ice volume and polar temperature over the past 150,000 years.
Grant, K M; Rohling, E J; Bar-Matthews, M; Ayalon, A; Medina-Elizalde, M; Ramsey, C Bronk; Satow, C; Roberts, A P
2012-11-29
Current global warming necessitates a detailed understanding of the relationships between climate and global ice volume. Highly resolved and continuous sea-level records are essential for quantifying ice-volume changes. However, an unbiased study of the timing of past ice-volume changes, relative to polar climate change, has so far been impossible because available sea-level records either were dated by using orbital tuning or ice-core timescales, or were discontinuous in time. Here we present an independent dating of a continuous, high-resolution sea-level record in millennial-scale detail throughout the past 150,000 years. We find that the timing of ice-volume fluctuations agrees well with that of variations in Antarctic climate and especially Greenland climate. Amplitudes of ice-volume fluctuations more closely match Antarctic (rather than Greenland) climate changes. Polar climate and ice-volume changes, and their rates of change, are found to covary within centennial response times. Finally, rates of sea-level rise reached at least 1.2 m per century during all major episodes of ice-volume reduction.
NASA Astrophysics Data System (ADS)
Lewis, Simon; Maslin, Mark
2016-04-01
Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Should the Anthropocene - the idea that human activity is a force acting upon the Earth system in ways that mean that Earth will be altered for millions of years - be defined as a geological time-unit at the level of an Epoch? Here we appraise the data to assess such claims, first in terms of changes to the Earth system, with particular focus on very long-lived impacts, as Epochs typically last millions of years. Can Earth really be said to be in transition from one state to another? Secondly, we then consider the formal criteria used to define geological time-units and move forward through time examining whether currently available evidence passes typical geological time-unit evidence thresholds. We suggest two time periods likely fit the criteria (1) the aftermath of the interlinking of the Old and New Worlds, which moved species across continents and ocean basins worldwide, a geologically unprecedented and permanent change, which is also the globally synchronous coolest part of the Little Ice Age (in Earth system terms), and the beginning of global trade and a new socio-economic "world system" (in historical terms), marked as a golden spike by a temporary drop in atmospheric CO2, centred on 1610 CE; and (2) the aftermath of the Second World War, when many global environmental changes accelerated and novel long-lived materials were increasingly manufactured, known as the Great Acceleration (in Earth system terms) and the beginning of the Cold War (in historical terms), marked as a golden spike by the peak in radionuclide fallout in 1964. We finish by noting that the Anthropocene debate is politically loaded, thus transparency in the presentation of evidence is essential if a formal definition of the Anthropocene is to avoid becoming a debate about bias. The Anthropocene is essentially the time when human history meshes with near-permanent changes to the Earth system and some of those changes are preserved as geological deposits. A satisfying theory and definition of the Anthropocene will ideally rest on intertwined evidence from disparate human history and natural science disciplines. Such a definition may not be possible, and different disciplines many utilise different definitions. However, any scientific definition of the Anthropocene Epoch should be transparently evidence-based.
Supporting Effective Data Sharing and Re-Use: What Can Funders Really Do?
NASA Astrophysics Data System (ADS)
Uhle, M. E.
2017-12-01
Most research funding agencies have data policies that grantees must abide to receive financial support for projects and activities. These policies however are typically not uniform, can be inconsistent and in some cases, can be contradictory preventing national and international collaboration. In addition, disciplinary divisions within a single agency may implement agency policy differently. These barriers are particularly profound for multi, inter- and/or transdisciplinary research needed to address many global environmental challenges. Recognizing the crucial role of open and effective data and information exchange to support effective international transdisciplinary research for understanding, mitigating and adapting to global environmental change, the Belmont Forum adopted Open Data Policy and Principles in 2015. This policy signals a commitment by these 25 funders to increase access to scientific data, a step widely recognized as essential to making informed decisions in the face of rapid changes affecting the Earth's environment. Through collaborative research actions and community driven activities, the Belmont Forum seeks to widen access to data, and promote its long-term preservation in global change research; encourage re-use of existing data; help improve data management and exploitation; coordinate and integrate disparate organizational and technical elements; fill critical global e-infrastructure gaps; share best practices; and foster new data literacy.
NASA Astrophysics Data System (ADS)
Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.
2017-06-01
Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.
Usefulness and limitations of global flood risk models
NASA Astrophysics Data System (ADS)
Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel
2016-04-01
Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742
W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets
2014-01-01
Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...
Seasonality constraints to livestock grazing intensity.
Fetzel, Tamara; Havlik, Petr; Herrero, Mario; Erb, Karl-Heinz
2017-04-01
Increasing food production is essential to meet the future food demand of a growing world population. In light of pressing sustainability challenges such as climate change and the importance of the global livestock system for food security as well as GHG emissions, finding ways to increasing food production sustainably and without increasing competition for food crops is essential. Yet, many unknowns relate to livestock grazing, in particular grazing intensity, an essential variable to assess the sustainability of livestock systems. Here, we explore ecological limits to grazing intensity (GI; i.e. the fraction of net primary production consumed by grazing animals) by analysing the role of seasonality in natural grasslands. We estimate seasonal limitations to GI by combining monthly net primary production data and a map of global livestock distribution with assumptions on the length of nonfavourable periods that can be bridged by livestock (e.g. by browsing dead standing biomass, storage systems or biomass conservation). This allows us to derive a seasonality-limited potential GI, which we compare with the GI prevailing in 2000. We find that GI in 2000 lies below its potential on 39% of the total global natural grasslands, which has a potential for increasing biomass extraction of up to 181 MtC/yr. In contrast, on 61% of the area GI exceeds the potential, made possible by management. Mobilizing this potential could increase milk production by 5%, meat production by 4% or contribute to free up to 2.8 Mio km² of grassland area at the global scale if the numerous socio-ecological constraints can be overcome. We discuss socio-ecological trade-offs, which may reduce the estimated potential considerably and require the establishment of sound monitoring systems and an improved understanding of livestock system's role in the Earth system. © 2017 John Wiley & Sons Ltd.
Exploring Land Use and Land Cover Change and Feedbacks in the Global Change Assessment Model
NASA Astrophysics Data System (ADS)
Chen, M.; Vernon, C. R.; Huang, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.
2017-12-01
Land Use and Land Cover Change (LULCC) is a major driver of global and regional environmental change. Projections of land use change are thus an essential component in Integrated Assessment Models (IAMs) to study feedbacks between transformation of energy systems and land productivity under the context of climate change. However, the spatial scale of IAMs, e.g., the Global Change Assessment Model (GCAM), is typically larger than the scale of terrestrial processes in the human-Earth system, LULCC downscaling therefore becomes a critical linkage among these multi-scale and multi-sector processes. Parametric uncertainties in LULCC downscaling algorithms, however, have been under explored, especially in the context of how such uncertainties could propagate to affect energy systems in a changing climate. In this study, we use a LULCC downscaling model, Demeter, to downscale GCAM-based future land use scenarios into fine spatial scales, and explore the sensitivity of downscaled land allocations to key parameters. Land productivity estimates (e.g., biomass production and crop yield) based on the downscaled LULCC scenarios are then fed to GCAM to evaluate how energy systems might change due to altered water and carbon cycle dynamics and their interactions with the human system, , which would in turn affect future land use projections. We demonstrate that uncertainties in LULCC downscaling can result in significant differences in simulated scenarios, indicating the importance of quantifying parametric uncertainties in LULCC downscaling models for integrated assessment studies.
Modeling the biophysical impacts of global change in mountain biosphere reserves
Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.
2007-01-01
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios
NASA Astrophysics Data System (ADS)
Chevuturi, Amulya; Klingaman, Nicholas P.; Turner, Andrew G.; Hannah, Shaun
2018-03-01
In light of the Paris Agreement, it is essential to identify regional impacts of half a degree additional global warming to inform climate adaptation and mitigation strategies. We investigate the effects of 1.5°C and 2.0°C global warming above preindustrial conditions, relative to present day (2006-2015), over the Asian-Australian monsoon region (AAMR) using five models from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. There is considerable intermodel variability in projected changes to mean climate and extreme events in 2.0°C and 1.5°C scenarios. There is high confidence in projected increases to mean and extreme surface temperatures over AAMR, as well as more-frequent persistent daily temperature extremes over East Asia, Australia, and northern India with an additional 0.5°C warming, which are likely to occur. Mean and extreme monsoon precipitation amplify over AAMR, except over Australia at 1.5°C where there is uncertainty in the sign of the change. Persistent daily extreme precipitation events are likely to become more frequent over parts of East Asia and India with an additional 0.5°C warming. There is lower confidence in projections of precipitation change than in projections of surface temperature change. These results highlight the benefits of limiting the global-mean temperature change to 1.5°C above preindustrial, as the severity of the above effects increases with an extra 0.5°C warming.
Limaye, Rupali J.; Sullivan, Tara M.; Dalessandro, Scott; Jenkins, Ann Hendrix
2017-01-01
Knowledge management plays a critical role in global health. Global health practitioners require knowledge in every aspect of their jobs, and in resource-scarce contexts, practitioners must be able to rely on a knowledge management system to access the latest research and practice to ensure the highest quality of care. However, we suggest that there is a gap in the way knowledge management is primarily utilized in global health, namely, the systematic incorporation of human and social factors. In this paper, we briefly outline the evolution of knowledge management and then propose a conceptualization of knowledge management that incorporates human and social factors for use within a global health context. Our conceptualization of social knowledge management recognizes the importance of social capital, social learning, social software and platforms, and social networks, all within the context of a larger social system and driven by social benefit. We then outline the limitations and discuss future directions of our conceptualization, and suggest how this new conceptualization is essential for any global health practitioner in the business of managing knowledge. Significance for public health Managing knowledge is essential for improving population health outcomes. Global health practitioners at all levels of the health system are bombarded with information related to best practices and guideline changes, among other relevant information to provide the best quality of care. Knowledge management, or the act of effectively using knowledge, has yet to capitalize on the power of social connections within the context of global health. While social elements have been incorporated into knowledge management activities, we suggest that systematically integrating key concepts that leverage social connections, such as social systems, social capital, social learning, and social software, will yield greater benefit with regard to health outcomes. As such, we outline a new conceptualization of knowledge management, focusing on the social aspects of the practice, and posit that such an approach can further the impact of global health interventions and is crucial for global health practitioners. PMID:28480173
Globalization and Science Education
NASA Astrophysics Data System (ADS)
Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won
2013-06-01
Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.
Globalization and Science Education
NASA Astrophysics Data System (ADS)
Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won
2012-12-01
Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.
GPS Imaging of Global Vertical Land Motion for Sea Level Studies
NASA Astrophysics Data System (ADS)
Hammond, W. C.; Blewitt, G.; Hamlington, B. D.
2015-12-01
Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.
Mechanics of aeolian processes: Soil erosion and dust production
NASA Technical Reports Server (NTRS)
Mehrabadi, M. M.
1989-01-01
Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.
Landsat International Cooperators and Global Archive Consolidation
,
2016-04-07
Landsat missions have always been an important component of U.S. foreign policy, as well as science and technology policy. The program’s longstanding network of International Cooperators (ICs), which operate numerous International Ground Stations (IGS) around the world, embodies the United States’ policy of peaceful use of outer space and the worldwide dissemination of civil space technology for public benefit. Thus, the ICs provide an essential dimension to the Landsat mission.In 2010, the Landsat Global Archive Consolidation (LGAC) effort began, with a goal to consolidate the Landsat data archives of all international ground stations, make the data more accessible to the global Landsat community, and significantly increase the frequency of observations over a given area of interest to improve scientific uses such as change detection and analysis.
Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.
Nicholas, Patrice K; Breakey, Suellen
2017-11-01
Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role in education, practice, research, and policy-making efforts to address climate change. © 2017 Sigma Theta Tau International.
Santa Barbara Basin Study Extends Global Climate Record
NASA Astrophysics Data System (ADS)
Hopkins, Sarah; Kennett, James; Nicholson, Craig; Pak, Dorothy; Sorlien, Christopher; Behl, Richard; Normark, William; Sliter, Ray; Hill, Tessa; Schimmelmann, Arndt; Cannariato, Kevin
2006-05-01
A fundamental goal of Earth science is to understand the remarkable instability of late Quarternary global climate prior to the beginning of the Holocene, about 11,000 years ago. This unusual climate behavior was characterized by millennial-scale climate oscillations on suborbital timescales, and a distinctive `Sawtooth' pattern of very abrupt glacial and stadial terminations (within decades) followed by more gradual global cooling [e.g., Dansgaard et al., 1993; Hendy and Kennett, 1999]. The fact that both major (glacial) and minor (stadial) cooling periods in Earth's climate were terminated by similar abrupt warming episodes suggests a common mechanism driving such rapid changes in global climate. Understanding the causes of this instability is crucial given developing concerns about global warming, yet knowledge about this climate behavior has been essentially confined to the last 150,000 years or so, owing to the absence of available sequences of sufficient age and chronological resolution. The high-resolution paleoclimate record from the Greenland ice cores is limited to about 110 thousand years ago (ka), and although Antarctic ice cores now extend back to more than 740 ka [European Project for Ice Coring in Antarctica, 2004], these latter cores primarily provide information about high-latitude conditions at much lower resolution than is required to address abrupt climate change.
Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia
2014-01-01
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.
Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia
2014-01-01
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2. PMID:25401492
NASA Astrophysics Data System (ADS)
Yoshikawa, S.; Iseri, Y.; Kanae, S.
2016-12-01
Water resources is vital in social and economic activities. Total global water use is increasing, mainly due to economic and population growth in developing countries. It has one of risk with high agreement and robust evidence that freshwater-related risks of climate change increase significantly with increasing greenhouse gas concentrations. It is difficult to compare the risk with other field risk (e.g. agriculture, forestry, sea level rise) for considering both adaptation and mitigation policy with the level of decision makers and public servants. Economic impacts of climate change on water scarcity has been estimated by economic researchers. We have no certainty at all about integration between hydrological and economical fields on global scale. In this study, we highlight key concerns about conventional estimations of economic impact on water resources through meta-analysis. The economic impact on water resource in same base year using consumer price index is shown with increase in the global mean temperature. We clarified four concerns which are involved in 1) classification of economic mechanism, 2) estimated items of economic impact, 3) difference in estimating equations, and 4) definition of parameters related with economic impact of climate change. This study would be essential to next challenge as transdisciplinary research between hydrologic and economic fields.
Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta
2011-01-01
Brazilâs Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...
Douthit, Nathan T; Biswas, Seema
2018-01-01
Since 2013, BMJ Case Reports (http://casereports.bmj.com/) has published over 70 global health case reports from five continents, written by doctors, nurses, students, and allied health professionals. These cases, a burgeoning repository of evidence of how real patients are affected by disease, trauma, violence, sexual assault, conflict, migration, adverse living and working conditions, and poor access to health care, discuss, in addition to clinicopathological findings, the global health problems affecting each patient. The global health problem analysis examines the problems of individual patients, critically appraises the literature, and describes actual and potential solutions for the patient, the local community, and patients affected by similar issues across the world. At present global health literature and learning materials lack a patient focus and real-life context in the analysis of global health problems. BMJ Case Reports global health case reports are a unique and important tool to learn about and advocate for change in the social, political, cultural, and financial determinants of health as they affect real patients. This growing evidence base brings together clinicians, local service providers, policy makers, and government and non-governmental institutions to effect real change in patients' lives toward improving health. Each global health case report is an excellent resource for learning, and together, these case reports provide essential reading for anyone embarking on a career in global health, and writing their own case report. The online course (http://casereports.bmj.com/site/misc/GHMA_Mar_2017.pptx) at BMJ Case Reports uses these cases and is free to access.
Time to go global: a consultation on global health competencies for postgraduate doctors
Walpole, Sarah C.; Shortall, Clare; van Schalkwyk, May CI; Merriel, Abi; Ellis, Jayne; Obolensky, Lucy; Casanova Dias, Marisa; Watson, Jessica; Brown, Colin S.; Hall, Jennifer; Pettigrew, Luisa M.; Allen, Steve
2016-01-01
Background Globalisation is having profound impacts on health and healthcare. We solicited the views of a wide range of stakeholders in order to develop core global health competencies for postgraduate doctors. Methods Published literature and existing curricula informed writing of seven global health competencies for consultation. A modified policy Delphi involved an online survey and face-to-face and telephone interviews over three rounds. Results Over 250 stakeholders participated, including doctors, other health professionals, policymakers and members of the public from all continents of the world. Participants indicated that global health competence is essential for postgraduate doctors and other health professionals. Concerns were expressed about overburdening curricula and identifying what is ‘essential’ for whom. Conflicting perspectives emerged about the importance and relevance of different global health topics. Five core competencies were developed: (1) diversity, human rights and ethics; (2) environmental, social and economic determinants of health; (3) global epidemiology; (4) global health governance; and (5) health systems and health professionals. Conclusions Global health can bring important perspectives to postgraduate curricula, enhancing the ability of doctors to provide quality care. These global health competencies require tailoring to meet different trainees' needs and facilitate their incorporation into curricula. Healthcare and global health are ever-changing; therefore, the competencies will need to be regularly reviewed and updated. PMID:27241136
NASA Astrophysics Data System (ADS)
Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.
2013-12-01
Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].
An imperative need for global change research in tropical forests.
Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi
2013-09-01
Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Remedios, J. J.; Noyes, E. J.; Good, S. A.
2007-05-01
Sea-Surface Temperature (SST) is an important indicator of global change, designated by GCOS as an essential Climate Variable (ECV). The detection of trends in Global SST requires rigorous measurements that are not only global, but also highly accurate and consistent. Space instruments can provide the means to achieve these required attributes in SST data. This paper presents an analysis of 15 years of SST data from two independent data sets, generated from the (A)ATSR and AVHRR series of sensors respectively. The analyses reveal trends of increasing global temperature between 0.13°C to 0.18 °C, per decade, closely matching that expected from some current predictions. A high level of consistency in the results from the two independent observing systems is seen, which gives increased confidence in data from both systems and also enables comparative analyses of the accuracy and stability of both data sets to be carried out. The conclusion is that these satellite SST data-sets provide important means to quantify and explore the processes of climate change. An analysis based upon singular value decomposition, allowing the removal of gross transitory disturbances, notably the El Niño, in order to examine regional areas of change other than the tropical Pacific, is also presented. Interestingly, although El Niño events clearly affect SST globally, they are found to have a non- significant (within error) effect on the calculated trends, which changed by only 0.01 K/decade when the pattern of El Niño and the associated variations was removed from the SST record. Although similar global trends were calculated for these two independent data sets, larger regional differences are noted. Evidence of decreased temperatures after the eruption of Mount Pinatubo in 1991 was also observed. The methodology demonstrated here can be applied to other data-sets, which cover long time-series observations of geophysical observations in order to characterise long-term change.
NASA Astrophysics Data System (ADS)
Myers, B.; Beard, T. D.; Weiskopf, S. R.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.; Casey, K.; Lenton, T. M.; Leidner, A. K.; Ruane, A. C.; Ferrier, S.; Serbin, S.; Matsuda, H.; Shiklomanov, A. N.; Rosa, I.
2017-12-01
Biodiversity and ecosystems services underpin political targets for the conservation of biodiversity; however, previous incarnations of these biodiversity-related targets have not relied on integrated model based projections of possible outcomes based on climate and land use change. Although a few global biodiversity models are available, most biodiversity models lie along a continuum of geography and components of biodiversity. Model-based projections of the future of global biodiversity are critical to support policymakers in the development of informed global conservation targets, but the scientific community lacks a clear strategy for integrating diverse data streams in developing, and evaluating the performance of, such biodiversity models. Therefore, in this paper, we propose a framework for ongoing testing and refinement of model-based projections of biodiversity trends and change, by linking a broad variety of biodiversity models with data streams generated by advances in remote sensing, coupled with new and emerging in-situ observation technologies to inform development of essential biodiversity variables, future global biodiversity targets, and indicators. Our two main objectives are to (1) develop a framework for model testing and refining projections of a broad range of biodiversity models, focusing on global models, through the integration of diverse data streams and (2) identify the realistic outputs that can be developed and determine coupled approaches using remote sensing and new and emerging in-situ observations (e.g., metagenomics) to better inform the next generation of global biodiversity targets.
What can'(t) we do with global flood risk models?
NASA Astrophysics Data System (ADS)
Ward, P.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P. D.; de Groeve, T.; Muis, S.; Coughlan, E.; Rudari, R.; Trigg, M. A.; Winsemius, H.
2015-12-01
Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward, P.J. et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742.
Global warming in the context of 2000 years of Australian alpine temperature and snow cover.
McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin
2018-03-13
Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.
In Brief: Science academies' statement on climate change
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-06-01
“It is essential that world leaders agree on emissions reductions needed to combat negative consequences of anthropogenic climate change,” national science academies from 13 countries declared in a joint statement issued on 11 June. The statement, issued by the academies of the G8 countries—including England, France, Russia, and the United States—and five other countries (Brazil, China, India, Mexico, and South Africa), came in advance of a G8 meeting in Italy in July and prior to United Nations Framework Convention on Climate Change (UNFCCC) negotiations in Denmark in December. “The G8+5 should lead the transition to an energy-efficient and low-carbon world economy, and foster innovation and research and development for both mitigation and adaptation technologies,” the statement noted. The academies urged governments to agree at the UNFCCC negotiations to adopt a long-term global goal and short-term emissions reduction targets so that by 2050 global emissions would be reduced by about 50% from 1990 levels.
Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J
2015-02-28
The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
A first look at global flash drought: long term change and short term predictability
NASA Astrophysics Data System (ADS)
Yuan, Xing; Wang, Linying; Ji, Peng
2017-04-01
"Flash drought" became popular after the unexpected 2012 central USA drought, mainly due to its rapid development, low predictability and devastating impacts on water resources and crop yields. A pilot study by Mo and Lettenmaier (2015) found that flash drought, based on a definition of concurrent heat extreme, soil moisture deficit and evapotranspiration (ET) enhancement at pentad scale, were in decline over USA during recent 100 years. Meanwhile, a recent work indicated that the occurrence of flash drought in China was doubled during the past 30 years, where a severe flash drought in the summer of 2013 ravaged 13 provinces in southern China. As global warming increases the frequency of heat waves and accelerates the hydrological cycle, the flash drought is expected to increase in general, but its trend might also be affected by interannual to decadal climate oscillations. To consolidate the hotspots of flash drought and the effects of climate change on flash drought, a global inventory is being conducted by using multi-source observations (in-situ, satellite and reanalysis), CMIP5 historical simulations and future projections under different forcing scenarios, as well as global land surface hydrological modeling for key variables including surface air temperature, soil moisture and ET. In particular, a global picture of the flash drought distribution, the contribution of naturalized and anthropogenic forcings to global flash drought change, and the risk of global flash drought in the future, will be presented. Besides investigating the long-term change of flash drought, providing reliable early warning is also essential to developing adaptation strategies. While regional drought early warning systems have been emerging in recent decade, forecasting of flash drought is still at an exploratory stage due to limited understanding of flash drought predictability. Here, a set of sub-seasonal to seasonal (S2S) hindcast datasets are being used to assess the short term predictability of flash drought via a perfect model assumption.
Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors
Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.
2017-01-01
Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.
Immediate and Longitudinal Alterations of Functional Networks after Thalamotomy in Essential Tremor
Jang, Changwon; Park, Hae-Jeong; Chang, Won Seok; Pae, Chongwon; Chang, Jin Woo
2016-01-01
Thalamotomy at the ventralis intermedius nucleus has been an effective treatment method for essential tremor, but how the brain network changes immediately responding to this deliberate lesion and then reorganizes afterwards are not clear. Taking advantage of a non-cranium-opening MRI-guided focused ultrasound ablation technique, we investigated functional network changes due to a focal lesion. To classify the diverse time courses of those network changes with respect to symptom-related long-lasting treatment effects and symptom-unrelated transient effects, we applied graph-theoretic analyses to longitudinal resting-state functional magnetic resonance imaging data before and 1 day, 7 days, and 3 months after thalamotomy with essential tremor. We found reduced average connections among the motor-related areas, reduced connectivity between substantia nigra and external globus pallidum and reduced total connection in the thalamus after thalamotomy, which are all associated with clinical rating scales. The average connectivity among whole brain regions and inter-hemispheric network asymmetry show symptom-unrelated transient increases, indicating temporary reconfiguration of the whole brain network. In summary, thalamotomy regulates interactions over the motor network via symptom-related connectivity changes but accompanies transient, symptom-unrelated diaschisis in the global brain network. This study suggests the significance of longitudinal network analysis, combined with minimal-invasive treatment techniques, in understanding time-dependent diaschisis in the brain network due to a focal lesion. PMID:27822200
NASA Astrophysics Data System (ADS)
Russell, J. L.; Sarmiento, J. L.
2017-12-01
The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.
Climate Literacy and Cyberlearning: Emerging Platforms and Programs
NASA Astrophysics Data System (ADS)
McCaffrey, M. S.; Wise, S. B.; Buhr, S. M.
2009-12-01
With the release of the Essential Principles of Climate Science Literacy: A Guide for Individuals and Communities in the Spring of 2009, an important step toward an shared educational and communication framework about climate science was achieved. Designed as a living document, reviewed and endorsed by the thirteen federal agencies in the U.S. Climate Change Science Program (now U.S. Global Change Research Program), the Essential Principles of Climate Literacy complement other Earth system literacy efforts. A variety of emerging efforts have begun to build on the framework using a variety of cyberlearning tools, including an online Climate Literacy course developed by Education and Outreach group at CIRES, the Cooperative Institute for Research in Environmental Sciences, and the Independent Learning program of the Continuing Education Division at the University of Colorado at Boulder. The online course, piloted during the Summer of 2009 with formal classroom teachers and informal science educators, made use of the online Climate Literacy Handbook, which was developed by CIRES Education and Outreach and the Encyclopedia of Earth, which is supported by the National Council for Science and the Environment and hosted by Boston University. This paper will explore challenges and opportunities in the use of cyberlearning tools to support climate literacy efforts, highlight the development of the online course and handbook, and note related emerging cyberlearning platforms and programs for climate literacy, including related efforts by the Climate Literacy Network, the NASA Global Climate Change Education programs, the National STEM Education Distributed Learning (NSDL) and AAAS Project 2061.
Global mortality consequences of climate change accounting for adaptation costs and benefits
NASA Astrophysics Data System (ADS)
Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.
2017-12-01
Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.
NASA Astrophysics Data System (ADS)
Mathis, Moritz; Elizalde, Alberto; Mikolajewicz, Uwe
2018-04-01
Climate change impact studies for the Northwest European Shelf (NWES) make use of various dynamical downscaling strategies in the experimental setup of regional ocean circulation models. Projected change signals from coupled and uncoupled downscalings with different domain sizes and forcing global and regional models show substantial uncertainty. In this paper, we investigate influences of the downscaling strategy on projected changes in the physical and biogeochemical conditions of the NWES. Our results indicate that uncertainties due to different downscaling strategies are similar to uncertainties due to the choice of the parent global model and the downscaling regional model. Downscaled change signals reveal to depend stronger on the downscaling strategy than on the model skills in simulating present-day conditions. Uncoupled downscalings of sea surface temperature (SST) changes are found to be tightly constrained by the atmospheric forcing. The incorporation of coupled air-sea interaction, by contrast, allows the regional model system to develop independently. Changes in salinity show a higher sensitivity to open lateral boundary conditions and river runoff than to coupled or uncoupled atmospheric forcings. Dependencies on the downscaling strategy for changes in SST, salinity, stratification and circulation collectively affect changes in nutrient import and biological primary production.
Food supply reliance on groundwater
NASA Astrophysics Data System (ADS)
Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas
2016-04-01
Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.
Fermion tunneling from a non-static black hole with the internal global monopole
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Cai, Min; Lin, Rong
2009-10-01
Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein-Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.
Global environmental change research: empowering developing countries.
Nobre, Carlos A; Lahsen, Myanna; Ometto, Jean P H B
2008-09-01
This paper discusses ways to reconcile the United Nations Millennium Development Goals with environmental sustainability at the national and international levels. The authors argue that development and better use of sustainability relevant knowledge is key, and that this requires capacity building globally, and especially in the less developed regions of the world. Also essential is stronger integration of high-quality knowledge creation and technology--and policy--development, including, importantly, the creation of centers of excellence in developing regions which effectively use and produce applications-directed high quality research and bring it to bear on decision making and practices related to environmental change and sustainable management of natural resources. The authors argue that Southern centers of excellence are a necessary first step for bottom-up societal transformation towards sustainability, and that such centers must help design innovative ways to assess and place value on ecosystem services.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin.
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J; Stenseth, Nils Chr; Trathan, Phil N; Whittington, Jason D; Zanetti, Enrico; Zitterbart, Daniel P; Le Bohec, Céline; Trucchi, Emiliano
2016-06-14
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J.; Stenseth, Nils Chr; Trathan, Phil N.; Whittington, Jason D.; Zanetti, Enrico; Zitterbart, Daniel P.; Le Bohec, Céline; Trucchi, Emiliano
2016-01-01
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory. PMID:27296726
Iain, Blair
2010-07-01
The World Health Organization project on the Global Burden of Disease quantifies the main causes of premature death and disability. Changing patterns of physical activity, diet, and alcohol and tobacco consumption are producing a growing burden of noncommunicable disease in low-and middle-income countries. This article focuses on a different group of health risks: major health emergencies that do not respect national borders and have an impact on health and the determinants of health such as housing, access to food and water, and other life essentials. Health emergencies, including accidents and natural events, are described, and data on disasters in the Middle East are presented. Disaster response is contrasted with disaster prevention, and disaster risk reduction is discussed in the context of vulnerability, climate change, and sustainable development. Finally, the international policy context of disaster risk reduction is discussed along with opportunities for multidisciplinary and multiinstitutional collaboration and research.
Global warming potential of pavements
NASA Astrophysics Data System (ADS)
Santero, Nicholas J.; Horvath, Arpad
2009-09-01
Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.
Spatial Distribution of Trends and Seasonality in the Hemispheric Sea Ice Covers
NASA Technical Reports Server (NTRS)
Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.
1998-01-01
We extend earlier analyses of a 9-year sea ice data set that described the local seasonal and trend variations in each of the hemispheric sea ice covers to the recently merged 18.2-year sea ice record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea ice covers. By combining the separate hemispheric sea ice records into a global one, we have shown that there are statistically significant net decreases in the sea ice coverage on a global scale. The change in the global sea ice extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea ice is only slightly smaller, so that the difference in the two, the open water within the packs, has no statistically significant change.
[The physical impact of pregnancy on a teenager].
Audinet, Corinne
2016-01-01
Pregnancy in a teenager may be an expression of her angst. From a lack of contraception or its failure, to the desire to be pregnant, she may be expressing her wish to acquire the status of an adult or to offset depression and anxiety resulting from abandonment. The situation is further compounded by the physical changes she undergoes. Providing the teenager with global support is essential. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Characterization of human cervical remodeling throughout pregnancy using in vivo Raman spectroscopy
NASA Astrophysics Data System (ADS)
O'Brien, Christine M.; Vargis, Elizabeth; Slaughter, Chris; Rudin, Amy P.; Herington, Jennifer L.; Bennett, Kelly A.; Reese, Jeff; Mahadevan-Jansen, Anita
2015-02-01
Globally, fifteen million babies are born preterm each year, affecting 1 in 8 pregnancies in the US alone. Cervical remodeling includes a biochemical cascade of changes that ultimately result in the thinning and dilation of the cervix for passage of a fetus. This process is poorly understood and is the focus of this study. Our group is utilizing Raman spectroscopy to evaluate biochemical changes occurring in the human cervix throughout pregnancy. This technique has high molecular specificity and can be performed in vivo, with the potential to unveil new molecular dynamics essential for cervical remodeling.
Successes with the Global Precipitation Measurement (GPM) Mission
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter
2016-01-01
Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite
Three Years of the Global Precipitation Measurement (GPM) Mission
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail; Huffman, George; Petersen, Walter
2017-01-01
Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented.
The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities
NASA Astrophysics Data System (ADS)
Ward, D. S.; Mahowald, N. M.; Kloster, S.
2014-12-01
Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential radiative forcing from LULCC we create a 'worst-case scenario" in which all arable land is converted to agriculture by the year 2100. This scenario leads to a total radiative forcing of 4.3 Wm-2 (+/- 1 Wm-2) suggesting that well thought-out land policy is needed to minimize future increases in global anthropogenic radiative forcing.
Global health governance: commission on social determinants of health and the imperative for change.
Bell, Ruth; Taylor, Sebastian; Marmot, Michael
2010-01-01
In May 2009 the World Health Assembly passed a resolution on reducing health inequities through action on the social determinants of health, based on the work of the global Commission on Social Determinants of Health, 2005-2008. The Commission's genesis and findings raise some important questions for global health governance. We draw out some of the essential elements, themes, and mechanisms that shaped the Commission. We start by examining the evolving nature of global health and the Commission's foundational inspiration--the universal pattern of health inequity and the imperative, driven by a sense of social justice, to make better and more equal health a global goal. We look at how the Commission was established, how it was structured internally, and how it developed external relationships--with the World Health Organization, with global networks of academics and practitioners, with country governments eager to spearhead action on health equity, and with civil society. We outline the Commission's recommendations as they relate to the architecture of global health governance. Finally, we look at how the Commission is catalyzing a movement to bring social determinants of health to the forefront of international and national policy discourse. © 2010 American Society of Law, Medicine & Ethics, Inc.
Wong, Chi Wah; Olafsson, Valur; Tal, Omer; Liu, Thomas T.
2012-01-01
Resting-state functional connectivity magnetic resonance imaging is proving to be an essential tool for the characterization of functional networks in the brain. Two of the major networks that have been identified are the default mode network (DMN) and the task positive network (TPN). Although prior work indicates that these two networks are anti-correlated, the findings are controversial because the anti-correlations are often found only after the application of a pre-processing step, known as global signal regression, that can produce artifactual anti-correlations. In this paper, we show that, for subjects studied in an eyes-closed rest state, caffeine can significantly enhance the detection of anti-correlations between the DMN and TPN without the need for global signal regression. In line with these findings, we find that caffeine also leads to widespread decreases in connectivity and global signal amplitude. Using a recently introduced geometric model of global signal effects, we demonstrate that these decreases are consistent with the removal of an additive global signal confound. In contrast to the effects observed in the eyes-closed rest state, caffeine did not lead to significant changes in global functional connectivity in the eyes-open rest state. PMID:22743194
NASA Astrophysics Data System (ADS)
Balkovič, Juraj; van der Velde, Marijn; Skalský, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey; Mueller, Nathaniel D.; Obersteiner, Michael
2014-11-01
Wheat is the third largest crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. A large geographic variation in wheat yields across similar climates points to sizeable yield gaps in many nations, and indicates a regionally variable flexibility to increase wheat production. Wheat is particularly sensitive to a changing climate thus limiting management opportunities to enable (sustainable) intensification with potentially significant implications for future wheat production. We present a comprehensive global evaluation of future wheat yields and production under distinct Representative Concentration Pathways (RCPs) using the Environmental Policy Integrated Climate (EPIC) agro-ecosystem model. We project, in a geographically explicit manner, future wheat production pathways for rainfed and irrigated wheat systems. We explore agricultural management flexibility by quantifying the development of wheat yield potentials under current, rainfed, exploitable (given current irrigation infrastructure), and irrigated intensification levels. Globally, because of climate change, wheat production under conventional management (around the year 2000) would decrease across all RCPs by 37 to 52 and 54 to 103 Mt in the 2050s and 2090s, respectively. However, the exploitable and potential production gap will stay above 350 and 580 Mt, respectively, for all RCPs and time horizons, indicating that negative impacts of climate change can globally be offset by adequate intensification using currently existing irrigation infrastructure and nutrient additions. Future world wheat production on cropland already under cultivation can be increased by ~ 35% through intensified fertilization and ~ 50% through increased fertilization and extended irrigation, if sufficient water would be available. Significant potential can still be exploited, especially in rainfed wheat systems in Russia, Eastern Europe and North America.
Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors
NASA Astrophysics Data System (ADS)
Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia
2017-11-01
Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.
The essential interactions between understanding climate variability and climate change
NASA Astrophysics Data System (ADS)
Neelin, J. D.
2017-12-01
Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.
NASA Astrophysics Data System (ADS)
Pearlman, J.; Muller-Karger, F. E.; Sousa Pinto, I.; Costello, M. J.; Duffy, J. E.; Appeltans, W.; Fischer, A. S.; Canonico, G.; Klein, E.; Obura, D.; Montes, E.; Miloslavich, P.; Howard, M.
2017-12-01
The Marine Biodiversity Observation Network (MBON) is a networking effort under the umbrella of the Group on Earth Observations Biodiversity Observation Network (GEO BON). The objective of the MBON is to link existing groups engaged in ocean observation and help define practical indices to deploy in an operational manner to track changes in the number of marine species, the abundance and biomass of marine organisms, the diverse interactions between organisms and the environment, and the variability and change of specific habitats of interest. MBON serves as the biodiversity arm of Blue Planet, the initiative of the Group on Earth Observations (GEO) for the benefit of society. The Global Ocean Observing System (GOOS) was established under the auspices of the Intergovernmental Oceanographic Commission (IOC) in 1991 to organize international ocean observing efforts. The mission of the GOOS is to support monitoring to improve the management of marine and coastal ecosystems and resources, and to enable scientific research. GOOS is engaged in a continuing, rigorous process of identifying Essential Ocean Variables (EOVs). MBON is working with GOOS and the Ocean Biogeographic Information System (OBIS, also under the IOC) to define Essential Biodiversity Variables (EBVs) as those Essential Ocean Variables (EOVs) that have explicit taxonomic records associated with them. For practical purposes, EBVs are a subset of the EOVs. The focus is to promote the integration of biological EOVs including EBVs into the existing and planned national and international ocean observing systems. The definition avoids a proliferation of 'essential' variables across multiple organizations. MBON will continue to advance practical and wide use of EBVs and related EOV. This is an effective way to contribute to several UN assessments (e.g., from IPBES, IPCC, and the World Ocean Assessment under the UN Regular Process), UN Sustainable Development Goals, and to address targets and goals defined under the Convention on Biological Diversity. It should provide guidelines for the International (UN) Decade of Ocean Science for Sustainable Development 2021-2030 (IOC XXIX-1, 2017). We invite the community to enter a dialogue with MBON, GOOS, and OBIS to further refine these concepts and build an integrated system to observe life in the sea.
Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzawa, K.; Li Jiquan; Kishimoto, Y.
2009-04-15
The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determinedmore » not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.« less
GARS O'Higgins as a core station for geodesy in Antarctica
NASA Astrophysics Data System (ADS)
Klügel, Thomas; Diedrich, Erhard; Falk, Reinhard; Hessels, Uwe; Höppner, Kathrin; Kühmstedt, Elke; Metzig, Robert; Plötz, Christian; Reinhold, Andreas; Schüler, Torben; Wojdziak, Reiner
2014-05-01
The German Antarctic Receiving Station GARS O'Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for Earth observation since more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference frames and global change. Both applications use the same 9m diameter radio telescope. For space geodesy and astrometry the radio telescope significantly improves the coverage on the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celectial Reference Frame (ICRF) benefit from the location at high southern latitude. Further geodetic instrumentation includes different permanent GNSS receivers (since 1995), two SAR corner reflectors (since 2013) and in the past a PRARE system (1996 - 2004). In addition absolute gravity measurements were performed in 1997 and 2011. All geodetic reference points are tied together by a local survey network. The various geodetic instrumentation and the long time series at O'Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS time series and absolute gravity measurements consistently document an uplift rate of about 5 mm/a. A pressure gauge and a radar tide gauge being refererenced to space by a GNSS antenna on top allow the measurement of sea level changes independently from crustal motions, and the determination of the ellipsoidal height of the sea surface, which is, the geoid height plus the mean dynamic topography. The outstanding location on the Antarctic continent makes GARS O'Higgins also in future attractive for polar orbiting satellite missions and an essential station for the global VLBI network. Future plans envisage a development towards an observatory for environmentally relevant research.
Successful conservation of global waterbird populations depends on effective governance.
Amano, Tatsuya; Székely, Tamás; Sandel, Brody; Nagy, Szabolcs; Mundkur, Taej; Langendoen, Tom; Blanco, Daniel; Soykan, Candan U; Sutherland, William J
2018-01-11
Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, for most ecosystems, the lack of systematically collected data at a global level limits our understanding of biodiversity changes and their local-scale drivers. Here we address this challenge by focusing on wetlands, which are among the most biodiverse and productive of any environments and which provide essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that the strongest predictor of changes in waterbird abundance, and of conservation efforts having beneficial effects, is the effective governance of a country. In areas in which governance is on average less effective, such as western and central Asia, sub-Saharan Africa and South America, waterbird declines are particularly pronounced; a higher protected area coverage of wetland environments facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Furthermore, data deficiencies in areas with less effective governance could lead to underestimations of the extent of the current biodiversity crisis.
Successful conservation of global waterbird populations depends on effective governance
NASA Astrophysics Data System (ADS)
Amano, Tatsuya; Székely, Tamás; Sandel, Brody; Nagy, Szabolcs; Mundkur, Taej; Langendoen, Tom; Blanco, Daniel; Soykan, Candan U.; Sutherland, William J.
2018-01-01
Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, for most ecosystems, the lack of systematically collected data at a global level limits our understanding of biodiversity changes and their local-scale drivers. Here we address this challenge by focusing on wetlands, which are among the most biodiverse and productive of any environments and which provide essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that the strongest predictor of changes in waterbird abundance, and of conservation efforts having beneficial effects, is the effective governance of a country. In areas in which governance is on average less effective, such as western and central Asia, sub-Saharan Africa and South America, waterbird declines are particularly pronounced; a higher protected area coverage of wetland environments facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Furthermore, data deficiencies in areas with less effective governance could lead to underestimations of the extent of the current biodiversity crisis.
NASA Technical Reports Server (NTRS)
Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)
2002-01-01
Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).
Global warming in the public sphere.
Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin
2007-11-15
Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.
Global issues of genetic diversity.
Vida, G
1994-01-01
Genetic diversity within species is highly significant during their adaptation to environmental changes and, consequently, for their long-term survival. The genetic variability of species is also the basis for the evolution of higher levels of biodiversity, the evolution of species, and it might be an indispensible prerequisite for the functioning of our biosphere. Studies which promote understanding of the maintenance and the functional aspects of biodiversity at any level are therefore essential for the future welfare of mankind.
Alpha, beta, or gamma: where does all the diversity go?
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1988-01-01
Global taxonomic richness is affected by variation in three components: within-community, or alpha, diversity, between-community, or beta, diversity; and between-region, or gamma, diversity. A data set consisting of 505 faunal lists distributed among 40 stratigraphic intervals and six environmental zones was used to investigate how variation of alpha and beta diversity influenced global diversity through the Paleozoic, and especially during the Ordovician radiations. As first shown by Bambach (1977), alpha diversity increased by 50 to 70 percent in offshore marine environments during the Ordovician and then remained essentially constant of the remainder of the Paleozoic. The increase is insufficient, however, to account for the 300 percent rise observed in global generic diversity. It is shown that beta diversity among level, soft-bottom communities also increased significantly during the early Paleozoic. This change is related to enhanced habitat selection, and presumably increased overall specialization, among diversifying taxa during the Ordovician radiations. Combined with alpha diversity, the measured change in beta diversity still accounts for only about half of the increase in global diversity. Other sources of increase are probably not related to variation in gamma diversity but rather to appearance and/or expansion of organic reefs, hardground communities, bryozoan thickets, and crinoid gardens during the Ordovician.
NASA Astrophysics Data System (ADS)
Arteaga, L.; Pahlow, M.; Oschlies, A.
2016-02-01
Primay production by marine phytoplankton essentially drives the oceanic biological carbon pump. Global productivity estimates are commonly founded on chlorophyll-based primary production models. However, a major drawback of most of these models is that variations in chlorophyll concentration do not necessarily account for changes in phytoplankton biomass resulting from the physiological regulation of the chlorophyll-to-carbon ratio (Chl:C). Here we present phytoplankton production rates and surface phytoplankton C concentrations for the global ocean for 2005-2010, obtained by combining satellite Chl observations with a mechanistic model for the acclimation of phytoplankton stoichiometry to variations in nutrients, light and temperature. We compare our inferred phytoplankton C concentrations with an independent estimate of surface particulate organic carbon (POC) to identify for the first time the global contribution of living phytoplankton to total POC in the surface ocean. Our annual primary production (46 Pg C yr-1) is in good agreement with other C-based model estimates obtained from satellite observations. We find that most of the oligotrophic surface ocean is dominated by living phytoplankton biomass (between 30-70% of total particulate carbon). Lower contributions are found in the tropical Pacific (10-30% phytoplankton) and the Southern Ocean (≈ 10%). Our method provides a novel analytical tool for identifying changes in marine plankton communities and carbon cycling.
Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.
2017-12-01
Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.
Forman, Lisa; Ooms, Gorik; Chapman, Audrey; Friedman, Eric; Waris, Attiya; Lamprea, Everaldo; Mulumba, Moses
2013-12-01
Global health institutions increasingly recognize that the right to health should guide the formulation of replacement goals for the Millennium Development Goals, which expire in 2015. However, the right to health's contribution is undercut by the principle of progressive realization, which links provision of health services to available resources, permitting states to deny even basic levels of health coverage domestically and allowing international assistance for health to remain entirely discretionary. To prevent progressive realization from undermining both domestic and international responsibilities towards health, international human rights law institutions developed the idea of non-derogable "minimum core" obligations to provide essential health services. While minimum core obligations have enjoyed some uptake in human rights practice and scholarship, their definition in international law fails to specify which health services should fall within their scope, or to specify wealthy country obligations to assist poorer countries. These definitional gaps undercut the capacity of minimum core obligations to protect essential health needs against inaction, austerity and illegitimate trade-offs in both domestic and global action. If the right to health is to effectively advance essential global health needs in these contexts, weaknesses within the minimum core concept must be resolved through innovative research on social, political and legal conceptualizations of essential health needs. We believe that if the minimum core concept is strengthened in these ways, it will produce a more feasible and grounded conception of legally prioritized health needs that could assist in advancing health equity, including by providing a framework rooted in legal obligations to guide the formulation of new health development goals, providing a baseline of essential health services to be protected as a matter of right against governmental claims of scarcity and inadequate international assistance, and empowering civil society to claim fulfillment of their essential health needs from domestic and global decision-makers.
2013-01-01
Background Global health institutions increasingly recognize that the right to health should guide the formulation of replacement goals for the Millennium Development Goals, which expire in 2015. However, the right to health’s contribution is undercut by the principle of progressive realization, which links provision of health services to available resources, permitting states to deny even basic levels of health coverage domestically and allowing international assistance for health to remain entirely discretionary. Discussion To prevent progressive realization from undermining both domestic and international responsibilities towards health, international human rights law institutions developed the idea of non-derogable “minimum core” obligations to provide essential health services. While minimum core obligations have enjoyed some uptake in human rights practice and scholarship, their definition in international law fails to specify which health services should fall within their scope, or to specify wealthy country obligations to assist poorer countries. These definitional gaps undercut the capacity of minimum core obligations to protect essential health needs against inaction, austerity and illegitimate trade-offs in both domestic and global action. If the right to health is to effectively advance essential global health needs in these contexts, weaknesses within the minimum core concept must be resolved through innovative research on social, political and legal conceptualizations of essential health needs. Summary We believe that if the minimum core concept is strengthened in these ways, it will produce a more feasible and grounded conception of legally prioritized health needs that could assist in advancing health equity, including by providing a framework rooted in legal obligations to guide the formulation of new health development goals, providing a baseline of essential health services to be protected as a matter of right against governmental claims of scarcity and inadequate international assistance, and empowering civil society to claim fulfillment of their essential health needs from domestic and global decision-makers. PMID:24289096
Global Education and Its Tensions: Case Studies of Two Schools in Singapore and the United States
ERIC Educational Resources Information Center
Choo, Suzanne S.
2017-01-01
Countering the drive to erect walls between nations and communities, the burden is increasingly on educators to develop in students essential skills and dispositions for a more hospitable future. Global education is essentially aimed at addressing the realities of increasingly networked societies and porous exchanges of knowledge, capital, and…
ERIC Educational Resources Information Center
Schneider, Nancy Rhoda
2015-01-01
Purpose. Clinical communication influences health outcomes, so medical schools are charged to prepare future physicians with the skills they need to interact effectively with patients. Communication leaders at The University of New Mexico School of Medicine (UNMSOM) developed The Essential Elements of Communication-Global Rating Scale (EEC-GRS) to…
Rising temperatures reduce global wheat production
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, P. K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; de Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.
2015-02-01
Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
NASA Astrophysics Data System (ADS)
Purkey, Sarah G.; Smethie, William M.; Gebbie, Geoffrey; Gordon, Arnold L.; Sonnerup, Rolf E.; Warner, Mark J.; Bullister, John L.
2018-01-01
Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.
Purkey, Sarah G; Smethie, William M; Gebbie, Geoffrey; Gordon, Arnold L; Sonnerup, Rolf E; Warner, Mark J; Bullister, John L
2018-01-03
Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.
Rising Temperatures Reduce Global Wheat Production
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Martre, P.; Rötter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.;
2015-01-01
Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32? degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.
Accessibility: global gateway to health literacy.
Perlow, Ellen
2010-01-01
Health literacy, cited as essential to achieving Healthy People 2010's goals to "increase quality and years of healthy life" and to "eliminate health disparities," is defined by Healthy People as "the degree to which individuals have the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions." Accessibility, by definition, the aforementioned "capacity to obtain," thus is health literacy's primary prerequisite. Accessibility's designation as the global gateway to health literacy is predicated also on life's realities: global aging and climate change, war and terrorism, and life-extending medical and technological advances. People with diverse access needs are health professionals' raison d'être. However, accessibility, consummately cross-cultural and universal, is virtually absent as a topic of health promotion and practice research and scholarly discussion of health literacy and equity. A call to action to place accessibility in its rightful premier position on the profession's agenda is issued.
Van de Pas, Remco; Hill, Peter S; Hammonds, Rachel; Ooms, Gorik; Forman, Lisa; Waris, Attiya; Brolan, Claire E; McKee, Martin; Sridhar, Devi
2017-01-01
This paper explores the extent to which global health governance - in the context of the early implementation of the Sustainable Development Goals is grounded in the right to health. The essential components of the right to health in relation to global health are unpacked. Four essential functions of the global health system are assessed from a normative, rights-based, analysis on how each of these governance functions should operate. These essential functions are: the production of global public goods, the management of externalities across countries, the mobilization of global solidarity, and stewardship. The paper maps the current reality of global health governance now that the post-2015 Sustainable Development Goals are beginning to be implemented. In theory, the existing human rights legislation would enable the principles and basis for the global governance of health beyond the premise of the state. In practice, there is a governance gap between the human rights framework and practices in global health and development policies. This gap can be explained by the political determinants of health that shape the governance of these global policies. Current representations of the right to health in the Sustainable Development Goals are insufficient and superficial, because they do not explicitly link commitments or right to health discourse to binding treaty obligations for duty-bearing nation states or entitlements by people. If global health policy is to meaningfully contribute to the realization of the right to health and to rights based global health governance then future iterations of global health policy must bridge this gap. This includes scholarship and policy debate on the structure, politics, and agency to overcome existing global health injustices.
Hill, Peter S.; Hammonds, Rachel; Ooms, Gorik; Forman, Lisa; Waris, Attiya; Brolan, Claire E.; McKee, Martin; Sridhar, Devi
2017-01-01
Abstract This paper explores the extent to which global health governance – in the context of the early implementation of the Sustainable Development Goals is grounded in the right to health. The essential components of the right to health in relation to global health are unpacked. Four essential functions of the global health system are assessed from a normative, rights‐based, analysis on how each of these governance functions should operate. These essential functions are: the production of global public goods, the management of externalities across countries, the mobilization of global solidarity, and stewardship. The paper maps the current reality of global health governance now that the post‐2015 Sustainable Development Goals are beginning to be implemented. In theory, the existing human rights legislation would enable the principles and basis for the global governance of health beyond the premise of the state. In practice, there is a governance gap between the human rights framework and practices in global health and development policies. This gap can be explained by the political determinants of health that shape the governance of these global policies. Current representations of the right to health in the Sustainable Development Goals are insufficient and superficial, because they do not explicitly link commitments or right to health discourse to binding treaty obligations for duty‐bearing nation states or entitlements by people. If global health policy is to meaningfully contribute to the realization of the right to health and to rights based global health governance then future iterations of global health policy must bridge this gap. This includes scholarship and policy debate on the structure, politics, and agency to overcome existing global health injustices. PMID:28616255
Balancing global water availability and use at basin scale in an integrated assessment model
Kim, Son H.; Hejazi, Mohamad; Liu, Lu; ...
2016-01-22
Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less
Balancing global water availability and use at basin scale in an integrated assessment model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Son H.; Hejazi, Mohamad; Liu, Lu
Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater sources and desalinated water—across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in IAMs and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less
Balancing global water availability and use at basin scale in an integrated assessment model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Son H.; Hejazi, Mohamad; Liu, Lu
Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less
NASA Astrophysics Data System (ADS)
Weissert, Helmut
2013-04-01
With the beginning of the fossil fuel age in the 19th century mankind has become an important geological agent on a global scale. For the first time in human history action of man has an impact on global biogeochemical cycles. Increasing CO2 concentrations will result in a perturbation of global carbon cycling coupled with climate change. Investigations of past changes in carbon cycling and in climate will improve our predictions of future climate. Increasing atmospheric CO2 concentrations will drive climate into a mode of operation, which may resemble climate conditions in the deep geological past. Pliocene climate will give insight into 400ppm world with higher global sea level than today. Doubling of pre-industrial atmospheric CO2 levels will shift the climate system into a state resembling greenhouse climate in the Early Cenozoic or even in the Cretaceous. Carbon isotope geochemistry serves as tool for tracing the pathway of the carbon cycle through geological time. Globally registered negative C-isotope anomalies in the C-isotope record are interpreted as signatures of rapid addition (103 to a few 104 years) of CO2 to the ocean-atmosphere system. Positive C-isotope excursions following negative spikes record the slow post-perturbation recovery of the biosphere at time scales of 105 to 106 years. Duration of C-cycle perturbations in earth history cannot be directly compared with rapid perturbation characterizing the Anthropocene. However, the investigation of greenhouse pulses in the geological past provides insight into different climate states, it allows to identify tipping points in past climate systems and it offers the opportunity to learn about response reactions of the biosphere to rapid changes in global carbon cycling. Sudden injection of massive amounts of carbon dioxide into the atmosphere is recorded in C-isotope record of the Early Cretaceous. The Aptian carbon cycle perturbation triggered changes in temperature and in global hydrological cycling. Changes in physical and chemical oceanography are reflected in widespread black shale deposition ("Oceanic Anoxic Event 1a"), in carbonate platform drowning and in biocalcification crises. "Days of future passed" (Moody Blues, 1967) reminds us that the past provides essential information needed for decisions to be made in the interest of mankind's future.
A suite of essential biodiversity variables for detecting critical biodiversity change.
Schmeller, Dirk S; Weatherdon, Lauren V; Loyau, Adeline; Bondeau, Alberte; Brotons, Lluis; Brummitt, Neil; Geijzendorffer, Ilse R; Haase, Peter; Kuemmerlen, Mathias; Martin, Corinne S; Mihoub, Jean-Baptiste; Rocchini, Duccio; Saarenmaa, Hannu; Stoll, Stefan; Regan, Eugenie C
2018-02-01
Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long-lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance. © 2017 Cambridge Philosophical Society.
[Health consequences of environmental temperature and climate variations].
Swynghedauw, Bernard
2012-01-01
Recent climate change is a consequence of the greenhouse effect and human activity, and is directly responsible for extreme events such as heatwaves (see report of the French Académie des Sciences). Human thermoregulation depends more on behavior than on biology Air conditioning and building structure play an essential role. The 2003 heatwave was not a unique event. Preventive measures reduced mortality during subsequent heatwaves. Most deaths were due to heat stroke associated with dehydration. During strenuous exercise, especially during military training, heat stroke requires specific treatment. Temperature/ global mortality and temperature/cardiovascular mortality curves are both U-shaped. Usually, global mortality increases winter and is linked to temperature. During summer, global mortality increases only when heatwaves occur. Climate change participates in the spread of infectious diseases. Nevertheless, in continental France, for the moment, climate change is not a major factor in the incidence of infectious diseases, despite the fact that several bacteria, viruses and vectors are temperature-sensitive. The situation in Reunion, French Polynesia and French Departments of America is more complicated, due to their geographic heterogeneity. Some areas are more exposed to the climatic risk and could act as a gateway for new infections and mutations. The dramatic loss of biodiversity is partly a consequence of climate change. It increases the transmissibility of some pathogens and can also potentially lead to an increase in autoimmune diseases and obesity. Climate change plays a important role in allergic diseases, through changes in the diffusion and composition of pollens. These modifications are being monitored by several observatories. Six different veterinary diseases, including several zoonoses, are of particular concern.
Unbounded boundaries and shifting baselines: Estuaries and coastal seas in a rapidly changing world
NASA Astrophysics Data System (ADS)
Little, S.; Spencer, K. L.; Schuttelaars, H. M.; Millward, G. E.; Elliott, M.
2017-11-01
This Special Issue of Estuarine, Coastal and Shelf Science presents contributions from ECSA 55; an international symposium organised by the Estuarine and Coastal Sciences Association (ECSA) and Elsevier on the broad theme of estuaries and coastal seas in times of intense change. The objectives of the SI are to synthesise, hypothesise and illustrate the impacts of global change on estuaries and coastal seas through learning lessons from the past, discussing the current and forecasting for the future. It is highlighted here that establishing impacts and assigning cause to the many pressures of global change is and will continue to be a formidable challenge in estuaries and coastal seas, due in part to: (1) their complexity and unbounded nature; (2) difficulties distinguishing between human-induced changes and natural variations and; (3) multiple pressures and effects. The contributing authors have explored a number of these issues over a range of disciplines. The complexity and connectivity of estuaries and coastal seas have been investigated through studies of physicochemical and ecological components, whilst the human imprint on the environment has been identified through a series of predictive, contemporary, historical and palaeo approaches. The impact of human activities has been shown to occur over a range of spatial and temporal scales, requiring the development of integrated management approaches. These 30 articles provide an important contribution to our understanding and assessment of the impacts of global change. The authors highlight methods for essential management/mitigation of the consequences of global change and provide a set of directions, ideas and observations for future work. These include the need to consider: (1) the cumulative, synergistic and antagonistic effects of multiple pressures; (2) the importance of unbounded boundaries and connectivity across the aquatic continuum; (3) the value of combining cross-disciplinary palaeo, contemporary and future modelling studies and; (4) the importance of shifting baselines on ecosystem functioning and the future provision of ecosystem services.
Peak Oil, Food Systems, and Public Health
Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.
2011-01-01
Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492
Global Community Education: A Curriculum Trend for the '80s.
ERIC Educational Resources Information Center
Matriano, Estela
1987-01-01
Defines global community education and examines two major topics considered essential for understanding it. The topics are: (1) perspectives and imperatives of global education; and (2) the realities and possibilities of globalizing a curriculum for a new age. (BSR)
Eisenbies, Mark H.; Hughes, W. Brian
2000-01-01
Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.
The ICESat/GLAS Instrument Operations Report. Volume 4
NASA Technical Reports Server (NTRS)
Jester, Peggy L.
2012-01-01
The Geoscience Laser Altimeter System (GLAS) was the primary instrument aboard the first ICESat spacecraft. ICESat's primary objectives are to determine the mass balance of the polar ice sheets and their contributions to global sea level change, and to obtain essential data for prediction of future changes in ice volume and sea-level. ICESat launched successfully from Vandenberg Air Force Base on January 12, 2003 23:45 UT. The ICESat science mission began in February 2003 and ended on October 11, 2009. De-orbit of the spacecraft occurred on August 30, 2010. This document focusses on the GLAS instrument operations during the ICESat mission. This document will not discuss science results.
A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings
NASA Technical Reports Server (NTRS)
Hobbs, William R.; Massom, Rob; Stammerjohn, Sharon; Reid, Phillip; Williams, Guy; Meier, Walter
2016-01-01
Over the past 37years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompanied by related trends in yearly duration. These changes have implications for ecosystems, as well as global and regional climate. In this review, we summarize the researchto date on observing these trends, identifying their drivers, and assessing the role of anthropogenic climate change. Whilst the atmosphere is thought to be the primary driver, the ocean is also essential in explaining the seasonality of the trend patterns. Detecting an anthropogenic signal in Antarctic sea ice is particularly challenging for a number of reasons: the expected response is small compared to the very high natural variability of the system; the observational record is relatively short; and the ability of global coupled climate models to faithfully represent the complex Antarctic climate system is in doubt.
Enhancing Global Competitiveness through Experiential Learning: Insights into Successful Programming
ERIC Educational Resources Information Center
Ghose, Nabarun
2010-01-01
International exposure of students is very essential in today's globalized world. Experiential learning, such as study abroad, plays a major role in developing global competencies in students, making them more marketable globally. This paper highlights one experiential activity that injects global competencies in students, thereby making them more…
NASA Astrophysics Data System (ADS)
Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.
2016-02-01
Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.
[Advances in plant ecophysiological studies on re-vegetation of degraded ecosystem].
Zhao, Ping
2003-11-01
Natural force and human intervention lead to many local, regional, and sometimes global changes in plant community patterns. Regardless of the cause and intensity of these changes, ecosystem can recover most of their attributes through natural succession, or can be repaired by human assistance. The essentiality of restoration of degraded ecosystem is community succession, a process during which an ecosystem evolves from primary stage to advanced stage, and its structure and function change from simple to complex plant. Ecophysiological study could explain some macroscopical phenomena of the ecology of re-vegetation of degraded ecosystem, and provide a scientific base for assembling pioneering plant community. The advances in plant ecophysiological study on re-vegetation of degraded ecosystems were reviewed in this paper.
Wong, Chi Wah; Olafsson, Valur; Tal, Omer; Liu, Thomas T
2012-10-15
Resting-state functional connectivity magnetic resonance imaging is proving to be an essential tool for the characterization of functional networks in the brain. Two of the major networks that have been identified are the default mode network (DMN) and the task positive network (TPN). Although prior work indicates that these two networks are anti-correlated, the findings are controversial because the anti-correlations are often found only after the application of a pre-processing step, known as global signal regression, that can produce artifactual anti-correlations. In this paper, we show that, for subjects studied in an eyes-closed rest state, caffeine can significantly enhance the detection of anti-correlations between the DMN and TPN without the need for global signal regression. In line with these findings, we find that caffeine also leads to widespread decreases in connectivity and global signal amplitude. Using a recently introduced geometric model of global signal effects, we demonstrate that these decreases are consistent with the removal of an additive global signal confound. In contrast to the effects observed in the eyes-closed rest state, caffeine did not lead to significant changes in global functional connectivity in the eyes-open rest state. Copyright © 2012 Elsevier Inc. All rights reserved.
Impacts of climate change on marine organisms and ecosystems.
Brierley, Andrew S; Kingsford, Michael J
2009-07-28
Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.
The role of farming and rural development as central to our diets.
Fanzo, Jessica
2018-05-21
Farming and rural development are central to the diversity of global food systems and diets, both significant factors in determining the nutrition and health outcomes of the world's population. Diets are not static and indeed are changing due to globalization, urbanization and demographic shifts. In addition, multiple burdens of malnutrition (both undernutrition and overweight and obesity) are not improving fast enough and in some cases, reversing for the worse. Unhealthy diets are major contributors to these burdens. Rural people and particularly smallholder farmers, are critical in delivering the key nutrients in the global food supply that make up our diets for human health. However, rural populations in some parts of the world are often poor, and suffer burdens of malnutrition on both ends of the spectrum - undernourished or overweight. They are also faced with significant challenges, often due to poor investment towards rural development. Challenges include natural resource declines, climate change risk, women disempowerment, conflict, and urbanization; which wreak havoc on these populations. If actions are not taken and their livelihoods are not prioritized, it will be a challenge to achieve sustainable development in these rural places that are so essential for future food systems. Copyright © 2018 Elsevier Inc. All rights reserved.
van der Velden, Alike; Duerden, Martin G.; Bell, John; Oxford, John S.; Altiner, Attila; Kozlov, Roman; Sessa, Aurelio; Pignatari, Antonio C.; Essack, Sabiha Y.
2013-01-01
Inappropriate antibiotic use in normally self-limiting acute respiratory tract infections (RTIs), such as sore throat and the common cold, is a global problem and an important factor for increasing levels of antibiotic resistance. A new group of international experts—the Global Respiratory Infection Partnership (GRIP)—is committed to addressing this issue, with the interface between primary care practitioners and their patients as their core focus. To combat the overuse of antibiotics in the community, and facilitate a change from prescribing empiric antibiotic treatment towards cautious deferment combined with symptomatic relief, there is a need to introduce and enhance evidence-based dialogue between primary care practitioners and their patients. Communication with patients should focus on the de-medicalisation of self-limiting viral infections, which can be achieved via a coherent globally endorsed framework outlining the rationale for appropriate antibiotic use in acute RTIs in the context of antibiotic stewardship and conservancy. The planned framework is intended to be adaptable at a country level to reflect local behaviours, cultures and healthcare systems, and has the potential to serve as a model for change in other therapeutic areas.
Gernigon, Marie; Le Faucheur, Alexis; Fradin, Dominique; Noury-Desvaux, Bénédicte; Landron, Cédric; Mahe, Guillaume; Abraham, Pierre
2015-01-01
Abstract Revascularization aims at improving walking ability in patients with arterial claudication. The highest measured distance between 2 stops (highest-MDCW), the average walking speed (average-WSCW), and the average stop duration (average-DSCW) can be measured by global positioning system, but their evolution after revascularization is unknown. We included 251 peripheral artery diseased patients with self-reported limiting claudication. The patients performed a 1-hour stroll, recorded by a global positioning system receiver. Patients (n = 172) with confirmed limitation (highest-MDCW <2000m) at inclusion were reevaluated after 6 months. Patients revascularized during the follow-up period were compared with reference patients (ie, with unchanged lifestyle medical or surgical status). Other patients (lost to follow-up or treatment change) were excluded (n = 89). We studied 44 revascularized and 39 reference patients. Changes in highest-MDCW (+442 vs. +13 m) and average-WSCW (+0.3 vs. −0.2 km h−1) were greater in revascularized than in reference patients (both P < 0.01). In contrast, no significant difference in average-DSCW changes was found between the groups. Among the revascularized patients, 13 (29.5%) had a change in average-WSCW, but not in highest-MDCW, greater than the mean + 1 standard deviation of the change observed for reference patients. Revascularization may improve highest-MDCW and/or average-WSCW. This first report of changes in community walking ability in revascularized patients suggests that, beyond measuring walking distances, average-WSCW measurement is essential to monitor these changes. Applicability to other surgical populations remains to be evaluated. Registration: http://www.clinicaltrials.gov/ct2/show/NCT01141361 PMID:25950694
Gernigon, Marie; Le Faucheur, Alexis; Fradin, Dominique; Noury-Desvaux, Bénédicte; Landron, Cédric; Mahe, Guillaume; Abraham, Pierre
2015-05-01
Revascularization aims at improving walking ability in patients with arterial claudication. The highest measured distance between 2 stops (highest-MDCW), the average walking speed (average-WSCW), and the average stop duration (average-DSCW) can be measured by global positioning system, but their evolution after revascularization is unknown.We included 251 peripheral artery diseased patients with self-reported limiting claudication. The patients performed a 1-hour stroll, recorded by a global positioning system receiver. Patients (n = 172) with confirmed limitation (highest-MDCW <2000m) at inclusion were reevaluated after 6 months. Patients revascularized during the follow-up period were compared with reference patients (ie, with unchanged lifestyle medical or surgical status). Other patients (lost to follow-up or treatment change) were excluded (n = 89).We studied 44 revascularized and 39 reference patients. Changes in highest-MDCW (+442 vs. +13 m) and average-WSCW (+0.3 vs. -0.2 km h) were greater in revascularized than in reference patients (both P < 0.01). In contrast, no significant difference in average-DSCW changes was found between the groups. Among the revascularized patients, 13 (29.5%) had a change in average-WSCW, but not in highest-MDCW, greater than the mean + 1 standard deviation of the change observed for reference patients.Revascularization may improve highest-MDCW and/or average-WSCW. This first report of changes in community walking ability in revascularized patients suggests that, beyond measuring walking distances, average-WSCW measurement is essential to monitor these changes. Applicability to other surgical populations remains to be evaluated. http://www.clinicaltrials.gov/ct2/show/NCT01141361.
Mechanical regulation of cardiac development
Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.
2014-01-01
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277
Global Curriculum in Surgical Oncology.
Are, Chandrakanth; Berman, R S; Wyld, L; Cummings, C; Lecoq, C; Audisio, R A
2016-06-01
The significant global variations in surgical oncology training paradigms can have a detrimental effect on tackling the rising global cancer burden. While some variations in training are essential to account for the differences in types of cancer and biology, the fundamental principles of providing care to a cancer patient remain the same. The development of a global curriculum in surgical oncology with incorporated essential standards could be very useful in building an adequately trained surgical oncology workforce, which in turn could help in tackling the rising global cancer burden. The leaders of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in surgical oncology. A global curriculum in surgical oncology was developed to incorporate the required domains considered to be essential in training a surgical oncologist. The curriculum was constructed in a modular fashion to permit flexibility to suit the needs of the different regions of the world. Similarly, recognizing the various sociocultural, financial and cultural influences across the world, the proposed curriculum is aspirational and not mandatory in intent. A global curriculum was developed which may be considered as a foundational scaffolding for training surgical oncologists worldwide. It is envisioned that this initial global curriculum will provide a flexible and modular scaffolding that can be tailored by individual countries or regions to train surgical oncologists in a way that is appropriate for practice in their local environment. © 2016 Society of Surgical Oncology and the European Society of Surgical Oncology. Published by SpringerNature. All rights reserved.
Global curriculum in surgical oncology.
Are, C; Berman, R S; Wyld, L; Cummings, C; Lecoq, C; Audisio, R A
2016-06-01
The significant global variations in surgical oncology training paradigms can have a detrimental effect on tackling the rising global cancer burden. While some variations in training are essential to account for the differences in types of cancer and biology, the fundamental principles of providing care to a cancer patient remain the same. The development of a global curriculum in surgical oncology with incorporated essential standards could be very useful in building an adequately trained surgical oncology workforce, which in turn could help in tackling the rising global cancer burden. The leaders of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in surgical oncology. A global curriculum in surgical oncology was developed to incorporate the required domains considered to be essential in training a surgical oncologist. The curriculum was constructed in a modular fashion to permit flexibility to suit the needs of the different regions of the world. Similarly, recognizing the various sociocultural, financial and cultural influences across the world, the proposed curriculum is aspirational and not mandatory in intent. A global curriculum was developed which may be considered as a foundational scaffolding for training surgical oncologists worldwide. It is envisioned that this initial global curriculum will provide a flexible and modular scaffolding that can be tailored by individual countries or regions to train surgical oncologists in a way that is appropriate for practice in their local environment. Copyright © 2016 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.
Wojtczak, Andrzej
2003-01-01
Medical education stands at the doorstep of profound change, forced to step into an uncertain and potentially hostile new environment. These changes have nothing to do with scholar self-reflection, but rather are a direct consequence of the process of globalization visible also in medical education and the revolution in health care financing for which we use the general term "managed care". On one hand, globalization has penetrated different areas of our life, among others including science, public health and medicine which is a global profession. Medical knowledge, research and education have traditionally crossed national boundaries. Many aptitudes of physicians are universal, as well as the core competencies required by physicians throughout the world. The question is "what kind of core or essential competences are required for "global physicians". Besides medical knowledge and basic clinical skills, professionalism, interpersonal communication skills, context of care, information management, understanding a health system, etc. also need to be addressed. On the other hand, there is a growing concern that the corporate transformation of medical care, especially related to the impact of the changing and more business-oriented health care system, may lead to the decline and death of traditional professional values, such as fidelity, altruism, confidentiality, and integrity. No doubt, there is an inherent clash of values between business and medicine. However, as business interests have already gained an important place in medicine, we can hope that physicians progressively adopt a business mentality without losing professional virtue. While occurring changes inevitably bring some sense of loss, it also brings an opportunity to help reshape medical education to better meet the health needs of society.
The role of storage dynamics in annual wheat prices
NASA Astrophysics Data System (ADS)
Schewe, Jacob; Otto, Christian; Frieler, Katja
2017-05-01
Identifying the drivers of global crop price fluctuations is essential for estimating the risks of unexpected weather-induced production shortfalls and for designing optimal response measures. Here we show that with a consistent representation of storage dynamics, a simple supply-demand model can explain most of the observed variations in wheat prices over the last 40 yr solely based on time series of annual production and long term demand trends. Even the most recent price peaks in 2007/08 and 2010/11 can be explained by additionally accounting for documented changes in countries’ trade policies and storage strategies, without the need for external drivers such as oil prices or speculation across different commodity or stock markets. This underlines the critical sensitivity of global prices to fluctuations in production. The consistent inclusion of storage into a dynamic supply-demand model closes an important gap when it comes to exploring potential responses to future crop yield variability under climate and land-use change.
NASA Astrophysics Data System (ADS)
Shugart, Herman H.; Wang, Bin; Fischer, Rico; Ma, Jianyong; Fang, Jing; Yan, Xiaodong; Huth, Andreas; Armstrong, Amanda H.
2018-03-01
Individual-based models (IBMs) of complex systems emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. Ecological IBMs arose with seemingly independent origins out of the tradition of understanding the ecosystems dynamics of ecosystems from a ‘bottom-up’ accounting of the interactions of the parts. Individual trees are principal among the parts of forests. Because these models are computationally demanding, they have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. This review will focus on a class of forest IBMs called gap models. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on a small plot of land. The summation of these plots comprise a forest (or set of sample plots on a forested landscape or region). Other, more aggregated forest IBMs have been used in global applications including cohort-based models, ecosystem demography models, etc. Gap models have been used to provide the parameters for these bulk models. Currently, gap models have grown from local-scale to continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. Our objective in this review is to provide the reader with an overview of the history, motivation and applications, including theoretical applications, of these models. In a time of concern over global changes, gap models are essential tools to understand forest responses to climate change, modified disturbance regimes and other change agents. Development of forest surveys to provide the starting points for simulations and better estimates of the behavior of the diversity of tree species in response to the environment are continuing needs for improvement for these and other IBMs.
Social and Ecological Dynamics of Small-Scale Fisheries
NASA Astrophysics Data System (ADS)
Stevens, K.; Kramer, D.; Frank, K.
2012-12-01
Globalization's reach is rapidly extending to touch some of the most remote communities of the world, but we have yet to understand its scale and impact. On Nicaragua's previously remote Miskitu Coast, the introduction of new markets and global demand for seafood has resulted in changes in fishermen's harvest behavior manifested within the local fishery. Small-scale fisheries are a significant component in sustaining global fish trade, ensuring food security, and alleviating poverty, but because the fishermen are disperse, numerous and located in remote areas, the social and ecological dynamics of the system are poorly understood. Previous work has indicated a decline in fish abundance as a result of connection to markets, yet fishermen's response to this decline and the resulting shift in harvest strategy requires further examination. I identify the ecological and social factors that explain changes in fishermen behavior and use an innovative application of social network analysis to understand these changes. I also use interviews with fishermen and fishery-dependent surveys to measure catch and release behavior and seasonal gear use. Results demonstrate multiple cliques within a community that mitigate the response of fishermen to changes in the fishery. This research applies techniques in social science to address challenges in sustainable management of fisheries. As fisheries managers consider implementing new regulations, such as seasonal restrictions on gear, it is essential to understand not just how this might impact fish abundance, but how and why human systems respond as they do.
Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM
NASA Technical Reports Server (NTRS)
Crane, Robert G.; Hewitson, Bruce
1990-01-01
Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.
Assessing Climate Misconceptions of Middle School Learners and Teachers
NASA Astrophysics Data System (ADS)
Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.
2012-12-01
Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1) environmental literacy and inquiry and (2) foster the development of geospatial thinking and reasoning using geospatial technologies as an essential component of the middle school science curriculum. The curriculum is designed to align instructional materials and assessments with learning goals. The following frameworks were used to provide guidelines for the climate change science content in addition to the science inquiry upon which schools must focus: Climate Literacy: The Essential Principles of Climate Sciences (U.S. Global Change Research Program, 2009) and the AAAS Project 2061 Communicating and Learning About Global Climate Change (AAAS, 2007). The curriculum is a coherent sequence of learning activities that include climate change investigations with Google Earth, Web-based interactivities that include an online carbon emissions calculator and a Web-based geologic time-line, and inquiry-based ("hands-on") laboratories. The climate change science topics include the atmosphere, Earth system energy balance, weather, greenhouse gases, paleoclimatology, and "humans and climate". It is hoped that with a solid foundation of climate science in the classroom, middle school learners will be in a position to evaluate new scientific discoveries, emerging data sets, and reasonably assess information and misinformation by which they are surrounded on a daily basis.
Climate change increases the production of female hatchlings at a northern sea turtle rookery.
Reneker, J L; Kamel, S J
2016-12-01
The most recent climate change projections show a global increase in temperatures, along with major adjustments to precipitation, throughout the 21st century. Species exhibiting temperature-dependent sex determination are highly susceptible to such changes since the incubation environment influences critical offspring characteristics such as survival and sex ratio. Here we show that the mean incubation duration of loggerhead sea turtle (Caretta caretta) nests from a high-density nesting beach on Bald Head Island, North Carolina, USA has decreased significantly over the past 25 yr. This decrease in incubation duration is significantly positively correlated with mean air temperature and negatively correlated with mean precipitation during the nesting season. Additionally, although no change in hatching success was detected during this same period, a potentially detrimental consequence of shorter incubation durations is that they lead to the production of primarily female offspring. Given that global temperatures are predicted to increase by as much as 4°C over the next century, the mass feminization of sea turtle hatchlings is a high-priority concern. While presently limited in number, studies using long-term data sets to examine the temporal correlation between offspring characteristics and climatic trends are essential for understanding the scope and direction of climate change effects on species persistence. © 2016 by the Ecological Society of America.
Alcaraz-Segura, Domingo; Cabello, Javier; Paruelo, José M; Delibes, Miguel
2009-01-01
Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.
USGS science for the Nation's changing coasts; shoreline change assessment
Thieler, E. Robert; Hapke, Cheryl J.
2011-01-01
The coastline of the United States features some of the most popular tourist and recreational destinations in the world and is the site of intense residential, commercial, and industrial development. The coastal zone also has extensive and pristine natural areas, with diverse ecosystems providing essential habitat and resources that support wildlife, fish, and human use. Coastal erosion is a widespread process along most open-ocean shores of the United States that affects both developed and natural coastlines. As the coast changes, there are a wide range of ways that change can affect coastal communities, habitats, and the physical characteristics of the coast?including beach erosion, shoreline retreat, land loss, and damage to infrastructure. Global climate change will likely increase the rate of coastal change. A recent study of the U.S. Mid-Atlantic coast, for example, found that it is virtually certain that sandy beaches will erode faster in the future as sea level rises because of climate change. The U.S. Geological Survey (USGS) is responsible for conducting research on coastal change hazards, understanding the processes that cause coastal change, and developing models to predict future change. To understand and adapt to shoreline change, accurate information regarding the past and present configurations of the shoreline is essential. A comprehensive, nationally consistent analysis of shoreline movement is needed. To meet this national need, the USGS is conducting an analysis of historical shoreline changes along open-ocean coasts of the conterminous United States and parts of Alaska and Hawaii, as well as the coasts of the Great Lakes.
Climate Change and Health: Transcending Silos to Find Solutions.
Machalaba, Catherine; Romanelli, Cristina; Stoett, Peter; Baum, Sarah E; Bouley, Timothy A; Daszak, Peter; Karesh, William B
2015-01-01
Climate change has myriad implications for the health of humans, our ecosystems, and the ecological processes that sustain them. Projections of rising greenhouse gas emissions suggest increasing direct and indirect burden of infectious and noninfectious disease, effects on food and water security, and other societal disruptions. As the effects of climate change cannot be isolated from social and ecological determinants of disease that will mitigate or exacerbate forecasted health outcomes, multidisciplinary collaboration is critically needed. The aim of this article was to review the links between climate change and its upstream drivers (ie, processes leading to greenhouse gas emissions) and health outcomes, and identify existing opportunities to leverage more integrated global health and climate actions to prevent, prepare for, and respond to anthropogenic pressures. We conducted a literature review of current and projected health outcomes associated with climate change, drawing on findings and our collective expertise to review opportunities for adaptation and mitigation across disciplines. Health outcomes related to climate change affect a wide range of stakeholders, providing ready collaborative opportunities for interventions, which can be differentiated by addressing the upstream drivers leading to climate change or the downstream effects of climate change itself. Although health professionals are challenged with risks from climate change and its drivers, the adverse health outcomes cannot be resolved by the public health community alone. A phase change in global health is needed to move from a passive responder in partnership with other societal sectors to drive innovative alternatives. It is essential for global health to step outside of its traditional boundaries to engage with other stakeholders to develop policy and practical solutions to mitigate disease burden of climate change and its drivers; this will also yield compound benefits that help address other health, environmental, and societal challenges. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET
Storm, Petter; Kjaer Klausen, Thomas; Trulsson, Maria; Ho CS, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina
2013-01-01
Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues. PMID:23505537
A unifying mechanism for cancer cell death through ion channel activation by HAMLET.
Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina
2013-01-01
Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.
NASA Astrophysics Data System (ADS)
Ruiz-Sinoga, José D.; Hueso-González, Paloma; León-Gross, Teodoro; Molina, Julián; Remond, Ricardo; Martínez-Murillo, Juan F.
2017-04-01
The Global Change is referred to the occurrence of great environmental changes associated to climatic fluctuations and human activity as wel (Vitousek et al., 1997; Steffen et al., 2004; Dearing et al., 2006). García-Ruiz et al. (2015) indicated that the relief varies very slowly in time while the changes in vegetation, overland flow generation and erosion occurred very rapidly and conditioned by their interactions and the climate variability as well. The GLOMED-LAND Project has its bases and scientific justification on the combination of the experience of the members of the research team, from one side, in the analysis of the dynamics and eco-geomorphological and climatic processes in Mediterranean environments of southern Spain, in the context of current Global change, and from another, in the study, development and application of new tools for simulation and modelling of future scenarios, and finally, in the analysis of the impact that society exercises the broadcast media related to the problem derived from the awareness and adaptation to Global change. Climate change (CC), directly affects the elements that compose the landscape. Both in the analysis of future climate scenarios raised by the IPCC (2013), such as the regionalisation carried out by AEMET, the Mediterranean region and, especially, the South of Spain, - with its defined longitudinal pluviometric gradient - configured as one of the areas of greatest uncertainty, reflected in a higher concentration of temporal rainfall, and even a reduction in the rainfall. Faced with this situation, the CC can modify the current landscape setting, with all the environmental impacts that this would entail for the terrestrial ecosystems and the systemic services rendered to the society. The combination of different work scales allows the analysis of the dynamics of the landscape and the consequence of its modifications on, hydro-geomorphological processes, closely related to degradation processes that can affect the abiotic, biotic, and human elements of the landscape (soil, plant cover, crops, water resources, etc.). Simulation and modelling is now an essential tool in the study of landscape and of the effects of Climate Change, not only towards the future through scenarios and simulation modelling, also to the past, to better understand what causes have led to effects, and to what extent. In this work we aim to create a set of software tools for analysis, modelling and simulation of the effects of Global change on two Mediterranean catchments: the middle and upper basin of the Grande River and the high Benamargosa River, both of them in the Province of Málaga (South of Spain). This will allow a full analysis, monitor, and predict those effects at local scale. Finally, we analyse the role that the impact of Global Change issues has had from the media point of view and what tendency can follow. References Dearing, J. et al. (2006): «Human-environment interactions: towards synthesis and simulation». Regional Environmental Change, n° 6, 115-123. García-Ruiz et al. (2015): «Los efectos geoecológicos del cambio global en el Pirineo central español: una revisión a distintas escalas espaciales y temporales». Pirineos, 170. Steffen, W. et al. (2004): Global Change and the Earth System: a planet under pressure. Executive summary. The IGBP Global Change Series. Springer-Verlag, Berlin, Heidelburg, 44 pp., New York. Vitousek, P.M. et al. (1997): «Human domination of earth's ecosystems». Science, n° 277, 494-499.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs
The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. colimore » α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.« less
A Model for Teaching a Climate Change Elective Science Course at the Community College Level
NASA Astrophysics Data System (ADS)
Mandia, S. A.
2012-12-01
The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.
Lizard thermal trait variation at multiple scales: a review.
Clusella-Trullas, Susana; Chown, Steven L
2014-01-01
Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.
A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Griffiths, Natalie A.; DeRolph, Christopher R.
Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelitymore » of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.« less
NASA Technical Reports Server (NTRS)
Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi;
2007-01-01
This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.
Water and life from snow: A trillion dollar science question
NASA Astrophysics Data System (ADS)
Sturm, Matthew; Goldstein, Michael A.; Parr, Charles
2017-05-01
Snow provides essential resources/services in the form of water for human use, and climate regulation in the form of enhanced cooling of the Earth. In addition, it supports a thriving winter outdoor recreation industry. To date, the financial evaluation of the importance of snow is incomplete and hence the need for accelerated snow research is not as clear as it could be. With snow cover changing worldwide in several worrisome ways, there is pressing need to determine global, regional, and local rates of snow cover change, and to link these to financial analyses that allow for rational decision making, as risks related to those decisions involve trillions of dollars.
WGISS-45 International Directory Network (IDN) Report
NASA Technical Reports Server (NTRS)
Morahan, Michael
2018-01-01
The objective of this presentation is to provide IDN (International Directory Network) updates on features and activities to the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) and provider community. The following topics will be will be discussed during the presentation: Transition of Providers DIF-9 (Directory Interchange Format-9) to DIF-10 Metadata Records in the Common Metadata Repository (CMR); GCMD (Global Change Master Directory) Keyword Update; DIF-10 and UMM-C (Unified Metadata Model-Collections) Schema Changes; Metadata Validation of Provider Metadata; docBUILDER for Submitting IDN Metadata to the CMR (i.e. Registration); and Mapping WGClimate Essential Climate Variable (ECV) Inventory to IDN Records.
The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change.
David, Jean-François; Handa, Ira Tanya
2010-11-01
Millipedes (Diplopoda) and woodlice (Crustacea, Isopoda), with a total of about 15000 described species worldwide, contribute substantially to invertebrate biodiversity. These saprophagous macroarthropods, which are key regulators of plant litter decomposition, play an important role in the functioning of terrestrial ecosystems in tropical and temperate areas. Herein we review current knowledge on the effects of climate, food quality and land cover on millipede and woodlouse species to explore their potential responses to global change. Essentially similar trends are observed in the two taxa. Experiments have shown that climate warming could result in higher rates of population growth and have positive effects on the abundance of some temperate species. This is consistent with signs of northward expansion in Europe, although the mechanisms of dispersal remain unclear. The generality of this finding is evaluated in relation to the life histories and geographical distributions of species. At low latitudes, interactions with more severe droughts are likely and could affect community composition. Elevated atmospheric CO₂ levels and changes in plant community composition are expected to alter leaf litter quality, a major determinant of macroarthropod fertility via the link with female adult body size. Although food quality changes have been shown to influence population growth rates significantly, it is proposed that the effects of warming will be probably more important during the coming decades. Land cover changes, mainly due to deforestation in the tropics and land abandonment in Europe, are critical to habitat specialists and could override any other effect of global change. Habitat destruction by man may be the main threat to macroarthropod species, many of which are narrow endemics. At the landscape scale, habitat heterogeneity could be a good option for conservation, even at the cost of some fragmentation. Two principal areas are identified which require further work: (i) the effects of climate change across broader geographic ranges, and on species with different ecologies and life histories; (ii) the effects of global change on both macroarthropods and their natural enemies (predators, parasites and pathogens), to improve predictions in field situations. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Heath, D. F.; Cebula, R. P.
1986-01-01
The scientific objective of unambiguously detecting subtle global trends in upper stratospheric ozone requires that one maintains a thorough understanding of the satellite-based remote sensors intended for this task. The instrument now in use for long term ozone monitoring is the SBUV/2 being flown on NOAA operational satellites. A critical activity in the data interpretation involves separating small changes in measurement sensitivity from true atmospheric variability. By defining the specific issues that must be addressed and presenting results derived early in the mission of the first SBUV/2 flight model, this work serves as a guide to the instrument investigations that are essential in the attempt to detect long-term changes in the ozone layer.
NASA Astrophysics Data System (ADS)
Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.
2017-12-01
Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.
ERIC Educational Resources Information Center
McGaha, Julie
2015-01-01
In order to prepare students with the knowledge, skills, and attitudes necessary to live and work in an interconnected and interdependent world, it is essential they have teachers who understand global processes and can employ a global perspective in the classroom. While globalization can lead to expanded economic markets, increased mass…
The Culture of Education Policy Making: Curriculum Reform in Shanghai
ERIC Educational Resources Information Center
Tan, Charlene
2012-01-01
This paper explores the culture of education policy making in Shanghai using the conceptual tool of a "global assemblage". A global assemblage is essentially a collection of ideas and practices that arise from the interplay between a global form and situated sociocultural elements. Focusing on the global form of curriculum reform, this…
Global Ocean Integrals and Means, with Trend Implications.
Wunsch, Carl
2016-01-01
Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.
A global reconstruction of climate-driven subdecadal water storage variability
NASA Astrophysics Data System (ADS)
Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.
2017-03-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:
Fabry-Perot Interferometer for Column CO2
NASA Technical Reports Server (NTRS)
Heaps, William S.; Kawa, Randolph; Bhartia, P. K. (Technical Monitor)
2002-01-01
Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision approx. 0.3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also measuring signal and noise levels in actual sunlight to evaluate component performance.
Global lessons on healthy adolescent sexual development.
Koyama, Atsuko; Corliss, Heather L; Santelli, John S
2009-08-01
Examining global trends of adolescent sexual behavior is essential to inform clinical practice as well as for developing interventions and educational strategies to ensure healthy sexual development in young people. Most young people begin sexual activity in their teenage years. Extensive research has been conducted to elucidate risk and protective factors for sexual activity in adolescence and to evaluate the success of different sex education programs in influencing these factors. Some risk and protective factors were similar globally, whereas others differed by sex and community. Research findings suggest that comprehensive sex education, which includes skills-based interventions, is effective in changing youth behavior. In addition, research points towards the importance of addressing larger structural and contextual issues such as gender equality, poverty, and education in improving the sexual health of adolescents. Adolescents begin their sexual lives in their teen years; therefore, clinicians need to focus on positive ways to help teenagers develop healthy relationships while providing guidance around reducing risky sexual behaviors.
Vertical coherence in mantle heterogeneity from global seismic data
NASA Astrophysics Data System (ADS)
Boschi, L.; Becker, T. W.
2011-10-01
The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.
Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes.
De Schepper, Stijn; Schreck, Michael; Beck, Kristina Marie; Matthiessen, Jens; Fahl, Kirsten; Mangerud, Gunn
2015-10-28
The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.
ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE
Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L
2013-01-01
Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373
Ecological risk assessment in the context of global climate change.
Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L
2013-01-01
Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.
USGS research on Atlantic coral reef ecosystems
Kuffner, Ilsa B.; Yates, Kimberly K.; Zawada, David G.; Richey, Julie N.; Kellogg, Christina A.; Toth, Lauren T.
2015-10-23
Coral reefs are massive, biomineralized structures that protect coastal communities by acting as barriers to hazards such as hurricanes and tsunamis. They provide sand for beaches through the natural process of erosion, support tourism and recreational industries, and provide essential habitat for fisheries. The continuing global degradation of coral reef ecosystems is well documented. There is a need for focused, coordinated science to understand the complex physical and biological processes and interactions that are impacting the condition of coral reefs and their ability to respond to a changing environment.
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
Shaping the global landscape in the Anthropocene
NASA Astrophysics Data System (ADS)
Lotze-Campen, H.
2012-12-01
In the emerging era of the Anthropocene (Crutzen and Stoermer 2000) most ecosystems are either directly or indirectly influenced by human activities, and neither socio-economic processes nor environmental changes can be understood without taking their interactions into account. Social transitions towards more sustainable development paths will only be achieved through a co-evolution process of society and nature. Both are parts of one integrated "Earth system", where land and water use are key linking elements. In the industrialised countries the transition task will have to focus on maintaining current standards of living while reducing the demand for ecosystem services. In the developing countries the major challenge will be to raise income levels substantially and find more sustainable development paths that try to minimise the negative side-effects of economic growth. Due to technological changes and a globally integrated economy, human society is now in a position where it has to ask itself: "What kind of landscapes and ecosystems do we really want in the future?" Shaping environmental conditions in the course of economic growth and climate change becomes a social management task. While many environmental and social problems have to be dealt with at the regional and national scale, in some areas, like climate change and international trade, the level of analysis and political action extends to the global scale. The allocation of land and water resources for different human uses has to be consciously managed. The potential and limitations of different options and the trade-offs between land expansion, increased land use intensity and re-allocation between different uses have to be carefully assessed. While agricultural productivity has continuously grown in the past, a slowing pace has to be expected in many regions in the future. Water may pose the most serious limitation to future global food and bioenergy supplies. Rising crop outputs per unit of land and water are essential to feed growing demands. The technological and organisational changes required to increase productivity will only be achieved through continuous investments and appropriate institutional settings and incentives. Strategies for a "sustainable land management" will only emerge from truly integrated methods of analysis. These have to combine theories, models and data from various social sciences (e.g. economics, sociology, psychology) and natural sciences (e.g. ecology, hydrology, biogeochemistry). We provide an integrated assessment approach for modeling global landscape change and related management options, including changes in lifestyles and global consumption patterns. The global biogeochemistry model LPJmL (Bondeau et al. 2007) is linked to the economic land and water use model MAgPIE (Lotze-Campen et al. 2008) and the economy-climate model REMIND-R (Leimbach et al. 2010). We illustrate the trade-offs between different societal goals with regard to land use and landscape diversity. Finally, we provide a research design for multi-scale analysis of landscape change through a combination of regional case studies with our global models of the economy, biosphere, and climate.
Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2016-04-01
To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.
Canales, Javier; Moyano, Tomás C.; Villarroel, Eva; Gutiérrez, Rodrigo A.
2014-01-01
Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants. PMID:24570678
Cabieses, Baltica; Tunstall, Helena; Pickett, Kate E; Gideon, Jasmine
2013-07-01
Migration patterns in Latin America have changed significantly in recent decades, particularly since the onset of global recession in 2007. These recent economic changes have highlighted and exacerbated the weakness of evidence from Latin America regarding migration-a crucial determinant of health. Migration patterns are constantly evolving in Latin America, but research on migration has not developed at the same speed. This article focuses on the need for better understanding of the living conditions and health of migrant populations in Latin America within the context of the recent global recession. The authors explain how new data on migrant well-being could be obtained through improved evidence from censuses and ongoing research surveys to 1) better inform policy-makers about the needs of migrant populations in Latin America and 2) help determine better ways of reaching undocumented immigrants. Longitudinal studies on immigrants in Latin America are essential for generating a better representation of migrant living conditions and health needs during the initial stages of immigration and over time. To help meet this need, the authors support the promotion of sustainable sources of data and evidence on the complex relationship between migration and health.
Taraboletti, Alexandra; Walker, Tia; Avila, Robin; Huang, He; Caporoso, Joel; Manandhar, Erendra; Leeper, Thomas C; Modarelli, David A; Medicetty, Satish; Shriver, Leah P
2017-03-14
Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.
Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng
2016-02-01
DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.
Is climate change modifying precipitation extremes?
NASA Astrophysics Data System (ADS)
Montanari, Alberto; Papalexiou, Simon Michael
2016-04-01
The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.
NASA Astrophysics Data System (ADS)
Mayor, Daniel J.; Sommer, Ulf; Cook, Kathryn B.; Viant, Mark R.
2015-09-01
Marine copepods are central to the productivity and biogeochemistry of marine ecosystems. Nevertheless, the direct and indirect effects of climate change on their metabolic functioning remain poorly understood. Here, we use metabolomics, the unbiased study of multiple low molecular weight organic metabolites, to examine how the physiology of Calanus spp. is affected by end-of-century global warming and ocean acidification scenarios. We report that the physiological stresses associated with incubation without food over a 5-day period greatly exceed those caused directly by seawater temperature or pH perturbations. This highlights the need to contextualise the results of climate change experiments by comparison to other, naturally occurring stressors such as food deprivation, which is being exacerbated by global warming. Protein and lipid metabolism were up-regulated in the food-deprived animals, with a novel class of taurine-containing lipids and the essential polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid and docosahexaenoic acid, changing significantly over the duration of our experiment. Copepods derive these PUFAs by ingesting diatoms and flagellated microplankton respectively. Climate-driven changes in the productivity, phenology and composition of microplankton communities, and hence the availability of these fatty acids, therefore have the potential to influence the ability of copepods to survive starvation and other environmental stressors.
Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y
2015-01-01
UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.
The political economy of emergency and essential surgery in global health.
Hedges, Jeremy P; Mock, Charles N; Cherian, Meena N
2010-09-01
Emergency and essential surgery (EES) remains a low priority on global health agendas even though a growing body of evidence demonstrates that EES is a cost-effective public health intervention and that it holds the potential to prevent a sizable number of deaths and disabilities. The inferior status of EES should be considered, in part, a political problem and subject to political analysis. This type of political economy examination has been used for other important global health issues but has not been applied to EES. By addressing political concerns and prospects, EES can be better positioned on international agendas, thus improving surgical care delivered to the poor.
Vidor, Emmanuel; Soubeyrand, Benoit
2016-12-01
The manufacture of DTP-backboned combination vaccines is complex, and vaccine quality is evaluated by both batch composition and conformance of manufacturing history. Since their first availability, both the manufacturing regulations for DTP combination vaccines and their demand have evolved significantly. This has resulted in a constant need to modify manufacturing and quality control processes. Areas covered: Regulations that govern the manufacture of complex vaccines can be inconsistent between countries and need to be aligned with the regulatory requirements that apply in all countries of distribution. Changes in product mix and quantities can lead to uncertainty in vaccine supply maintenance. These problems are discussed in the context of the importance of these products as essential public health tools. Expert commentary: Increasing demand for complex vaccines globally has led to problems in supply due to intrinsically complex manufacturing and regulatory procedures. Vaccine manufacturers are fully engaged in the resolution of these challenges, but currently changes in demand need ideally to be anticipated approximately 3 years in advance due to long production cycle times.
Geoengineering as a design problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
2016-01-01
Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less
NASA Astrophysics Data System (ADS)
Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric
2010-05-01
Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.
Super-global distortion correction for a rotational C-arm x-ray image intensifier.
Liu, R R; Rudin, S; Bednarek, D R
1999-09-01
Image intensifier (II) distortion changes as a function of C-arm rotation angle because of changes in the orientation of the II with the earth's or other stray magnetic fields. For cone-beam computed tomography (CT), distortion correction for all angles is essential. The new super-global distortion correction consists of a model to continuously correct II distortion not only at each location in the image but for every rotational angle of the C arm. Calibration bead images were acquired with a standard C arm in 9 in. II mode. The super-global (SG) model is obtained from the single-plane global correction of the selected calibration images with given sampling angle interval. The fifth-order single-plane global corrections yielded a residual rms error of 0.20 pixels, while the SG model yielded a rms error of 0.21 pixels, a negligibly small difference. We evaluated the accuracy dependence of the SG model on various factors, such as the single-plane global fitting order, SG order, and angular sampling interval. We found that a good SG model can be obtained using a sixth-order SG polynomial fit based on the fifth-order single-plane global correction, and that a 10 degrees sampling interval was sufficient. Thus, the SG model saves processing resources and storage space. The residual errors from the mechanical errors of the x-ray system were also investigated, and found comparable with the SG residual error. Additionally, a single-plane global correction was done in the cylindrical coordinate system, and physical information about pincushion distortion and S distortion were observed and analyzed; however, this method is not recommended due to a lack of calculational efficiency. In conclusion, the SG model provides an accurate, fast, and simple correction for rotational C-arm images, which may be used for cone-beam CT.
JRC Copernicus Climate Change Service (C3S) F4P platform.
NASA Astrophysics Data System (ADS)
Mota, Bernardo; Cappucci, Fabrizio; Gobron, Nadine
2016-04-01
With the increasing number of Earth Observation satellites and derived land surface products, concerns of quality assurance led the Global Climate Observing System (GCOS) to establish accuracy criteria and standards. In this context, the Climate Change Copernicus Service (C3S) fitness-for-purpose (F4P) platform, developed at the Joint Research Centre, aims assessing the quality of land Essential Climate Variables (ECVs) in compliance with GCOS criteria. In this paper, we first summarize the JRC C3S FP4 goals and secondly present the automatic review platform to assess multi-mission physical consistencies and physical coherence of and between various land products, at global and regional scales. We propose new metrics, such as Gamma Index and Triple Collocation Error Model, for multi-mission product inter-comparison and stability assessment, and resource selection statistical methods to assess physical coherence with other related ECV products. Examples concern the consistency of five global albedo products (GlobAlbedo, GLASS, MCD43C3, GIO and MISR), between 2000 And 2011, and their coherence with four burnt area products (MCD45A1, MCD64A1, Fire_CCI and GIO) for the overlapping period (2006 to 2008). Preliminary results show reasonable agreement with the inherent limitations of each product algorithm and sensor resolution.
Shi, Yiquan; Wolfensteller, Uta; Schubert, Torsten; Ruge, Hannes
2018-02-01
Cognitive flexibility is essential to cope with changing task demands and often it is necessary to adapt to combined changes in a coordinated manner. The present fMRI study examined how the brain implements such multi-level adaptation processes. Specifically, on a "local," hierarchically lower level, switching between two tasks was required across trials while the rules of each task remained unchanged for blocks of trials. On a "global" level regarding blocks of twelve trials, the task rules could reverse or remain the same. The current task was cued at the start of each trial while the current task rules were instructed before the start of a new block. We found that partly overlapping and partly segregated neural networks play different roles when coping with the combination of global rule reversal and local task switching. The fronto-parietal control network (FPN) supported the encoding of reversed rules at the time of explicit rule instruction. The same regions subsequently supported local task switching processes during actual implementation trials, irrespective of rule reversal condition. By contrast, a cortico-striatal network (CSN) including supplementary motor area and putamen was increasingly engaged across implementation trials and more so for rule reversal than for nonreversal blocks, irrespective of task switching condition. Together, these findings suggest that the brain accomplishes the coordinated adaptation to multi-level demand changes by distributing processing resources either across time (FPN for reversed rule encoding and later for task switching) or across regions (CSN for reversed rule implementation and FPN for concurrent task switching). © 2017 Wiley Periodicals, Inc.
The essential medicines list for a global patient population.
Robertson, J; Hill, S R
2007-11-01
Thirty years after its inception, the role, audience, and contents of the global Essential Medicines List (EML) are reviewed. Challenges for decision makers in applying the principles of medicine selection based on efficacy, safety, burden of disease, and cost effectiveness are discussed and illustrated with recent decisions of the Expert Committee. Areas of controversy for decision makers are highlighted, and the advocacy role of the EML for both drug procurement and development of quality-assured products is described.
Emerging Technologies for Software-Reliant Systems
2011-02-24
needs • Loose coupling • Global distribution of hardware, software and people • Horizontal integration and convergence • Virtualization...Webinar– February 2011 © 2011 Carnegie Mellon University Global Distribution of Hardware, Software and People Globalization is an essential part of...University Required Software Engineering Emphasis Due to Emerging Technologies (2) Defensive Programming • Security • Auto-adaptation • Globalization
ERIC Educational Resources Information Center
Kahn, Hilary E.; Agnew, Melanie
2017-01-01
By clarifying what global learning is and how it is essential to higher education, this article considers what global learning provides for teaching, learning, and internationalization in higher education. It demonstrates how the global nature of knowledge and learning in the 21st century requires a re-definition of classrooms and learning…
NASA Astrophysics Data System (ADS)
Shchepashchenko, D.; Chave, J.; Phillips, O. L.; Davies, S. J.; Lewis, S. L.; Perger, C.; Dresel, C.; Fritz, S.; Scipal, K.
2017-12-01
Forest monitoring is high on the scientific and political agenda. Global measurements of forest height, biomass and how they change with time are urgently needed as essential climate and ecosystem variables. The Forest Observation System - FOS (http://forest-observation-system.net/) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the Remote Sensing (RS) community with ecologists who measure forest biomass and estimating biodiversity in the field for a common benefit. The benefit of FOS for the RS community is the partnering of the most established teams and networks that manage permanent forest plots globally; to overcome data sharing issues and introduce a standard biomass data flow from tree level measurement to the plot level aggregation served in the most suitable form for the RS community. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potential improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the Center for Tropical Forest Science -CTFS-ForestGEO, the ForestPlots.net (incl. RAINFOR, AfriTRON and T-FORCES), AusCover, Tropical managed Forests Observatory and the IIASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for both metadata (e.g. who conducted the measurements, where and which parameters) and actual data for a subset of plots where the authors have granted access. A minimum set of database values include: principal investigator and institution, plot coordinates, number of trees, forest type and tree species composition, wood density, canopy height and above ground biomass of trees. Plot size is 0.25 ha or large. The database will be essential for validating and calibrating satellite observations and various models.
Climate Observations from Space
NASA Astrophysics Data System (ADS)
Briggs, Stephen
2016-07-01
The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.
Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD
NASA Astrophysics Data System (ADS)
Gumpenberger, Marlies; Vohland, Katrin; Heyder, Ursula; Poulter, Benjamin; Macey, Kirsten; Rammig, Anja; Popp, Alexander; Cramer, Wolfgang
2010-01-01
Deforestation is a major threat to tropical forests worldwide, contributing up to one-fifth of global carbon emissions into the atmosphere. Despite protection efforts, deforestation of tropical forests has continued in recent years. Providing incentives to reducing deforestation has been proposed in the United Nations Framework Convention on Climate Change (UNFCCC) Bali negotiations in 2007 to decelerate emissions from deforestation (REDD—reduced emissions from deforestation and forest degradation). A number of methodological issues such as ensuring permanence, establishing reference emissions levels that do not reward business-as-usual and having a measuring, reporting and verification system in place are essential elements in implementing successful REDD schemes. To assess the combined impacts of climate and land-use change on tropical forest carbon stocks in the 21st century, we use a dynamic global vegetation model (LPJ DGVM) driven by five different climate change projections under a given greenhouse gas emission scenario (SRES A2) and two contrasting land-use change scenarios. We find that even under a complete stop of deforestation after the period of the Kyoto Protocol (post-2012) some countries may continue to lose carbon stocks due to climate change. Especially at risk is tropical Latin America, although the presence and magnitude of the risk depends on the climate change scenario. By contrast, strong protection of forests could increase carbon uptake in many tropical countries, due to CO2 fertilization effects, even under altered climate regimes.
The impact of climate change on the water resource
NASA Astrophysics Data System (ADS)
Perac, Marija Å.; Grgurevac, Anamarija
2010-05-01
The EU has defined dangerous climate change as an increase in 2 degrees Celsius of average global temperatures. Rising global temperatures will lead to an intensification of hydrological cycle, resulting in dryer dry season, and subsequently heightened risk of more extreme and frequent floods and drought. Climate change is caused by greenhouse gasses ( GHGs), which enhance the " greenhouse " properties of the earth's atmosphere. These gasses allow solar radiation from the sun to travel through the atmosphere but prevent the reflected heat from escaping back into space. This causes the earth's temperature to rise. Changing climate will also have significant impacts on the availability of water as well as the quality of water that is available and accessible. Possibly, climate change magnificent impact at water cycles in Croatia. It means more droughts, it will have impact in agriculture and natural systems, specially swamp areas. Also, it will be come to reduction river flows, and maybe lower underground water level which used for water supply. Climate change can be impact on intensity of floods and quality/quantity of water.Successes of climate change in Croatia are: decrease volume of precipitation at whole state area; long drought years directly water quantity for irrigation; decreasing drinking water. Ponder able for next 40 years mean temperature will be increase for 2,5 C. It assumes that sea level will be increase at 65 - 100 cm. It will be endanger cities and settlements besides coast ( cities: Split, Zadar; west coast of Istra; delta of Neretva; islands: Krk, Cres, Lošinj…). Suggestions for next activities: monitoring and notation hydro meteorological information's; account impact of climate change on the: evaporation, drain, water balance, water management activity, make a region impact study of a possibly account on the water resources. Maintaining and development of water resources and agrotehnical systems and application water management strategy are essential postulate of accommodation that defined economical expansion of the state. Global heating in 21. century in European continent mostly attack Mediterranean and Alps region.
Food Intake and Eating Behavior After Bariatric Surgery.
Al-Najim, Werd; Docherty, Neil G; le Roux, Carel W
2018-07-01
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Flynn; AS Koontz; JH Mather
The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significantmore » radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.« less
A roadmap for improving the representation of photosynthesis in Earth system models.
Rogers, Alistair; Medlyn, Belinda E; Dukes, Jeffrey S; Bonan, Gordon; von Caemmerer, Susanne; Dietze, Michael C; Kattge, Jens; Leakey, Andrew D B; Mercado, Lina M; Niinemets, Ülo; Prentice, I Colin; Serbin, Shawn P; Sitch, Stephen; Way, Danielle A; Zaehle, Sönke
2017-01-01
Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO 2 assimilation (A) to key environmental variables: light, temperature, CO 2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models. No claim to original US Government works New Phytologist © 2016 New Phytologist Trust.
Assessing the Agricultural Vulnerability for India under Changing Climate
NASA Astrophysics Data System (ADS)
Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra
2016-04-01
Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.
Monitoring Seasons Through Global Learning Communities
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.
2006-12-01
Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in polar regions, and web chats between IPY scientists and GLOBE students from all eight GLCs that include non-polar countries.
Wass, Val; Southgate, Lesley
2017-04-01
The unprecedented demands of patient and population priorities created by globalization and escalating health and social inequities will not be met unless medical education changes. Educators have failed to move fast enough to create an education framework that meets current population needs. A new common set of professional values around global social accountability is necessary. Education borders must be broken down at three levels-societal-institutional, interpersonal, and individual.At a societal-institutional level, global health must be embraced as part of a philosophy of population needs, human rights, equity, and justice. A move from informative acquisition of knowledge and skills to formative learning where students socialize around values, develop leadership attributes, and become agents for change is needed. At an interpersonal level, radical changes in curriculum delivery, which move away from the well-defined borders of specialty rotations, are required. Students must develop an integrated understanding of the future of health care and the patient's journey through health care delivery, within the context of population needs. At an individual level, doctors need to understand the boundaries of the professional values they hold within themselves and develop a deeper understanding of their own internal prejudices and conflicts. Opening the borders between the sciences and humanities is essential. Fostering and mentoring that emphasize that resilience, leadership, flexibility, and the ability to cope with uncertainty are needed to tackle the complexities of current, as well as future, health care. Doctors need to understand the restraints within themselves to work effectively without borders.
NASA Astrophysics Data System (ADS)
Yamagata, Y.; Sharifi, A.
2014-12-01
The Future Earth initiative highlights single-disciplinary focus as a serious problem on the way of full utilization of the large body of existing knowledge and calls for "co-design", "co-production", and "co-dissemination" of knowledge. Resilience thinking is an approach to stewardship of social-ecological systems that seeks to bring the (often) fragmented diverse efforts and practices under an integrated framework. The notion of resilience is rapidly gaining ground in the sustainability literature. As a concept with broad scope and increasing popularity, resilience can be utilized to frame various problems related to different climate- and non-climate-induced disruptions in urban areas. Acknowledging that resilience thinking can provide a platform for communication between different parties operating in diverse research areas related to cities, this presentation describes the meaning of resilience in human communities. It emphasizes the essential role of social capital in mobilizing residents for collective action and facilitating collaboration between various groups and organizations that exist in an urban setting. It is argues that diffusion and implementation of such a collective and bottom-up approach to address the consequences of global environmental change warrants a governance shift from the conventional "persuasive communication processes" to "emergent dialogue" mechanisms that acknowledge the existence of complexities and uncertainties and advocate adopting a participatory process to create desired future communities that are capable of coping with the adverse consequences of global environmental change.
Nitrogen Deposition: A Component of Global Change Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.
1997-12-31
The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the developmentmore » of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.« less
Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas; Ogawa, Hiroshi
2005-01-01
This article describes the essential components of oral health information systems for the analysis of trends in oral disease and the evaluation of oral health programmes at the country, regional and global levels. Standard methodology for the collection of epidemiological data on oral health has been designed by WHO and used by countries worldwide for the surveillance of oral disease and health. Global, regional and national oral health databanks have highlighted the changing patterns of oral disease which primarily reflect changing risk profiles and the implementation of oral health programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers and the general public. WHO has developed global and regional oral health databanks for surveillance, and international projects have designed oral health indicators for use in oral health information systems for assessing the quality of oral health care and surveillance systems. Modern oral health information systems are being developed within the framework of the WHO STEPwise approach to surveillance of noncommunicable, chronic disease, and data stored in the WHO Global InfoBase may allow advanced health systems research. Sound knowledge about progress made in prevention of oral and chronic disease and in health promotion may assist countries to implement effective public health programmes to the benefit of the poor and disadvantaged population groups worldwide. PMID:16211160
Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong
2016-01-01
Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.
Communicating climate change and health in the media.
Depoux, Anneliese; Hémono, Mathieu; Puig-Malet, Sophie; Pédron, Romain; Flahault, Antoine
2017-01-01
The translation of science from research to real-world change is a central goal of public health. Communication has an essential role to play in provoking a response to climate change. It must first raise awareness, make people feel involved and ultimately motivate them to take action. The goal of this research is to understand how the information related to this issue is being addressed and disseminated to different audiences-public citizens, politicians and key climate change stakeholders. Initial results show that the scientific voice struggles to globally highlight this issue to a general audience and that messages that address the topic do not meet the challenges, going from a dramatic framing to a basic adaptation framing. Communication experts can help inform scientists and policy makers on how to best share information about climate change in an engaging and motivating way. This study gives an insight about the key role of the media and communications in addressing themes relating to climate change and transmitting information to the public in order to take action.
Preparing Global Trauma Nurses for Leadership Roles in Global Trauma Systems.
Muñiz, Sol Angelica; Lang, Richard W; Falcon, Lisa; Garces-King, Jasmine; Willard, Suzanne; Peck, Gregory L
Trauma leads to 5.7 million annual deaths globally, accounting for 25%-33% of global unintentional deaths and 90% of the global trauma burden in low- and middle-income countries. The Lancet Commission on Global Surgery and the World Health Organization assert that emergent and essential surgical capacity building and trauma system improvement are essential to address the global burden of trauma. In response, the Rutgers Global Surgery program, the School of Nursing and Medicine, and the Robert Wood Johnson University Hospital faculty collaborated in the first Interprofessional Models in Global Injury Care and Education Symposium in June 2016. This 2-week symposium combined lectures, high-fidelity simulation, small group workshops, site visits to Level I trauma centers, and a 1-day training course from the Panamerican Trauma Society. The aim was to introduce global trauma nurses to trauma leadership and trauma system development. After completing the symposium, 10 nurses from China, Colombia, Kenya, Puerto Rico, and Uruguay were surveyed. Overall, 88.8% of participants reported high levels of satisfaction with the program and 100% stated being very satisfied with trauma lectures. Symposia, such as that developed and offered by Rutgers University, prepare nurses to address trauma within system-based care and facilitate trauma nursing leadership in their respective countries.
Markewich, H.W.; Buell, G.R.
2001-01-01
Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.
Reconnecting to the biosphere.
Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances
2011-11-01
Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.
Determination of crustal motions using satellite laser ranging
NASA Technical Reports Server (NTRS)
1991-01-01
Satellite laser ranging has matured over the last decade into one of the essential space geodesy techniques. It has demonstrated centimeter site positioning and millimeter per year velocity determinations in a frame tied dynamically to the mass center of the solid Earth hydrosphere atmosphere system. Such a coordinate system is a requirement for studying long term eustatic sea level rise and other global change phenomena. Earth orientation parameters determined with the coordinate system have been produced in near real time operationally since 1983, at a relatively modest cost. The SLR ranging to Lageos has also provided a rich spectrum of results based upon the analysis of Lageos orbital dynamics. These include significant improvements in the knowledge of the mean and variable components of the Earth's gravity field and the Earth's gravitational parameter. The ability to measure the time variations of the Earth's gravity field has opened as exciting area of study in relating global processes, including meteorologically derived mass transport through changes in the satellite dynamics. New confirmation of general relativity was obtained using the Lageos SLR data.
Status, Power, and Intergroup Relations: The Personal Is the Societal
Fiske, Susan T.; Dupree, Cydney H.; Nicolas, Gandalf; Swencionis, Jillian K.
2016-01-01
Hierarchies in the correlated forms of power (resources) and status (prestige) are constants that organize human societies. This article reviews relevant social psychological literature and identifies several converging results concerning power and status. Whether rank is chronically possessed or temporarily embodied, higher ranks create psychological distance from others, allow agency by the higher ranked, and exact deference from the lower ranked. Beliefs that status entails competence are essentially universal. Interpersonal interactions create warmth-competence compensatory tradeoffs. Along with societal structures (enduring inequality), these tradeoffs reinforce status-competence beliefs. Race, class, and gender further illustrate these dynamics. Although status systems are resilient, they can shift, and understanding those change processes is an important direction for future research, as global demographic changes disrupt existing hierarchies. PMID:27453923
Status, Power, and Intergroup Relations: The Personal Is the Societal.
Fiske, Susan T; Dupree, Cydney H; Nicolas, Gandalf; Swencionis, Jillian K
2016-10-01
Hierarchies in the correlated forms of power (resources) and status (prestige) are constants that organize human societies. This article reviews relevant social psychological literature and identifies several converging results concerning power and status. Whether rank is chronically possessed or temporarily embodied, higher ranks create psychological distance from others, allow agency by the higher ranked, and exact deference from the lower ranked. Beliefs that status entails competence are essentially universal. Interpersonal interactions create warmth-competence compensatory tradeoffs. Along with societal structures (enduring inequality), these tradeoffs reinforce status-competence beliefs. Race, class, and gender further illustrate these dynamics. Although status systems are resilient, they can shift, and understanding those change processes is an important direction for future research, as global demographic changes disrupt existing hierarchies.
The Essential Role for Laboratory Studies in Atmospheric Chemistry.
Burkholder, James B; Abbatt, Jonathan P D; Barnes, Ian; Roberts, James M; Melamed, Megan L; Ammann, Markus; Bertram, Allan K; Cappa, Christopher D; Carlton, Annmarie G; Carpenter, Lucy J; Crowley, John N; Dubowski, Yael; George, Christian; Heard, Dwayne E; Herrmann, Hartmut; Keutsch, Frank N; Kroll, Jesse H; McNeill, V Faye; Ng, Nga Lee; Nizkorodov, Sergey A; Orlando, John J; Percival, Carl J; Picquet-Varrault, Bénédicte; Rudich, Yinon; Seakins, Paul W; Surratt, Jason D; Tanimoto, Hiroshi; Thornton, Joel A; Tong, Zhu; Tyndall, Geoffrey S; Wahner, Andreas; Weschler, Charles J; Wilson, Kevin R; Ziemann, Paul J
2017-03-07
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.
Satellite lidar and radar: Key components of the future climate observing system
NASA Astrophysics Data System (ADS)
Winker, D. M.
2017-12-01
Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.
A systemic approach to occupational and environmental health.
Spitzer, Skip
2005-01-01
As the corporate role in occupational and public health receives increased scrutiny, it is essential to recognize that it is not sufficient to identify specific acts of malfeasance or influence, or even to campaign to address them. A more comprehensive and systemic framework for understanding the role of corporations requires consideration of corporate power and its effects as endemic features of national socioeconomic systems and the rapidly integrating global order. The underlying social structures that produce social and environmental problems, and undermine reform, make systemic change necessary. Identifying this "structure of harm" provides important implications for researchers, policymakers, activists, and others trying to address environmental and social problems, particularly with regard to integrating efforts to address immediate impacts with those for longer-term, systemic change.
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola.
Marconi, Richard T
2017-10-13
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
The Globalization of Higher Education through the Lens of Technology and Accountability
ERIC Educational Resources Information Center
Woodard, Howard C.; Shepherd, Sonya S.; Crain-Dorough, Mindy; Richardson, Michael D.
2011-01-01
Technology has ushered in a new era in higher education making knowledge of technology essential for administrators. Technology is transforming higher education by providing a global interconnectedness that reshapes educational, social, economic and cultural life. The globalization of networks based on travel, mobile phones, broad-band Internet…
Essential Web Sites to Research the Globalization Process
ERIC Educational Resources Information Center
Scott, Thomas J.; O'Sullivan, Michael
2002-01-01
The terrorist attacks of September 11, 2001, brought a stark reality to social studies classrooms throughout the United States. Globalism and the expansion of world trade relations created optimism about enhanced cultural understanding, peace, and economic prosperity. However, it is clear that globalization also has a dark side. Suddenly…
Darwin Core: An Evolving Community-Developed Biodiversity Data Standard
Wieczorek, John; Bloom, David; Guralnick, Robert; Blum, Stan; Döring, Markus; Giovanni, Renato; Robertson, Tim; Vieglais, David
2012-01-01
Biodiversity data derive from myriad sources stored in various formats on many distinct hardware and software platforms. An essential step towards understanding global patterns of biodiversity is to provide a standardized view of these heterogeneous data sources to improve interoperability. Fundamental to this advance are definitions of common terms. This paper describes the evolution and development of Darwin Core, a data standard for publishing and integrating biodiversity information. We focus on the categories of terms that define the standard, differences between simple and relational Darwin Core, how the standard has been implemented, and the community processes that are essential for maintenance and growth of the standard. We present case-study extensions of the Darwin Core into new research communities, including metagenomics and genetic resources. We close by showing how Darwin Core records are integrated to create new knowledge products documenting species distributions and changes due to environmental perturbations. PMID:22238640
OceanSITES: Sustained Ocean Time Series Observations in the Global Ocean.
NASA Astrophysics Data System (ADS)
Weller, R. A.; Gallage, C.; Send, U.; Lampitt, R. S.; Lukas, R.
2016-02-01
Time series observations at critical or representative locations are an essential element of a global ocean observing system that is unique and complements other approaches to sustained observing. OceanSITES is an international group of oceanographers associated with such time series sites. OceanSITES exists to promote the continuation and extension of ocean time series sites around the globe. It also exists to plan and oversee the global array of sites in order to address the needs of research, climate change detection, operational applications, and policy makers. OceanSITES is a voluntary group that sits as an Action Group of the JCOMM-OPS Data Buoy Cooperation Panel, where JCOMM-OPS is the operational ocean observing oversight group of the Joint Commission on Oceanography and Marine Meteorology of the International Oceanographic Commission and the World Meteorological Organization. The way forward includes working to complete the global array, moving toward multidisciplinary instrumentation on a subset of the sites, and increasing utilization of the time series data, which are freely available from two Global Data Assembly Centers, one at the National Data Buoy Center and one at Coriolis at IFREMER. One recnet OceanSITES initiative and several results from OceanSITES time series sites are presented. The recent initiative was the assembly of a pool of temperature/conductivity recorders fro provision to OceanSITES sites in order to provide deep ocean temperature and salinity time series. Examples from specific sites include: a 15-year record of surface meteorology and air-sea fluxes from off northern Chile that shows evidence of long-term trends in surface forcing; change in upper ocean salinity and stratification in association with regional change in the hydrological cycle can be seen at the Hawaii time series site; results from monitoring Atlantic meridional transport; and results from a European multidisciplinary time series site.
Role of vegetation in interplay of climate, soil and groundwater recharge in a global dataset
NASA Astrophysics Data System (ADS)
Kim, J. H.; Jackson, R. B.
2010-12-01
Groundwater is an essential resource for people and ecosystems worldwide. Our capacity to ameliorate predicted global water shortages and to maintain sustainable water supplies depend on a better understanding of the controls of recharge and how vegetation change may affect recharge mechanisms. The goals of this study are to quantify the importance of vegetation as a dominant control on recharge globally and to compare the importance of vegetation with other hydrologically important variables, including climate and soil. We based our global analysis on > 500 recharge estimates from the literature that contained information on vegetation, soil and climate or location. Plant functional types significantly affected groundwater recharge rates substantially. After climatic factors (water inputs, PET, and seasonality), vegetation types explained about 15% of the residuals in the dataset. Across all climatic factors, croplands had the highest recharge rates, followed by grasslands, scrublands and woodlands (average recharge: 75, 63, 30, 22 mm/yr respectively). Recharge under woodlands showed the most nonlinear response to water inputs. Differences in recharge between the vegetation types were more exaggerated at arid climates and in clay soils, indicating greater biological control on soil water fluxes in these conditions. Our results shows that vegetation greatly affects recharge rates globally and alters relationship between recharge and physical variables allowing us to better predict recharge rates globally.
NASA Astrophysics Data System (ADS)
Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.
2017-06-01
Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.
Importance of food-demand management for climate mitigation
NASA Astrophysics Data System (ADS)
Bajželj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.
2014-10-01
Recent studies show that current trends in yield improvement will not be sufficient to meet projected global food demand in 2050, and suggest that a further expansion of agricultural area will be required. However, agriculture is the main driver of losses of biodiversity and a major contributor to climate change and pollution, and so further expansion is undesirable. The usual proposed alternative--intensification with increased resource use--also has negative effects. It is therefore imperative to find ways to achieve global food security without expanding crop or pastureland and without increasing greenhouse gas emissions. Some authors have emphasized a role for sustainable intensification in closing global `yield gaps' between the currently realized and potentially achievable yields. However, in this paper we use a transparent, data-driven model, to show that even if yield gaps are closed, the projected demand will drive further agricultural expansion. There are, however, options for reduction on the demand side that are rarely considered. In the second part of this paper we quantify the potential for demand-side mitigation options, and show that improved diets and decreases in food waste are essential to deliver emissions reductions, and to provide global food security in 2050.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Chang, Hyunsook; Choi, Kyunghee; Kim, Sung-Won; Zeidler, Dana L.
2012-04-01
Character and values are the essential driving forces that serve as general guides or points of reference for individuals to support decision-making and to act responsibly about global socioscientific issues (SSIs). Based on this assumption, we investigated to what extent pre-service science teachers (PSTs) of South Korea possess character and values as global citizens; these values include ecological worldview, socioscientific accountability, and social and moral compassion. Eighteen PSTs participated in the SSI programs focusing on developing character and values through dialogical and reflective processes. SSIs were centered on the use of nuclear power generation, climate change, and embryonic stem cell research. The results indicated that PSTs showed three key elements of character and values, but failed to apply consistent moral principles on the issues and demonstrated limited global perspectives. While they tended to approach the issues with emotion and sympathy, they nonetheless failed to perceive themselves as major moral agents who are able to actively resolve large-scale societal issues. This study also suggests that the SSI programs can facilitate socioscientific reasoning to include abilities such as recognition of the complexity of SSIs, examine issues from multiple perspectives, and exhibit skepticism about information.
Sustainable sanitation and water in small urban centres.
Rosemarin, A
2005-01-01
The objective of this paper is to review the global trends in urbanization with respect to availability of adequate sanitation and water supply services. Urbanization is unrelenting and rapid increase in the urban population in the less developed countries is of major global concern regarding this topic of sustainable sanitation and water. Most global urban growth is in the smaller cities and in the developing world. Half the urban developing world lacks adequate water and sanitation. Global urban access to waterborne sanitation is not affordable and thus is not a realistic option so alternative approaches are necessary. The treatment of drinking water cannot be a substitute for sanitation. In order to achieve sustainable sanitation, a change in attitude about human excreta and use of water is required. Essential features of a sustainable sanitation system are: containment, sanitisation and recycling. To improve water supply, we need to improve management practices, use full-cost pricing, introduce watershed approaches to protection and provide improved sanitation. Small urban initiatives need to go beyond the traditional sectors and new initiatives are required like on-site urban ecostations, source-separation of urine and faeces, decentralised greywater treatment and integration of sanitation into the cost of housing.
Biogeochemical responses of shallow coastal lagoons to Climate Change
NASA Astrophysics Data System (ADS)
Brito, A.; Newton, A.; Tett, P.; Fernandes, T.
2009-04-01
The importance of climate change and global warming in the near future is becoming consensual within the scientific community (e.g. Kerr et al., 2008; Lloret et al., 2008). The surface temperature and sea level have increased during the last few years in the northern hemisphere (IPCC, 2007). Predictions for future changes include an increase of surface temperature and sea level for Europe. Moreover, the global warming phenomenon will also change the hydrological cycle and increase precipitation in northern and central Europe (IPCC, 2007). Sea level rise already threatens to overwhelm some lagoons, such as Venice and Moroccan lagoons (Snoussi et al., 2008). Shallow coastal lagoons are some of the most vulnerable systems that will be impacted by these changes (Eisenreich, 2005). Environmental impacts on coastal lagoons include an increase of water turbidity and therefore light attenuation. If these effects are strong enough, the lighted bottoms of shallow lagoons may loose a significant part of the benthic algal community. These communities are highly productive and are essential to control nutrient dynamics of the system by uptaking large amounts of nutrients both from the water column and from the sediments. A decrease in benthic algal communities and photosynthetic oxygen production will also contribute to increasing the vulnerability of the lagoons to hypoxia and anoxia. The flux of nutrients such as phosphate from the sediments may increase dramatically, further disrupting the nutrient balance and condition and promoting cyanobacterial blooms. Microbial activity is temperature dependent, therefore, the increase of temperature will increase the concentrations of ammonium within sediments. The release of phosphate and silicate will also increase with temperature. Coastal lagoons are valuable ecosystems and may be severely impacted, both ecologically and economically, by global change. Shallow coastal lagoons should be considered as sentinel systems and should be carefully monitored so that appropriate responses can be timely to mitigate the impacts from global change. References: Eisenreich, S.J. (2005). Climate Change and the European Water Dimension - A report to the European Water Directors. Institute for Environment and Sustainability, European Comission-Joint Research Centre. Ispra, Italy. 253pp. Kerr, R. (2008). Global warming throws some curves in the Atlantic Ocean. Science, 322, 515. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 996pp. Lloret, J., Marín, A., Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403-412. Snoussi, M., Ouchani, T., Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77, 206-213.
Synergy of Optical and SAR Data for Mapping and Monitoring Mangroves
NASA Astrophysics Data System (ADS)
Monzon, A. K.; Reyes, S. R.; Veridiano, R. K.; Tumaneng, R.; De Alban, J. D.
2016-06-01
Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.
Crowdsourcing data on decomposition with the help of schools - Tea4Science
NASA Astrophysics Data System (ADS)
Lehtinen, Taru; Dingemans, Bas J. J.; Keuskamp, Joost A.; Hefting, Mariet M.; Sarneel, Judith M.
2015-04-01
Decay of organic material, decomposition, is a critical process for life on earth. Through decomposition, food becomes available for plants and soil organisms that they use in their growth and maintenance. When plant material decomposes, it loses weight and releases the greenhouse gas carbon dioxide (CO2) into the atmosphere. Commercial nylon teabags containing plant material can provide vital information on the global carbon cycle, if we study their decomposition in soils. Terrestrial soils contain three times more carbon than the atmosphere and therefore changes in the balance of soil carbon storage and release can significantly amplify or attenuate global warming. Many factors affecting the global carbon cycle are already known and archived; however, an index for decomposition rate is still missing. It would be a great improvement if we could measure decomposition (rate and degree) globally instead of estimating it from small scale experiments and lab incubations. We developed a cost-effective and standardised method to investigate decomposition rate and carbon stabilisation; by using commercially available teabags as standardised test-kits for simplified litter bag experiments. In order to make it easy for schools to take part through crowdsourcing (i.e. volunteer-assisted data collection by means of Internet applications), a lesson plan has been written to teachers. The so acquired Tea Bag Index (TBI) provides process-driven information on soil functions at local, regional and global scales essential for future climate modelling; and it is sensitive enough to discriminate data between different ecosystems and soil types. The lesson plan will enable students to understand the concept of decomposition and its relevance for soil fertility and our climate. TBI requires only little means and knowledge, making data collection by crowdsourcing possible. Successful results have already been attained by scout groups in Austria. Engaging schools classes as co-researchers would enlarge the crowdsourcing potential of the TBI. Subsequently, it will increase awareness of soils and provide essential development in including soils more frequently into the natural sciences and environmental classes at schools. The numerous data points collected will allow for a great leap forward in mapping decomposition, as well as understanding and modelling the global carbon cycle.
NASA Astrophysics Data System (ADS)
Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III
2016-12-01
There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery of records of essential climate variables to the global research community. There are aspects of underpinning research that are needed across all of these networks, such as laboratory spectroscopy, that often do not receive the attention they deserve. The presentation will also seek to identify where that underpinning research is lacking.
Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko
2016-01-01
The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421
Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko
2016-09-01
The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.
An approach toward incorporation of global warming effects into Intensity-Duration-Frequency values
NASA Astrophysics Data System (ADS)
Kunkel, K.; Easterling, D. R.
2017-12-01
Rising global temperatures from increasing greenhouse gas concentrations will increase overall atmospheric water vapor concentrations. There is a high level of scientific confidence that this will increase the future intensity and frequency of extreme precipitation events, even in regions where overall precipitation may decrease. For control of runoff from extreme rainfall, infrastructure engineering utilizes design values of rainfall known as Intensity-Duration-Frequency (IDF) values. Use of the existing IDF values, which are based solely on historical climate records, is likely to lead to under-design of runoff control structures, and associated increased flood damages. However, future changes in IDF values are uncertain and probably regionally variable. Our paradigm is that changes in IDF values will result from changes in atmospheric capacity (water vapor concentrations) and opportunity (the number and intensity of heavy precipitation-producing storm systems). Relevant storm systems being investigated include extratropical cyclones and their associated fronts, tropical cyclones, and the North American Monsoon system. The overall approach involves developing IDF adjustment factors for changes in these components of the climate system. The adjustment factors have associated uncertainties, primarily from (1) uncertainties in the future pathway of greenhouse gas emissions and (2) variations among climate models in the sensitivity of the climate system to greenhouse gas concentration changes. In addition to meteorological considerations, the lifetime of projects designed using IDF values is an essential consideration because the IDF values may change substantially during that time. The initial results of this project will be discussed.
The NASA Earth Science Flight Program: an update
NASA Astrophysics Data System (ADS)
Neeck, Steven P.
2015-10-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.
NASA Astrophysics Data System (ADS)
Mendonca, P.; Shemella, P.; Nayak, S.; Sharma, A.
2006-12-01
Hydrate structures of hydrocarbon (commonly methane hydrates) within the continental shelf regions are considered a huge energy resource since they are a significant reservoir for terrestrial carbon. Any changes, abrupt or continual, will have an impact on the carbon (as well as water) cycle. However, tapping into this reservoir for energy resource has been challenging from both technical and scientific fronts primarily because any rapid release of methane (CH4) will likely have serious impact on the global climate of Earth as well as the stability of the continental shelf. While fossil fuel combustion derived CO2 in the atmosphere is considered a major contributor to global warming, the massive amounts of methane release from the gas hydrates has been a point of debate for its impact on the global climate. Due to the lack of a clear physical mechanism for such structural destabilization, environmental changes within the ocean setting (viz. temperature, salinity or biology) are typically assigned as possible causes. A good kinetic model that ties into structural instability of these essentially non-stoichiometric compounds at both the macromolecular (thermodynamic) and nanometric scale is essential. Preliminary experiments on single crystal methane hydrate high pressure phase (~1.0GPa) indicate a measurable kinetics of methane diffusion upon bringing structural disorder to the single crystal. Although there have been several kinetic studies of gas-hydrate nucleation and dissociation, systematic study of kinetics (and dynamics) of diffusion based changes within the gas hydrates has been lacking. In addition to experimental data on single crystal methane hydrates, we will present a first principle study on the structure, energetic, and dynamics of sI phase methane hydrate. We use density functional theory to study the energetic effect of the occupancy of neighboring cages in a cluster model system consisting of two sI gas hydrates. In this situation there can be two, one, or no methane, and we find that the binding for the first methane is exothermic. The second methane binding is endothermic, suggesting that the stability of a methane molecule is determined by the occupancy of adjacent cages. Using these results, we will present the calculated binding energies of a periodic system based on crystal structure data and compare them to the cluster method. This combined experimental and theoretical investigation is aimed at generating fundamental dataset that can be tested for the broader impact of such processes on the global carbon cycle.
Selected remarks about anticipation in instrumental civilization subsystems
NASA Astrophysics Data System (ADS)
Adamkiewicz, Wiktor H.
2001-06-01
The paper contains a fragment of research description dealing with social systems saturated with technology products. The aim of this research is to determine the possibility to predict the influence of changes in the system on the process leading to the adaptation to the environment. The adaptation process is an activity based on anticipation of the future system states and environment states. Therefore, it is essential to determine the relationships existing between these two sets of states. Research results should determine the efficiency level of anticipating activity. Many processes take place in the system and its environment. Simultaneous research on all processes allows to specify the effect of synergy whose form determines adaptation. Researching all processes is not possible, though. Therefore, it is necessary to use appropriate models. Such models may be created by applying general rule of system approach. Nowadays, social systems must adapt to the increasing pace of globalization involving products, markets, competition and finance. The ability to adapt the system to the global situation is the condition for survival and possible development. Thus, the conformity of development and global situation is the superior aim of anticipation. Many experts deal with research on social systems. Many of them represent the humanities. We cannot expect them to undertake special mathematical studies. However, such research requires analysing various sets of figures. The ability to formulate tasks for mathematicians and the ability to use the results of figure analyses are essential. Therefore, the author makes certain suggestions referring to the application of mathematics in the research which may be accepted by the humanities' scholars. (Adamkiewicz, 1999d). The author hopes so.
The changing face of crises and aid in the Asia-Pacific.
Gursky, Elin A; Burkle, Frederick M; Hamon, David W; Walker, Peter; Benjamin, Georges C
2014-01-01
Both US foreign policy and global attention attest to the strategic, economic, and political importance of Asia. Yet, the region faces urgent challenges that must be addressed if it is to remain stable and prosperous. The densely populated countries of the Asia-Pacific are beleaguered by poverty, population displacement, decreasing access to potable water and adequate sanitation, and high rates of disease morbidity and mortality. New and reemerging diseases known to have originated in Asia over the past decades have spread globally by international trade, tourism, worker migration, and agricultural exportation. Unremitting naturally occurring and man-made disasters have strained Southeast Asia's already fragile disaster and public health response infrastructures and the essential services they provide (eg, surveillance, vaccination, maternal and child health, and mental health programs). Following disasters, governments often contract with the broader humanitarian community (eg, indigenous and international NGOs) and seek the assistance of militaries to provide essential services. Yet, their roles and capabilities in addressing acute and chronic health issues in the wake of complex disasters remain unclear. Current mechanisms of nation-state and outside organization interaction, including dissimilar operational platforms, may limit true partnership on behalf of the health security mission. Additionally, concerns regarding skill sets and the lack of standards-based training raise questions about the balance between developing internal response capabilities and professionalizing external, deployable resources. Both the mega-disasters that are forecast for the region and the global health security threats that are expected to emanate from them require an increased focus on improving the Asia-Pacific's emergency preparedness and response posture.
The Changing Face of Crises and Aid in the Asia-Pacific
Burkle, Frederick M.; Hamon, David W.; Walker, Peter; Benjamin, Georges C.
2014-01-01
Both US foreign policy and global attention attest to the strategic, economic, and political importance of Asia. Yet, the region faces urgent challenges that must be addressed if it is to remain stable and prosperous. The densely populated countries of the Asia-Pacific are beleaguered by poverty, population displacement, decreasing access to potable water and adequate sanitation, and high rates of disease morbidity and mortality. New and reemerging diseases known to have originated in Asia over the past decades have spread globally by international trade, tourism, worker migration, and agricultural exportation. Unremitting naturally occurring and man-made disasters have strained Southeast Asia's already fragile disaster and public health response infrastructures and the essential services they provide (eg, surveillance, vaccination, maternal and child health, and mental health programs). Following disasters, governments often contract with the broader humanitarian community (eg, indigenous and international NGOs) and seek the assistance of militaries to provide essential services. Yet, their roles and capabilities in addressing acute and chronic health issues in the wake of complex disasters remain unclear. Current mechanisms of nation-state and outside organization interaction, including dissimilar operational platforms, may limit true partnership on behalf of the health security mission. Additionally, concerns regarding skill sets and the lack of standards-based training raise questions about the balance between developing internal response capabilities and professionalizing external, deployable resources. Both the mega-disasters that are forecast for the region and the global health security threats that are expected to emanate from them require an increased focus on improving the Asia-Pacific's emergency preparedness and response posture. PMID:25268048
Cates, Leigh Ann; Bishop, Sheryl; Armentrout, Debra; Verklan, Terese; Arnold, Jennifer; Doughty, Cara
2015-01-01
Determine content validity of global statements and operational definitions and choose scenarios for Competency, Assessment, Technology, Education, and Simulation (C.A.T.E.S.), instrument in development to evaluate multidimensional competency of neonatal nurse practitioners (NNPs). Real-time Delphi (RTD) method to pursue four specific aims (SAs): (1) identify which cognitive, technical, or behavioral dimension of NNP competency accurately reflects each global statement; (2) map the global statements to the National Association of Neonatal Nurse Practitioners (NANNP) core competency domains; (3) define operational definitions for the novice to expert performance subscales; and (4) determine the essential scenarios to assess NNPs. Twenty-five NNPs and nurses with competency and simulation experience Main outcome variable: One hundred percent of global statements correct for competency dimension and all but two correct for NANNP domain. One hundred percent novice to expert operational definitions and eight scenarios chosen. Content validity determined for global statements and novice to expert definitions and essential scenarios chosen.
ERIC Educational Resources Information Center
Rumbley, Laura E.; Stanfield, David A.; de Gayardon, Ariane
2014-01-01
Through a yearlong study, the Boston College Center for International Higher Education developed a (third edition) global inventory of higher education research centers/institutes, academic programs, and journals/publications. As higher education expands globally, these resources are essential for training effective leaders and producing research…
Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*
Canova, Marc J.; Molle, Virginie
2014-01-01
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701
Bacterial serine/threonine protein kinases in host-pathogen interactions.
Canova, Marc J; Molle, Virginie
2014-04-04
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Projections of atmospheric mercury levels and their effect on air quality in the United States
NASA Astrophysics Data System (ADS)
Lei, H.; Wuebbles, D. J.; Liang, X.-Z.; Tao, Z.; Olsen, S.; Artz, R.; Ren, X.; Cohen, M.
2013-08-01
The individual and combined effects of global climate change and emissions changes from 2000 to 2050 on atmospheric mercury levels in the US are investigated by using the global climate-chemistry model, CAM-chem, coupled with a mercury chemistry-physics mechanism (CAM-Chem/Hg). Three future pathways from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) are considered, with the A1FI, A1B and B1 scenarios representing the upper, middle and lower bounds of potential climate warming, respectively. The anthropogenic and biomass burning emissions of mercury are projected from the energy use assumptions in the IPCC SRES report. Natural emissions from both land and ocean sources are projected using dynamic schemes. The zonal mean surface total gaseous mercury (TGM) concentrations in the tropics and mid-latitudes of the Southern Hemisphere are projected to increase by 0.5-1.2 ng m-3 in 2050. TGM concentration increases are greater in the low latitudes than they are in the high latitudes, indicative of a larger meridional gradient than in the present day. In the A1FI scenario, TGM concentrations in 2050 are projected to increase by 2.1-4.0 ng m-3 for the eastern US and 1.4-3.0 ng m-3 for the western US. This pattern corresponds to potential increases in wet deposition of 10-14 μg m-2 for the eastern US and 2-4 μg m-2 for the western US. The increase in Hg(II) emissions tends to enhance wet deposition and hence increase the risk of higher mercury entering the hydrological cycle and ecosystems. In the B1 scenario, mercury concentrations in 2050 are similar to present level concentrations; this indicates that the domestic reduction in mercury emissions is essentially counteracted by the effects of climate warming and emissions increases in other regions. The sensitivity analyses presented show that anthropogenic emissions changes contribute 32-53% of projected mercury air concentration changes, while the independent contribution by climate change accounts for 47-68%. In summary, global climate change could have a comparable effect on mercury pollution in the US to that caused by global emissions changes.
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2014-09-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
From Gene Expression to the Earth System: Isotopic Constraints on Nitrogen Cycling Across Scales
NASA Astrophysics Data System (ADS)
Houlton, B. Z.
2015-12-01
A central motivation of the Biogeosciences is to understand the cycling of biologically essential elements over multiple scales of space and time. This charge is vital to basic knowledge of Earth system functioning. It is also relevant to many of the global challenges we face, such as climate change, biodiversity conservation, and the multifaceted role of global fertilizer use in maximizing human health and well-being. Nitrogen is connected to all of these; yet it has been one of the more vexing elements to quantitatively appraise across systems and scales. Here I discuss how research in my group has been exploring the use of natural nitrogen isotope abundance (15N/14N) as a biogeochemical tracer - from the level of gene expression to nitrogen's role in global climate change. First, I present evidence for a positive correlation between the bacterial genes that encode for gaseous nitrogen production (i.e., nirS) and the 15N/14N of soil extractable nitrate pools across an array of terrestrial ecosystems. Second, I demonstrate how these local-scale results fit with our work on ecosystem-scale nitrogen isotope budgets, where we quantify a uniformly small isotope effect (i.e., < 1 per mil) of nitrogen leaching losses from tropical rainforest to highly disturbed arid sites. Third, I present results from our global isotope model, which is based on results from our field investigations, providing a new nitrogen "benchmarking" scheme for global computational models and climate change forecasts. Finally, I move to a new research frontier where we have been developing a technique to measure the nitrogen isotope composition of ancient terrestrial plant compounds (i.e., chlorins) buried in the soil. This research aims to address the response of the nitrogen cycle to glacial-interglacial transitions over millennia, which is beyond the window of experimental testing. Together, this research highlights the utility of nitrogen isotope composition in addressing the myriad scales of this element's interaction with Earth's environment, and supports the working hypothesis that bacterial denitrification is the major fractionating pathway of nitrogen loss from the terrestrial biosphere, much like the global ocean.
Dang, Hongyue; Chen, Chen-Tung A.
2017-01-01
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field. PMID:28769878
Achieving cheap clean energy for all in the 21^st Century?
NASA Astrophysics Data System (ADS)
Gupta, Rajan
2006-11-01
Energy is essential for modern life and is a critical resource that we take for granted. Unfortunately, we are increasingly confronted by many unsettling questions: Is there enough cheap oil and gas remaining and should we start changing our life styles towards energy efficiency? What will be the price of oil and gas next year and will we face shortages? Are rising prices reflective of greed and manipulation or geopolitics or of real constraints? Will renewable sources provide a significant fraction of our energy needs? Is global warming already happening and is it a result of our ``addiction to oil''? If the answer to these is ``yes'', then what can we, as individuals, do to help ourselves, the nation, and the world? This talk will attempt to answer these questions by examining the global oil, gas and other resources, emerging constraints and opportunities, and geopolitics.
Satellites for the study of ocean primary productivity
NASA Technical Reports Server (NTRS)
Smith, R. C.; Baker, K. S.
1983-01-01
The use of remote sensing techniques for obtaining estimates of global marine primary productivity is examined. It is shown that remote sensing and multiplatform (ship, aircraft, and satellite) sampling strategies can be used to significantly lower the variance in estimates of phytoplankton abundance and of population growth rates from the values obtained using the C-14 method. It is noted that multiplatform sampling strategies are essential to assess the mean and variance of phytoplankton biomass on a regional or on a global basis. The relative errors associated with shipboard and satellite estimates of phytoplankton biomass and primary productivity, as well as the increased statistical accuracy possible from the utilization of contemporaneous data from both sampling platforms, are examined. It is shown to be possible to follow changes in biomass and the distribution patterns of biomass as a function of time with the use of satellite imagery.
Genome-environment associations in sorghum landraces predict adaptive traits
Lasky, Jesse R.; Upadhyaya, Hari D.; Ramu, Punna; Deshpande, Santosh; Hash, C. Tom; Bonnette, Jason; Juenger, Thomas E.; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E.; Buckler, Edward S.; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P.
2015-01-01
Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206
Nitrogen stress response and stringent response are coupled in Escherichia coli
Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh
2014-01-01
Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454
Rivera-Ingraham, Georgina A; Lignot, Jehan-Hervé
2017-05-15
Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats. This is especially urgent for intertidal/estuarine organisms, which may be subject to drastic salinity and habitat changes, leading to redox imbalance. How do osmoregulation strategies determine energy expenditure, and how do these processes affect organisms in terms of oxidative stress? What mechanisms are used to cope with salinity-induced oxidative stress? This Commentary aims to highlight the main gaps in our knowledge, covering all levels of organization. From an energy-redox perspective, we discuss the link between environmental salinity changes and physiological responses at different levels of biological organization. Future studies should seek to provide a detailed understanding of the relationship between osmoregulatory strategies and redox metabolism, thereby informing conservation physiologists and allowing them to tackle the new challenges imposed by global climate change. © 2017. Published by The Company of Biologists Ltd.
Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
2014-01-01
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
Defining the Geoscience Community through a Quantitative Perspective
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.
2015-12-01
The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.
Cornelsen, Laura; Green, Rosemary; Turner, Rachel; Dangour, Alan D; Shankar, Bhavani; Mazzocchi, Mario; Smith, Richard D
2015-12-01
Recent years have seen considerable interest in examining the impact of food prices on food consumption and subsequent health consequences. Fiscal policies targeting the relative price of unhealthy foods are frequently put forward as ways to address the obesity epidemic. Conversely, various food subsidy interventions are used in attempts to reduce levels of under-nutrition. Information on price elasticities is essential for understanding how such changes in food prices affect food consumption. It is crucial to know not only own-price elasticities but also cross-price elasticities, as food substitution patterns may have significant implications for policy recommendations. While own-price elasticities are common in analyses of the impact of food price changes on health, cross-price effects, even though generally acknowledged, are much less frequently included in analyses, especially in the public health literature. This article systematically reviews the global evidence on cross-price elasticities and provides combined estimates for seven food groups in low-income, middle-income and high-income countries alongside previously estimated own-price elasticities. Changes in food prices had the largest own-price effects in low-income countries. Cross-price effects were more varied and depending on country income level were found to be reinforcing, undermining or alleviating own-price effects. Copyright © 2014 John Wiley & Sons, Ltd.
Layton, Natasha; Murphy, Caitlin; Bell, Diane
2018-07-01
Assistive technology (AT) is an essential facilitator of independence and participation, both for people living with the effects of disability and/or non-communicable disease, as well as people aging with resultant functional decline. The World Health Organization (WHO) recognizes the substantial gap between the need for and provision of AT and is leading change through the Global Cooperation on Assistive Technology (GATE) initiative. Showcasing innovations gathered from 92 global researchers, innovators, users and educators of AT through the WHO GREAT Summit, this article provides an analysis of ideas and actions on a range of dimensions in order to provide a global overview of AT innovation. The accessible method used to capture and showcase this data is presented and critiqued, concluding that "innovation snapshots" are a rapid and concise strategy to capture and showcase AT innovation and to foster global collaboration. Implications for Rehabilitation Focal tools such as ePosters with uniform data requirements enable the rapid sharing of information. A diversity of innovative practices are occurring globally in the areas of AT Products, Policy, Provision, People and Personnel. The method offered for Innovation Snapshots had substantial uptake and is a feasible means to capture data across a range of stakeholders. Meeting accessibility criteria is an emerging competency in the AT community. Substantial areas of common interest exist across regions and globally in the AT community, demonstrating the effectiveness of information sharing platforms such as GATE and supporting the idea of regional forums and networks.
A global interaction network maps a wiring diagram of cellular function
Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles
2017-01-01
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008
NASA Technical Reports Server (NTRS)
Carsey, Frank D.
1989-01-01
Science objectives, opportunities and requirements are discussed for the utilization of data from the Synthetic Aperture Radar (SAR) on the European First Remote Sensing Satellite, to be flown by the European Space Agency in the early 1990s. The principal applications of the imaging data are in studies of geophysical processes taking place within the direct-reception area of the Alaska SAR Facility in Fairbanks, Alaska, essentially the area within 2000 km of the receiver. The primary research that will be supported by these data include studies of the oceanography and sea ice phenomena of Alaskan and adjacent polar waters and the geology, glaciology, hydrology, and ecology of the region. These studies focus on the area within the reception mask of ASF, and numerous connections are made to global processes and thus to the observation and understanding of global change. Processes within the station reception area both affect and are affected by global phenomena, in some cases quite critically. Requirements for data processing and archiving systems, prelaunch research, and image processing for geophysical product generation are discussed.
Review of Understanding of Earth's Hydrological Cycle: Observations, Theory and Modelling
NASA Astrophysics Data System (ADS)
Rast, Michael; Johannessen, Johnny; Mauser, Wolfram
2014-05-01
Water is our most precious and arguably most undervalued natural resource. It is essential for life on our planet, for food production and economic development. Moreover, water plays a fundamental role in shaping weather and climate. However, with the growing global population, the planet's water resources are constantly under threat from overuse and pollution. In addition, the effects of a changing climate are thought to be leading to an increased frequency of extreme weather causing floods, landslides and drought. The need to understand and monitor our environment and its resources, including advancing our knowledge of the hydrological cycle, has never been more important and apparent. The best approach to do so on a global scale is from space. This paper provides an overview of the major components of the hydrological cycle, the status of their observations from space and related data products and models for hydrological variable retrievals. It also lists the current and planned satellite missions contributing to advancing our understanding of the hydrological cycle on a global scale. Further details of the hydrological cycle are substantiated in several of the other papers in this Special Issue.
NASA Astrophysics Data System (ADS)
González-Dávila, Melchor; Magdalena Santana Casiano, J.; Machín, Francisco
2017-08-01
Coastal upwellings along the eastern margins of major ocean basins represent regions of large ecological and economic importance due to the high biological productivity. The role of these regions for the global carbon cycle makes them essential in addressing climate change. The physical forcing of upwelling processes that favor production in these areas are already being affected by global warming, which will modify the intensity of upwelling and, consequently, the carbon dioxide cycle. Here, we present monthly high-resolution surface experimental data for temperature and partial pressure of carbon dioxide in one of the four most important upwelling regions of the planet, the Mauritanian-Cap Vert upwelling region, from 2005 to 2012. This data set provides direct evidence of seasonal and interannual changes in the physical and biochemical processes. Specifically, we show an upwelling intensification and an increase of 0.6 Tg yr-1 in CO2 outgassing due to increased wind speed, despite increased primary productivity. This increase in CO2 outgassing together with the observed decrease in sea surface temperature at the location of the Mauritanian Cap Blanc, 21° N, produced a pH rate decrease of -0.003 ± 0.001 yr-1.
Schipper, Aafke M; Belmaker, Jonathan; de Miranda, Murilo Dantas; Navarro, Laetitia M; Böhning-Gaese, Katrin; Costello, Mark J; Dornelas, Maria; Foppen, Ruud; Hortal, Joaquín; Huijbregts, Mark A J; Martín-López, Berta; Pettorelli, Nathalie; Queiroz, Cibele; Rossberg, Axel G; Santini, Luca; Schiffers, Katja; Steinmann, Zoran J N; Visconti, Piero; Rondinini, Carlo; Pereira, Henrique M
2016-12-01
Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5-year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Reinmann, Andrew B; Hutyra, Lucy R; Trlica, Andrew; Olofsson, Pontus
2016-03-01
Expansion of human settlements is an important driver of global environmental change that causes land use and land cover change (LULCC) and alters the biophysical nature of the landscape and climate. We use the state of Massachusetts, United States (U.S.) to present a novel approach to quantifying the effects of projected expansion of human settlements on the biophysical nature of the landscape. We integrate nationally available datasets with the U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios model to model albedo and C storage and uptake by forests and vegetation within human settlements. Our results indicate a 4.4 to 14% decline in forest cover and a 35 to 40% increase in developed land between 2005 and 2050, with large spatial variability. LULCC is projected to reduce rates of forest C sequestration, but our results suggest that vegetation within human settlements has the potential to offset a substantial proportion of the decline in the forest C sink and may comprise up to 35% of the terrestrial C sink by 2050. Changes in albedo and terrestrial C fluxes are expected to result in a global warming potential (GWP) of +0.13 Mg CO2-C-equivalence ha(-1)year(-1) under the baseline trajectory, which is equivalent to 17% of the projected increase in fossil fuel emissions. Changes in terrestrial C fluxes are generally the most important driver of the increase in GWP, but albedo change becomes an increasingly important component where housing densities are higher. Expansion of human settlements is the new face of LULCC and our results indicate that when quantifying the biophysical response it is essential to consider C uptake by vegetation within human settlements and the spatial variability in the influence of C fluxes and albedo on changes in GWP. Copyright © 2015 Elsevier B.V. All rights reserved.
Plastid biotechnology for crop production: present status and future perspectives
Daniell, Henry
2012-01-01
The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
Self-perceptions of stability and change in personality at midlife: the UNC Alumni Heart Study.
Herbst, J H; McCrae, R R; Costa, P T; Feaganes, J R; Siegler, I C
2000-12-01
The finding of personality stability in adulthood may be counterintuitive to people who perceive a great deal of change in their own personality. The purpose of this study is to determine whether self-reported perceived changes in personality are associated with actual changes based on a 6- to 9-year follow-up of 2,242 middle-aged male and female participants of the UNC Alumni Heart Study (UNCAHS). Respondents completed the Revised NEO Personality Inventory on two occasions and were asked to reflect back over a 6-year period and assess changes in their personality. The majority of respondents (n = 1,177; 52.5%) reported they had "stayed the same," while 863 (38.5%) reported they had "changed a little" and 202 (9%) reported they had "changed a good deal." Coefficients of personality profile agreement computed to evaluate global personality change for the three perceived change groups were essentially equivalent. Further, directional analyses of domain-specific changes in personality showed that perceived changes were weak predictors of residual gain scores. In an absolute sense, perceptions of stability or change were discordant in 8 of 15 (53%) comparisons. Self-perceptions of change are not an adequate substitute for objective assessments.
Global Change: A Biogeochemical Perspective
NASA Technical Reports Server (NTRS)
Mcelroy, M.
1983-01-01
A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.
Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock.
Liang, Yu; Chen, Hui; Tang, Mingjuan; Shen, Shihua
2007-08-01
Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4% NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.
Guo, Zixiao; Li, Xinnian; He, Ziwen; Yang, Yuchen; Wang, Wenqing; Zhong, Cairong; Greenberg, Anthony J; Wu, Chung-I; Duke, Norman C; Shi, Suhua
2018-04-01
The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (N e ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in N e to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis. © 2017 John Wiley & Sons Ltd.
The Exploration of New York City High School Students' Global Literacy
ERIC Educational Resources Information Center
Hsu, Hui-Yin; Wang, Shiang-Kwei
2010-01-01
Purpose: When facing greater demands in the international job market and the innovative development and use of technologies, the youth needs a new set of skills and attitudes to succeed in an increasing well-educated global workforce. It is essential that educators prepare high school students' global literacy. In this paper, the authors survey…
ERIC Educational Resources Information Center
Wold, Kari
2013-01-01
Successfully interacting with those from different cultures is essential to excel in any field, particularly when global, transnational collaborations in the workplace are increasingly common. However, many higher education students in engineering are not explicitly taught how to display the global competency skills desired by future employers. To…
Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain
NASA Astrophysics Data System (ADS)
Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong
2006-10-01
Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.
NASA Astrophysics Data System (ADS)
Pail, Roland; Bingham, Rory; Braitenberg, Carla; Dobslaw, Henryk; Eicker, Annette; Güntner, Andreas; Horwath, Martin; Ivins, Eric; Longuevergne, Laurent; Panet, Isabelle; Wouters, Bert
2015-11-01
Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth's gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations.
Manpower planning for oral health.
Ross, C B
1988-03-01
The challenges to the dental profession include the unemployed dentists, the radical changes to the numbers of dental schools and their intake of new students; and the imbalance which exists on a global scale between oral health personnel and service need and demand. Workforce planning needs clearly defined goals which relate to the nature of disease, the shift from treatment to prevention and consumer expectations. A wide variety of information is required to facilitate communication and co-operation with elements of the political system, the educational system, professional bodies, health service agencies and consumers. It is essential that national planning and monitoring groups be established with membership from dental associations, educational institutions and government. In workforce planning there must be the ability to accept change, to be creative, to be positive, and to be decisive.
The Essential Role for Laboratory Studies in Atmospheric Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, James B.; Abbatt, Jonathan P. D.; Barnes, Ian
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This paper highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Finally,more » laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.« less
Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction
Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu
2017-01-01
ABSTRACT Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. PMID:28679744
From cigarette smuggling to illicit tobacco trade.
Joossens, Luk; Raw, Martin
2012-03-01
Tax policy is considered the most effective strategy to reduce tobacco consumption and prevalence. Tax avoidance and tax evasion therefore undermine the effectiveness of tax policies and result in less revenue for governments, cheaper prices for smokers and increased tobacco use. Tobacco smuggling and illicit tobacco trade have probably always existed, since tobacco's introduction as a valuable product from the New World, but the nature of the trade has changed. This article clarifies definitions, reviews the key issues related to illicit trade, describes the different ways taxes are circumvented and looks at the size of the problem, its changing nature and its causes. The difficulties of data collection and research are discussed. Finally, we look at the policy options to combat illicit trade and the negotiations for a WHO Framework Convention on Tobacco Control (FCTC) protocol on illicit tobacco trade. Twenty years ago the main type of illicit trade was large-scale cigarette smuggling of well known cigarette brands. A change occurred as some major international tobacco companies in Europe and the Americas reviewed their export practices due to tax regulations, investigations and lawsuits by the authorities. Other types of illicit trade emerged such as illegal manufacturing, including counterfeiting and the emergence of new cigarette brands, produced in a rather open manner at well known locations, which are only or mainly intended for the illegal market of another country. The global scope and multifaceted nature of the illicit tobacco trade requires a coordinated international response, so a strong protocol to the FCTC is essential. The illicit tobacco trade is a global problem which needs a global solution.
NASA Astrophysics Data System (ADS)
Klein Goldewijk, K.
2008-12-01
More and more studies of global (climate) change are focusing on the past. Hundreds and thousands of years of land use, driven by population growth have left their trace/mark on the Earth's surface. We are only at the beginning to understand the complex relationship of human induced disturbances of the global environment, and the consequences for future climate. It is therefore essential that we get a clear picture/understanding of past relationships between population growth, land use and climate. In order to facilitate climate modelers to examine these relationships, the HYDE database has been updated and extended. The update of HYDE described here (Klein Goldewijk et al. 2006; Klein Goldewijk et al. 2007) includes several improvements compared to its predecessor: (i) the HYDE 2 version used a Boolean approach with a 30 minute degree resolution, while HYDE 3 uses fractional land use on a 5 minute resolution; (ii) more and better sub-national (population) data (Klein Goldewijk, 2005) to improve the historical (urban and rural) population maps as a basis for allocation of land cover; (iii) implementation of different allocation algorithms with time-dependent weighting maps for cropland and grassland; (iv) the period covered has now been extended from the emergence of agriculture (10,000 B.C) to present time (2,000 A.D.), with different time intervals. Examples of (future) use of the database is to help test the 'Ruddiman hypothesis', who proposed a theory that mankind already altered the global atmosphere much earlier than the start of the Industrial Revolution in the early 18th century (Ruddiman, 2003), which put forward the research question whether we detect a pre- Industrial Revolution anthropogenic signal, and how strong is that signal? References Klein Goldewijk, K. A.F. Bouwman and G. van Drecht, 2007. Mapping current global cropland and grassland distributions on a 5 by 5 minute resolution, Journal of Land Use Science, Vol 2(3): 167-190. Klein Goldewijk, K. and G. van Drecht, 2006. HYDE 3: Current and historical population and land cover. MNP (2006) (Edited by A.F. Bouwman, T. Kram and K. Klein Goldewijk), Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands Klein Goldewijk, K. 2005. Three centuries of global population growth: A spatial referenced population density database for 1700 - 2000, Population and Environment, 26 (5): 343-367. Ruddiman, WF, 2003. The anthropogenic greenhouse era bagan thousands of years ago, Climatic Change, 61(3), 261-293.
NASA Astrophysics Data System (ADS)
Bowring, S. A.; Grotzinger, J. P.; Amthor, J.; Martin, M. E.
2001-05-01
The precise, global correlation of Precambrian and Paleozoic sedimentary rocks can be achieved using temporally calibrated chemostratigraphic records. This approach is essential for determining rates and causes of environmental and faunal change, including mass extinctions. For example, The Neoproterozoic is marked by major environmental change, including periods of global glaciation, large fluctuations in the sequestration of carbon and major tectonic reorganization followed by the explosive diversification of animals in the earliest Cambrian. The extreme climatic change associated with these glaciations have been implicated as a possible trigger for the Cambrian explosion. The recognition of thin zircon-bearing air-fall ash in Neoproterozoic and Cambrian rocks has allowed the establishment of a high-precision temporal framework for animal evolution and is helping to untangle the history of glaciations. In some cases analytical uncertainties translate to age uncertainties of less than 1 Ma and when integrated with chemostratigraphy, the potential for global correlations at even higher resolution. Progress in the global correlation of Neoproterozoic strata has been achieved through the use of C and Sr isotope chemostratigraphy although it has been hampered by a lack of precise geochronological and faunal control. For example, the period from ca 800-580 Ma is characterized by at least two and perhaps as many as four glacial events that are interpreted by many to be global glaciations on a "Snowball Earth". A lack of precise chronological constraints on the number and duration of glaciations, multiple large excursions in the carbon isotopic record, and an absence of detailed biostratigraphy have complicated global correlation and hindered our understanding of this important period of Earth history. However, the ongoing integration of chemostratigraphic and geochronological data are improving temporal resolution and detailed correlations. These data are critical for understanding the causes and effects of Neoproterozoic glaciations. The Cambrian-Precambrian boundary is generally associated with a negative shift in carbon values although global isochroneity has not yet been demonstrated and unconformities mark the boundary in many places. New data suggest an age of 542 Ma for the excursion and boundary in Oman; results from Namibia, Oman, and Siberia are all consistent with this result. It has yet to be demonstrated that the paleontologically defined boundary coincides with the isotopic shift or is globally isochronous. The emerging geochronological framework, when combined with integrated paleontological, chemostratigraphic, and geological data will allow detailed global correlation and evaluation of models that invoke both intrinsic and extrinsic triggers for evolution.
Global health in the 21st century
Laaser, Ulrich; Brand, Helmut
2014-01-01
Introduction Since the end of the 1990s, globalization has become a common term, facilitated by the social media of today and the growing public awareness of life-threatening problems common to all people, such as global warming, global security and global divides. Review For the main parameters of health like the burden of disease, life expectancy and healthy life expectancy, extreme discrepancies are observed across the world. Infant mortality, malnutrition and high fertility go hand in hand. Civil society, as an indispensable activator of public health development, mainly represented by non-governmental organisations (NGOs), is characterised by a high degree of fragmentation and lack of public accountability. The World Federation of Public Health Associations is used as an example of an NGO with a global mission and fostering regional cooperation as an indispensable intermediate level. The lack of a globally valid terminology of basic public health functions is prohibitive for coordinated global and regional efforts. Attempts to harmonise essential public health functions, services and operations are under way to facilitate communication and mutual understanding. Recommendations 1) Given the limited effects of the Millennium Development Goal agenda, the Post-2015 Development Goals should focus on integrated regional development. 2) A code of conduct for NGOs should be urgently developed for the health sector, and NGOs should be registered and accredited. 3) The harmonisation of the basic terminology for global public health essentials should be enhanced. PMID:24560267
Global health in the 21st century.
Laaser, Ulrich; Brand, Helmut
2014-01-01
Since the end of the 1990s, globalization has become a common term, facilitated by the social media of today and the growing public awareness of life-threatening problems common to all people, such as global warming, global security and global divides. For the main parameters of health like the burden of disease, life expectancy and healthy life expectancy, extreme discrepancies are observed across the world. Infant mortality, malnutrition and high fertility go hand in hand. Civil society, as an indispensable activator of public health development, mainly represented by non-governmental organisations (NGOs), is characterised by a high degree of fragmentation and lack of public accountability. The World Federation of Public Health Associations is used as an example of an NGO with a global mission and fostering regional cooperation as an indispensable intermediate level.The lack of a globally valid terminology of basic public health functions is prohibitive for coordinated global and regional efforts. Attempts to harmonise essential public health functions, services and operations are under way to facilitate communication and mutual understanding. 1) Given the limited effects of the Millennium Development Goal agenda, the Post-2015 Development Goals should focus on integrated regional development. 2) A code of conduct for NGOs should be urgently developed for the health sector, and NGOs should be registered and accredited. 3) The harmonisation of the basic terminology for global public health essentials should be enhanced.
NASA Astrophysics Data System (ADS)
Antle, J. M.; Valdivia, R. O.; Claessens, L.; Nelson, G. C.; Rosenzweig, C.; Ruane, A. C.; Vervoort, J.
2013-12-01
The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment that is logically consistent across local, regional and global scales. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts are being developed. Representative Agricultural Pathways (RAPs) are designed to extend global pathways to provide the detail needed for global and regional assessment of agricultural systems. In addition, research by the Agricultural Model Inter-comparison and Improvement Project (AgMIP) shows that RAPs provide a powerful way to engage stakeholders in climate-related research throughout the research process and in communication of research results. RAPs are based on the integrated assessment framework developed by AgMIP. This framework shows that both bio-physical and socio-economic drivers are essential components of agricultural pathways and logically precede the definition of adaptation and mitigation scenarios that embody associated capabilities and challenges. This approach is based on a trans-disciplinary process for designing pathways and then translating them into parameter sets for bio-physical and economic models that are components of agricultural integrated assessments of climate impact, adaptation and mitigation. RAPs must be designed to be part of a logically consistent set of drivers and outcomes from global to regional and local. Global RAPs are designed to be consistent with higher-level global socio-economic pathways, but add key agricultural drivers such as agricultural growth trends that are not specified in more general pathways, as illustrated in a recent inter-comparison of global agricultural models. To create pathways at regional or local scales, further detail is needed. At this level, teams of scientists and other experts with knowledge of the agricultural systems and regions work together through a step-wise process. Experiences from AgMIP Regional Teams, and from the project on Regional Approaches to Climate Change in the Pacific Northwest, are used to discuss how the RAPs procedures can be further developed and improved, and how RAPs can help engage stakeholders in climate-related research throughout the research process and in communication of research results.
Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2018-03-01
Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.
The GCOS Reference Upper-Air Network (GRUAN)
NASA Astrophysics Data System (ADS)
Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.
2009-04-01
While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.
Climate Change Adaptation Challenges and EO Business Opportunities
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos
Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique global view of planet Earth, providing us -with better data- with consistent and frequent information on the state of our environment at the regional and global scale, also in important but remote areas. Climate Knowledge and Innovation Communities (Climate-KIC), a relatively new initiative from the European Institute of Innovation & Technology (EIT), provides the innovations, entrepreneurship, education and expert guidance needed to shape Europe's climate change agenda. This paper shows some initiatives that the University of Valencia Climate-KIC Education Group is carrying out in collaboration with the Climate-KIC Central Education Lead in the field of space education to foster and encourage students and entrepreneurs to endevour in these new space business opportunities offered by this step forward towards climate change adaptation challenges.
Soil degradation: Will humankind ever learn?
USDA-ARS?s Scientific Manuscript database
Soil degradation is a global problem caused by many factors including excessive tillage, inappropriate crop rotations, excessive grazing or crop residue removal, deforestation, mining, construction and urban sprawl. To meet the needs of an expanding global population, it is essential for humankind t...
Continuation of the NVAP Global Water Vapor Data Sets for Pathfinder Science Analysis
NASA Technical Reports Server (NTRS)
VonderHaar, Thomas H.; Engelen, Richard J.; Forsythe, John M.; Randel, David L.; Ruston, Benjamin C.; Woo, Shannon; Dodge, James (Technical Monitor)
2001-01-01
This annual report covers August 2000 - August 2001 under NASA contract NASW-0032, entitled "Continuation of the NVAP (NASA's Water Vapor Project) Global Water Vapor Data Sets for Pathfinder Science Analysis". NASA has created a list of Earth Science Research Questions which are outlined by Asrar, et al. Particularly relevant to NVAP are the following questions: (a) How are global precipitation, evaporation, and the cycling of water changing? (b) What trends in atmospheric constituents and solar radiation are driving global climate? (c) How well can long-term climatic trends be assessed or predicted? Water vapor is a key greenhouse gas, and an understanding of its behavior is essential in global climate studies. Therefore, NVAP plays a key role in addressing the above climate questions by creating a long-term global water vapor dataset and by updating the dataset with recent advances in satellite instrumentation. The NVAP dataset produced from 1988-1998 has found wide use in the scientific community. Studies of interannual variability are particularly important. A recent paper by Simpson, et al. that examined the NVAP dataset in detail has shown that its relative accuracy is sufficient for the variability studies that contribute toward meeting NASA's goals. In the past year, we have made steady progress towards continuing production of this high-quality dataset as well as performing our own investigations of the data. This report summarizes the past year's work on production of the NVAP dataset and presents results of analyses we have performed in the past year.
NASA Astrophysics Data System (ADS)
Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.
2017-12-01
The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.
Emergency response vaccines--a challenge for the public sector and the vaccine industry.
Milstien, Julie; Lambert, Scott
2002-11-22
In partnership with industry, WHO has developed a number of strategies to facilitate access to vaccines recommended for use in national immunization programs. These strategies have been necessitated by the increasing fragility of vaccine supply for developing markets. The potential global spread of epidemic disease has made it imperative to expand these efforts. A new concept is proposed, that of essential vaccines, defined as "vaccines of public health importance that should be accessible to all people at risk". Essential vaccines will include emergency response vaccines that have become important due to resurgent outbreaks, threatening global pandemics, and situations where a global emergency immunization response may be needed. While some of the approaches already developed will be applicable to emergency response vaccines, other novel approaches requiring public sector intervention will be necessary. Procurement, financing and allocation of these emergency response vaccines, if left to governments or private individuals based on ability to pay, will threaten equitable access. The challenge will be to ensure development of and equitable access to these vaccines while not threatening the already fragile supply of other essential vaccines.
How Does Drought Change With Climate Change
NASA Astrophysics Data System (ADS)
Trenberth, K. E.
2014-12-01
Large disparities among published studies have led to considerable confusion over the question of how drought is changing and how it is expected to change with global warming. As a result the IPCC AR5 assessment has watered down statements, and failed to carry out an adequate assessment of the sources of the discrepancies. Quite aside from the different definitions of drought related to meteorological (absence of precipitation), hydrological (lack of water in lakes and rivers), and agricultural (lack of soil moisture) drought, there are many indices that measure drought. Good homogeneous datasets are essential to assess changes over time, but are often not available. Simpler indices may miss effects of certain physical processes, such as evapotranspiration (ET). The Palmer Drought Severity Index (PDSI) has been much maligned but has considerable merit because it can accommodate different ET formulations (e.g., Thornthwaite vs Penman-Monteith), it can be self calibrating to accommodate different regions, and it carries out a crude moisture balance. This is in contrast to simpler indices, such as the Standardized Precipitation Index, which provides only a measure of moisture supply, or the Standardized Precipitation Evapotranspiration Index, which also includes potential (but not actual) ET. The largest source of drought variations is ENSO: during La Niña more rain falls on land while during El Niño most precipitation is over the Pacific Ocean, exposing more land to drought conditions. It is essential to account for interannual and inter-decadal variability in assessing changes in drought with climate change. Yet drought is one time on land when effects accumulate, with huge consequences for wild fire risk. It is important to ask the right questions in dealing with drought.
Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T
2018-02-01
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.
Cohen-Kohler, Jillian Clare; Forman, Lisa; Lipkus, Nathaniel
2008-07-01
Despite myriad programs aimed at increasing access to essential medicines in the developing world, the global drug gap persists. This paper focuses on the major legal and political constraints preventing implementation of coordinated global policy solutions - particularly, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) and bilateral and regional free trade agreements. We argue that several policy and research routes should be taken to mitigate the restrictive impact of TRIPS and TRIPS-plus rules, including greater use of TRIPS flexibilities, advancement of human rights, and an ethical framework for essential medicines distribution, and a broader campaign that debates the legitimacy of TRIPS and TRIPS-plus standards themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haijun; Zhang, Hao; King, Jeremy D.
The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outsidemore » of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.« less
Zhou, Yi; Shao, Hong-Bo
2008-04-01
The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.
Ten Hoope-Bender, Petra; Martin Hilber, Adriane; Nove, Andrea; Bandali, Sarah; Nam, Sara; Armstrong, Corinne; Ahmed Mohammed Ahmed; Chatuluka, Mathias G; Magoma, Moke; Hulton, Louise
2016-12-01
Accountability mechanisms help governments and development partners fulfill the promises and commitments they make to global initiatives such as the Millennium Development Goals and the Global Strategy on Women's and Children's health, and regional or national strategies such as the Campaign for the Accelerated Reduction in Maternal Mortality in Africa (CARMMA). But without directed pressure, comparative data and tools to provide insight into successes, failures, and overall results, accountability fails. The analysis of accountability mechanisms in five countries supported by the Evidence for Action program shows that accountability is most effective when it is connected across global and national levels; civil society has a central and independent role; proactive, immediate and targeted implementation mechanisms are funded from the start; advocacy for accountability is combined with local outreach activities such as blood drives; local and national champions (Presidents, First Ladies, Ministers) help draw public attention to government performance; scorecards are developed to provide insight into performance and highlight necessary improvements; and politicians at subnational level are supported by national leaders to effect change. Under the Sustainable Development Goals, accountability and advocacy supported by global and regional intergovernmental organizations, constantly monitored and with commensurate retribution for nonperformance will remain essential. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...
2015-04-01
Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less
Stock dynamics and emission pathways of the global aluminum cycle
NASA Astrophysics Data System (ADS)
Müller, Daniel B.; Liu, Gang; Bangs, Colton
Climate change mitigation in the materials sector faces a twin challenge: satisfying rapidly rising global demand for materials while significantly curbing greenhouse-gas emissions. Process efficiency improvement and recycling can contribute to reducing emissions per material output; however, long-term material demand and scrap availability for recycling depend fundamentally on the dynamics of societies' stocks of products in use, an issue that has been largely neglected in climate science. Here, we show that aluminium in-use stock patterns set essential boundary conditions for future emission pathways, which has significant implications for mitigation priority setting. If developing countries follow industrialized countries in their aluminium stock patterns, a 50% emission reduction by 2050 below 2000 levels cannot be reached even under very optimistic recycling and technology assumptions. The target can be reached only if future global per-capita aluminium stocks saturate at a level much lower than that in present major industrialized countries. As long as global in-use stocks are growing rapidly, radical new technologies in primary production (for example, inert anode and carbon capture and storage) have the greatest impact in emission reduction; however, their window of opportunity is closing once the stocks begin to saturate and the largest reduction potential shifts to post-consumer scrap recycling.
Changing values of farm animal genomic resources. from historical breeds to the Nagoya Protocol.
Tamminen, Sakari
2015-01-01
The paper reviews the history of Animal genetic resources (AnGRs) and claims that over the course of history they have been conceptually transformed from economic, ecologic and scientific life forms into political objects, reflecting in the way in which any valuation of AnGRs is today inherently imbued with national politics and its values enacted by legally binding global conventions. Historically, the first calls to conservation were based on the economic, ecological and scientific values of the AnGR. While the historical arguments are valid and still commonly proposed values for conservation, the AnGR have become highly politicized since the adoption of the Convention of Biological Diversity (CBD), the subsequent Interlaken Declaration, the Global Plan for Action (GPA) and the Nagoya Protocol. The scientific and political definitions of the AnGRs were creatively reshuffled within these documents and the key criteria by which they are now identified and valued today were essentially redefined. The criteria of "in situ condition" has become the necessary starting point for all valuation efforts of AnGRs, effectively transforming their previous nature as natural property and global genetic commons into objects of national concern pertaining to territorially discrete national genetic landscapes, regulated by the sovereign powers of the parties to the global conventions.
Climatic vulnerability of the world’s freshwater and marine fishes
NASA Astrophysics Data System (ADS)
Comte, Lise; Olden, Julian D.
2017-10-01
Climate change is a mounting threat to biological diversity, compromising ecosystem structure and function, and undermining the delivery of essential services worldwide. As the magnitude and speed of climate change accelerates, greater understanding of the taxonomy and geography of climatic vulnerability is critical to guide effective conservation action. However, many uncertainties remain regarding the degree and variability of climatic risk within entire clades and across vast ecosystem boundaries. Here we integrate physiological estimates of thermal sensitivity for 2,960 ray-finned fishes with future climatic exposure, and demonstrate that global patterns of vulnerability differ substantially between freshwater and marine realms. Our results suggest that climatic vulnerability for freshwater faunas will be predominantly determined by elevated levels of climatic exposure predicted for the Northern Hemisphere, whereas marine faunas in the tropics will be the most at risk, reflecting their higher intrinsic sensitivity. Spatial overlap between areas of high physiological risk and high human impacts, together with evidence of low past rates of evolution in upper thermal tolerance, highlights the urgency of global conservation actions and policy initiatives if harmful climate effects on the world’s fishes are to be mitigated in the future.
Solution NMR studies of Chlorella virus DNA ligase-adenylate.
Piserchio, Andrea; Nair, Pravin A; Shuman, Stewart; Ghose, Ranajeet
2010-01-15
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate. Copyright 2009 Elsevier Ltd. All rights reserved.
International Collaboration in the field of GNSS-Meteorology and Climate Monitoring
NASA Astrophysics Data System (ADS)
Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.
2012-12-01
International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW measurements of consistent quality at all GRUAN sites. The GRUAN GNSS-PW TT and the proposed COST Action will look to expand the international framework already in place with the European E-GVAP programme to facilitate global collaboration to facilitate knowledge and data exchange.
Dietary supplements and disease prevention — a global overview
USDA-ARS?s Scientific Manuscript database
Dietary supplements are widely used and offer the potential to improve health if appropriately targeted to those in need. Inadequate nutrition and micronutrient deficiencies are prevalent conditions that adversely affect global health. Although improvements in diet quality are essential to address t...
Online Impact Prioritization of Essential Climate Variables on Climate Change
NASA Astrophysics Data System (ADS)
Forsythe-Newell, S. P.; Barkstrom, B. B.; Roberts, K. P.
2007-12-01
The National Oceanic & Atmospheric Administration (NOAA)'s NCDC Scientific Data Stewardship (SDS) Team has developed an online prototype that is capable of displaying the "big picture" perspective of all Essential Climate Variable (ECV) impacts on society and value to the IPCC. This prototype ECV-Model provides the ability to visualize global ECV information with options to drill down in great detail. It offers a quantifiable prioritization of ECV impacts that potentially may significantly enhance collaboration with respect to dealing effectively with climate change. The ECV-Model prototype assures anonymity and provides an online input mechanism for subject matter experts and decision makers to access, review and submit: (1) ranking of ECV"s, (2) new ECV's and associated impact categories and (3) feedback about ECV"s, satellites, etc. Input and feedback are vetted by experts before changes or additions are implemented online. The SDS prototype also provides an intuitive one-stop web site that displays past, current and planned launches of satellites; and general as well as detailed information in conjunction with imagery. NCDC's version 1.0 release will be available to the public and provide an easy "at-a-glance" interface to rapidly identify gaps and overlaps of satellites and associated instruments monitoring climate change ECV's. The SDS version 1.1 will enhance depiction of gaps and overlaps with instruments associated with In-Situ and Satellites related to ECVs. NOAA's SDS model empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in monitoring climate change ECV's and potentially significantly enhance collaboration.
NASA Astrophysics Data System (ADS)
Guillevic, P. C.; Nickeson, J. E.; Roman, M. O.; camacho De Coca, F.; Wang, Z.; Schaepman-Strub, G.
2016-12-01
The Global Climate Observing System (GCOS) has specified the need to systematically produce and validate Essential Climate Variables (ECVs). The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and in particular its subgroup on Land Product Validation (LPV) is playing a key coordination role leveraging the international expertise required to address actions related to the validation of global land ECVs. The primary objective of the LPV subgroup is to set standards for validation methods and reporting in order to provide traceable and reliable uncertainty estimates for scientists and stakeholders. The Subgroup is comprised of 9 focus areas that encompass 10 land surface variables. The activities of each focus area are coordinated by two international co-leads and currently include leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), vegetation phenology, surface albedo, fire disturbance, snow cover, land cover and land use change, soil moisture, land surface temperature (LST) and emissivity. Recent additions to the focus areas include vegetation indices and biomass. The development of best practice validation protocols is a core activity of CEOS LPV with the objective to standardize the evaluation of land surface products. LPV has identified four validation levels corresponding to increasing spatial and temporal representativeness of reference samples used to perform validation. Best practice validation protocols (1) provide the definition of variables, ancillary information and uncertainty metrics, (2) describe available data sources and methods to establish reference validation datasets with SI traceability, and (3) describe evaluation methods and reporting. An overview on validation best practice components will be presented based on the LAI and LST protocol efforts to date.
Quantitative Modeling of Human-Environment Interactions in Preindustrial Time
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-04-01
Quantifying human-environment interactions and anthropogenic influences on the environment prior to the Industrial revolution is essential for understanding the current state of the earth system. This is particularly true for the terrestrial biosphere, but marine ecosystems and even climate were likely modified by human activities centuries to millennia ago. Direct observations are however very sparse in space and time, especially as one considers prehistory. Numerical models are therefore essential to produce a continuous picture of human-environment interactions in the past. Agent-based approaches, while widely applied to quantifying human influence on the environment in localized studies, are unsuitable for global spatial domains and Holocene timescales because of computational demands and large parameter uncertainty. Here we outline a new paradigm for the quantitative modeling of human-environment interactions in preindustrial time that is adapted to the global Holocene. Rather than attempting to simulate agency directly, the model is informed by a suite of characteristics describing those things about society that cannot be predicted on the basis of environment, e.g., diet, presence of agriculture, or range of animals exploited. These categorical data are combined with the properties of the physical environment in coupled human-environment model. The model is, at its core, a dynamic global vegetation model with a module for simulating crop growth that is adapted for preindustrial agriculture. This allows us to simulate yield and calories for feeding both humans and their domesticated animals. We couple this basic caloric availability with a simple demographic model to calculate potential population, and, constrained by labor requirements and land limitations, we create scenarios of land use and land cover on a moderate-resolution grid. We further implement a feedback loop where anthropogenic activities lead to changes in the properties of the physical environment, e.g., through soil erosion.
The 2 °C global warming effect on summer European tourism through different indices.
Grillakis, Manolis G; Koutroulis, Aristeidis G; Tsanis, Ioannis K
2016-08-01
Climate and weather patterns are an essential resource for outdoor tourism activities. The projected changes in climate and weather patterns are expected to affect the future state of tourism. The present study aims to quantify the positive or negative effect of a 2 °C global warming on summertime climate comfort in the sense of exercising activities that involve light body activity. The well-established Climate Index for Tourism (CIT) and three variants of the widely used Tourism Climatic Index (TCI) were analyzed. Additionally, a new index based on TCI and CIT was tested and compared against the precious indices. Past and future climate data of five high-resolution regional climate models (RCMs) from different Representative Concentration Pathways (RCP4.5 and RCP8.5) of the European Coordinated Regional Climate Downscaling Experiment (Euro-CORDEX) for a +2 °C period were used. The results indicate improvement in the climate comfort for the majority of European areas for the May to October period. For the June to August period, central and northern European areas are projected to improve, while marginal improvement is found for Mediterranean countries. Furthermore, in specific cases of adjacent Mediterranean areas such as the southern Iberian Peninsula, the June to August climate favorability is projected to reduce as a result of the increase to daytime temperature. The use of a set of different indices and different RCMs and RCPs samples a large fraction of the uncertainty that is crucial for providing robust regional impact information due to climate change. The analysis revealed the similarities and the differences in the magnitude of change across the different indices. Moreover, discrepancies were found in the results of different concentration pathways to the +2 °C global warming, with the RCP8.5 projecting more significant changes for some of the analyzed indices. The estimation of the TCI using different timescale climate data did not change the results on tourism significantly.
Group purchasing of pharmaceuticals and medical supplies by the Gulf Cooperation Council states.
Khoja, T A M; Bawazir, S A
2005-01-01
An important issue in health care today is the cost of essential pharmaceuticals and medical supplies. To control the increase of health care expenses, in 1976 the Gulf Cooperation Council states began to study the idea of establishing a group purchasing programme for pharmaceuticals and medical supplies. This paper demonstrates the elements of the programme, how it works, what obstacles it faces and how other countries can profit from this experience. It also discusses the future of the group purchasing programme in the light of globalization and how the international changes under the World Trade Organization agreements will affect the programme in future.
[Modeling of carbon cycling in terrestrial ecosystem: a review].
Mao, Liuxi; Sun, Yanling; Yan, Xiaodong
2006-11-01
Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.
Syntactic and Semantic Validation without a Metadata Management System
NASA Technical Reports Server (NTRS)
Pollack, Janine; Gokey, Christopher D.; Kendig, David; Olsen, Lola; Wharton, Stephen W. (Technical Monitor)
2001-01-01
The ability to maintain quality information is essential to securing the confidence in any system for which the information serves as a data source. NASA's Global Change Master Directory (GCMD), an online Earth science data locator, holds over 9000 data set descriptions and is in a constant state of flux as metadata are created and updated on a daily basis. In such a system, the importance of maintaining the consistency and integrity of these-metadata is crucial. The GCMD has developed a metadata management system utilizing XML, controlled vocabulary, and Java technologies to ensure the metadata not only adhere to valid syntax, but also exhibit proper semantics.
NASA Astrophysics Data System (ADS)
Thomas, G.
2015-12-01
The ESA Climate Change Initiative (CCI) programme has provided a mechanism for the production of new long-term data records of essential climate variables (ECVs) defined by WMO Global Climate Observing System (GCOS). These include consistent cloud (from the MODIS, AVHRR, ATSR-2 and AATSR instruments) and aerosol (from ATSR-2 and AATSR) products produced using the Optimal Retrieval of Aerosol and Cloud (ORAC) scheme. This talk will present an overview of the newly produced ORAC cloud and aerosol datasets, their evaluation and a joint aerosol-cloud product produced for the 1995-2012 ATSR-2-AATSR data record.
Industrial requirements in food safety.
Vincent, P M
1990-01-01
The principles of establishing industrial requirements in food safety are described, taking risk potentials all along the food chain into their respective account. Regulations will, in the future, lead to increased autocontrol in production. The rapid changes in food technology require constant adaptation to new problems, to keep the global quality of food at a high level. Regulatory authorities will, in the new European market, concentrate on enforcement of 'essential requirements' while industrialists will follow good manufacturing practices. Open dialogue between the latter, the former and the scientific community is highly desirable since mutual knowledge of the problem will help maintain a high level of food safety, for the benefit of everybody.
Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.
NASA Astrophysics Data System (ADS)
Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary
2012-07-01
The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.
Sridhar, Devi
2008-01-01
This paper discusses the politics of access to essential medicines and identifies ‘space’ in the current system where health concerns can be strengthened relative to trade. This issue is addressed from a global governance perspective focusing on the main actors who can have the greatest impact. These include developing country coalitions and citizens in developed countries though participation in civil society organisations. These actors have combined forces to tackle this issue successfully, resulting in the 2001 Doha Declaration on Public Health. The collaboration has been so powerful due to the assistance of the media as well as the decision to compromise with pharmaceutical companies and their host countries. To improve access to essential medicines, six C's are needed: coalitions, civil society, citizenship, compromise, communication and collaboration. PMID:19461853
Business School Partnerships for Globalization
ERIC Educational Resources Information Center
Dixon, Rob; Slanickova, Daniela; Warwick, Philip
2013-01-01
International partnerships are an essential tool to enable business schools to internationalize their activities. They can lead to improved research, better more internationally relevant teaching, provide staff with an international perspective, and help prepare students for careers in global business. Using case studies of four of Durham…
Comparison of physically- and economically-based CO2-equivalences for methane
NASA Astrophysics Data System (ADS)
Boucher, O.
2012-01-01
There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies and no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing the relative merits of physically-based (i.e. Global Warming Potential or GWP and Global Temperature change Potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified Global Damage Potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-year GWP because of various compensating effects. However there is a large spread in possible methane CO2-equivalences (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The methane 100-year GTP falls outside these ranges. It is legitimate to increase the methane CO2-equivalence in the future as global warming unfolds. While changes in biogeochemical cycles and radiative efficiencies cause some small changes to physically-based metrics, a systematic increase in the methane CO2-equivalence can only be achieved by some ad-hoc shortening of the time horizon. In contrast using a convex damage cost function provides a natural increase in the methane CO2-equivalence for the socio-economically-based metrics. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions as long as there is some degree of visibility on CO2 prices and CO2-equivalences.
MODIS-Derived Terrestrial Primary Production
NASA Astrophysics Data System (ADS)
Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna
Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or CDR).
Kelleway, Jeffrey J; Saintilan, Neil; Macreadie, Peter I; Skilbeck, Charles G; Zawadzki, Atun; Ralph, Peter J
2016-03-01
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global 'blue carbon' stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate-mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south-eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km(-2) yr(-1) (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km(-2) yr(-1) ), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km(-2) yr(-1) (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming. © 2015 John Wiley & Sons Ltd.
The Immediacy of Arctic Change
NASA Astrophysics Data System (ADS)
Overland, J. E.; Wang, M.; Soreide, N. N.
2015-12-01
Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.
Xu, Ye; Huang, Cheng; Colón-Ramos, Uriyoán
2015-01-01
Binagwaho and colleagues’ perspective piece provided a timely reflection on the experience of Rwanda in achieving the Millennium Development Goals (MDGs) and a proposal of 5 principles to carry forward in post-2015 health development. This commentary echoes their viewpoints and offers three lessons for health policy reforms consistent with these principles beyond 2015. Specifically, we argue that universal health coverage (UHC) is an integrated solution to advance the global health development agenda, and the three essential strategies drawn from Asian countries’ health reforms toward UHC are: (1) Public financing support and sequencing health insurance expansion by first extending health insurance to the extremely poor, vulnerable, and marginalized population are critical for achieving UHC; (2) Improved quality of delivered care ensures supply-side readiness and effective coverage; (3) Strategic purchasing and results-based financing creates incentives and accountability for positive changes. These strategies were discussed and illustrated with experience from China and other Asian economies. PMID:26673477
Essential drugs in the new international economic environment.
Velásquez, G.; Boulet, P.
1999-01-01
Recent global developments in the regulation of trade and intellectual property rights threaten to hinder the access of populations in developing countries to essential drugs. The authors argue for state intervention in the health and pharmaceutical markets in order to guarantee equitable access to these products. PMID:10212525
Minimum Essential Requirements and Standards in Medical Education.
ERIC Educational Resources Information Center
Wojtczak, Andrzej; Schwarz, M. Roy
2000-01-01
Reviews the definition of standards in general, and proposes a definition of standards and global minimum essential requirements for use in medical education. Aims to serve as a tool for the improvement of quality and international comparisons of basic medical programs. Explains the IIME (Institute for International Medical Education) project…
[Visual field progression in glaucoma: cluster analysis].
Bresson-Dumont, H; Hatton, J; Foucher, J; Fonteneau, M
2012-11-01
Visual field progression analysis is one of the key points in glaucoma monitoring, but distinction between true progression and random fluctuation is sometimes difficult. There are several different algorithms but no real consensus for detecting visual field progression. The trend analysis of global indices (MD, sLV) may miss localized deficits or be affected by media opacities. Conversely, point-by-point analysis makes progression difficult to differentiate from physiological variability, particularly when the sensitivity of a point is already low. The goal of our study was to analyse visual field progression with the EyeSuite™ Octopus Perimetry Clusters algorithm in patients with no significant changes in global indices or worsening of the analysis of pointwise linear regression. We analyzed the visual fields of 162 eyes (100 patients - 58 women, 42 men, average age 66.8 ± 10.91) with ocular hypertension or glaucoma. For inclusion, at least six reliable visual fields per eye were required, and the trend analysis (EyeSuite™ Perimetry) of visual field global indices (MD and SLV), could show no significant progression. The analysis of changes in cluster mode was then performed. In a second step, eyes with statistically significant worsening of at least one of their clusters were analyzed point-by-point with the Octopus Field Analysis (OFA). Fifty four eyes (33.33%) had a significant worsening in some clusters, while their global indices remained stable over time. In this group of patients, more advanced glaucoma was present than in stable group (MD 6.41 dB vs. 2.87); 64.82% (35/54) of those eyes in which the clusters progressed, however, had no statistically significant change in the trend analysis by pointwise linear regression. Most software algorithms for analyzing visual field progression are essentially trend analyses of global indices, or point-by-point linear regression. This study shows the potential role of analysis by clusters trend. However, for best results, it is preferable to compare the analyses of several tests in combination with morphologic exam. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker
2013-01-01
Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, James M.; Brodersen, Ditlev E.; Clemons, William M.
Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognatemore » tRNA. The third, or 'wobble,' position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs.« less
Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.
Bonan, Gordon B; Doney, Scott C
2018-02-02
Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.
Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions.
Renault, David; Laparie, Mathieu; McCauley, Shannon J; Bonte, Dries
2018-01-07
Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.
Elevated correlations in neuronal ensembles of mouse auditory cortex following parturition.
Rothschild, Gideon; Cohen, Lior; Mizrahi, Adi; Nelken, Israel
2013-07-31
The auditory cortex is malleable by experience. Previous studies of auditory plasticity have described experience-dependent changes in response profiles of single neurons or changes in global tonotopic organization. However, experience-dependent changes in the dynamics of local neural populations have remained unexplored. In this study, we examined the influence of a dramatic yet natural experience in the life of female mice, giving birth and becoming a mother on single neurons and neuronal ensembles in the primary auditory cortex (A1). Using in vivo two-photon calcium imaging and electrophysiological recordings from layer 2/3 in A1 of mothers and age-matched virgin mice, we monitored changes in the responses to a set of artificial and natural sounds. Population dynamics underwent large changes as measured by pairwise and higher-order correlations, with noise correlations increasing as much as twofold in lactating mothers. Concomitantly, changes in response properties of single neurons were modest and selective. Remarkably, despite the large changes in correlations, information about stimulus identity remained essentially the same in the two groups. Our results demonstrate changes in the correlation structure of neuronal activity as a result of a natural life event.
Surface radiation fluxes in transient climate simulations
NASA Astrophysics Data System (ADS)
Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.
1999-01-01
Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.
The Global Change Research Act of 1990 establishes the U.S. Global Change Research Program to coordinate a comprehensive research program on global change. This is an inter-Agency effort, with EPA bearing responsibility to assess the consequences of global change on human health,...
How to normalize metatranscriptomic count data for differential expression analysis.
Klingenberg, Heiner; Meinicke, Peter
2017-01-01
Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable detection of transcriptional differences. Until now it has not been clear whether and how the transcriptomic approach can be used for differential expression analysis in metatranscriptomics. We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations in the taxonomic composition of transcripts across different samples. As a main consequence the correct normalization of metatranscriptomic count data under this model requires the taxonomic separation of the data into organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization and allows us to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and recombination of scaled counts we provide a simple R script. When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data with an organism-independent (global) scaling of counts the resulting differences may be difficult to interpret. The differences may correspond to changing functional profiles of the contributing organisms but may also result from a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation and therefore the resulting differences actually reflect a different behavior of organisms under changing conditions. In simulation studies we show that the divergence between results from global and taxon-specific scaling can be drastic. In particular, the variation of organism abundances can imply a considerable increase of significant differences with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-specific and global scaling can differ widely. Our studies indicate that in real data applications performed with global scaling it might be impossible to distinguish between differential expression in terms of transcriptomic changes and differential composition in terms of changing taxonomic proportions. As in transcriptomics, a proper normalization of count data is also essential for differential expression analysis in metatranscriptomics. Our model implies a taxon-specific scaling of counts for normalization of the data. The application of taxon-specific scaling consequently removes taxonomic composition variations from functional profiles and therefore provides a clear interpretation of the observed functional differences.
Public release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)
Storchak, Dmitry A.; Di Giacomo, Domenico; Bondára, István; Engdahl, E. Robert; Harris, James; Lee, William H.K.; Villaseñor, Antonio; Bormann, Peter
2013-01-01
The International Seismological Centre–Global Earthquake Model (ISC–GEM) Global Instrumental Earthquake Catalogue (1900–2009) is the result of a special effort to substantially extend and improve currently existing global catalogs to serve the requirements of specific user groups who assess and model seismic hazard and risk. The data from the ISC–GEM Catalogue would be used worldwide yet will prove absolutely essential in those regions where a high seismicity level strongly correlates with a high population density.
International Education Hubs: Collaboration for Competitiveness and Sustainability
ERIC Educational Resources Information Center
Knight, Jane
2014-01-01
This chapter focuses on the development of education hubs, a recent phenomenon in international higher education. Three models of hubs are examined in relation to the forces, risks, and opportunities of globalization and how local and international collaborations are essential for both global competitiveness and sustainability.
Students as Global Citizens: Strategies for Mobilizing Studies Abroad
ERIC Educational Resources Information Center
Sison, Marianne D.; Brennan, Linda
2012-01-01
Universities globally are increasingly seeking to improve the international mobility of their students. There are several latent benefits that accrue to a university whose students and staff actively participate in international exchange programs. Essentially this can lead to an increase in the university's international reputation, opportunities…
The Copernicus Climate Change Service (C3S): A European Answer to Climate Change
NASA Astrophysics Data System (ADS)
Thepaut, Jean-Noel
2016-04-01
Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.
Expectations of schools and teachers in the context of social and economic changes
NASA Astrophysics Data System (ADS)
Mitter, Wolfgang
1987-09-01
The article starts with some basic considerations of crucial trends such as the expansion of new technologies and media, demographic changes, economic crises, changes in the relation between the sexes and the emergence of multicultural societies. The following two sections deal with the global dimensions in socio-economic change and the tension between universality and diversity in education. They also consider the relation between schools and their competitors in the area of nonformal education, such as youth movements, sports clubs, etc. Following this, some essential expectations in relation to the changing role of schools from `governmental institutions' to `service agencies' are analyzed; other aspects treated include the demands on participation at the `grassroots' level, knowledge transmission with regard to practical utilization, the growing interest in vocational education and the wide-spread divergencies in moral standards within societies. The conclusion to the article concentrates on the postulate that schools must define their existence and legitimacy by finding an equilibrium between `adjustment' (in terms of modernization) and `conservation' (in terms of maintaining continuity).
NASA Astrophysics Data System (ADS)
Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby
2015-04-01
Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.
NASA Astrophysics Data System (ADS)
Rothacher, Markus
2017-04-01
Mankind is constantly threatened by a variety of natural disasters and global change phenomena. In order to be able to better predict and assess these catastrophic and disastrous events a continuous observation and monitoring of the causative Earth processes is a necessity. These processes may happen in time scales from extremely short (earthquakes, volcano eruptions, land slides, ...) to very long (melting of ice sheets, sea level change, plate tectonics, ...). Appropriate monitoring and early warning systems must allow, therefore, the detection and quantification of catastrophic events in (near) real-time on the one hand and the reliable identification of barely noticeable, but crucial long-term trends (e.g., sea level rise) on the other hand. The Global Geodetic Observing System (GGOS), established by the International Association of Geodesy (IAG) in 2003, already now contributes in a multitude of ways to meet this challenge, e.g., by providing a highly accurate and stable global reference frame, without which the measurement of a sea level rise of 2-3 mm/y would not be possible; by measuring displacements in near real-time and deformations over decades that offer valuable clues to plate tectonics, earthquake processes, tsunamis, volcanos, land slides, and glaciers dynamics; by observing the mass loss of ice sheets with gravity satellite missions; and by estimating essential variables such as the amount of water vapor in the troposphere relevant for weather predictions and climate and the content of free electrons in the ionosphere crucial for space weather.
Global cost analysis on adaptation to sea level rise based on RCP/SSP scenarios
NASA Astrophysics Data System (ADS)
Kumano, N.; Tamura, M.; Yotsukuri, M.; Kuwahara, Y.; Yokoki, H.
2017-12-01
Low-lying areas are the most vulnerable to sea level rise (SLR) due to climate change in the future. In order to adapt to SLR, it is necessary to decide whether to retreat from vulnerable areas or to install dykes to protect them from inundation. Therefore, cost- analysis of adaptation using coastal dykes is one of the most essential issues in the context of climate change and its countermeasures. However, few studies have globally evaluated the future costs of adaptation in coastal areas. This study tries to globally analyze the cost of adaptation in coastal areas. First, global distributions of projected inundation impacts induced by SLR including astronomical high tide were assessed. Economic damage was estimated on the basis of the econometric relationship between past hydrological disasters, affected population, and per capita GDP using CRED's EM-DAT database. Second, the cost of adaptation was also determined using the cost database and future scenarios. The authors have built a cost database for installed coastal dykes worldwide and applied it to estimating the future cost of adaptation. The unit costs of dyke construction will increase with socio-economic scenario (SSP) such as per capita GDP. Length of vulnerable coastline is calculated by identifying inundation areas using ETOPO1. Future cost was obtained by multiplying the length of vulnerable coastline and the unit cost of dyke construction. Third, the effectiveness of dyke construction was estimated by comparing cases with and without adaptation.As a result, it was found that incremental adaptation cost is lower than economic damage in the cases of SSP1 and SSP3 under RCP scenario, while the cost of adaptation depends on the durability of the coastal dykes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora
Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less
Microplastics as an emerging threat to terrestrial ecosystems.
de Souza Machado, Anderson Abel; Kloas, Werner; Zarfl, Christiane; Hempel, Stefan; Rillig, Matthias C
2018-04-01
Microplastics (plastics <5 mm, including nanoplastics which are <0.1 μm) originate from the fragmentation of large plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.
Interior pathways of the North Atlantic meridional overturning circulation.
Bower, Amy S; Lozier, M Susan; Gary, Stefan F; Böning, Claus W
2009-05-14
To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2018-06-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2017-09-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
The NASA Earth Science Program and Small Satellites
NASA Technical Reports Server (NTRS)
Neeck, Steven P.
2015-01-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.
The Other Inconvenient Truth: Feeding 9 Billion While Sustaining the Earth System
NASA Astrophysics Data System (ADS)
Foley, J. A.
2010-12-01
As the international community focuses on climate change as the great challenge of our era, we have been largely ignoring another looming problem — the global crisis in agriculture, food security and the environment. Our use of land, particularly for agriculture, is absolutely essential to the success of the human race: we depend on agriculture to supply us with food, feed, fiber, and, increasingly, biofuels. Without a highly efficient, productive, and resilient agricultural system, our society would collapse almost overnight. But we are demanding more and more from our global agricultural systems, pushing them to their very limits. Continued population growth (adding more than 70 million people to the world every year), changing dietary preferences (including more meat and dairy consumption), rising energy prices, and increasing needs for bioenergy sources are putting tremendous pressure on the world’s resources. And, if we want any hope of keeping up with these demands, we’ll need to double the agricultural production of the planet in the next 30 to 40 years. Meeting these huge new agricultural demands will be one of the greatest challenges of the 21st century. At present, it is completely unclear how (and if) we can do it. If this wasn’t enough, we must also address the massive environmental impacts of our current agricultural practices, which new evidence indicates rival the impacts of climate change. Simply put, providing for the basic needs of 9 billion-plus people, without ruining the biosphere in the process, will be one of the greatest challenges our species has ever faced. In this presentation, I will present a new framework for evaluating and assessing global patterns of agriculture, food / fiber / fuel production, and their relationship to the earth system, particularly in terms of changing stocks and flows of water, nutrients and carbon in our planetary environment. This framework aims to help us manage the challenges of increasing global food security -- in the fact of dramatically increasing demand -- while greatly reducing the impact of agriculture on the earth system.
Climate change impacts on selected global rangeland ecosystem services.
Boone, Randall B; Conant, Richard T; Sircely, Jason; Thornton, Philip K; Herrero, Mario
2018-03-01
Rangelands are Earth's dominant land cover and are important providers of ecosystem services. Reliance on rangelands is projected to grow, thus understanding the sensitivity of rangelands to future climates is essential. We used a new ecosystem model of moderate complexity that allows, for the first time, to quantify global changes expected in rangelands under future climates. The mean global annual net primary production (NPP) may decline by 10 g C m -2 year -1 in 2050 under Representative Concentration Pathway (RCP) 8.5, but herbaceous NPP is projected to increase slightly (i.e., average of 3 g C m -2 year -1 ). Responses vary substantially from place-to-place, with large increases in annual productivity projected in northern regions (e.g., a 21% increase in productivity in the US and Canada) and large declines in western Africa (-46% in sub-Saharan western Africa) and Australia (-17%). Soil organic carbon is projected to increase in Australia (9%), the Middle East (14%), and central Asia (16%) and decline in many African savannas (e.g., -18% in sub-Saharan western Africa). Livestock are projected to decline 7.5 to 9.6%, an economic loss of from $9.7 to $12.6 billion. Our results suggest that forage production in Africa is sensitive to changes in climate, which will have substantial impacts on the livelihoods of the more than 180 million people who raise livestock on those rangelands. Our approach and the simulation tool presented here offer considerable potential for forecasting future conditions, highlight regions of concern, and support analyses where costs and benefits of adaptations and policies may be quantified. Otherwise, the technical options and policy and enabling environment that are needed to facilitate widespread adaptation may be very difficult to elucidate. © 2017 John Wiley & Sons Ltd.
Observing the Anthropocene from Space
NASA Astrophysics Data System (ADS)
Burrows, John
The industrial revolution, which began in the UK in the late 18th century, has been fuelled by the use of cheap energy from fossil fuel combustion. It has facilitated a dramatic rise in both the human population, now above 7 Billion with 50% now living in urban agglomerations, and its standard of living. It is anticipated that by 2050 there will be of the order of 8.3 to 10 billion people, 75% living in cities. Anthropogenic activity has resulted in pollution from the local to the global scale changes in land use, the destruction of stratospheric ozone, the modification of biogeochemical cycling, acid deposition, impacted on ecosystems and ecosystem services, destruction of biodiversity and climate change. The impact of man has moved the earth from the Holocene to the new geological epoch of the Anthropocene. To improve our understanding of the earth atmosphere system and the accuracy of the prediction of its future changes, knowledge of the amounts and distributions of trace atmospheric constituents are essential -“One cannot manage what is not measured”. An integrated observing system, comprising ground and space based segments is required to improve our science and to provide an evidence base needed for environmental policymakers. Passive remote sensing measurements made of the up-welling radiation at the top of the atmosphere from instrumentation on space borne platforms provide a unique opportunity to retrieve globally atmospheric composition. This presentation describes results from the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on ESA Envsiat 2002 to 2012) and its spin offs GOME (Global Ozone Monitoring Experiment ESA ERS-2 1995 to 2011) and GOME-2 (ESA/EUMETSAT Metop series). The potential of the SCIAMACHY successors Sentinel 5, CarbonSat, and SCIA-ISS will also be addressed.
NASA Astrophysics Data System (ADS)
Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.
2016-03-01
The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.
Global health justice and governance.
Ruger, Jennifer Prah
2012-01-01
While there is a growing body of work on moral issues and global governance in the fields of global justice and international relations, little work has connected principles of global health justice with those of global health governance for a theory of global health. Such a theory would enable analysis and evaluation of the current global health system and would ethically and empirically ground proposals for reforming it to more closely align with moral values. Global health governance has been framed as an issue of national security, human security, human rights, and global public goods. The global health governance literature is essentially untethered to a theorized framework to illuminate or evaluate governance. This article ties global health justice and ethics to principles for governing the global health realm, developing a theoretical framework for global and domestic institutions and actors.
WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS
The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...
Ecosystem resilience to abrupt late Quaternary change in continental southern Siberia
NASA Astrophysics Data System (ADS)
Harding, Poppy; Mackay, Anson; Bezrukova, Elena; Shchetnikov, Alexander
2017-04-01
Quaternary climate variability is dominated by long term orbital forcing along with abrupt sub-Milankovitch events on the scales of millennia to centuries, driven by internal feedback mechanisms, volcanic forcing and fluctuating solar activity. Although these are well documented in the North Atlantic region, their expression is poorly understood in Siberia, particularly in relation to abrupt climatic events. Siberia has the world's highest level of continentality offering an opportunity to study changes remote from oceanic influences and improving understanding of interactions between the Siberian High and other atmospheric systems including the Aleutian Low, Arctic oscillation and Icelandic Low1 and ENSO2. Understanding of palaeoenvironmental change in Siberia is essential due to the region's high sensitivity to climatic change, with warming rates considerably higher than the global average over the past 50 years3, triggering significant environmental changes, including permafrost degradation, shifts in the forest-steppe biome, increases in forest fires and warming of seasonally ice-covered lakes. Additionally, the region provides essential palaeoenvironmental context for early hominins, for example at globally important sites such as Denisova cave4, and megafauna extinctions5. This presentation outlines ongoing work at Lake Baunt, SE Siberia including: key quaternary climate forcings, the site and its regional context, the key methods and preliminary results. These include a dated record back to ˜30ka BP (based on multiple 14C dates and Bayesian age modelling), multiproxy indicators of palaeoproductivity (e.g. biogenic silica and diatom analyses) and lake mixing regimes (inferred from diatom analyses). Together these highlight several key Quaternary fluctuations potentially correlated to events recorded in Greenland Ice Cores (GS2, GS2.1, GI1, GS1), and these are considered against key Quaternary records including those from nearby Lake Baikal and Hulu Cave in east China. Our analyses suggest that teleconnections between the Siberian High and the East Asian monsoon are also significant for this study, with Lake Baunt showing a relationship between productivity and variability in strength of the Siberian High. References: 1. Tubi, A. & Dayan, U. (2013). Int. J. Climatol. 33, 1357-1366. 2. Park, T.-W. et al. (2014). Clim. Dyn. 45, 1207-1217. 3. Tingley, M. P. & Huybers, P. (2013). Nature 496, 201-5. 4. Krause, J. et al.. (2010). Nature 464, 894-7. 5. Stuart, A. J. et al. (2004). Nature 431, 684-9.
A framework for offshore vendor capability development
NASA Astrophysics Data System (ADS)
Yusuf Wibisono, Yogi; Govindaraju, Rajesri; Irianto, Dradjad; Sudirman, Iman
2016-02-01
Offshore outsourcing is a common practice conducted by companies, especially in developed countries, by relocating one or more their business processes to other companies abroad, especially in developing countries. This practice grows rapidly owing to the ease of accessing qualified vendors with a lower cost. Vendors in developing countries compete more intensely to acquire offshore projects. Indonesia is still below India, China, Malaysia as main global offshore destinations. Vendor capability is among other factors that contribute to the inability of Indonesian vendor in competing with other companies in the global market. Therefore, it is essential to study how to increase the vendor's capability in Indonesia, in the context of global offshore outsourcing. Previous studies on the vendor's capability mainly focus on capabilities without considering the dynamic of capabilities due to the environmental changes. In order to be able to compete with competitors and maintain the competitive advantage, it is necessary for vendors to develop their capabilities continuously. The purpose of this study is to develop a framework that describes offshore vendor capability development along the client-vendor relationship stages. The framework consists of three main components, i.e. the stages of client-vendor relationship, the success of each stage, and the capabilities of vendor at each stage.
Decoupling of Iron and Phosphate in the Global Ocean
NASA Technical Reports Server (NTRS)
Parekh, Payal
2003-01-01
Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.
Off-stage ecosystem service burdens: A blind spot for global sustainability
NASA Astrophysics Data System (ADS)
Pascual, Unai; Palomo, Ignacio; Adams, William M.; Chan, Kai M. A.; Daw, Tim M.; Garmendia, Eneko; Gómez-Baggethun, Erik; de Groot, Rudolf S.; Mace, Georgina M.; Martín-López, Berta; Phelps, Jacob
2017-07-01
The connected nature of social-ecological systems has never been more apparent than in today’s globalized world. The ecosystem service framework and associated ecosystem assessments aim to better inform the science-policy response to sustainability challenges. Such assessments, however, often overlook distant, diffuse and delayed impacts that are critical for global sustainability. Ecosystem-services science must better recognise the off-stage impacts on biodiversity and ecosystem services of place-based ecosystem management, which we term ‘ecosystem service burdens’. These are particularly important since they are often negative, and have a potentially significant effect on ecosystem management decisions. Ecosystem-services research can better recognise these off-stage burdens through integration with other analytical approaches, such as life cycle analysis and risk-based approaches that better account for the uncertainties involved. We argue that off-stage ecosystem service burdens should be incorporated in ecosystem assessments such as those led by the Intergovernmental Platform on Biodiversity and Ecosystem Services and the Intergovernmental Panel on Climate Change. Taking better account of these off-stage burdens is essential to achieve a more comprehensive understanding of cross-scale interactions, a pre-requisite for any sustainability transition.
Enabling access to new WHO essential medicines: the case for nicotine replacement therapies
2010-01-01
Nicotine replacement therapies (NRT) are powerful tools for the successful treatment of nicotine addiction and tobacco use. The medicines are clinically effective, supported by the Framework Convention on Tobacco Control, and are now World Health Organization-approved essential medicines. Enabling global access to NRT remains a challenge given ongoing confusion and misperceptions about their efficacy, cost-effectiveness, and availability with respect to other tobacco control and public health opportunities. In this commentary, we review existing evidence and guidelines to make the case for global access to NRT highlighting the smoker's right to access treatment to sensibly address nicotine addiction. PMID:21092092
Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals
NASA Astrophysics Data System (ADS)
Wu, Guochun; Tan, Zhong
2018-06-01
In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.
U.S. Global Change Research Program National Climate Assessment Global Change Information System
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2012-01-01
The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.
Comprehending the Critical Importance of Vocational Technical Education in a Global Economy Era.
ERIC Educational Resources Information Center
Wolansky, William D.
1990-01-01
Industrialized nations have learned that vocational education is essential to developing a skilled work force. Newly industrialized countries competing in the global economy are finding that automation, multinational companies, and rapid growth are making investment in human resources through training a critical strategy. (SK)
Mapping QTL and identification of genes associated with drought resistance in sorghum
USDA-ARS?s Scientific Manuscript database
Water limits global agricultural production and the global increasing aridity, growing human population, and the depletion of aquifers will only increase its scarcity for agriculture. Water is essential for plant growth and in areas that are prone to drought, the use of drought resistant crops is a ...
Global energy regulation in the solar wind-magnetosphere-ionosphere system
NASA Technical Reports Server (NTRS)
Sato, T.
1985-01-01
Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.
Communications Security: A Timeless Requirement While Conducting Warfare
2012-04-10
services remotely to connect to the Global Information Grid ( GIG ). The GIG is the essential gateway to the Internet that DISA uses to allow service...nations that 16 thrive off free market and global economies . These hostile actors, such as Al Qaida or Hezbollah, do not posses the
Dietary Nutrients, Additives, and Fish Health
USDA-ARS?s Scientific Manuscript database
Aquaculture will play a major role in global food security by 2050. Production of fish will need to double by 2050 to meet global demand for this important source of protein. Proper fish nutrition is essential for the overall health and well-being of fish. Sustainable and profitable production is...
The Educational Challenge of Korea in the Global Era: The Role of Family, School, and Government.
ERIC Educational Resources Information Center
Park, Young-Shin; Kim, Uichol
1999-01-01
Investigates the psychological, social, and cultural factors essential for the educational achievements in Korea. Outlines a cross-cultural model and three major factors influencing adolescents' educational achievement. Reviews four empirical studies on academic achievement. Discusses challenges for Korea in the global era. (CMK)
Crossing scales and disciplines to achieve forest sustainability
Michael J. Papaik; Brian Sturtevant; Christian Messier
2008-01-01
Forest land managers are faced with unprecedented global pressures to produce resources for human consumption (e.g., Liu and Diamond 2005), while still maintaining essential ecosystem services benefiting society at multiple spatial scales (Costanza et al. 1997). These global pressures alone present daunting challenges to sustainable forest management (SFM) worldwide (...
Guide to Education: ECS to Grade 12: 2013-2014
ERIC Educational Resources Information Center
Alberta Education, 2013
2013-01-01
The education of students is fundamental to shaping a preferred provincial, national and global future. It is also essential in maintaining Alberta's standard of living and ensuring its global competitiveness. The education system must simultaneously prepare the citizens of tomorrow while equipping the students with the knowledge and skills they…
Global Imagery in Online Advertisements
ERIC Educational Resources Information Center
Hynes, Geraldine E.; Janson, Marius
2007-01-01
A well-designed online advertisement is essential for effective communication with potential customers and contributes to successful e-commerce. However, creating online sales messages that appeal to a broad range of cultures can pose unique challenges. Internet ads must offer both a globally appealing and a culture-specific message that in turn…
The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2010-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the agricultural regions of the world, but it will also build the capabilities of developing countries to estimate how climate change will affect their supply and demand for food.
Future heat stress arising from climate change on Iran's population health.
Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad
2018-04-05
Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.
Future heat stress arising from climate change on Iran's population health
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad
2018-04-01
Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.
Formation of dominant mode by evolution in biological systems
NASA Astrophysics Data System (ADS)
Furusawa, Chikara; Kaneko, Kunihiko
2018-04-01
A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.
NASA Astrophysics Data System (ADS)
Busch, K. C.
2012-12-01
Even though there exists a high degree of consensus among scientists about climate change, doubt has actually increased over the last five years within the general U.S. public. In 2006, 79% of those polled agreed that there is evidence for global warming, while only 59% agreed in 2010 (Pew Research Center, 2010). The source for this doubt can be partially attributed to lack of knowledge. Formal education is one mechanism that potentially can address inadequate public understanding as school is the primary place where students - and future citizens - learn about the climate. In a joint effort, several governmental agencies, non-governmental organizations, scientists and educators have created a framework called The Essential Principles of Climate Science Literacy, detailing seven concepts that are deemed vital for individuals and communities to understand Earth's climate system (USGCRP, 2009). Can students reach climate literacy - as defined by these 7 concepts - if they are taught using a curriculum based on the current state standards? To answer this question, the K-12 state science teaching and learning standards for Texas and California - two states that heavily influence nation-wide textbook creation - were compared against the Essential Principles. The data analysis consisted of two stages, looking for: 1) direct reference to "climate" and "climate change" and 2) indirect reference to the 7 Essential Principles through axial coding. The word "climate" appears in the California K-12 science standards 4 times and in the Texas standards 7 times. The word "climate change" appears in the California and Texas standards only 3 times each. Indirect references to the 7 Essential Principles of climate science literacy were more numerous. Broadly, California covered 6 of the principles while Texas covered all 7. In looking at the 7 principles, the second one "Climate is regulated by complex interactions among component of the Earth system" was the most substantively addressed. Least covered were number 6 "Human activities are impacting the climate system" and number 7 "Climate change will have consequences for the Earth system and human lives." Most references, either direct or indirect, occurred in the high school standards for earth science, a class not required for graduation in either state. This research points to the gaps between what the 7 Essential Principles of Climate Literacy defines as essential knowledge and what students may learn in their K-12 science classes. Thus, the formal system does not seem to offer an experience which can potentially develop a more knowledgeable citizenry who will be able to make wise personal and policy decisions about climate change, falling short of the ultimate goal of achieving widespread climate literacy. Especially troubling was the sparse attention to the principles addressing the human connection to the climate - principles number 6 and 7. If climate literate citizens are to make "wise personal and policy decisions" (USGCRP, 2009), these two principles especially are vital. This research, therefore, has been valuable for identifying current shortcomings in state standards.
Global health and the global economic crisis.
Benatar, Solomon R; Gill, Stephen; Bakker, Isabella
2011-04-01
Although the resources and knowledge for achieving improved global health exist, a new, critical paradigm on health as an aspect of human development, human security, and human rights is needed. Such a shift is required to sufficiently modify and credibly reduce the present dominance of perverse market forces on global health. New scientific discoveries can make wide-ranging contributions to improved health; however, improved global health depends on achieving greater social justice, economic redistribution, and enhanced democratization of production, caring social institutions for essential health care, education, and other public goods. As with the quest for an HIV vaccine, the challenge of improved global health requires an ambitious multidisciplinary research program.
Sources of global climate data and visualization portals
Douglas, David C.
2014-01-01
Climate is integral to the geophysical foundation upon which ecosystems are structured. Knowledge about mechanistic linkages between the geophysical and biological environments is essential for understanding how global warming may reshape contemporary ecosystems and ecosystem services. Numerous global data sources spanning several decades are available that document key geophysical metrics such as temperature and precipitation, and metrics of primary biological production such as vegetation phenology and ocean phytoplankton. This paper provides an internet directory to portals for visualizing or servers for downloading many of the more commonly used global datasets, as well as a description of how to write simple computer code to efficiently retrieve these data. The data are broadly useful for quantifying relationships between climate, habitat availability, and lower-trophic-level habitat quality - especially in Arctic regions where strong seasonality is accompanied by intrinsically high year-to-year variability. If defensible linkages between the geophysical (climate) and the biological environment can be established, general circulation model (GCM) projections of future climate conditions can be used to infer future biological responses. Robustness of this approach is, however, complicated by the number of direct, indirect, or interacting linkages involved. For example, response of a predator species to climate change will be influenced by the responses of its prey and competitors, and so forth throughout a trophic web. The complexities of ecological systems warrant sensible and parsimonious approaches for assessing and establishing the role of natural climate variability in order to substantiate inferences about the potential effects of global warming.
ERIC Educational Resources Information Center
Kutcher, Stan; Murphy, Andrea; Gardner, David
2008-01-01
The article examines the World Health Organization's Model List of Essential Medicines (EML) and suggests modification for appropriate psychopharmacological treatment of child- and adolescent-onset mental disorders. The EML enlists few of the psychotropic medicines that are useful for the treatment of young people thereby limiting the…
Islam Is Essential for General Education
ERIC Educational Resources Information Center
Meacham, Jack
2015-01-01
The religion of Islam is often portrayed with false and negative stereotypes. If we expect our students to understand and participate in the global world and to be informed and engaged citizens in a democratic America, then it is essential that they develop a basic and sound understanding of Islam. Furthermore, learning about Islam can facilitate…
Research needs for finely resolved fossil carbon emissions
Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.
2007-01-01
Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.
2010-01-01
Despite increasing efforts and support for anti-malarial drug R&D, globally anti-malarial drug discovery and development remains largely uncoordinated and fragmented. The current window of opportunity for large scale funding of R&D into malaria is likely to narrow in the coming decade due to a contraction in available resources caused by the current economic difficulties and new priorities (e.g. climate change). It is, therefore, essential that stakeholders are given well-articulated action plans and priorities to guide judgments on where resources can be best targeted. The CRIMALDDI Consortium (a European Union funded initiative) has been set up to develop, through a process of stakeholder and expert consultations, such priorities and recommendations to address them. It is hoped that the recommendations will help to guide the priorities of the European anti-malarial research as well as the wider global discovery agenda in the coming decade. PMID:20626844
Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios.
Donelson, Jennifer M; Munday, Philip L
2015-08-01
Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present-day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits. © 2015 John Wiley & Sons Ltd.
Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India
NASA Technical Reports Server (NTRS)
Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg
2013-01-01
Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic
Global environmental health and sustainable development: the role at Rio+20.
Furie, Gregg Lawrence; Balbus, John
2012-06-01
The Rio+20 United Nations Conference on Sustainable Development represents a crucial opportunity to place environmental health at the forefront of the sustainable development agenda. Billions of people living in low- and middle-income countries continue to be afflicted by preventable diseases due to modifiable environmental exposures, causing needless suffering and perpetuating a cycle of poverty. Current processes of economic development, while alleviating many social and health problems, are increasingly linked to environmental health threats, ranging from air pollution and physical inactivity to global climate change. Sustainable development practices attempt to reduce environmental impacts and should, in theory, reduce adverse environmental health consequences compared to traditional development. Yet these efforts could also result in unintended harm and impaired economic development if the new "Green Economy" is not carefully assessed for adverse environmental and occupational health impacts. The environmental health community has an essential role to play in underscoring these relationships as international leaders gather to craft sustainable development policies.
The Grand Challenges of WCRP and the Climate Observing System of the Future
NASA Astrophysics Data System (ADS)
Brasseur, G. P.
2017-12-01
The successful implementation the Paris agreement on climate change (COP21) calls for a well-designed global monitoring system of essential climate variables, climate processes and Earth system budgets. The Grand Challenges implemented by the World Climate Research Programme (WCRP) provide an opportunity to investigate issues of high societal relevance, directly related to sea level rise, droughts, floods, extreme heat events, food security, and fresh water availability. These challenges would directly benefit from a well-designed suite of systematic climate observations. Quantification of the evolution of the global energy, water and carbon budgets as well as the development and the production of near-term and regional climate predictions require that a comprehensive, focused, multi-platform observing system (satellites, ground-based and in situ observations) be established in an international context. This system must be accompanied by the development of climate services that should translate and disseminate scientific outcomes as actionable information for users and stakeholders.
Climate change governance, cooperation and self-organization
NASA Astrophysics Data System (ADS)
Pacheco, Jorge M.; Vasconcelos, Vítor V.; Santos, Francisco C.
2014-12-01
When attempting to avoid global warming, individuals often face a social dilemma in which, besides securing future benefits, it is also necessary to reduce the chances of future losses. In this manuscript, we introduce a simple approach to address this type of dilemmas, in which the risk of failure plays a central role in individual decisions. This model can be shown to capture some of the essential features discovered in recent key experiments, while allowing one to extend in non-trivial ways the experimental conditions to regions of more practical interest. Our results suggest that global coordination for a common good should be attempted by segmenting tasks in many small to medium sized groups, in which perception of risk is high and uncertainty in collective goals is minimized. Moreover, our results support the conclusion that sanctioning institutions may further enhance the chances of coordinating to tame the planet's climate, as long as they are implemented in a decentralized and polycentric manner.
[Ebola and the global governance of health].
Dentico, Nicoletta
2014-11-01
The high state of anxiety about Ebola virus and its possible spread in the Western world has seemingly changed the route of the disease, for which effective vaccines and medicines do not exist. The rapid spread of the virus provides a paradigmatic narrative about the failure of today's governance for health, grounded on a series of global initiatives focussed on pathologies prioritized by the donors' community, at the detriment of health promotion and the strengthening of health systems in countries. The Ebola crisis also delivers a powerful account about the consequences of the de-potentiation of the World Health Organization (WHO), once the leading organization in public health policy-making. Today, the WHO is increasingly weak technically, politically and financially. While the virus remains out of control, the WHO's capacity to play a role in accompanying the development of the new essential vaccines and in brokering the conditions for accessibility and availability of the new medical tools remains to be questioned.
Learning through a portfolio of carbon capture and storage demonstration projects
NASA Astrophysics Data System (ADS)
Reiner, David M.
2016-01-01
Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.
Ozone Time Series From GOMOS and SAGE II Measurements
NASA Astrophysics Data System (ADS)
Kyrola, E. T.; Laine, M.; Tukiainen, S.; Sofieva, V.; Zawodny, J. M.; Thomason, L. W.
2011-12-01
Satellite measurements are essential for monitoring changes in the global stratospheric ozone distribution. Both the natural variation and anthropogenic change are strongly dependent on altitude. Stratospheric ozone has been measured from space with good vertical resolution since 1985 by the SAGE II solar occultation instrument. The advantage of the occultation measurement principle is the self-calibration, which is essential to ensuring stable time series. SAGE II measurements in 1985-2005 have been a valuable data set in investigations of trends in the vertical distribution of ozone. This time series can now be extended by the GOMOS measurements started in 2002. GOMOS is a stellar occultation instrument and offers, therefore, a natural continuation of SAGE II measurements. In this paper we study how well GOMOS and SAGE II measurements agree with each other in the period 2002-2005 when both instruments were measuring. We detail how the different spatial and temporal sampling of these two instruments affect the conformity of measurements. We study also how the retrieval specifics like absorption cross sections and assumed aerosol modeling affect the results. Various combined time series are constructed using different estimators and latitude-time grids. We also show preliminary results from a novel time series analysis based on Markov chain Monte Carlo approach.
A functional trait perspective on plant invasion
Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.
2012-01-01
Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328
Detecting climate variations and change: New challenges for observing and data management systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karl, T.R.; Quayle, R.G.; Groisman, P.Ya.
1993-08-01
Several essential aspects of weather observing and the management of weather data related to improving knowledge of climate variations and change in the surface boundary layer and the consequences for socioeconomic and biogeophysical systems, are discussed. The issues include long-term homogeneous time series of routine weather observations; time- and space-scale resolution of datasets derived from the observations; information about observing systems, data collection systems, and data reduction algorithms; and the enhancement of weather observing systems to serve as climate observing systems. Although much has been learned from existing weather networks and methods of data management, the system is far frommore » perfect. Several vital areas have not received adequate attention. Particular improvements are needed in the interaction between network designers and climatologists; operational analyses that focus on detecting and documenting outliers and time-dependent biases within datasets; developing the means to cope with and minimize potential inhomogeneities in weather observing systems; and authoritative documentation of how various aspects of climate have or have not changed. In this last area, close attention must be given to time and space resolution of the data. In many instances the time and space resolution requirements for understanding why the climate changes are not synonymous with understanding how it has changed or varied. This is particularly true within the surface boundary layer. A standard global daily/monthly climate message should also be introduced to supplement current Global Telecommunication System's CLIMAT data. Overall, a call is made for improvements in routine weather observing, data management, and analysis systems. Routine observations have provided (and will continue to provide) most of the information regarding how the climate has changed during the last 100 years affecting where we live, work, and grow our food. 58 refs., 8 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Lassaletta, Luis; Billen, Gilles; Garnier, Josette; Bouwman, Lex; Velazquez, Eduardo; Mueller, Nathaniel D.; Gerber, James S.
2016-09-01
Nitrogen (N) limits crop and grass production, and it is an essential component of dietary proteins. However, N is mobile in the soil-plant system and can be lost to the environment. Estimates of N flows provide a critical tool for understanding and improving the sustainability and equity of the global food system. This letter describes an integrated analysis of changes in N in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960-2050. The largest absolute change in consumption of animal proteins during the period 1960-2009 is seen in China, while the largest share of animal protein per capita is currently observed in North America, Europe and Oceania. Due to the substantial growth of the livestock sector, about three quarters of contemporary global crop production (expressed in protein and including fodder crops and bioenergy byproducts) is allocated to livestock. Trends and levels of NUE and N surpluses in crop production are also diverse, as some regions show soil N depletion (developing regions, e.g. Africa), improving efficiency (industrialized regions, e.g. USA and Europe) and excessive N use (e.g. China, India). Global trade between the 12 regions has increased by a factor of 7.5 for vegetable proteins and by a factor of 10 for animal proteins. The scenarios for 2050 demonstrate that it would be possible to feed the global population in 2050 with moderate animal protein consumption but with much less N pollution, and less international trade than today. In such a scenario, optimal allocation of N inputs among regions to maximize NUE would further decrease pollution, but would require increased levels of N trade comparable to those in a BAU scenario.
ERIC Educational Resources Information Center
Jacobsen, Judith E.
The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…
Effects of climate change on soil moisture over China from 1960-2006
Zhu, Q.; Jiang, H.; Liu, J.
2009-01-01
Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.
Poleward displacement of coastal upwelling-favorable winds through the 21st century
NASA Astrophysics Data System (ADS)
Rykaczewski, R. R.; Dunne, J. P.; Sydeman, W. J.; Garcia-Reyes, M.; Black, B.; Bograd, S. J.
2016-02-01
Coastal upwelling is a critical factor influencing the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A leading conceptual hypothesis projects that the winds that induce coastal upwelling will intensify in response to increased land-sea temperature differences associated with anthropogenic global warming. We examine this hypothesis using an ensemble of coupled, ocean-atmosphere models and find limited evidence for intensification of upwelling-favorable winds or atmospheric pressure gradients in response to increasing land-sea temperature differences. However, our analyses reveal consistent latitudinal and seasonal dependencies of projected changes in wind intensity associated with poleward migration of major atmospheric high-pressure cells. Summertime winds near poleward boundaries of climatological upwelling zones are projected to intensify, while winds near equatorward boundaries are projected to weaken. Developing a better understanding of future changes in upwelling winds is essential to identifying portions of the oceans susceptible to increased hypoxia, ocean acidification, and eutrophication under climate change.
Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise
Wakabayashi, Ken-ichi; King, Stephen M.
2006-01-01
Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958
Fungal symbionts alter plant responses to global change.
Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A
2013-07-01
While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.
Multisource Estimation of Long-term Global Terrestrial Surface Radiation
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.
2017-12-01
Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.
Rovero, Francesco; Ahumada, Jorge
2017-01-01
While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time are essential features of such system. Copyright © 2016 Elsevier B.V. All rights reserved.
Evans, B M
2003-02-01
The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and intact emotional responses.
NASA Astrophysics Data System (ADS)
Chue, Ching-Hwei
A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.
NASA Astrophysics Data System (ADS)
Ibarrola-Rivas, M. J.; Granados-Ramírez, R.; Nonhebel, S.
2017-12-01
Land and water are essential local resources for food production but are limited. The main drivers of increasing food demand are population growth and dietary changes, which depend on the socioeconomic situation of the population. These two factors affect the availability of local resources: population growth reduces the land and water per person; and adoption of affluent diets increases the demand for land and water per person. This study shows potentials of global food supply by linking food demand drivers with national land and water availability. Whether the available land and water is enough to meet national food demand was calculated for 187 countries. The calculations were performed for the past situation (1960 and 2010) and to assess four future scenarios (2050) to discuss different paths of diets, population numbers and agricultural expansion. Inclusion of the demand perspective in the analysis has shown stronger challenges for future global food supply than have other studies. The results show that with the "business as usual" scenario, 40% of the global population in 2050 will live in countries with not enough land nor water to meet the demands of their population. Restriction to basic diets will be the most effective in lowering both land and water constraints. Our results identify both food production and food demand factors, and the regions that may experience the strongest challenges in 2050.
Internationally coordinated glacier monitoring: strategy and datasets
NASA Astrophysics Data System (ADS)
Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael
2014-05-01
Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.
Arctic air pollution: A Norwegian perspective
NASA Astrophysics Data System (ADS)
Ottar, B.
The paper gives a survey of the results obtained during a research programme in the Norwegian Arctic, financed by British Petroleum Ltd. during the period 1981-1986 under an agreement between the Norwegian Government and the oil companies. The programme included extensive measurement programmes by aircraft and at ground stations, as well as modelling of the transport of air pollutants to the Arctic. The results show that the Arctic plays an important role as an intermediate station in the general dispersion of air pollutants within the Northern Hemisphere. Continued measurements in the Arctic may therefore provide essential information concerning such questions as the change of climate and the global dispersion of polychlorinated hydrocarbons and other halogenated organics.
Select Methodology for Validating Advanced Satellite Measurement Systems
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.
2008-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.
Metabolic changes sustain the plant life in low-sulfur environments.
Maruyama-Nakashita, Akiko
2017-10-01
Plants assimilate inorganic sulfate into various organic sulfur (S) compounds, which contributes to the global sulfur cycle in the environment as well as the nutritional supply of this essential element to animals. Plants, to sustain their lives, adapt the flow of their S metabolism to respond to external S status by activating S assimilation and catabolism of stored S compounds, and by repressing the synthesis of secondary S metabolites like glucosinolates. The molecular mechanism of this response has been gradually revealed, including the discovery of several regulatory proteins and enzymes involved in S deficiency responses. Recent progress in this research area and the remaining issues are reviewed here. Copyright © 2017 Elsevier Ltd. All rights reserved.
Essential competencies in global health research for medical trainees: A narrative review.
White, Mary T; Satterfield, Caley A; Blackard, Jason T
2017-09-01
Participation in short-term educational experiences in global health (STEGHs) among medical trainees is increasingly accompanied by interest in conducting research while abroad. Because formal training in both global health and research methods is currently under-represented in most medical curricula, trainees are often unfamiliar with the knowledge, attitudes, and skills necessary to design and conduct research successfully. This narrative review identifies essential global health research competencies for medical trainees engaged in STEGHs. The authors searched the literature using the terms global health, competency, research, research methods/process/training, scholarly project, medical student, and medical education/education. Because articles directly addressing global health research competencies for medical trainees were limited, the authors additionally drew on the broader literature addressing general research competencies and global health competencies. Articles yielded by the literature search, combined with established guidelines in research ethics and global health ethics, were used to identify six core domains and twenty discrete competencies fundamental to global health research at a level appropriate for medical trainees enrolled in STEGHs. Consideration was given to diverse research modalities, varying levels of training, and the availability of mentoring and on-site support. Research may provide important benefits to medical trainees and host partners. These competencies provide a starting point; however, circumstances at any host site may necessitate additional competencies specific to that setting. These competencies are also limited by the methodology employed in their development and the need for additional perspectives from host partners. The competencies identified outline basic knowledge, attitudes, and skills necessary for medical trainees to conduct limited global health research while participating in STEGHS. They may also be used as a basis for curriculum development, assessment, and research capacity development.