Science.gov

Sample records for changing meltwater flux

  1. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  2. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic

    PubMed Central

    Heiri, Oliver; Tinner, Willy; Lotter, André F.

    2004-01-01

    We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of ≈1°C are inferred at ≈10,700–10,500 and 8,200–7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1°C in central Europe. PMID:15492214

  3. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic.

    PubMed

    Heiri, Oliver; Tinner, Willy; Lotter, André F

    2004-10-26

    We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of approximately 1 degrees C are inferred at approximately 10,700-10,500 and 8,200-7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1 degrees C in central Europe.

  4. Satellite-based estimates of Antarctic surface meltwater fluxes

    NASA Astrophysics Data System (ADS)

    Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.; Munneke, Peter Kuipers; Broeke, Michiel R.

    2013-12-01

    study generates novel satellite-derived estimates of Antarctic-wide annual (1999-2009) surface meltwater production using an empirical relationship between radar backscatter from the QuikSCAT (QSCAT) satellite and melt calculated from in situ energy balance observations. The resulting QSCAT-derived melt fluxes significantly agree with output from the regional climate model RACMO2.1 and with independent ground-based observations. The high-resolution (4.45 km) QSCAT-based melt fluxes uniquely detect interannually persistent and intense melt (>400 mm water equivalent (w.e.) year-1) on interior Larsen C Ice Shelf that is not simulated by RACMO2.1. This supports a growing understanding of the importance of a föhn effect in this region and quantifies the resulting locally enhanced melting that is spatially consistent with recently observed Larsen C thinning. These new results highlight important cryosphere-climate interactions and processes that are presently not fully captured by the coarser-resolution (27 km) regional climate model.

  5. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  6. Iceberg meltwater fluxes dominate the freshwater budget in Greenland's iceberg-congested glacial fjords

    NASA Astrophysics Data System (ADS)

    Enderlin, Ellyn M.; Hamilton, Gordon S.; Straneo, Fiammetta; Sutherland, David A.

    2016-11-01

    Freshwater fluxes from the Greenland ice sheet have increased over the last two decades due to increases in liquid (i.e., surface and submarine meltwater) and solid ice (i.e., iceberg) fluxes. To predict potential ice sheet-ocean-climate feedbacks, we must know the partitioning of freshwater fluxes from Greenland, including the conversion of icebergs to liquid (i.e., meltwater) fluxes within glacial fjords. Here we use repeat 0.5 m-resolution satellite images from two major fjords to provide the first observation-based estimates of the meltwater flux from the dense matrix of floating ice called mélange. We find that because of its expansive submerged area (>100 km2) and rapid melt rate ( 0.1-0.8 m d-1), the ice mélange meltwater flux can exceed that from glacier surface and submarine melting. Our findings suggest that iceberg melt within the fjords must be taken into account in studies of glacial fjord circulation and the impact of Greenland melt on the ocean.

  7. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-08-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the climate evolution at the onset of the Last Interglacial. The period from 135 to 120 kyr BP is simulated with the Earth system model of intermediate complexity LOVECLIM v.1.3 with prescribed evolution of the Antarctic ice sheet, the Greenland ice sheet, and the other Northern Hemisphere ice sheets. Variations in meltwater fluxes from the Northern Hemisphere ice sheets lead to North Atlantic temperature changes and modifications of the strength of the Atlantic meridional overturning circulation. By means of the interhemispheric see-saw effect, variations in the Atlantic meridional overturning circulation also give rise to temperature changes in the Southern Hemisphere, which are additionally modulated by the direct impact of Antarctic meltwater fluxes into the Southern Ocean. Freshwater fluxes from the melting Antarctic ice sheet lead to a millennial timescale oceanic cold event in the Southern Ocean with expanded sea ice as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.

  8. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron.

    PubMed

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-06

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  9. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    PubMed Central

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-01-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters. PMID:27050673

  10. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron

    NASA Astrophysics Data System (ADS)

    Markussen, Thor Nygaard; Elberling, Bo; Winter, Christian; Andersen, Thorbjørn Joest

    2016-04-01

    Glacial meltwater systems supply the Arctic coastal ocean with large volumes of sediment and potentially bioavailable forms of iron, nitrogen and carbon. The particulate fraction of this supply is significant but estuarine losses have been thought to limit the iron supply from land. Here, our results reveal how flocculation (particle aggregation) involving labile iron may increase horizontal transport rather than enhance deposition close to the source. This is shown by combining field observations in Disko Fjord, West Greenland, and laboratory experiments. Our data show how labile iron affects floc sizes, shapes and densities and consequently yields low settling velocities and extended sediment plumes. We highlight the importance of understanding the flocculation mechanisms when examining fluxes of meltwater transported iron in polar regions today and in the future, and we underline the influence of terrestrial hotspots on the nutrient and solute cycles in Arctic coastal waters.

  11. Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen; Steffen, Konrad

    2009-01-01

    The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations were used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends are

  12. Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets.

    PubMed

    Rohling, Eelco J; Marsh, Robert; Wells, Neil C; Siddall, Mark; Edwards, Neil R

    2004-08-26

    The period between 75,000 and 20,000 years ago was characterized by high variability in climate and sea level. Southern Ocean records of ice-rafted debris suggest a significant contribution to the sea level changes from melt water of Antarctic origin, in addition to likely contributions from northern ice sheets, but the relative volumes of melt water from northern and southern sources have yet to be established. Here we simulate the first-order impact of a range of relative meltwater releases from the two polar regions on the distribution of marine oxygen isotopes, using an intermediate complexity model. By comparing our simulations with oxygen isotope data from sediment cores, we infer that the contributions from Antarctica and the northern ice sheets to the documented sea level rises between 65,000 and 35,000 years ago were approximately equal, each accounting for a rise of about 15 m. The reductions in Antarctic ice volume implied by our analysis are comparable to that inferred previously for the Antarctic contribution to meltwater pulse 1A (refs 16, 17), which occurred about 14,200 years ago, during the last deglaciation.

  13. Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation

    SciTech Connect

    Hill, H W; Flower, B P; Quinn, T M; Hollander, D J; Guilderson, T P

    2005-10-02

    A leading hypothesis to explain abrupt climate change during the last glacial cycle calls on fluctuations in the margin of the North American Laurentide Ice Sheet (LIS), which may have routed freshwater between the Gulf of Mexico (GOM) and North Atlantic, affecting North Atlantic Deep Water (NADW) variability and regional climate. Paired measurements of {delta}O and Mg/Ca of foraminiferal calcite from GOM sediments reveal five episodes of LIS meltwater input from 28-45 thousand years ago (ka) that do not match the millennial-scale Dansgaard-Oeschger (D/O) warmings recorded in Greenland ice. We suggest that summer melting of the LIS may occur during Antarctic warming and likely contributed to sea-level variability during Marine Isotope Stage 3 (MIS 3).

  14. Comment on Lake Agassiz Meltwater

    NASA Astrophysics Data System (ADS)

    Steig, Eric

    2006-03-01

    T. V. Lowell et al., authors of ``Testing the Lake Agassiz Meltwater Trigger for the Younger Dryas,`` in the 4 October 2005 Eos, are to be commended for re-examining the evidence for the role of meltwater forcing as the cause of the Younger Dryas cooling episode. Yet the article comes up short in attempting to point toward future progress on the important question of the causes of abrupt climate change. Lowell et al. neglect to address an obvious conundrum: if the Aggasiz meltwater pulse occurred at the wrong time to have caused the Younger Dryas, then it evidently did not cause any significant climate response. Does this not suggest that the assumed importance of meltwater forcing in abrupt climate change be reconsidered entirely?

  15. Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.; Yang, Duo; Myers, Paul G.

    2016-12-01

    The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.

  16. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  17. Modeling of meltwater infiltration in subfreezing snow

    SciTech Connect

    Illangasekare, T.H.; Walter, R.J. Jr.; Meier, M.F.; Pfeffer, W.T. )

    1990-05-01

    A mathematical model which incorporates the processes that influence water flow and heat transfer in subfreezing snow was developed. Among the aspects of snow included are density and grain-size heterogeneities, capillary-pressure gradients, meltwater refreezing, time dependent hydraulic and thermal parameters, and heat conduction. From this conceptual mathematical model a numerical model of two-dimensional meltwater infiltration was developed. Results from various test cases show which data are most important to measure accurately in the field, in order to determine how the snowpack will respond to an introduction of meltwater. These simulations also show the importance of the orientation of the various layers which make up the snowpack and how randomly distributed heterogeneities can produce two-dimensional flow of meltwater under unsaturated conditions. Finally, it is demonstrated that various assumptions related to density and porosity variations, dimensionality of flow, capillary effects, etc., which have been made by past investigators for ideal situations may not be valid under many circumstances, and several suggestions are made for improving predictions of meltwater behavior. Sensitivity analysis showed that the model is most sensitive to changes in bulk density, residual saturation of wet snow and meltwater supply rates, whereas changes in snow temperature and mean grain size had less marked effect.

  18. Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Phipps, S. J.; Turney, C. S. M.; Golledge, N. R.

    2015-10-01

    Despite advances in our understanding of the processes driving contemporary sea level rise, the stability of the Antarctic ice sheets and their contribution to sea level under projected future warming remains uncertain due to the influence of strong ice-climate feedbacks. Disentangling these feedbacks is key to reducing uncertainty. Here we present a series of climate system model simulations that explore the potential effects of increased West Antarctic Ice Sheet (WAIS) meltwater flux on Southern Ocean dynamics. We project future changes driven by sectors of the WAIS, delivering spatially and temporally variable meltwater flux into the Amundsen, Ross, and Weddell embayments over future centuries. Focusing on the Amundsen Sea sector of the WAIS over the next 200 years, we demonstrate that the enhanced meltwater flux rapidly stratifies surface waters, resulting in a significant decrease in the rate of Antarctic Bottom Water (AABW) formation. This triggers rapid pervasive ocean warming (>1°C) at depth due to advection from the original site(s) of meltwater input. The greatest warming is predicted along sectors of the ice sheet that are highly sensitized to ocean forcing, creating a feedback loop that could enhance basal ice shelf melting and grounding line retreat. Given that we do not include the effects of rising CO2—predicted to further reduce AABW formation—our experiments highlight the urgent need to develop a new generation of fully coupled ice sheet climate models, which include feedback mechanisms such as this, to reduce uncertainty in climate and sea level projections.

  19. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  20. Greenland Meltwater and Arctic Circulation Regimes

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Proshutinsky, A. Y.; Timmermans, M. L.; Myers, P. G.; Platov, G.

    2015-12-01

    Between 1948 and 1996, wind-driven components of ice drift and surface ocean currents experienced a well-pronounced decadal variability alternating between anticyclonic and cyclonic circulation regimes. During cyclonic regimes, low sea level atmospheric pressure dominated over the Arctic Ocean driving sea ice and the upper ocean clockwise; the Arctic atmosphere was relatively warm and humid and freshwater flux from the Arctic Ocean toward the sub-Arctic seas was intensified. During anticylonic circulation regimes, high sea level pressure dominated over the Arctic driving sea ice and ocean counter-clockwise; the atmosphere was cold and dry and the freshwater flux from the Arctic to the sub-Arctic seas was reduced. Since 1997, however, the Arctic system has been dominated by an anticyclonic circulation regime with a set of environmental parameters that are atypical for these regimes. Of essential importance is to discern the causes and consequences of the apparent break-down in the natural decadal variability of the Arctic climate system, and specifically: Why has the well-pronounced decadal variability observed in the 20th century been replaced by relatively weak interannual changes under anticyclonic circulation regime conditions in the 21st century? We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from Greenland impact environmental conditions and interrupt their decadal variability. In order to test this hypothesis, numerical experiments with several FAMOS (Forum for Arctic Modeling & Observational Synthesis) ice-ocean coupled models have been conducted. In these experiments, Greenland melt freshwater is tracked by passive tracers being constantly released along the Greenland coast. Propagation pathways and time scales of Greenland meltwater within the sub-Arctic seas are discussed.

  1. Antarctic ice shelf potentially stabilized by export of meltwater in surface river.

    PubMed

    Bell, Robin E; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J; Zappa, Christopher J; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-19

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  2. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  3. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    NASA Technical Reports Server (NTRS)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  4. Estimating Relative Changes of Metabolic Fluxes

    PubMed Central

    Huang, Lei; Kim, Dongsung; Liu, Xiaojing; Myers, Christopher R.; Locasale, Jason W.

    2014-01-01

    Fluxes are the central trait of metabolism and Kinetic Flux Profiling (KFP) is an effective method of measuring them. To generalize its applicability, we present an extension of the method that estimates the relative changes of fluxes using only relative quantitation of 13C-labeled metabolites. Such features are directly tailored to the more common experiment that performs only relative quantitation and compares fluxes between two conditions. We call our extension rKFP. Moreover, we examine the effects of common missing data and common modeling assumptions on (r)KFP, and provide practical suggestions. We also investigate the selection of measuring times for (r)KFP and provide a simple recipe. We then apply rKFP to 13C-labeled glucose time series data collected from cells under normal and glucose-deprived conditions, estimating the relative flux changes of glycolysis and its branching pathways. We identify an adaptive response in which de novo serine biosynthesis is compromised to maintain the glycolytic flux backbone. Together, these results greatly expand the capabilities of KFP and are suitable for broad biological applications. PMID:25412287

  5. On Meltwater Megafloods and Rainfall Phase Changes: Decoding the Sea-Air Coupling During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Aharon, P.; Lambert, W. J.

    2012-12-01

    The last deglaciation interval (~16 to 8 cal Ka) is a subject of considerable interest because it offers unusual opportunities for testing the veracity of climate models that predict a coupling between the ocean and atmosphere processes. Gulf of Mexico is a key archival site of the Laurentide Ice Sheet (LIS) melting history because it was the destination of exceptionally large outbursts of floodwaters catastrophically released in a rapid succession that were accompanied by cold reversals. The most prominent of these cold reversals was the Younger Dryas event (12.9 to 11.8 Ka) whose exact causation remains contentious. Here we present a detail stable isotope record of the last deglaciation megafloods from paired planktonic and benthic foraminifera in sediment cores from the Northern Gulf of Mexico. Sea-air coupling processes are decoded from a close comparison between the timing, duration and intensity of the megafloods and a time-series of contemporaneous proxy rainfall switches archived in stalagmites from DeSoto Caverns (inner Gulf Coast) whose primary rainfall source is in the Gulf of Mexico. The coeval sea-land climate records offer a frame of reference for climate changes involving polar ice melting and enhanced river runoff within an ongoing planetary warming trend.

  6. Modelling heterogeneous meltwater percolation on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, S.

    2015-12-01

    The Greenland Ice Sheet (GrIS) has experienced an increase of surface meltwater production over the last decades, with the latest record set in the summer of 2012. For current and future ice sheet mass balance assessments, it is important to quantify what part of this meltwater reaches the ocean and contributes to sea level change. Meltwater produced at the surface has several options: it can infiltrate the local firn pack, where it is either stored temporarily or refrozen, or it can run off along the surface or via en-glacial drainage systems. In this study, we focus on the first; more specifically, in which manner meltwater percolates the firn column. Over the past years, GrIS research has shown that meltwater does not infiltrate the firn pack homogeneously (i.e. matrix flow), but that inhomogeneities in horizontal firn layers causes preferential flow paths for meltwater (i.e. piping). Although this process has been observed and studied on a few isolated sites, it has never been examined on the entire GrIS. To do so, we use the firn model IMAU-FDM with new parameterizations for preferential flow, impermeable ice lenses and sub-surface runoff. At the surface, IMAU-FDM is forced with realistic climate data from the regional climate model RACMO2.3. The model results are evaluated with temperatures and density measurements from firn cores across the GrIS. By allowing for heterogeneous meltwater percolation, the model is able to store heat and mass much deeper in the firn column. This is, however, in part counteracted by the inclusion of impermeability of ice lenses, which causes part of the meltwater to run off horizontally.

  7. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Böning, Claus W.; Behrens, Erik; Biastoch, Arne; Getzlaff, Klaus; Bamber, Jonathan L.

    2016-07-01

    The Greenland ice sheet has experienced increasing mass loss since the 1990s. The enhanced freshwater flux due to both surface melt and outlet glacier discharge is assuming an increasingly important role in the changing freshwater budget of the subarctic Atlantic. The sustained and increasing freshwater fluxes from Greenland to the surface ocean could lead to a suppression of deep winter convection in the Labrador Sea, with potential ramifications for the strength of the Atlantic meridional overturning circulation. Here we assess the impact of the increases in the freshwater fluxes, reconstructed with full spatial resolution, using a global ocean circulation model with a grid spacing fine enough to capture the small-scale, eddying transport processes in the subpolar North Atlantic. Our simulations suggest that the invasion of meltwater from the West Greenland shelf has initiated a gradual freshening trend at the surface of the Labrador Sea. Although the freshening is still smaller than the variability associated with the episodic `great salinity anomalies', the accumulation of meltwater may become large enough to progressively dampen the deep winter convection in the coming years. We conclude that the freshwater anomaly has not yet had a significant impact on the Atlantic meridional overturning circulation.

  8. Determining surface meltwater pond volume using satellite imagery

    NASA Astrophysics Data System (ADS)

    Sneed, W. A.; Hamilton, G. S.

    2006-12-01

    Ponded surface meltwater on Arctic ice caps and ice sheets is an important glaciological and climatological characteristic. Changes in the distribution and amount of ponds with time represent changes in the surface climate conditions controlling melting. The availability of large volumes of ponded surface water raises the possibility of sudden drainage to the bed, a change in basal lubrication, and a rapid increase in ice velocity. While the problem of calculating the areal extent of meltwater ponds using satellite imagery is fairly straightforward, determining the depth and thus the volume is not. We describe a method for deriving the depth of meltwater ponds using 15 m resolution ASTER imagery. We apply the technique to sequences of satellite imagery acquired over Austfonna, Svalbard and the western margin of the Greenland Ice Sheet, to derive changes in melt pond extent and volume during the period 2000-2005. These changes are probably related to accumulation and summer melt conditions. The method is well-suited to the near-optically-clear melt ponds of ice sheets and ice caps, but not to the turbid ponds of alpine glaciers. The method involves making some reasonable assumptions about the albedo of the bottom surface of the ponds and the optical attenuation characteristics of ASTER bands VNIR1 and VNIR3 through the ponded meltwater. Preliminary laboratory analysis of ponded meltwater from Greenland supports our assumption that such water contains little or no chlorophyll A with minimal levels of suspended organic and inorganic solids and, to a first approximation, can be consider laboratory-pure fresh water. For an ~78 km2 test area in northeastern Austfonna we have calculated a threefold increase in meltwater volume during one six-day period in July 2004. In northwestern Greenland, an ~171 km2 area near Melville Bay in July 2002 had a volume of surface meltwater of nearly 2x10^7 m3; in August 2005 the same area had a volume of 3.7x10^7 m3 of surface meltwater.

  9. Pathways of Petermann Glacier meltwater, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas

    2016-04-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.

  10. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    SciTech Connect

    Berkman, P.A.

    1992-03-01

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmental proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.

  11. The Flow of Buoyant Meltwater Next to Ice Shelves and Icebergs

    NASA Astrophysics Data System (ADS)

    Wells, A. J.; Worster, G.

    2008-12-01

    Melting at the base of an ice shelf can play a significant role in the polar oceans, contributing to the mass balance of the ice shelf and leading to the formation of Ice Shelf Water. Fresh meltwater is relatively buoyant compared to the surrounding ocean and can rise along the ice surface, with the strength of this flow depending critically on the heat and salt fluxes from the ocean to the ice. We justify a simplified theoretical model that describes the coupling of heat and salt fluxes with the buoyancy- driven flow of meltwater, next to both vertical and sloping ice surfaces. The flow develops with distance along the ice surface, and different flow regimes can be obtained depending on the length and the slope of the ice surface. Both the heat and salt fluxes differ between the two regimes. On moderate scales the flow is controlled by buoyancy in a narrow region close to the ice surface. This predicts that the melting rate is independent of distance along the ice surface, consistent with previous laboratory scale measurements of heat transfer. This regime may be important for ablation at the sides of tabular icebergs, and under some regions of ice shelves. Further downstream, the flow is dominated by buoyancy located further from the wall, and can be described by a model similar to those often used to model ice-shelf-water plumes. This predicts that the melting rate increases with distance along the ice surface. Simple analytic solutions are also derived for flow in an unstratified fluid, which indicate the possible sensitivity of the ablation rate to changes in ocean temperature. The predicted variation of the heat and salt fluxes with distance along the ice surface may have important consequences for more complex models of ice-shelf-water flow.

  12. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  13. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Garabato, Alberto C. Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C.; Heywood, Karen J.; Jenkins, Adrian; Firing, Yvonne L.; Kimura, Satoshi

    2017-01-01

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth’s albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  14. Noble Gas Signatures in Greenland - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Castro, M. C.; Hall, C. M.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    This study is meant to explore the information noble gases can provide in glacial environments with respect to glacial meltwater sources, relative source contributions, water residence times, and spatial location where this glacial meltwater originates in the ice sheet. Ultimately, we seek to improve our understanding on the dynamics of these massive ice sheets, critical for the major role they play on climate change. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) allowing for calculation of noble gas temperatures (NGTs) and, under certain assumptions, estimation of the altitude at which glacial meltwater originated. In addition, crustally produced isotopes such as He accumulate in water over time, allowing for estimation of water residence times. Glacial meltwater samples were collected and analyzed for noble gas concentrations and isotopic ratios at five different locations in southern Greenland, between sea level and 1221 m. All samples are enriched in He with respect to ASW and are depleted in all other noble gases. Two patterns are apparent. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, a pattern first observed in high-altitude springs in the Galápagos Islands. The second one displays a mass-dependent pattern, a pattern first observed in Michigan rainwater samples. Most samples point to equilibration temperatures at ~0°C and altitudes between 1000 m and 2000 m, values which are consistent with both temperatures and elevations in Greenland. He concentrations vary between 1.1 and 7 times that of ASW and suggest glacial meltwater ages between ~170 and 1150 yrs, a result which is consistent with a preliminary tritium analysis. He isotopes point to surface (precipitation as snow and rainfall) contributions for most samples between ~60% and 90% with a ~10% - 40% crustal contribution from groundwater.

  15. Meltwater percolation and refreezing in compacting snow

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Hewitt, Ian

    2016-11-01

    Meltwater is produced on the surface of glaciers and ice sheets when the seasonal surface energy forcing warms the ice above its melting temperature. This meltwater percolates through the porous snow matrix and potentially refreezes, thereby warming the surrounding ice by the release of latent heat. Here we model this process from first principles using a continuum model. We determine the internal ice temperature and glacier surface height based on the surface forcing and the accumulation of snow. When the surface temperature exceeds the melting temperature, we compute the amount of meltwater produced and lower the glacier surface accordingly. As the meltwater is produced, we solve for its percolation through the snow. Our model results in traveling regions of meltwater with sharp fronts where refreezing occurs. We also allow the snow to compact mechanically and we analyze the interplay of compaction with meltwater percolation. We compare these models to observations of the temperature and porosity structure of the surface of glaciers and ice sheets and find excellent agreement. Our models help constrain the role that meltwater percolation and refreezing will have on ice-sheet mass balance and hence sea level. Thanks to the 2016 WHOI GFD Program, which is supported by the National Science Foundation and the Office of Naval Research.

  16. Glacier Changes in the Bhutanese Himalaya - Present and Future

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Schaefer, J. M.; Burgener, L. K.; Maurer, J.; Smith, R.; Cook, E.; Putnam, A. E.; Krusic, P.; Tsering, K.; Koenig, L.

    2012-12-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. The most conservative results indicate that, even if climate were to remain at the present-day mean values (1980-2000), almost 10% of Bhutan's glacierized area would vanish and the meltwater flux would drop by as much as 30%. New mapping of glacierized area from 2000-2010 shows a significant change in glacierized area of 4-6%. Thus the conservative steady-state area changes predicted by the model are already being realized. Under the conservative scenario of an additional 1°C regional warming, glacier retreat is predicted to continue until about 25% of Bhutan's glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%.

  17. Precise chronology of Heinrich-1 meltwater pulses in the Nordic Seas (Invited)

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Grootes, P. M.; Kuehn, H.; Voelker, A.

    2009-12-01

    Various ocean mechanisms have been proposed to explain the abrupt warming of DO event 1 forming the onset of the Bølling/Allerød (BA) period near 14.7 cal. ka BP, for example invoking multiple equilibria of Atlantic meridional overturning circulation (AMOC) and southern hemisphere climate forcing. A transient state-of-the-art model simulation of the deglacial ocean and climate evolution by Liu et al. recently reproduced the abrupt BA warming, provided a sudden termination of meltwater fluxes (MWF) to the North Atlantic occurred a few centuries prior to the BA. Thus an accurate history of MWF before the BA is crucial. Up to now, however, a precise timing of Heinrich-1 MWF prior to the BA warming has not been established for deep-sea sediment records from the northern North Atlantic because great changes in planktic 14C reservoir ages of a few hundred to 2500 years form a major obst¬acle for precise age control. The 14C plateau-tuning technique now paves the way for closely constraining the age of Heinrich-1 MWF signals which are recorded by abrupt negative planktic δ18O excursions reaching 1.5-2.0 per mil. In the East Greenland Current we find intensive MWF from 17.25 to ~15.0 ka ago. Likewise in the Norwegian Sea we date vast meltwater fluxes associated with the deglacial break-up of the Barents ice sheet at ~73°N. This plume terminated no more than a few hundred years prior to the onset of the BA. In summary our records support the simulations of Liu et al. by showing that MWF to the North Atlantic did suddenly stop shortly after 15 ka BP, which could drive a quick restoration and overshoot of the AMOC and in turn, the abrupt warming at the onset of the BA. Liu, Z. et al., 2009, Science 325, 310-314.

  18. How climate model biases skew the distribution of iceberg meltwater

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; Eisenman, Ian

    2017-04-01

    The discharge of icebergs into the polar oceans is expected to increase over the coming century, which raises the importance of accurate representations of icebergs in global climate models (GCMs) used for future projections. Here we analyze the prospects for interactive icebergs in GCMs by forcing an iceberg drift and decay model with circulation and temperature fields from (i) state-of-the-art GCM output and (ii) an observational state estimate. The spread of meltwater is found to be smaller for the GCM than for the observational state estimate, despite a substantial high wind bias in the GCM—a bias that is similar to most current GCMs. We argue that this large-scale reduction in the spread of meltwater occurs primarily due to localized differences in ocean currents, which may be related to the coarseness of the horizontal resolution in the GCM. The high wind bias in the GCM is shown to have relatively little impact on the meltwater distribution, despite Arctic iceberg drift typically being dominated by the wind forcing. We find that this is due to compensating effects between faster drift under stronger winds and larger wind-driven wave erosion. These results may have implications for future changes in the Atlantic meridional overturning circulation simulated with iceberg-enabled GCMs.

  19. Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda

    NASA Astrophysics Data System (ADS)

    Winkelstern, Ian Z.; Rowe, Mark P.; Lohmann, Kyger C.; Defliese, William F.; Petersen, Sierra V.; Brewer, Aaron W.

    2017-02-01

    The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice-rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice Sheet traveled as far south as subtropical latitudes. We present evidence that an event of similar magnitude affected the subtropics during the Last Interglacial, potentially due to melting of the Greenland Ice Sheet. Using the clumped isotope paleothermometer, we found temperatures 10°C colder and seawater δ18O values 2‰ lower than modern in Last Interglacial Cittarium pica shells from Grape Bay, Bermuda. In contrast, Last Interglacial shells from Rocky Bay, Bermuda, record temperatures only slightly colder and seawater δ18O values similar to modern, likely representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The significantly colder ocean temperatures observed in Grape Bay samples illustrate the extreme sensitivity of Bermudian climate to broad-scale ocean circulation changes. They indicate routine meltwater transport in the North Atlantic to near-equatorial latitudes, which would likely have resulted in disruption of the Atlantic Meridional Overturning Circulation. These data demonstrate that future melting of the Greenland Ice Sheet, a potential source of the Last Interglacial meltwater event, could have dramatic climate effects outside of the high latitudes.

  20. Meltwater routing and the Younger Dryas

    SciTech Connect

    Condron, Alan; Winsor, Peter

    2012-12-04

    The Younger Dryas -- the last major cold episode on Earth -- is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318–321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC).More recently, Tarasov and Peltier [2005 Nature 435:662–665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.

  1. Meltwater routing and the Younger Dryas

    PubMed Central

    Condron, Alan; Winsor, Peter

    2012-01-01

    The Younger Dryas—the last major cold episode on Earth—is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318–321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC). More recently, Tarasov and Peltier [2005 Nature 435:662–665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ∼4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ∼3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling. PMID:23129657

  2. Meltwater routing and the Younger Dryas

    DOE PAGES

    Condron, Alan; Winsor, Peter

    2012-12-04

    The Younger Dryas -- the last major cold episode on Earth -- is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318–321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC).More recently, Tarasov and Peltier [2005 Nature 435:662–665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenziemore » Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.« less

  3. Meltwater routing and the Younger Dryas.

    PubMed

    Condron, Alan; Winsor, Peter

    2012-12-04

    The Younger Dryas--the last major cold episode on Earth--is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318-321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC). More recently, Tarasov and Peltier [2005 Nature 435:662-665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.

  4. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula

    PubMed Central

    Dierssen, Heidi M.; Smith, Raymond C.; Vernet, Maria

    2002-01-01

    The annual advance and retreat of sea ice has been considered a major physical determinant of spatial and temporal changes in the structure of the Antarctic coastal marine ecosystem. However, the role of glacial meltwater on the hydrography of the Antarctic Peninsula ecosystem has been largely ignored, and the resulting biological effects have only been considered within a few kilometers from shore. Through several lines of evidence collected in conjunction with the Palmer Station Long-Term Ecological Research Project, we show that the freshening and warming of the coastal surface water over the summer months is influenced not solely by sea ice melt, as suggested by the literature, but largely by the influx of glacial meltwater. Moreover, the seasonal variability in the amount and extent of the glacial meltwater plume plays a critical role in the functioning of the biota by influencing the physical dynamics of the water (e.g., water column stratification, nearshore turbidity). From nearly a decade of observations (1991–1999), the presence of surface meltwater is correlated not only to phytoplankton blooms nearshore, but spatially over 100 km offshore. The amount of meltwater will also have important secondary effects on the ecosystem by influencing the timing of sea ice formation. Because air temperatures are statistically increasing along the Antarctic Peninsula region, the presence of glacial meltwater is likely to become more prevalent in these surface waters and continue to play an ever-increasing role in driving this fragile ecosystem. PMID:11830636

  5. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  6. Oceanic transport of surface meltwater from the southern Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-07-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  7. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  8. Impact of nanoparticles and colloids on glacial meltwater: A comparative study of rare earth elements in glacial meltwater rivers and terminal lakes in Iceland and New Zealand

    NASA Astrophysics Data System (ADS)

    Tepe, Nathalie; Bau, Michael

    2014-05-01

    Global warming accelerates the retreat of glaciers in both polar and temperate climatic regions and enhances the input of glacial meltwater and its load of particulates, colloids and nanoparticles into the ocean. In addition to the worldwide trend imposed by global warming, enhanced glacial melting in Iceland is occasionally caused by high geothermal heat flux and/or sub-glacial eruptions related to volcanic activity. This might even cause catastrophic melting events. We here report results of geochemical studies of meltwater rivers from southern Iceland sampled between 2010 and 2013 and of glacial terminal lakes and one meltwater river from the Southern Alps in New Zealand's South Island from 2013. In addition to the dissolved concentrations of Rare Earths and Yttrium (REY) in 200 nm-filtered waters, we also studied the respective filter residues (particles >200 nm). The REY are highly particle-reactive and show low solubilties, and therefore only a small fraction of the total REY concentration determined in 200 nm-filtered freshwaters is truly dissolved, whereas the majority is associated with colloids and nanoparticles. Nevertheless, in 200 nm-filtered water samples the REY are often below the lower limit of quantification even by sensitive analytical techniques such as ICPMS. The chemical composition of glacial meltwater rivers in Iceland is affected by volcanic eruptions due to the input of (colloid- and nano-) particles from volcanic ashes, whereas the chemical composition of glacial terminal lakes and meltwater rivers in New Zealand is affected by particles derived by erosion of rocks in the respective catchment. In marked contrast to Iceland, single events do play a minor role in New Zealand. In Iceland, all studied meltwater rivers display the same shale-normalized REY patterns with pronounced depletion of light and heavy REY relative to the middle REY (LaSN/GdSN: 0.41-0.45; GdSN/YbSN: 1.70-2.44). They show positive Eu anomalies, but no La, Ce or Y

  9. Mapping Changes in Yellowstone's Geothermal Areas and Radiative Flux

    NASA Astrophysics Data System (ADS)

    Savage, S. L.; Lawrence, R. L.; Custer, S. G.

    2007-12-01

    Yellowstone National Park contains the world's largest concentration of geothermal features, with an estimated more than 10,000 features. The National Park Service is legally mandated to protect and monitor these natural features, and a geothermal monitoring plan including remote sensing has been approved. Inexpensive, accurate, and efficient geothermal mapping and change detection techniques are being developed to aid in monitoring geothermal features. Geothermal features are constantly changing in size, shape, distribution, and radiative flux. We are examining the change in geothermal activity in Yellowstone National Park and surrounding areas from up to 30 years ago to the present. Possible drivers of change include seismic activity, climate, geothermal energy development outside the park, and proximity to the caldera boundary. We are mapping and documenting changes in geothermally active areas and geothermal radiative flux using Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and potentially Multispectral Scanner (MSS) satellite imagery. We are using change vector analysis to study change in recent years starting with 2007 as our base year, as well as historic change possibly as far back as 1979. These maps will allow us to evaluate hypothesized drivers of change in geothermally active areas by determining whether observed spatial patterns are consistent with patterns expected from these drivers.

  10. Multidecadal Fluvial Sediment Fluxes to Deltas under Environmental Change Scenarios

    NASA Astrophysics Data System (ADS)

    Dunn, Frances; Darby, Stephen; Nicholls, Robert

    2016-04-01

    Sediment delivery is vital to sustain delta environments on which over half a billion people live worldwide. Due to factors such as subsidence and sea level rise, deltas sink relative to sea level if sediment is not delivered to and retained on their surfaces. Deltas which sink relative to sea level experience flooding, land degradation and loss, which endangers anthropogenic activities and populations. The future of fluvial sediment fluxes, a key mechanism for sediment delivery to deltas, is uncertain due to complex environmental changes which are predicted to occur over the coming decades. This research investigates fluvial sediment fluxes under environmental changes in order to assess the sustainability of delta environments under potential future scenarios up to 2100. Global datasets of climate change, reservoir construction, and population and GDP as proxies for anthropogenic influence through land use changes are used to drive the catchment numerical model WBMsed, which is being used to investigate the effects of these environmental changes on fluvial sediment delivery. This process produces fluvial sediment fluxes under multiple future scenarios which will be used to assess the future sustainability of a selection of 8 vulnerable deltas, although the approach can be applied to deltas worldwide. By modelling potential future scenarios of fluvial sediment flux, this research contributes to the prognosis for delta environments. The future scenarios will inform management at multiple temporal scales, and indicate the potential consequences for deltas of various anthropogenic activities. This research will both forewarn managers of potentially unsustainable deltas and indicate those anthropogenic activities which encourage or hinder the creation of sustainable delta environments.

  11. How much did the North American ice sheet contribute to Meltwater Pulse 1a?

    NASA Astrophysics Data System (ADS)

    Gregoire, Lauren; Otto-Bliesner, Bette; Valdes, Paul

    2016-04-01

    Constraining the source of Meltwater Pulse 1a (MWP1a), a sea level rise of 12 to 22 m in less than 350 years, 14.6 ka (Deschamps et al., 2012) is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. The North American ice sheet could have been a major contributor to this event due to the abrupt Northern Hemisphere Bølling warming at 14.7 ka and the collapse of the ice saddle between the Cordilleran and Laurentide ice sheets which caused accelerated melt (Gregoire et al., 2012). Here, we combine modelling of the North American ice sheet with observational constraints of ice extent evolution and sea level change to evaluate how and how much the North American ice sheet could have contributed to MWP1a. We drive an ice sheet model offline with transient climate experiments of the last deglaciation (21-7 ka) performed with two General Circulation Models (CCSM3 and FAMOUS) and run perturbed physics ensembles of ice sheet model experiments to take into account both climate and ice sheet model uncertainties. By ruling out experiments which do not match the evolution of ice extent and volume through the deglaciation (21-7 ka), we determine the range of plausible sea level rise associated with MWP1a. The North American ice sheet produces a sea level rise of 3-6 m in 350 years in response to the Bølling warming and 7-10 m over the same duration due to the ice saddle collapse during the separation of the Cordilleran and Laurentide ice sheets. Although not seen in our experiments, it is possible that the Bølling abrupt warming triggered the saddle collapse, in which case the meltwater flux would have been substantially amplified.

  12. From Supraglacial to Englacial: Evolution of Meltwater Channels

    NASA Astrophysics Data System (ADS)

    Jarosch, A. H.

    2010-12-01

    Supraglacial channels as well as englacial conduits are integral parts of a glacier's hydrological system. Drainage of meltwater occurs through both, and their evolution is closely connected. Several mechanisms for englacial conduit formation have been proposed in recent literature and two involve supraglacial water streams. Englacial conduits may form either by incision of free surface streams flowing along the bottom of crevasses or by incision of supraglacial stream channels. Roof closure by ice deformation is integral to both conduit formation processes. Field evidence for supraglacial stream incision has been found in Svalbard and Nepal. In Iceland, where volcanic activity provides warm (T > 0 °C) meltwater, rapid enlargement of supraglacial channels has been observed. To investigate the evolution of supraglacial channels into englacial conduits, a numerical ice dynamic model is coupled to a hydraulic model including heat transfer. Ice deformation is simulated by a finite element model of a Stokes-Glen fluid, often referred to as a full Stokes model with a non-linear Glen rheology. As a first approach the hydraulics of open channel flow are approximated by the well known Manning formula and a simple heat transfer model from water to ice walls is assumed. The usefulness of more complex hydraulics and heat transfer models for better simulation of the coupled system is investigated and results for different starting geometries, water temperatures and water fluxes are presented.

  13. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  14. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  15. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  16. Pathways of Petermann Glacier's Meltwaters, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, C.; Wahlin, A.; Johnson, H. L.; Muenchow, A.

    2016-02-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann glacier, north Greenland, loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic water into the fjord and under the ice shelf. Although Greenland meltwaters are key to sea level rise projections and can potentially disrupt the whole ocean circulation, the fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise onboard I/B Oden in August 2015. Two layers are found: one at 200 m (i.e. terminus depth) mostly on the eastern side of the fjord where a calving event occurred this summer, and one around 500 m depth (i.e. the grounding line) on the western side. At the sill, approximately 3 mSv of freshwater leave the fjord around 150 m on the eastern side. On the western side, a more complex circulation occurs as waters intrude in. Outside of the fjord in Hall Basin, only one layer is found, around 300 m, but its oxygen content and T-S properties suggests it is a mixture between Petermann's meltwater, meltwater from the neighbouring glaciers, surface run-off and sea ice. As Atlantic water warms up, it is key to monitor Greenland melting glaciers to properly assess sea level rise.

  17. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland

    NASA Astrophysics Data System (ADS)

    Aciego, S. M.; Stevenson, E. I.; Arendt, C. A.

    2015-08-01

    Low concentrations of micronutrients in subarctic North Atlantic surface waters limit phytoplankton growth. Iron, phosphorous, and silicon are all potentially bio-limiting nutrients; iron is the most well documented in the subarctic North Atlantic. Manganese, nickel, copper and zinc are also essential trace metals for phytoplankton cell function. However, the spatial and temporal variability in the flux of these elements to the subarctic North Atlantic is undercharacterized. Here we show new data from the meltseason peak in 2013 indicating that glacial meltwater from the southern tip of Greenland has elevated dissolved major and trace metal concentrations compared to glacial meltwater draining shorter melt season glacial catchments to the north. Fe concentrations range from 0.13 to 6.97 μM, Zn from 4 to 95 μM, and Si from 4 to 36 μM, all higher than the depleted surface waters of the subarctic North Atlantic. Measured hydrochemical data modeled by PHREEQC indicates meltwater is undersaturated in pyrite and silicate phases but supersaturated with respect to oxyhydroxides, hematite and goethite, all phases that precipitate Fe as colloids, of which the nanoparticle phases should remain biologically available. The variability in geologic units between the sites indicates that subglacial lithology is a minor but not the dominant control on meltwater chemistry. The disparity in concentrations is directly correlated with climate, and an extended melt season, suggesting that future warming in Greenland will lead to increased trace element, and potential micronutrient, flux to the subarctic North Atlantic surface waters.

  18. Recharge of a subglacial lake by surface meltwater in northeast Greenland.

    PubMed

    Willis, Michael J; Herried, Bradley G; Bevis, Michael G; Bell, Robin E

    2015-02-12

    In a warming climate, surface meltwater production on large ice sheets is expected to increase. If this water is delivered to the ice sheet base it may have important consequences for ice dynamics. For example, basal water distributed in a diffuse network can decrease basal friction and accelerate ice flow, whereas channelized basal water can move quickly to the ice margin, where it can alter fjord circulation and submarine melt rates. Less certain is whether surface meltwater can be trapped and stored in subglacial lakes beneath large ice sheets. Here we show that a subglacial lake in Greenland drained quickly, as seen in the collapse of the ice surface, and then refilled from surface meltwater input. We use digital elevation models from stereo satellite imagery and airborne measurements to resolve elevation changes during the evolution of the surface and basal hydrologic systems at the Flade Isblink ice cap in northeast Greenland. During the autumn of 2011, a collapse basin about 70 metres deep and about 0.4 cubic kilometres in volume formed near the southern summit of the ice cap as a subglacial lake drained into a nearby fjord. Over the next two years, rapid uplift of the floor of the basin (which is approximately 8.4 square kilometres in area) occurred as surface meltwater flowed into crevasses around the basin margin and refilled the subglacial lake. Our observations show that surface meltwater can be trapped and stored at the bed of an ice sheet. Sensible and latent heat released by this trapped meltwater could soften nearby colder basal ice and alter downstream ice dynamics. Heat transport associated with meltwater trapped in subglacial lakes should be considered when predicting how ice sheet behaviour will change in a warming climate.

  19. Recharge of a subglacial lake by surface meltwater in northeast Greenland

    NASA Astrophysics Data System (ADS)

    Willis, Michael J.; Herried, Bradley G.; Bevis, Michael G.; Bell, Robin E.

    2015-02-01

    In a warming climate, surface meltwater production on large ice sheets is expected to increase. If this water is delivered to the ice sheet base it may have important consequences for ice dynamics. For example, basal water distributed in a diffuse network can decrease basal friction and accelerate ice flow, whereas channelized basal water can move quickly to the ice margin, where it can alter fjord circulation and submarine melt rates. Less certain is whether surface meltwater can be trapped and stored in subglacial lakes beneath large ice sheets. Here we show that a subglacial lake in Greenland drained quickly, as seen in the collapse of the ice surface, and then refilled from surface meltwater input. We use digital elevation models from stereo satellite imagery and airborne measurements to resolve elevation changes during the evolution of the surface and basal hydrologic systems at the Flade Isblink ice cap in northeast Greenland. During the autumn of 2011, a collapse basin about 70 metres deep and about 0.4 cubic kilometres in volume formed near the southern summit of the ice cap as a subglacial lake drained into a nearby fjord. Over the next two years, rapid uplift of the floor of the basin (which is approximately 8.4 square kilometres in area) occurred as surface meltwater flowed into crevasses around the basin margin and refilled the subglacial lake. Our observations show that surface meltwater can be trapped and stored at the bed of an ice sheet. Sensible and latent heat released by this trapped meltwater could soften nearby colder basal ice and alter downstream ice dynamics. Heat transport associated with meltwater trapped in subglacial lakes should be considered when predicting how ice sheet behaviour will change in a warming climate.

  20. Sign change of the flux flow Hall effect in HTSC

    SciTech Connect

    Feigel`man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M.

    1996-11-01

    A novel mechanism for the sign change of the Hall effect in the flux flow region is proposed. The difference {delta}{ital n} between the electron density at the center of the vortex core and that far outside the vortex causes the additional contribution to the Hall conductivity {delta}{sigma}{sub xy} = -{delta}{ital nec}/{ital B}. This contribution can be larger than the conventional one in the dirty case {Delta}{ital T}{tau} {lt} 1. If the electron density inside the core exceeds the electron density far outside, a double sign change may occur as a function of temperature.

  1. Sign change of the flux flow hall effect in HTSC

    SciTech Connect

    Feigel`man, M.V.; Geshkenbein, V.B.; Larkin, A.I. ||; Vinokur, V.M.

    1994-05-01

    A novel mechanism for the sign change of the Hall effect in flux flow region is proposed. The difference {delta}n between the electron density at the center of the vortex core and that far outside the vortex causes the additional contribution to the Hall conductivity {delta}{sigma}{sub xy} = {delta}nec/B. This contribution can be bigger than the conventional one inn the dirty case {Delta}(T){tau} < 1. If the electron density inside the core exceeds the electron density outside the core the double sign change may occur as a function of temperature and magnetic field.

  2. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  3. Isotope variations in a Sierra Nevada snowpack and their relation to meltwater

    USGS Publications Warehouse

    Unnikrishna, P.V.; McDonnell, Jeffery J.; Kendall, C.

    2002-01-01

    Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater ??18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with ??18O values between -21.35 and -4.25???. Corresponding snowpack ??18O ranged from -22.25 to -6.25???. The coefficient of variation of ??18O in snowpack levels decreased from -0.37 to -0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater ??18O ranged from -15.30 to -8.05???, with variations of up to 2.95??? observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher ??18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher ??18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that ??18O in the initial and final half of major snowmelt was 1.30??? lower and 1.45??? higher, respectively, than the value from simple mixing. Mean snowpack ??18O on individual profiling days showed a steady increase from -15.15 to -12.05??? due to removal of lower ??18O snowmelt and addition of higher ??18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower ??18O and later higher ??18O melt may be modeled and used in catchment tracing studies. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley

    USGS Publications Warehouse

    Thieler, E. Robert; Butman, Bradford; Schwab, William C.; Allison, Mead A.; Driscoll, Neal W.; Donnelly, John P.; Uchupi, Elazar

    2007-01-01

    The Hudson Shelf Valley (HSV) is the largest physiographic feature on the U.S. mid-Atlantic continental shelf. The 150-km long valley is the submerged extension of the ancestral Hudson River Valley that connects to the Hudson Canyon. Unlike other incised valleys on the mid-Atlantic shelf, it has not been infilled with sediment during the Holocene. Analyses of multibeam bathymetry, acoustic backscatter intensity, and high-resolution seismic reflection profiles reveal morphologic and stratigraphic evidence for a catastrophic meltwater flood event that formed the modern HSV. The valley and its distal deposits record a discrete flood event that carved 15-m high banks, formed a 120-km2 field of 3- to 6-m high bedforms, and deposited a subaqueous delta on the outer shelf. The HSV is inferred to have been carved initially by precipitation and meltwater runoff during the advance of the Laurentide Ice Sheet, and later by the drainage of early proglacial lakes through stable spillways. A flood resulting from the failure of the terminal moraine dam at the Narrows between Staten Island and Long Island, New York, allowed glacial lakes in the Hudson and Ontario basins to drain across the continental shelf. Water level changes in the Hudson River basin associated with the catastrophic drainage of glacial lakes Iroquois, Vermont, and Albany around 11,450 14C year BP (∼ 13,350 cal BP) may have precipitated dam failure at the Narrows. This 3200 km3 discharge of freshwater entered the North Atlantic proximal to the Gulf Stream and may have affected thermohaline circulation at the onset of the Intra-Allerød Cold Period. Based on bedform characteristics and fluvial morphology in the HSV, the maximum freshwater flux during the flood event is estimated to be ∼ 0.46 Sv for a duration of ∼ 80 days.

  5. Detecting regional patterns of changing CO2 flux in Alaska

    PubMed Central

    Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-01-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511

  6. Detecting regional patterns of changing CO2 flux in Alaska

    DOE PAGES

    Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; ...

    2016-06-27

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrainmore » annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. In conclusion, although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.« less

  7. Detecting regional patterns of changing CO2 flux in Alaska

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-07-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

  8. Subtropical versus subpolar freshwater routing: The pathways of icebergs and meltwater in the North Atlantic during deglaciation

    NASA Astrophysics Data System (ADS)

    Condron, A.; Hill, J. C.

    2015-12-01

    Marine sediment records reveal episodes of increased ice rafted debris (IRD) to the subpolar N. Atlantic (40N-50N) during deglaciation that are linked to the calving of enormous numbers of icebergs from the Northern Hemisphere ice sheets. There is considerable interest, and uncertainty, as to whether meltwater from these icebergs freshened the ocean sufficiently to weaken the Atlantic Meridional Overturning Circulation (AMOC). Very recently, hundreds of iceberg scours have been observed along the east coast of the United States as far south as Florida. The iceberg scours are oriented SSW along the coast and are observed in water depths up to several hundred meters deep, indicating that massive (up to 300m thick) icebergs once drifted along the east coast of N. America into the subtropics during deglaciation. A newly developed iceberg model (MITberg) is coupled to an eddy-permitting ocean model to show that icebergs are carried south to Florida by coastally-confined meltwater currents caused by the sudden release of large volumes of meltwater from Hudson Bay and/or Gulf of St. Lawrence. When meltwater fluxes exceed 2.5Sv simulated icebergs drift as far south as Miami, Florida, and thousands are carried into the center of the subtropical gyre by narrow meltwater filaments and instabilities along the boundary current. When the meltwater flood ends, icebergs can no longer drift into the subtropics, and quickly become confined to the subpolar gyre where the majority of IRD is found. Our results indicate that icebergs and meltwater from the north did not always directly freshening the subpolar gyre, but were periodically transported south of the main subpolar deep water formation regions that regulate AMOC strength and climate. Dating the observed iceberg scours will tell us exactly how active and persistent this coastally-confined meltwater pathway was during deglaciation and help us unravel why there is not always a clear relationship between increased high latitude

  9. The role of meltwater in glacial processes

    NASA Astrophysics Data System (ADS)

    Eyles, Nick

    2006-08-01

    Water plays a dominant role in many glacial processes and the erosional, depositional and climatic significance of meltwaters and associated fluvioglacial processes cannot be overemphasized. At its maximum extent c. 20,000 years ago, the volume of the Laurentide ice sheet was 33 × 10 6 km 3 (about the same as the volume of all ice present today on planet Earth). The bulk of this was released as water in little more than 10,000 years. Pulses of meltwater flowing to the Atlantic Ocean from large ice dammed lakes altered thermohaline circulation of the world's oceans and global climate. One such discharge event via Hudson Bay at 8200 years BP released 160,000 km 3 of water in 12 months. Global sea levels recovered from glacial maximum low stands reached at about 20,000 years ago at an average rate of 15 m per thousand years but estimates of shorter term rates suggest as much as 20 m sea level rise in 1000 years and for short periods, rates as high as 4 m per hundred years. Meltwaters played a key role in lubricating ice sheet motion (and thus areal abrasion) across the inner portions of the ice sheet where it slid over rigid crystalline bedrock of the Canadian Shield. The recharge of meltwater into the ice sheets bed was instrumental in generating poorly sorted diamict sediments (till) by sliding-induced shearing and deformation of overpressured sediment and soft rock. The transformation of overpressured till into hyperconcentrated slurries in subglacial channels may have generated a highly effective erosional tool for selective overdeepening and sculpting of bedrock substrates. Some workers credit catastrophic subglacial 'megafloods' with the formation of drumlins and flutes on till surfaces. Subglacial melt river systems were instrumental in reworking large volumes of glaciclastic sediment to marine basins; it has been estimated that less than 6% of the total volume of glaciclastic sediment produced during the Pleistocene remains on land. Fluvioglacial and

  10. Vegetation change in dryland environments: understanding changes in fluvial fluxes via changes in hydrological connectivity

    NASA Astrophysics Data System (ADS)

    Puttock, A.; Brazier, R. E.; Dungait, J. A. J.; Bol, R.; Macleod, C. J. A.

    2012-04-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterised by the invasion of woody vegetation into grasslands. The transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage. Functional change is characterised by an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. Connectivity is a key concept in understanding the hydrological response to this vegetation change, with reduced vegetation coverage in woody environments being associated with longer and more connected overland flow pathways. This increase in hydrological connectivity results in an accentuated rainfall-runoff response and increased fluvial fluxes of eroded sediment and associated soil organic carbon and other nutrients. This project uses an ecohydrological approach, characterising ecological structure and monitoring natural rainfall-runoff events over bounded plots with different vegetation covering the transitions from C4 pure-grass (Bouteloua eriopoda) to C3 creosote (Larrea tridentate) shrubland and C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand woodland. Data collected quantifies

  11. Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A

    NASA Astrophysics Data System (ADS)

    Liu, Jean; Milne, Glenn A.; Kopp, Robert E.; Clark, Peter U.; Shennan, Ian

    2016-02-01

    During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these--Meltwater Pulse 1A--occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event. In particular, geophysical modelling studies constrained by tropical sea-level records suggest an Antarctic contribution of more than seven metres, whereas most reconstructions from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados, the Sunda Shelf and Tahiti. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A.

  12. Greenland meltwater storage in firn limited by near-surface ice formation

    NASA Astrophysics Data System (ADS)

    Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.

    2016-04-01

    Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

  13. Lateral mixing across ice meltwater fronts of the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Lu, K.; Weingartner, T.; Danielson, S.; Winsor, P.; Dobbins, E.; Martini, K.; Statscewich, H.

    2015-08-01

    Summer and fall hydrographic sections in the northeastern Chukchi Sea frequently capture 5-20 m thick intrapycnocline lenses or horizontal plumes of warm, moderately salty summer Bering Sea Water flowing northward from Bering Strait. These features occur within the shallow (~20 m depth) pycnocline separating cold, dilute, surface meltwater from near-freezing, salty, winter-formed waters beneath the pycnocline. An idealized numerical model suggests that the features arise from eddies and meanders generated by instability of the surface front separating meltwater from Bering Sea Water. Warm Bering Sea Water is transported across the front and into the pycnocline by the cross-frontal velocities associated with the instabilities. The accompanying lateral eddy heat fluxes may be important both in summer for promoting ice melt and in fall by delaying the onset of ice formation over portions of this shelf. Lateral heat flux magnitudes depend upon the stratification of the Bering Sea Water.

  14. Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Breuer, L.; Frede, H.-G.

    Current model studies on the impact of land use change on water resources often simulate changes in land use without considering changes in the soil properties due to the change in land use. In this study, an artificial study catchment representing the Dill catchment (Germany) was used within the eco-hydrological model SWAT-G to study the sensitivity of SWAT-G simulations towards changes in soil properties during land use change. Since there is little information on these soil-vegetation interactions, we performed a model sensitivity study to investigate the impact of changes in the depth of the top soil layer, bulk density, saturated hydraulic conductivity and available water content on several simulated hydrological fluxes. To assess the significance of the simulated changes due to the changing soil properties, we compared the model sensitivity with the uncertainty in the hydrological fluxes due to the uncertainty in the parameterization of the plant parameters. The results showed that the changes in soil properties due to a land use transition from cropland to pasture only have a minor impact on the simulated mean annual, summer and winter runoff and actual evapotranspiration. Soil-vegetation interactions have a stronger impact on the simulated mean surface runoff, although the absolute contribution of this flux is small in our conceptualization of the Dill catchment. A comparison of the sensitivity and uncertainty of the simulated hydrological fluxes led to the conclusion that changes in soil properties due to land use change are relatively unimportant in our model of the Dill catchment in the light of the low sensitivity of the dominating hydrological fluxes and the large output uncertainty due to the plant parameter uncertainty.

  15. Climate change alters growing season flux dynamics in mesic grasslands

    NASA Astrophysics Data System (ADS)

    Petrie, Matt D.; Brunsell, Nathaniel A.; Nippert, Jesse B.

    2012-02-01

    Changing climate could affect the functioning of grassland ecosystems through variation in climate forcings and by altering the interactions of forcings with ecological processes. Both the short and long-term effects of changing forcings and ecosystem interactions are a critical part of future impacts to ecosystem ecology and hydrology. To explore these interactions and identify possible characteristics of climate change impacts to mesic grasslands, we employ a low-dimensional modeling framework to assess the IPCC A1B scenario projections for the Central Plains of the United States; forcings include increased precipitation variability, increased potential evaporation, and earlier growing season onset. These forcings are also evaluated by simulations of vegetation photosynthetic capacity to explore the seasonal characteristics of the vegetation carbon assimilation response for species at the Konza Prairie in North Central Kansas, USA. The climate change simulations show decreases in mean annual soil moisture and and carbon assimilation and increased variation in water and carbon fluxes during the growing season. Simulations of the vegetation response show increased variation at the species-level instead of at a larger class scale, with important heterogeneity in how individual species respond to climate forcings. Understanding the drivers and relationships behind these ecosystem responses is important for understanding the likely scale of climate change impacts and for exploring the mechanisms shaping growing season dynamics in grassland ecosystems.

  16. Flux change in basophil membrane is not the main pathogenesis for hypersensitivity

    PubMed Central

    Wiwanitkit, Viroj

    2007-01-01

    The oxidation process is one of the most important natural processes. Oxidative change in hypersensitivity is believed to be an important process in the pathogenesis. However, the clear explanation on the transmembrane flux change of basophil and its correlation to hypersensitivity pathogenesis has never been reported. Here, the author determines the transmembrane oxidation flux in basophil. The simulation test to determine the oxidation flux change based on nanomedicine technique is used. Of interest, no change of flux can be detected. Therefore, this work can support the finding that the oxidation flux change is not an important part in the pathogenesis of basophil-related hypersensitivity. PMID:18203432

  17. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-03

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  18. Greenland ice sheet motion insensitive to exceptional meltwater forcing

    PubMed Central

    Tedstone, Andrew J.; Nienow, Peter W.; Sole, Andrew J.; Mair, Douglas W. F.; Cowton, Thomas R.; Bartholomew, Ian D.; King, Matt A.

    2013-01-01

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt–induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt–induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ∼3.9σ above the 1958–2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt–induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios. PMID:24248343

  19. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    NASA Astrophysics Data System (ADS)

    Versteegh, E. A. A.; Blicher, M. E.; Mortensen, J.; Rysgaard, S.; Als, T. D.; Wanamaker, A. D., Jr.

    2012-09-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and kitchen middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~19), because the mussels appear to cease growing. This implies that M. edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south-north gradient, and by sampling shells from raised shorelines and kitchen middens from prehistoric settlements in Greenland.

  20. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    NASA Astrophysics Data System (ADS)

    Versteegh, E. A. A.; Blicher, M. E.; Mortensen, J.; Rysgaard, S.; Als, T. D.; Wanamaker, A. D., Jr.

    2012-12-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~ 19), because the mussels appear to cease growing. This implies that Mytilus edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid-region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south-north gradient, and by sampling shells from raised shorelines and archaeological shell middens from prehistoric settlements in Greenland.

  1. Continuous, Pulsed Export of Methane-Supersaturated Meltwaters from the Bed of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lamarche-Gagnon, G.; Wadham, J.; Beaton, A.; Fietzek, P.; Stanley, K. M.; Tedstone, A.; Sherwood Lollar, B.; Lacrampe Couloume, G.; Telling, J.; Liz, B.; Hawkings, J.; Kohler, T. J.; Zarsky, J. D.; Stibal, M.; Mowlem, M. C.

    2016-12-01

    Both past and present ice sheets have been proposed to cap large quantities of methane (CH4), on orders of magnitude significant enough to impact global greenhouse gas concentrations during periods of rapid ice retreat. However, to date most evidence for sub-ice sheet methane has been indirect, derived from calculations of the methanogenic potential of basal-ice microbial communities and biogeochemical models; field-based empirical measurements are lacking from large ice sheet catchments. Here, we present the first continuous, in situ record of dissolved methane export from a large catchment of the Greenland Ice Sheet (GrIS) in South West Greenland from May-July 2015. Our results indicate that glacial runoff was continuously supersaturated with methane over the observation period (dissolved CH4 concentrations of 30-700 nM), with total methane flux rising as subglacial discharge increased. Periodic subglacial drainage events, characterised by rapid changes (i.e. pulses) in meltwater hydrochemistry, also coincided with a rise in methane concentrations. We argue that these are likely indicative of the flushing of subglacial reservoirs of CH4 beneath the ice sheet. Total methane export was relatively modest when compared to global methane budgets, but too high to be explained by previously determined methanogenic rates from Greenland basal ice. Discrepancies between estimated Greenland methane reserves and observed fluxes stress the need to further investigate GrIS methane fluxes and sources, and suggest a more biogeochemically active subglacial environment than previously considered. Results indicate that future warming, and a coincident increase in ice melt rates, would likely make the GrIS, and by extension the Antarctic Ice Sheet, more significant sources of atmospheric methane, consequently acting as a positive feedback to a warming climate.

  2. Hydrothermal iron flux variability following rapid sea level changes

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  3. Change in CO2 Flux in Coral Reefs by Bleaching

    NASA Astrophysics Data System (ADS)

    Kayanne, H.; Kayanne, H.; Watanabe, A.; Hata, H.; Kudo, S.; Nozaki, K.; Kato, K.; Negishi, A.; Saito, H.

    2001-05-01

    Coral reefs are related with carbon cycles through photosynthesis, respiration and calcification. Photosynthesis acts as sink of CO2, though respiration and calcification act as source of CO2. The role of coral reef ecosystem to atmospheric CO2 changes with balance among these community-level metabolisms. The world-wide coral reef bleaching in 1997-1998 provided us with a chance to evaluate the role of the metabolic processes of coral reefs to carbon cycles. In Ishigaki Island, Ryukyu Islands, southwest Japan and Palau Islands, west of Caroline Islands, we measured CO2 in reef water and community metabolisms by change in seawater alkalinity and total inorganic carbon. The observtion were conducted during and after bleaching in Ishigaki Island, and before and after bleaching in Palau Islands. Higher rates of community gross primary production (Pg) and respiration (R), and lower rate of net community production (Pn) were observed for the community with extensive bleaching. Calcification rate (G) was almost the same. The resultant increase in magnitude of diurnal change in CO2 were observed, and the community acted as net source of CO2. Lower rates of Pg, R, Pn, G and resultant smaller variation in diurnal CO2 change were observed for the community of dead corals and filamentous brown algae. This also resulted in shift of the community CO2 flux to net source of CO2. Bleaching shifted the function of coral reef ecosystem from sink or small source to large source of CO2. More severe and extensive bleaching is predicted to be occurred during the global warming, which acted as positive feedback to CO2 increase, and thus, global warming.

  4. Meltwater export of prokaryotic cells from the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Hawkings, Jon R; Mikkelsen, Andreas B; Telling, Jon; Kohler, Tyler J; Gözdereliler, Erkin; Zarsky, Jakub D; Wadham, Jemma L; Jacobsen, Carsten S

    2017-02-01

    Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 10(4) cells mL(-1) and we estimate that ∼1.02 × 10(21) cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world.

  5. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Ruifeng; John, Seth G.; Zhang, Jing; Ren, Jingling; Wu, Ying; Zhu, Zhuoyi; Liu, Sumei; Zhu, Xunchi; Marsay, Chris M.; Wenger, Fred

    2015-08-01

    Glacial meltwater has been suggested as a significant source of potentially bioavailable iron to the oceans. However, the supply of dissolved iron (dFe) in glacial meltwaters is poorly constrained as few sites have been studied, and because the chemical processing of Fe during transport from glaciers to the adjacent coastal ocean is not well understood. In order to better constrain glacial fluxes of dFe to the ocean, iron concentrations, iron stable isotopes (δ56Fe), and other supporting chemical and physical measurements were made along a ∼4 km long glacial meltwater river on Svalbard and in estuarine waters that it flows into. Dissolved iron concentrations in the Bayelva River decreased from a maximum of 734 nM near the glacier to an average value of 116 nM near the mouth of the river. Measurements in the Kongsfjorden estuary suggest that 3 to 10 nM of dFe from the Bayelva River is stabilized in glacial waters by the time it mixes into the ocean. Incubation of Bayelva River waters over two weeks in both the light and dark show similar results, with the majority of dFe being quickly precipitated and 4 to 7 nM Fe stabilized in the dissolved phase. Evidence suggests that Fe is most likely lost from the dissolved phase by aggregation and adsorption of nanoparticulate and colloidal Fe to particles. Dissolved δ56Fe was between - 0.11 ‰ and + 0.09 ‰ for all river samples and did not vary systematically with dFe concentrations. We infer that the Fe is lost from the dissolved phase by a process that fractionates Fe isotopes by less than 0.05‰, indicating that the Fe bonding environment does not change during precipitation. This is consistent with DOC loss that is much faster than predicted photo-oxidation rates, suggesting that DOC is also lost through adsorption and precipitation. Dissolved Fe concentrations in the Bayelva River (15-734 nM), and Fe concentrations which are stabilized in the dissolved phase (4-7 nM) are much lower than some previous estimates of

  6. Identifying glacial meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, Louise; Heywood, Karen; Jenkins, Adrian; Kaiser, Jan

    2016-04-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  7. Identifying Glacial Meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, L. C.; Heywood, K. J.; Jenkins, A.; Kaiser, J.

    2016-02-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (Price et al., 1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  8. Miniaturised 'lab-on-a-chip' nitrate analyser applied to high resolution in situ analysis of glacial meltwater

    NASA Astrophysics Data System (ADS)

    Beaton, A.; Mowlem, M.; Wadham, J. L.

    2013-12-01

    In situ chemical measurements of glacial meltwater can provide high temporal and spatial resolution data that allow us to infer biogeochemical processes and calculate export from glacial systems. Despite this, in situ measurements of single chemical parameters in glacial meltwater have so far largely been restricted to pH and dissolved oxygen. The lack of high performance ruggedized in situ sensors for other analytes means that the laboratory-based analysis of manually collected samples is still routine. Microfluidics (through lab-on-a-chip technology) permits the miniaturisation of established chemical analysis techniques so that they can be performed in situ. The advantages of decreased size and low power and reagent consumption make these systems suitable for deployment in extreme and inaccessible environments where regular manual sample collection is logistically difficult. We present data from a novel stand-alone microfluidic wet chemical nitrate analyser that has been deployed to monitor a proglacial meltwater river draining from the Greenland ice sheet. By performing a measurement every 20 minutes, the analyser was able to reveal diurnal fluctuations and short term trends in nitrate concentrations that would not discernible using standard daily sampling. High resolution in situ measurements such as these can allow a more accurate determination of nutrient export fluxes from glacial systems into the polar oceans, and allow enhanced interpretation of water quality datasets. Steps have been taken to ruggedize the system so that it can survive the freeze-thaw conditions, dilute concentrations and high sediment loads that can be associated with cryospheric environments. The system is small, has low power consumption and detects nitrate and nitrite with a limit of detection (LOD) of 0.025 μM, which is sufficient for low nutrient glacial environments. On-going work looks to deploy similar nutrient analysers more widely, not only in glacial systems, but also in

  9. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Simkins, Lauren M.; Anderson, John B.; Greenwood, Sarah L.; Gonnermann, Helge M.; Prothro, Lindsay O.; Halberstadt, Anna Ruth W.; Stearns, Leigh A.; Pollard, David; Deconto, Robert M.

    2017-09-01

    Subglacial hydrology is critical to understand the behaviour of ice sheets, yet active meltwater drainage beneath contemporary ice sheets is rarely accessible to direct observation. Using geophysical and sedimentological data from the deglaciated western Ross Sea, we identify a palaeo-subglacial hydrological system active beneath an area formerly covered by the East Antarctic ice sheet. A long channel network repeatedly delivered meltwater to an ice stream grounding line and was a persistent pathway for episodic meltwater drainage events. Embayments within grounding-line landforms coincide with the location of subglacial channels, marking reduced sedimentation and restricted landform growth. Consequently, channelized drainage at the grounding line influenced the degree to which these landforms could provide stability feedbacks to the ice stream. The channel network was connected to upstream subglacial lakes in an area of geologically recent rifting and volcanism, where elevated heat flux would have produced sufficient basal melting to fill the lakes over decades to several centuries; this timescale is consistent with our estimates of the frequency of drainage events at the retreating grounding line. Based on these data, we hypothesize that ice stream dynamics in this region were sensitive to the underlying hydrological system.

  10. Sensitivity of the Southern Ocean circulation to enhanced regional Antarctic meltwater input

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; Fogwill, Christopher; Turney, Christopher

    2015-04-01

    Recent observational and modelling evidence suggests that Antarctica may be a larger source of meltwater than previously supposed. In this presentation, we use a fully coupled climate system model to assess the sensitivity of the Southern Ocean circulation to meltwater input. We present the results of a series of idealised simulations which explore the effects of increased meltwater flux from specific sectors of the West Antarctic Ice Sheet. In particular, we assess the response to physically-plausible scenarios which involve spatially and temporally variable meltwater inputs into the Ross, Weddell and Amundsen embayments. Our simulations reveal that increased freshwater input results in a rapid increase in the stratification of the upper ocean. This causes a reduction in the mixing of the cold surface waters with the underlying warmer waters, including a reduction of up to 50% in the rate of Antarctic Bottom Water formation. The reduced mixing leads to cooling at the surface, but a rapid and pervasive warming at depth. This warming is strongest at depths of between 200 and 700m, and is focused along sectors of the Antarctic ice sheets that are known to be sensitive to ocean forcing. In the Ross and Amundsen sectors, the water temperature increases by up to 1.6°C at the depth of the grounding lines. This provides an additional feedback mechanism that may further enhance the basal melting and thermally-driven grounding line retreat of the Antarctic ice sheets during the 21st century. The rapid nature of the feedback also strengthens recent hypotheses that attribute rapid sea level rise scenarios to Antarctic sources.

  11. Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords

    NASA Astrophysics Data System (ADS)

    Mugford, R. I.; Dowdeswell, J. A.

    2011-03-01

    A model, SedPlume, has been developed to simulate marine sediment deposited by glacial meltwater plumes emerging from tidewater glaciers. Turbid meltwater emerging from beneath a glacier into a fjord rises as a buoyant forced plume due to density contrasts with the ambient fjord water. SedPlume assumes that meltwater discharge flows at a constant rate for long enough periods that the plume reaches a steady state. Entrainment of ambient fluid into the turbulent plume is assumed to occur at a rate proportional to the local velocity of the plume. Plume motion is considered in two dimensions: one horizontal dimension (perpendicular to the glacier front) and the vertical dimension. An integral model is formulated for the conservation equations of volume, momentum, buoyancy, and sediment flux along the path of a turbulent plume injected into stably stratified ambient fluid. Sedimentation occurs from the plume when the radial component of the sediment fall velocity exceeds the entrainment velocity. When the plume reaches the surface, it is treated as a radially spreading surface gravity current, for which exact solutions exist for the sediment deposition rate. Flocculation of silt and clay particles is modeled using empirical measurements of particle settling velocities in fjords to adjust the settling velocity of fine-grained sediments. SedPlume has been applied to McBride Inlet, Alaska, a temperate glaciated fjord where the majority of sedimentation originates from meltwater sources. SedPlume produces rates and patterns of sedimentation in good agreement with observations, with calculated peak ice-proximal annual sedimentation rates of approximately 22 m yr-1.

  12. Modelling meltwater delivery to the ice-bed interface through full thickness fractures on outlet glaciers of the western Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Clason, C.; Mair, D.; Nienow, P. W.

    2010-12-01

    Dynamic response to increased supraglacial meltwater generation and subsequent influx to the subglacial hydrological system is well documented in temperate glaciers. Meltwater-enhanced acceleration of ice surface velocities, or ‘spring events’, have also more recently been observed on polythermal glaciers and outlet glaciers of the Greenland Ice Sheet (GrIS). These high velocity events may be a response to increased basal lubrication and basal water pressures when meltwater reaches the subglacial system directly through moulins. Supraglacial meltwater can provide hydrostatic stresses adequate to offset closure due to the lithostatic stress of the ice when streams intersect and enter surface crevasses. A crevasse will continue to propagate through the full ice thickness provided the meltwater head within the crevasse remains sufficient, thereby allowing this flux of meltwater to be delivered to the ice-bed interface. A spatially distributed model for prediction of full ice thickness water-driven fracture and quantification of meltwater delivered to the bed has been produced. The model consists of three major components: the first sub-routine calculates surface tensile stresses from measured ice surface velocities and identifies areas likely to contain crevassing following the Von Mises failure criteria; the second is a degree day melt model and flow routing model run using measured meteorological inputs; the third sub-routine calculates crevasse penetration depths using an established linear elastic fracture mechanics model for propagation of water-filled fractures. The daily outputs of melt modelling weight routing of meltwater across the ice surface, and in turn determine the discharge into crevasses. This allows the supraglacial meltwater head, and thus fracture propagation speed, to vary daily within crevasse depth modelling. The temporal resolution of the model also allows the evolution of moulin formation through the ablation season to be captured. We

  13. Seasonal and Yearly Carbon and Water Flux Changes Over Lake Mendota

    NASA Astrophysics Data System (ADS)

    Flannery, A. L.; Reed, D. E.; Desai, A. R.; Thom, J. E.

    2016-12-01

    Lakes have been known to serve as hotspots in local and regional carbon and water cycles and have unique projected responses from climate change relative to terrestrial ecosystems. However, few long-term continuous direct observations of these fluxes have been done to examine the movement of carbon and water from small, mid-latitude lakes. This study uses 4.5 years of eddy covariance flux tower data to examine integrated seasonal and yearly water vapor and carbon fluxes as well as potential drivers of these fluxes (air temperature, wind speed and water temperature). Additionally, we examined the effectiveness of placing an eddy covariance flux tower at the edge of the lakeshore with a mixed footprint of lake and land. After using a footprint model, only an average of 18% of the flux data were determined to be primarily influenced by the lake. Summer, as defined using water temperature, exhibited the largest average water vapor fluxes and was the primary driver of yearly water flux sums. Yearly carbon flux totals indicate that the lake can act as a net annual source or a sink for carbon depending the length and timing of seasons, particularly spring and fall turnover. Observing long-term lake flux data can provide a baseline of information and aid our understanding of lakes processes in local and regional biogeochemical cycles as lakes face increasing temperatures from climate change.

  14. Salt Marsh Restoration: Changes in Plant Biomass and Gas Flux

    NASA Astrophysics Data System (ADS)

    Fok, C. C.; Tang, J.; Kroeger, K. D.; Wang, F.; McKlveen, M.

    2016-12-01

    Temperate salt marshes are among the most important and productive coastal wetland ecosystems globally. Their value is determined by the high primary productivity in salinized environments combined with the excessive sequestration rate of carbon into sediment and biomass. One of the most significant anthropogenic threats to coastal wetlands is the construction of dikes, bridges, and dams. Organic material that was once reduced in decay due to being under anaerobic conditions is now converted to aerobic respiration, releasing carbon dioxide and methane gas. On Cape Cod, salt marsh restoration has been conducted within the last decade. We measure the CO2 and CH4 fluxes in restored, degraded, and natural salt marshes and assessed the above-ground, below-ground biomass. We hypothesize that plant biomass yield in restored sites is greater than biomass in the corresponding natural sites; higher methane flux is present in restored sites compared to natural sites. To measure the GHG emissions, a Picarro C02 - CH4 analyzer connected gas chamber recorded salt marsh gas flux. Biomass was measured with the exact same processes as stated above; following gas measurements, the biomass above-ground was collected in marked containers. After harvest of biomass, additional measurements of below-ground respiration was assessed by the same static chamber method. Calculations were made using MATLAB software. Results supported the hypotheses; of the five sites we examined, three displayed higher biomass in restored sites. Additionally, methane gas flux in restored sites is indeed significantly greater significantly greater than the natural sites but lower than the degraded marsh. In conclusion, Restored sites have higher plant biomass, which coincide with higher Net Ecosystem Production. Excess CH4 emissions in restored sites are due to a reduction in soil salinity compared to natural sites. The fact of how valuable C sequestration capacity of vegetated coastal wetlands are, it is

  15. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  16. Extending the Record of Greenland Ice Sheet Subsurface Meltwater: Exploring New Applications of Satellite Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Carter, Margeaux Louise

    The discovery of pervasive year-round englacial meltwater in southeastern Greenland by Forster et. al. [2014] has significantly changed the understanding of meltwater retention, energy balance models and Greenland hydrology. This perennial firn aquifer contained an estimated 140 +/- 20 GT of water prior to the beginning of the 2011 melt season, an amount two to three times the average annual discharge of the Greenland Ice Sheet between 1993 and 2010 Vaughn et. al. [2012]. Prior to this, retained meltwater was not considered a significant portion of the water budget in Greenland. The current most extensive observational dataset, either spatially or temporally, is from the NASA Operation Ice Bridge (OIB) Program. Due to environmental and time constraints, data is limited to a few months each year beginning in 2009. This leaves a significant need to explore new methods of monitoring retained meltwater both throughout the year and over time in order to improve the understanding of meltwater retention drivers and hydrologic consequences. Low Frequency Microwave (LFM) satellite remote sensing observations appear to be capable of revealing information regarding subsurface features in ice sheets. Polarization Difference (PD) at 6.9 and 10.7 GHz, in particular, provided useful classification of known subsurface water features, including both firn aquifers and buried supraglacial lakes, during winter 2009-2011. From 2002-2011, PD is associated with previously published meteorological drivers of these subsurface water features and the ice sheet percolation zone, where these features tend to form. Observational datasets with greater temporal and areal scope will contribute significantly to the scientific community's understanding of meltwater retention, its impact on Greenland hydrology, and possible consequences to the Arctic Climate System in an already changing climate.

  17. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Golledge, N. R.; Menviel, L.; Carter, L.; England, M. H.; Cortese, G.; Levy, R. H.

    2014-12-01

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise - `meltwater pulses' - took place. Although the timing and magnitude of these events have become better-constrained, a causal link between ocean stratification, the meltwater pulses, and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  18. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Golledge, N. R.; Menviel, L.; Carter, L.; Fogwill, C. J.; England, M. H.; Cortese, G.; Levy, R. H.

    2014-09-01

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise—meltwater pulses—took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  19. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    PubMed

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  20. Surface expression of subglacial meltwater movement, Bering Glacier, Alaska

    SciTech Connect

    Cadwell, D.H. ); Fleisher, P.J. . Dept. of Earth Sciences); Bailey, P.K. )

    1993-03-01

    Longitudinal topographic profiles (1988--1992) across the thermokarst terminus of the Grindle Hills Ice-tongue and interlobate moraine of the Bering Piedmont Glacier document annual changes in crevasse patterns and fluctuations in surface elevation related to subglacial water movement. A semi-continuous record of aerial photos (1978--1990), plus field observations (1988--1992), reveal the progressive enlargement of two lateral collapse basin on both sides of the thermokarst, connected by a transverse collapse trough. Seasonally generated meltwater at depth rises within the glacier, fills the basins and other depressions and lifts the thermokarst terminus of the ice-tongue a few meters by buoyancy and hydrostatic pressure. The resulting surface tension creates a chaotic crevasse pattern unrelated to normal glacier movement. The crevasses open (2 m wide, 8--10 m deep) in response to increased water accumulation at depth and close during subsidence as the ice-tongue settles following evacuation of subglacier water. A network of open conduits (>10 m diameter), exposed by surface ablation, provides evidence for the scale of englacial passageways beneath the thermokarst and represents a form of subglacial ablation that leads to removal of support and collapse in stagnant glacier masses.

  1. Quantification of Seasonal and Interannual Variability of Proglacial Meltwater from a Tidewater Glacier

    NASA Astrophysics Data System (ADS)

    Darlington, E. F.; Hodgkins, R.; Jenkins, A.

    2014-12-01

    Ice - ocean interactions of tidewater glaciers remain poorly understood; yet 39% of the global glaciated area drains directly into the ocean via tidewater glaciers. As the Arctic cryosphere continues to lose mass in response to a warming climate, more detailed observations are needed to increase our understanding of ice - ocean processes, enabling improved model predictions of Arctic change. Svalbard hosts a high proportion of tidewater glaciers, including Kronebreen, the fastest flowing glacier on the archipelago. The proglacial meltwater exiting the base of Kronebreen transports fine grained sediment to Kongsfjorden, entrained in a buoyant plume which spreads laterally and is visible at the surface. In-situ measurements of the concentration and spectral reflectance of these surface sediments were used to calibrate spectral data from the MODIS instruments on the Terra and Aqua satellites. Temperature and salinity in front of the calving face, and throughout the meltwater plume, have been measured using a hand held CTD. The spatial surface pattern of total suspended sediment (TSS; g l-1) and plume area, has been quantified for every cloud free day between 1st June - 30th September from 2002 - 2013. High TSS sediment during the early melt season indicates flushing, whilst sediment exhaustion is apparent at the end. We show that the areal extent of these proglacial plumes responds to atmospheric temperature, with a 12 day lag. An underlying seasonal evolution of plume extent is apparent; plume area is small at the beginning and end of the melt season, peaking mid-July. Wind speed and direction also play a role in dictating the length of plume formation, with katabatic winds originating from the glacier, lengthening plumes. However, the overall extent of the sediment plume is dependent on meltwater inputs. As such, this method enables the daily to interannual quantification of proglacial meltwater release from tidewater glaciers, utilizing remote sensing.

  2. Deglacial Meltwater Pulse Recorded in Last Interglacial Mollusk Shells from Bermuda

    NASA Astrophysics Data System (ADS)

    Winkelstern, I. Z.; Rowe, M. P.; Lohmann, K. C.; Defliese, W.; Petersen, S. V.; Brewer, A. W.

    2016-12-01

    Iceberg scours as far south as the Florida Strait and the presence of ice rafted debris in sediments from the Bermuda Rise indicate that during the last glacial phase icebergs traveled quite far south during episodes of excessive iceberg discharge from the Laurentide Ice Sheet (Heinrich Events). We present evidence that the effects of these events extended southward into the subtropics during the previous deglaciation (Termination-II), potentially aligned with Heinrich Event 11, and that meltwater reached Bermuda. Temperatures 10° C colder and seawater δ18O values 2 ‰ more negative than modern are derived from Last Interglacial Cittarium pica shells from Grape Bay, Bermuda using the clumped isotope paleothermometer. In contrast, Last Interglacial shells from Rocky Bay record temperatures only slightly colder and seawater δ18O values similar to modern, potentially representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The cold ocean conditions observed illustrate extreme sensitivity of Bermudian climate to rapid climate and ocean circulation changes. They also provide further evidence for routine meltwater transport in the North Atlantic to near-equatorial latitudes during deglaciation.

  3. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean

    USGS Publications Warehouse

    Poore, R.Z.; Osterman, L.; Curry, W.B.; Phillips, R.L.

    1999-01-01

    Accelerator mass spectrometer 14C dated stable isotope data from Neogloboquadrina pachyerma in cores raised from the Mendeleyev Ridge and slope provide evidence for significant influx of meltwater to the western Arctic Ocean during the early part of marine oxygen isotope stage 1 (OIS 1) and during several intervals within OIS 3. The strongest OIS 3 meltwater event occurred before ca. 45 ka (conventional radiocarbon age) and was probably related to the deglaciation at the beginning of OIS 3. Major meltwater input to the western Arctic Ocean during the last deglaciation coincides closely with the maximum rate of global sea-level rise as determined from the Barbados sea-level record, demonstrating a strong link between the global record and changes in the central Arctic Ocean. OIS 2, which includes the last glacial maximum, is very condensed or absent in the cores. Abundance and ??13C values for N. pachyderma in the middle part of OIS 3 are similar to modern values, indicating high productivity and seasonal ice-free areas along the Arctic margin at that time. These records indicate that the Arctic Ocean was a source of heat and moisture to the northern polar atmosphere during parts of OIS 3.

  4. Circulation and meltwater distribution in the Bellingshausen Sea: From shelf break to coast

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyue; Thompson, Andrew F.; Flexas, Mar M.; Roquet, Fabien; Bornemann, Horst

    2016-06-01

    West Antarctic ice shelves have thinned dramatically over recent decades. Oceanographic measurements that explore connections between offshore warming and transport across a continental shelf with variable bathymetry toward ice shelves are needed to constrain future changes in melt rates. Six years of seal-acquired observations provide extensive hydrographic coverage in the Bellingshausen Sea, where ship-based measurements are scarce. Warm but modified Circumpolar Deep Water floods the shelf and establishes a cyclonic circulation within the Belgica Trough with flow extending toward the coast along the eastern boundaries and returning to the shelf break along western boundaries. These boundary currents are the primary water mass pathways that carry heat toward the coast and advect ice shelf meltwater offshore. The modified Circumpolar Deep Water and meltwater mixtures shoal and thin as they approach the continental slope before flowing westward at the shelf break, suggesting the presence of the Antarctic Slope Current. Constraining meltwater pathways is a key step in monitoring the stability of the West Antarctic Ice Sheet.

  5. Modeling of Ionospheric Responses to the Solar Flux Change Based on Millstone Hill Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Holt, J. M.

    2002-12-01

    In order to develop ionospheric empirical models of electron density Ne, plasma temperatures (Te and Ti) and ion drifts based on Millstone Hill incoherent scatter radar observations, we investigate an important issue of ionospheric responses to the solar flux changes that have to be quantitatively represented. The representation is associated with selecting a mathematical function where a suitable solar flux index at a proper time ahead the observing time has to be determined. Traditionally, the solar 10.7 cm flux F107 for the previous day is applied, and a linear function is used. However, the non-linear feature of Ne responses to the solar flux was discovered previously. This paper shows the development of the non-linear feature with altitude, season and local time, and also indicates the non-linear feature for the Te and Ti responses. A mathematical function is proposed. We also discuss the use of other solar flux indices, in addition to F107.

  6. Sensitivities of marine carbon fluxes to ocean change

    PubMed Central

    Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas

    2009-01-01

    Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is ≈1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial–interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change. PMID:19995981

  7. Meltwater pathways from marine terminating glaciers of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Gillard, Laura C.; Hu, Xianmin; Myers, Paul G.; Bamber, Jonathan L.

    2016-10-01

    The Greenland ice sheet (GrIS) stores the largest amount of freshwater in the Northern Hemisphere and has been recently losing mass at an increasing rate. An eddy-permitting ocean general circulation model is forced with realistic estimates of freshwater flux from the GrIS. Two approaches are used to track the meltwater and its trajectory in the ocean. We show that freshwater from western and eastern GrIS have markedly different fates, on a decadal time scale. Freshwater from west Greenland predominantly accumulates in Baffin Bay before being exported south down the Labrador shelf. Meanwhile, GrIS freshwater entering the interior of the Labrador Sea, where deep convection occurs, comes predominantly (˜80%) from east Greenland. Therefore, hosing experiments, which generally assume a uniform freshwater flux spatially, will not capture the true hydrographic response and regional impacts. In addition, narrow boundary currents are important for freshwater transport and distribution, requiring simulations with eddy-resolving resolution.

  8. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    USGS Publications Warehouse

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  9. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations.

  10. Oxidation flux change on spermatozoa membrane in important pathologic conditions leading to male infertility.

    PubMed

    Wiwanitkit, V

    2008-06-01

    Free radicals or reactive oxygen species mediate their action through proinflammatory cytokines and this mechanism has been proposed as a common underlying factor for male infertility. There is extensive literature on oxidative stress and its role in male infertility and sperm DNA damage and its effects on assisted reproductive techniques. However, there has never been a report on the oxidation flux change in spermatozoa. Here, the author determined the oxidation flux change in such hypoxic cases, using the simulation test based on nanomedicine technique is used. Of interest, change of flux can be detected. The main pathogenesis should be the direct injury of membrane structure of spermatozoa by free radicals which can lead to sperm defect. Therefore, this work can support the finding that the oxidation flux change corresponding to oxygen pressure change in spermatozoa does not exist. However, the flux change can be seen if the membrane thickness of spermatozoa is varied. Thin membrane spermatozoa are more prone to oxidative stress than thick membrane ones. The defect in the enzymatic system within the spermatozoa should be a better explanation for vulnerability of spermatozoa to oxidative stress. The use of enzymatic modification technique by antioxidants can be useful alternative in management of male infertility.

  11. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness.

  12. Early Holocene meltwater events in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Pearce, Christof; Jennings, Anne; Andrews, John; Hillaire-Marcel, Claude; Seidenkrantz, Marit-Solveig; Lewis, Mike

    2016-04-01

    During the early Holocene, the Labrador Sea was strongly influenced by the presence of the remainder of the Laurentide Ice Sheet and its active eastern margin. Glacial advances and retreats lead to episodic release of meltwater and icebergs with potential impact on ocean circulation and climate during the deglaciation. The purpose of this study is to use detrital carbonate (DC) records in the Labrador Sea to study the spatial variability of the carbonate events and inferred sources and routing of glacial meltwater originating from Hudson Strait (HS) as well as potential contributions from Northern Baffin Bay (NBB) ice sheet margins. We use DC in sediment cores as a proxy for glacial meltwater and ice berg drift from these areas. More than 20 sediment cores with published DC, stable oxygen isotope, and radiocarbon stratigraphies provide the data for this study. Our hypothesis is that the complex interplay of current systems, shelf and slope bathymetry and location of meltwater and ice berg injection points will affect the spatial distribution of the DC events. In addition, differences in local ocean reservoir age for shelf, slope and open ocean sites may also contribute to offsets in the apparent ages of DC events. Identification of DC peaks also is influenced by sedimentation rates and sampling resolution. To objectively correlate DC events, we study mostly published core data, removing all earlier assumptions about marine reservoir ages and assess all core chronologies with their associated errors. Our results show that none of the DC events is found in all sites and no record captures all of the DC events. Despite this, some of the larger events occur in several records and allow robust temporal and spatial mapping of the meltwater pathways. Besides the meltwater route due south along the Labrador margin on the shelf, some events show a clear signal in deeper Labrador Sea sites pointing at a more direct injection of freshwater in the subpolar gyre.

  13. Issues with Moisture Flux Estimation in the Arctic and Changes in the Flux Between 2003-2014

    NASA Astrophysics Data System (ADS)

    Boisvert, L. N.; Wu, D. L.; Vihma, T. P.; Susskind, J.

    2014-12-01

    Evaporation from the Arctic Ocean has implications for cloud and water vapor feedbacks, Arctic amplification, and ablation of sea ice. Accurately estimating the evaporation continues to be associated with large uncertainties leading to latent heat differences of up to 55 Wm-2 in the Beaufort-East Siberian Seas (BESS) region between models. To help constrain this uncertainty we compare data from the Atmospheric Infrared Sounder (AIRS) and ECMWF's ERA-Interim reanalysis with a variety of in situ data. When comparing input data, ERA-Interim skin temperatures had twice as large an error compared to AIRS, but had smaller errors in air specific humidity. Differences in the input data into the same model can cause moisture flux estimates to differ by as much as 1.6 x10-2 gm-2s-1 (equivalent to 40 W m-2 latent heat) in the BESS region. Moisture flux products from the BMF13 and the ERA-Interim scheme are also compared. Similarities in these products were seen in the Kara/Barents Seas having a ratio of 1:1, and differences were seen in the BESS region, having a ratio of roughly 5:1. Issues found between ERA-Interim and AIRS support the need for more in situ measurements of temperature and humidity in the BESS region to improve the quality of the input data and thus reduce model uncertainties. We also show regional changes in the moisture flux produced between 2003-2014 and try to explain if the majority of the water vapor in the lower atmosphere is from evaporation at the surface rather than from lower-latitude transport.

  14. Surface Drifters Track the Fate of Greenland Ice Sheet Meltwater

    NASA Astrophysics Data System (ADS)

    Hauri, Claudine; Truffer, Martin; Winsor, Peter; Lennert, Kunuk

    2014-07-01

    Understanding the fate and influence of glacial meltwater in heavily ice-covered fjord systems has proven difficult because previous measurement platforms were con­strained to deeper water to keep instrumentation safe from drifting icebergs. Now, using novel, satellite-tracked devices that can with­ stand multiple collisions with ice blocks (see Figure 1) without incurring much damage, scientists have obtained new and detailed data about the role of Greenland Ice Sheet meltwater and its trajectories through God­thåbsfjord in western Greenland.

  15. Effect of Rapidly Changing River Stage on Uranium Flux through the Hyporheic Zone

    SciTech Connect

    Fritz, Brad G.; Arntzen, Evan V.

    2007-11-01

    At the Hanford Site, the flux of uranium contaminated groundwater into the Columbia River varies according to the dynamic changes in hydraulic gradient caused by fluctuating river stage. The river stage changes in response to operations of dams on the Columbia River. Piezometers were installed in the hyporheic zone to facilitate long term, high frequency measurement of water and uranium fluxes into the Columbia River in response to fluctuating river stage. In addition, measurement of the water level in the near shore unconfined aquifer enhanced the understanding of the relationship between fluctuating river stage and uranium flux. The changing river stage caused head fluctuations in the unconfined aquifer, and resulted in fluctuating hydraulic gradient in the hyporheic zone. Further, influx of river water into the unconfined aquifer caused reduced uranium concentration in near shore groundwater as a result of dilution. Calculated water flux through the hyporheic zone ranged between 0.3 and -0.5 L/min/m2. The flux of uranium through the hyporheic zone exceeded 30 ug/min/m2 during some time periods, but was generally on the order of 3 to 5 ug/min/m2 over the course of this study. It was also found that at this location, the top 20 cm of the hyporheic zone constituted the most restrictive portion of the aquifer, and controlled the flux of water through the hyporheic zone.

  16. Arctic climate sensitivity to changes in North Pacific and North Atlantic ocean heat flux

    NASA Astrophysics Data System (ADS)

    Praetorius, S. K.; Rugenstein, M.; Caldeira, K.

    2016-12-01

    Paleoclimate records indicate abrupt swings in Arctic temperature that were coeval with abrupt changes in sea surface temperature (SST) in both the North Pacific and North Atlantic oceans throughout the late Pleistocene, suggesting a strong coupling between extratropical ocean heat flux and Arctic climate. While the processes that contribute to Arctic amplification, including surface-albedo, cloud, and temperature feedbacks, are generally well-established, the relative impacts of changes in ocean heat flux sourced from different ocean basins on poleward heat transfer and Arctic climate feedbacks are not well understood. We employ simulations with the Community Earth System Model version 1.0.4 using a slab ocean configuration with modified ocean-to-atmosphere heat fluxes sourced from the North Pacific and North Atlantic (30-60°N) to determine the sensitivity of Arctic amplification processes to zonal heterogeneities in northern hemisphere SST patterns. We find that a local heat flux magnitude equivalent to a globally averaged +1 W/m2 sourced from the North Pacific results in greater Arctic surface warming/cooling and sea ice decline/advance than the equivalent heat flux perturbation originating from the North Atlantic. We attribute this response primarily to greater net moisture transfer between the North Pacific and Arctic (relative to the North Atlantic simulations) in response to changes in surface ocean heat flux, with accompanying impacts on cloud, sea ice, and temperature feedbacks that amplify the Arctic surface temperature response. In the case of a positive ocean-to-atmosphere heat flux anomaly from the North Pacific, greater moisture transport into the Arctic results in: 1) enhanced sensible and latent heat transfer to the Arctic 2) enhanced low cloud formation and attendant surface infrared radiation in the Arctic, and 3) enhanced area of sea ice decline, which is promoted by the first two processes and further amplifies surface warming through the ice

  17. High Resolution Photogrammetric Digital Elevation Models Across Calving Fronts and Meltwater Channels in Greenland

    NASA Astrophysics Data System (ADS)

    Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.

    2014-12-01

    Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using

  18. Meltwater pathways and grain size transformation in a Pleistocene Mediterranean glacial-fluvial system

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip

    2013-04-01

    The Pleistocene sedimentary records of Mount Orjen, western Montenegro, have been used to investigate changes in grain size characteristics of fine sediments transported from the glaciated mountains to the fluvial systems downstream. Understanding the particle size characteristics of the fine sediments transported by these cold stage river systems is important for several reasons. The braided rivers draining the glaciated mountains of the western Balkans may have been an important source of loess for example. It is also important to establish the grain size signature of suspended sediment delivered to the marine environment to aid land-marine correlations. The fine-grained component of the tills is dominated by glacially-comminuted limestone particles. Detailed particle size analysis of the fine sediment matrix component (<63 μm) of glacial till and alluvial deposits has been undertaken using multiple samples at 12 sites surrounding the Orjen massif. This limestone karst terrain includes a range of meltwater pathways and depositional contexts, including: river valleys, alluvial fans, poljes, and ice marginal settings. 35 U-series ages and soil development indices have been used to develop a robust geochronology for the Pleistocene records Two dominant surface meltwater and sediment pathways have been identified around Mount Orjen. The particle size distributions reveal that these transportation routes can have distinctive sedimentological signatures. Type 1 pathways deliver meltwater and sediments downstream via bedrock gorges. In these settings, the fine grained alluvial matrix presents a largely bimodal particle size distribution (PSD). Type 2 pathways represent meltwater channels draining directly from the ice margin. Alluvial sediments within these environments more closely resemble the normally distributed PSD of the glacial tills. The transition to bimodal PSDs, downstream of Type 1 meltwater routes, suggests that the glacially-comminuted sediments are

  19. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  20. Regional changes in carbon dioxide fluxes of land and oceans since 1980.

    PubMed

    Bousquet, P; Peylin, P; Ciais, P; Le Quéré, C; Friedlingstein, P; Tans, P P

    2000-11-17

    We have applied an inverse model to 20 years of atmospheric carbon dioxide measurements to infer yearly changes in the regional carbon balance of oceans and continents. The model indicates that global terrestrial carbon fluxes were approximately twice as variable as ocean fluxes between 1980 and 1998. Tropical land ecosystems contributed most of the interannual changes in Earth's carbon balance over the 1980s, whereas northern mid- and high-latitude land ecosystems dominated from 1990 to 1995. Strongly enhanced uptake of carbon was found over North America during the 1992-1993 period compared to 1989-1990.

  1. Analyzing a relationship between climate change and terrestrial carbon fluxes over Japan area

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Setoyama, Y.; Yamaguchi, Y.

    2011-12-01

    Recently, terrestrial vegetation undergoes dramatic change in climate. Areal difference of climate change has been gradually large, and ecosystem differ in response to climate change, leading that terrestrial carbon exchange between atmosphere and biosphere has also undergone much change for each region. A purpose of this study is to examine a relationship between climate parameter and terrestrial carbon flux over Japan region. The carbon flux data used are GPP, NPP, and NEP at 1km grid resolution, they were estimated by the satellite-driven biosphere model, BEAMS. The climate data are the MODIS land products and NCEP/NCAR re-analysis data set. We calculated annual and seasonal anomalies, and correlation coefficient between climate parameters and carbon fluxes from 2001 to 2010. The study area is Japan region (125°-150°E, 30°-50°N). We found in inter-annual change anomalies that NEP plays a role of sizable carbon sink in 2004 and 2007, and carbon source in 2003 and 2006. In 2004 and 2007, as full-year air temperature is high, an end of plant growing season might be delayed. In 2003 and 2006, low solar radiation due to rainy season front decreases NEP. By analyzing a relationship between climate parameters and carbon fluxes for each region, we could understand a characteristic of climate change and ecosystem, and a mechanism of terrestrial carbon cycle.

  2. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Davis, Steven J.; Pongratz, Julia

    2015-08-01

    Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like "commitment" accounting period, using land use emissions of 2008-2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions.

  3. Influence of Land-use Change on Surface Energy Fluxes and Atmospheric Circulation in California

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Snyder, M. A.; Sloan, L. C.

    2006-12-01

    California has seen significant changes in land cover and land use over the past century, with expanding urbanization along the Pacific coast and extensive agricultural development inland. Land-use change can modify local and regional climate due to changes in land surface albedo, vegetation roughness, vegetation cover, and soil moisture. We used the regional climate model RegCM3 to quantify the differences in surface energy fluxes and atmospheric circulation between 20-year experimental cases using natural and modern (~1990) land cover. Both irrigated agriculture and urban land have significant impacts on surface energy fluxes. Irrigated agricultural land in California's Central and Imperial Valleys increased latent heat flux and decreased sensible heat flux during the April-October dry season, resulting in lower mean and maximum surface air temperatures. Lower ground temperatures resulted in net long-wave radiation decreasing 40% in mid-summer. Conversely, latent heat flux decreased slightly and sensible heat flux increased slightly with conversion of natural vegetation to urban cover in many areas. Ground temperature and net long-wave radiation increased slightly in urban areas as well. As a result of changes to surface energy budgets and atmospheric pressure in a large part of the interior of California, the strength of the westerly sea breeze was reduced, and inland breezes were strengthened at the boundary between irrigated cropland and natural vegetation. Overall, widespread conversion of natural vegetation to irrigated cropland has likely had a much larger effect on California's climate than the creation of coastal cities. However, projections for future conversion of agricultural land to urban and suburban development could alter this conclusion.

  4. Laurentide Ice Sheet Meltwater Geochemistry During the MIS 3 Warm Phase from Single-Shell Trace Element and Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.

    2016-12-01

    The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.

  5. Changes in Carbon Flux at the Duke Forest Hardwood Ameriflux Site Due to Land Cover/Land Use Changes

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.

    2014-12-01

    The Raleigh/Durham, North Carolina metropolitan area has been ranked by Forbes as the fastest growing cities in the United States. As a result of the rapid growth, there has been a significant amount of urban sprawl. The objective of this study was to determine if the changes in land use and land cover have caused a change in the carbon flux near the Duke Forest AmeriFlux station that was active from 2001 to 2008. The land cover and land use were assessed every two years to determine how land cover has changed at the Duke Forest Hardwoods (US-Dk2) AmeriFlux site from 2001 to 2008 using Landsat scenes. The change in land cover and land use was then compared to changes in the carbon footprint that is computed annually from 2001 to 2008. The footprint model for each wind direction determined that there are changes annually and that the research will determine if these changes are due to annual weather patterns or land use and land cover changes.

  6. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

    SciTech Connect

    He, Lian; Xiu, Yu; Jones, J. Andrew; Baidoo, Edward E. K.; Keasling, Jay D.; Tang, Yinjie J.; Koffas, Mattheos A. G.

    2016-12-23

    Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this paper, 13C-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities, and to profile their metabolic adjustments resulting from external perturbations during fermentation. The two strains were first grown at 37 °C in stage 1, and then the temperature was transitioned to 20 °C in stage 2 for the optimal expression of the violacein synthesis pathway. After induction, violacein production was minimal in stage 3, but accelerated in stage 4 (early production phase) and 5 (late production phase) in the high producing strain, reaching a final concentration of 1.5 mmol/L. On the contrary, ~0.02 mmol/L of violacein was obtained from the low producing strain. To have a snapshot of the temporal metabolic changes in each stage, we performed 13C-MFA via isotopomer analysis of fast-turnover free metabolites. The results indicate strikingly stable flux ratios in the central metabolism throughout the early growth stages. In the late stages, however, the high producer rewired its flux distribution significantly, which featured an upregulated pentose phosphate pathway and TCA cycle, reflux from acetate utilization, negligible anabolic fluxes, and elevated maintenance loss, to compensate for nutrient depletion and drainage of some building blocks due to violacein overproduction. The low producer with stronger promoters shifted its relative fluxes in stage 5 by enhancing the flux through the TCA cycle and acetate overflow, while exhibiting a reduced biomass growth and a minimal flux towards violacein synthesis. Finally, interestingly, the addition of the violacein precursor (tryptophan) in the medium inhibited high producer but enhanced low producer's productivity, leading to hypotheses of unknown pathway regulations (such as metabolite channeling).

  7. Mesospheric ozone changes associated with 27-day solar ultraviolet flux variations

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Smith, H. J. P.

    1986-01-01

    Solar ultraviolet flux changes associated with the 27-day solar rotational period cause corresponding variations in mesospheric ozone near the maximum of the 11-year sunspot cycle. This statement is based on a correlation and spectral analysis of ozone mixing ratios, deduced from Solar Mesospheric explorer satellite-based measurements of 1.27-micron O2 airglow emission and solar flux observations made from the same spacecraft in 1982. With the Lyman-alpha flux taken as an indicator of solar ultraviolet variability, spectral analysis shows a primary period of 27.1 days with a secondary period of 13.5 days. The 27.1-day period is observed in the ozone mixing ratio data together with other periods, including 13.5 days. Both a classical statistical analysis and a time series treatment show that, for 244 days, there is a correlation between ozone and solar flux near 50 km and between 65 and 70 km. Calculations predict a positive correlation over the entire mesosphere if there is no change in temperature accompanying the solar flux. Lack of correlation is temperature induced.

  8. Green house gas flux at high latitudes - constraints and susceptibility to a changing climate

    NASA Astrophysics Data System (ADS)

    Nilsson, M. B.

    2015-12-01

    High latitude boreal forests and peatlands contribute importantly to the land-atmosphere exchange of both carbon dioxide and methane. High latitude biomes are also identified as most vulnerable to changing climate. High latitudes are characterized by a strong seasonality in incoming solar radiation, weather conditions and biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere exchange of green house gases. Timing of the soil frost thaw and plant phenology thus constitutes two master controls on how fluxes of both CO2 and CH4 will be affected by weather conditions. In addition also the wintertime conditions importantly affect GHG fluxes both during winter time as well as during the succeeding summer. Examples will primarily be given for peatlands and coniferous forests.

  9. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico.

    PubMed

    Návar-Chaidez, Jose de Jesus

    2008-09-30

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem.For the period of 1980-1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 +/- 0.06 Tg, root biomass averages 0.17 +/- 0.03 Tg, and soil organic carbon averages 1.80 +/- 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices.

  10. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    PubMed Central

    Návar-Chaidez, Jose de Jesus

    2008-01-01

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617

  11. Measuring and modeling disturbance-induced changes to flux dynamics in increasingly heterogeneous canopy environments

    NASA Astrophysics Data System (ADS)

    Maurer, K.; Bohrer, G.; He, L.; Ivanov, V. Y.; Vogel, C.; Curtis, P.

    2012-12-01

    Turbulent eddies control the flux of carbon, water and other gases between forested environments and the atmosphere. Inside the canopy, eddy correlation length is very small and surface heterogeneity due to tree-crown structures occurs at these scales. Computer simulations, particularly Large-Eddy Simulations (LES), provide the foundation to test the sensitivity of flux exchange and turbulent mixing to small scale processes, such as successional- or disturbance-driven changes to canopy structure. At the Forest Accelerated Succession ExperimenT (FASET), we disturbed 39 ha of forest by girdling all canopy-dominant early-successional aspen and birch trees, leading to a large mortality event, followed by a shift in forest structure that is typical of a more mature successional stage. Over the course of the study, we have found a divergence from pre-treatment biosphere-atmosphere gas-exchange trends between the control and disturbance sites due to changes in canopy structure and, as a consequence, biological response. We use the Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), and the more dynamic RAFLES-Ecosystem Demography (ED2) model, to investigate the consequences of increasingly heterogeneous forest environments to canopy-atmosphere exchange. RAFLES-ED2 resolves multi-layered light attenuation and vegetation and surface heat, vapor and CO2 fluxes and includes a multi-layered soil column under each atmosphere-vegetation column, as opposed to the single-layered soil-vegetation model in RAFLES. The model environment was determined by remote sensing of the actual forested area of interest using airborne Light Detection and Ranging (LiDAR) measurements and eddy-flux gas exchange measurements at two neighboring AmeriFlux eddy-flux towers, the manipulated site (US-UMd) and its undisturbed control (US-UMB) both at the University of Michigan Biological Station (UMBS) cluster site. We find more accurate surface roughness estimates and

  12. Suspended sediment fluxes in an Indonesian river draining a rainforested basin subject to land cover change

    NASA Astrophysics Data System (ADS)

    Buschman, F.; Hoitink, A.; de Jong, S.; Hoekstra, P.

    2011-12-01

    Forest clearing in the tropics for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads. The increasing sediment fluxes pose a threat to coastal marine ecosystems such as coral reefs. This study presents observations of suspended sediment fluxes in the Berau river (Indonesia), which debouches into a coastal ocean that can be considered the preeminent center of coral diversity. The Berau is an example of a small river draining a mountainous, relatively pristine basin that receives abundant rainfall. Flow velocity was measured over a large part of the river width at a station under the influence of tides, using a Horizontal Acoustic Doppler Current Profiler (HADCP). Surrogate measurements of suspended sediment concentration were taken with an Optical Backscatter Sensor (OBS). Tidally averaged suspended sediment concentration increases with river discharge, implying that the tidally averaged suspended sediment flux increases non-linearly with river discharge. Averaged over the 6.5 weeks covered by the benchmark survey, the tidally averaged suspended sediment flux was estimated at 2 Mt/y. Considering the wet conditions during the observation period, this figure may be considered as an upper limit of the yearly averaged flux. This flux is significantly smaller than what could have been expected from the characteristics of the catchment. Furthermore, the consequences of ongoing clearing of rainforest were explored using a plot scale erosion model. When rainforest, which still covered 50 - 60 % of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment flux in the Berau river would impose a severe sediment stress on the global hotspot of coral reef diversity. The impact of land cover changes will largely depend on the

  13. Suspended sediment fluxes in an Indonesian river draining a rainforested basin subject to land cover change

    NASA Astrophysics Data System (ADS)

    Buschman, F. A.; Hoitink, A. J. F.; de Jong, S. M.; Hoekstra, P.

    2011-07-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in the tropics. The increasing sediment fluxes pose a threat to coastal marine ecosystems such as coral reefs. This study presents observations of suspended sediment fluxes in the Berau river (Indonesia), which debouches into a coastal ocean that can be considered the preeminent center of coral diversity. The Berau is an example of a small river draining a mountainous, relatively pristine basin that receives abundant rainfall. Flow velocity was measured over a large part of the river width at a station under the influence of tides, using a Horizontal Acoustic Doppler Current Profiler (HADCP). Surrogate measurements of suspended sediment concentration were taken with an Optical Backscatter Sensor (OBS). Tidally averaged suspended sediment concentration increases with river discharge, implying that the tidally averaged suspended sediment flux increases non-linearly with river discharge. Averaged over the 6.5 weeks observations covered by the benchmark survey, the tidally averaged suspended sediment flux was estimated at 2 Mt y-1. Considering the wet conditions during the observation period, this figure may be considered as an upper limit of the yearly averaged flux. This flux is significantly smaller than what could have been expected from the characteristics of the catchment. The consequences of ongoing clearing of rainforest were explored using a plot scale erosion model. When rainforest, which still covered 50-60 % of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment flux in the Berau river would impose a severe sediment stress on the global hotspot of coral reef diversity. The impact of land cover changes will largely depend on the

  14. Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary.

    PubMed

    Wu, Gaojie; Cao, Wenzhi; Huang, Zheng; Kao, Chih-Ming; Chang, Chang-Tang; Chiang, Pen-Chi; Wang, Feifei

    2017-02-04

    Estuaries are areas of both freshwater and seawater that are partially enclosed with contact to the open sea and a flow of fresh water. Although the Jiulong River Estuary has a relatively small catchment, this area was found to exhibit high nutrient fluxes. The nutrient fluxes showed obvious fluctuations for different years. The Jiulong River Estuary was predominantly P-limited, and was slowly moving towards higher DIN:DIP and DSi:DIP ratios as the nitrate concentrations increased. The high nutrient fluxes into the estuary may affect estuarine ecosystems by the alteration of DO concentrations in bottom waters, causing harm to benthic fauna due to a lack of oxygen, triggering algal blooms. Additionally, the Jiulong River Estuary was slowly moving towards lower DSi:DIN and DSi:DIP ratios along with the change of time scales, which caused nutrient limitation of phytoplankton growth as P and Si levels decreased and became more limiting.

  15. Solvation Dynamics in Liquid Water. III. Energy Fluxes and Structural Changes.

    PubMed

    Rey, Rossend; Hynes, James T

    2017-02-16

    In previous installments it has been shown how a detailed analysis of energy fluxes induced by electronic excitation of a solute can provide a quantitative understanding of the dominant molecular energy flow channels characterizing solvation-and in particular, hydration- relaxation dynamics. Here this work and power approach is complemented with a detailed characterization of the changes induced by such energy fluxes. We first examine the water solvent's spatial and orientational distributions and the assorted energy fluxes in the various hydration shells of the solute to provide a molecular picture of the relaxation. The latter analysis is also used to address the issue of a possible "inverse snowball" effect, an ansatz concerning the time scales of the different hydration shells to reach equilibrium. We then establish a link between the instantaneous torque, exerted on the water solvent neighbors' principal rotational axes immediately after excitation and the final energy transferred into those librational motions, which are the dominant short-time energy receptor.

  16. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    SciTech Connect

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  17. Effects of Land Cover Change on Soil Greenhouse Gas Fluxes in Subtropical Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, C. N.; Lai, D. Y. F.

    2016-12-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Soil greenhouse gas (GHG) exchange plays an important role in governing future climate change. Yet, the effects of urbanization on soil GHG exchange remain uncertain and not well understood. This study aims to examine the effects of urbanization on GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter in Hong Kong based on closed chamber measurements for one full year. CO2 emission significantly varied among land covers (p<0.05), with the highest and lowest CO2 emissions being recorded in roadside planter and farmland, respectively. The N2O flux was highest in roadside planter whereas the lowest flux was recorded in urban forest, though the difference in N2O fluxes was only statistically significant at a level of 0.1. No significant difference of CH4 emission was found among all the land covers. Emission of CO2 increased markedly with soil organic matter content, while N2O flux increased markedly with total Kjeldahl nitrogen content. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  18. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, John F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300–400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  19. Antropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, J.F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300-400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  20. Dependence of Large-Scale Global Poynting Flux on IMF By Polarity Change

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.

    2014-12-01

    In this study we present the dependence of the global Poynting flux on the IMF By polarity change. The amount of energy that enters the magnetosphere from the solar wind is a function of the solar wind speed and pressure and the IMF orientation and magnitude. All the various published coupling models show that the polarity of the IMF By component does not change the energy input. In contrast the global convection patterns, and thus the ionospheric Pedersen currents, depend on IMF By polarity. This seems to imply that the ionospheric energy deposition is a function of IMF By polarity. Thus, there appear to be a fundamental difference between the input (from the solar wind) and the output (energy dissipating Pedersen currents). We, therefore, ask the question: To what extend is the global Poynting flux dependent on the IMF By polarity? We have performed a statistical study evaluating 59 abrupt transitions in the IMF By component (polarity changes) as measured by the ACE spacecraft. The effect of other solar wind coupling parameters, such as the IMF Bz component, are minimized by selecting events where these are nearly constant. We use electric field distributions from SuperDARN and field-aligned current distributions from AMPERE to calculate the global distribution of the Poynting Flux. To minimize the effect of magnetospheric energy unloading we focus on the 06-18 MLT region. We further investigate the dependence on solar induced conductivity. We find that the Poynting flux is slightly larger for positive IMF By compared to negative By conditions. For a low conductivity (not sunlit) ionosphere the Poynting flux is smaller than in the high conductivity (sunlit) ionosphere and we find a smaller dependence on IMF By polarity. The study emphasizes the global dynamic behavior of the ionosphere in its response to changes in the external driver (IMF).

  1. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.

  2. Total meltwater volume since the Last Glacial Maximum and viscosity structure of Earth's mantle inferred from relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced J˙2

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi; Yokoyama, Yusuke

    2016-02-01

    Inference of globally averaged eustatic sea level (ESL) rise since the Last Glacial Maximum (LGM) highly depends on the interpretation of relative sea level (RSL) observations at Barbados and Bonaparte Gulf, Australia, which are sensitive to the viscosity structure of Earth's mantle. Here we examine the RSL changes at the LGM for Barbados and Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}), differential RSL for both sites (Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}}) and rate of change of degree-two harmonics of Earth's geopotential due to glacial isostatic adjustment (GIA) process (GIA-induced J˙2) to infer the ESL component and viscosity structure of Earth's mantle. Differential RSL, Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} and GIA-induced J˙2 are dominantly sensitive to the lower-mantle viscosity, and nearly insensitive to the upper-mantle rheological structure and GIA ice models with an ESL component of about (120-130) m. The comparison between the predicted and observationally derived Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} indicates the lower-mantle viscosity higher than ˜2 × 1022 Pa s, and the observationally derived GIA-induced J˙2 of -(6.0-6.5) × 10-11 yr-1 indicates two permissible solutions for the lower mantle, ˜1022 and (5-10) × 1022 Pa s. That is, the effective lower-mantle viscosity inferred from these two observational constraints is (5-10) × 1022 Pa s. The LGM RSL changes at both sites, {{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}, are also sensitive to the ESL component and upper-mantle viscosity as well as the lower-mantle viscosity. The permissible upper-mantle viscosity increases with decreasing ESL component due to the sensitivity of the LGM sea level at Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bon}}}) to the upper-mantle viscosity, and inferred upper-mantle viscosity for adopted lithospheric thicknesses of 65 and 100 km is (1-3) × 1020 Pa s for ESL˜130 m and (4-10) × 1020 Pa s for ESL˜125 m. The former solution of (1-3) × 1020

  3. Investigating the potential impacts of local climate change on the meltwater supply of a small snow-fed mountain river system: A case study of the Animas River, Colorado

    NASA Astrophysics Data System (ADS)

    Day, C. A.

    2010-12-01

    The western US receives up to 80% of its annual streamflow from snowmelt fed river systems during the mid-to-late spring season. Changes in winter and spring air temperature and precipitation patterns have, however, begun to alter this sensitive hydroclimatological process, both in terms of the timing and magnitude of snowmelt events and the responding streamflow. Monitoring and planning for these changes in the future may well prove crucial for local water resource planners who traditionally rely on historical trends or means for water resource planning. Local-level water resource planners also often do not have the data or tools at the right resolution available to them for the same planning purposes. This goal of this research was to identify how changes in the local winter-spring climate may alter the hydrological response of a typical small mountain snowmelt fed river system, the Animas River in SW Colorado. To achieve this, a statistical downscaling technique was applied to increase the resolution of, and build a linear relationship between, historical upper atmospheric reanalysis data to surface level mean air temperature and precipitation for several climate stations located across the basin for 1950-2007. The same technique was then used to increase the resolution of two GCM scenarios from the NCAR CCSM3 model SRES-AR4 data runs (a 'business as usual’ or A1B scenario, and an increase in global greenhouse gas emissions or A2 scenario) using the same relationships between the historical upper atmospheric reanalysis data and the surface station climate data. Snowmelt streamflow magnitude and timing were then projected to 2099 based on their historical relationship to mean monthly winter and spring air temperature and precipitation before being compared to the historical averages. Results indicated a shift in the timing of the snowmelt streamflow to earlier in the spring, and a reduction in the magnitude of peak spring streamflow following increasing spring

  4. Estimation of surface temperature variations due to changes in sky and solar flux with elevation

    NASA Technical Reports Server (NTRS)

    Hummer-Miller, S.

    1981-01-01

    The magnitude of elevation effects due to changes in solar and sky fluxes, on interpretation of single thermal images and composite products such as temperature difference and thermal inertia, are examined. Simple expressions are derived for the diurnal behavior of the two parameters, by fitting field observations in one tropic (Hawaii) and two semi-arid climates (Wyoming and Colorado) (Hummer-Miller, 1981). It is shown that flux variations with elevation can cause changes in the mean diurnal temperature gradient from -4 to -14 degrees C/km, evaluated at 2000 m. Changes in the temperature-difference gradient of 1 to 2 degrees C/km are also produced which is equivalent to an effective thermal-inertia gradient of 100 W s(exp 1/2)/sq m-K-km. An example is presented showing an elevation effect of 12 degrees C on the day and night thermal scenes of a test site in Arizona.

  5. Future changes in terrestrial carbon fluxes over Northern Eurasia under uncertainty in 21st century climate change

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David; Sokolov, Andrei

    2014-05-01

    In this study, we investigate possible changes in terrestrial fluxes of carbon dioxide over Northern Eurasia in response to future climate change. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. In light of observed climate change in the region and future climate projections, it is important to quantify the possible impact of climate change on the carbon budget in the region. A large ensemble of climate simulations of the 21st century carried out with the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM) is used to investigate future terrestrial carbon fluxes over Northern Eurasia. The IGSM-CAM is an integrated assessment modeling framework that couples a human activity model to an earth system model of intermediate complexity model. In the IGSM-CAM framework, multiple sources of uncertainty in regional climate projections can be considered and their contributions quantified: emissions projections, global climate system response to changes in greenhouse gases and aerosol concentrations and natural variability. The IGSM-CAM ensemble consists of: two emissions scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization (similar to the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios); three values of climate sensitivity (the median, and the 5th and 95th of the marginal posterior probability density function with uniform prior); and five different representations of natural variability. Finally, terrestrial fluxes of carbon dioxide are estimated using the MBL Terrestrial Ecosystem Model (TEM), a process-based ecosystem/biogeochemistry model. The results of this study provide new insight on the uncertainty in future terrestrial carbon fluxes over

  6. Widespread movement of meltwater onto and across Antarctic ice shelves.

    PubMed

    Kingslake, Jonathan; Ely, Jeremy C; Das, Indrani; Bell, Robin E

    2017-04-19

    Surface meltwater drains across ice sheets, forming melt ponds that can trigger ice-shelf collapse, acceleration of grounded ice flow and increased sea-level rise. Numerical models of the Antarctic Ice Sheet that incorporate meltwater's impact on ice shelves, but ignore the movement of water across the ice surface, predict a metre of global sea-level rise this century in response to atmospheric warming. To understand the impact of water moving across the ice surface a broad quantification of surface meltwater and its drainage is needed. Yet, despite extensive research in Greenland and observations of individual drainage systems in Antarctica, we have little understanding of Antarctic-wide surface hydrology or how it will evolve. Here we show widespread drainage of meltwater across the surface of the ice sheet through surface streams and ponds (hereafter 'surface drainage') as far south as 85° S and as high as 1,300 metres above sea level. Our findings are based on satellite imagery from 1973 onwards and aerial photography from 1947 onwards. Surface drainage has persisted for decades, transporting water up to 120 kilometres from grounded ice onto and across ice shelves, feeding vast melt ponds up to 80 kilometres long. Large-scale surface drainage could deliver water to areas of ice shelves vulnerable to collapse, as melt rates increase this century. While Antarctic surface melt ponds are relatively well documented on some ice shelves, we have discovered that ponds often form part of widespread, large-scale surface drainage systems. In a warming climate, enhanced surface drainage could accelerate future ice-mass loss from Antarctic, potentially via positive feedbacks between the extent of exposed rock, melting and thinning of the ice sheet.

  7. Increasing Seasonal CO2 Fluxes and the Potential Role of Changing Plant Functional Types

    NASA Astrophysics Data System (ADS)

    Welp, L. R.; Graven, H. D.; Keeling, R. F.; Piper, S. C.; Patra, P. K.; Roedenbeck, C.

    2014-12-01

    Previous work by Graven et al. (Science, 2013) has shown that the seasonal cycle of CO2 has increased throughout the troposphere by 50% north of 45°N since the 1950s. This suggests large-scale ecological changes centered on the boreal and temperate forests, and a contribution from the Arctic. Graven et al. indicated a comparable 30-50% increase in seasonal net ecosystem exchange (NEE) fluxes is required to explain the observed change in CO2 amplitude. We examine changes in NEE fluxes in boreal and Arctic regions for the period 1986-2012 using two time-varying atmospheric inversions, RIGC and Jena. The inversions show that, over the last few decades, the largest percent increases in seasonal NEE occur between 50-70°N. They also provide evidence that larger summertime uptake is the main driver of CO2 amplitude increases. One way that summer uptake may have increased is by changes in plant functional type (PFT), away from evergreen toward more deciduous forest coverage. Eddy covariance NEE measurements are helpful in determining the seasonality of net CO2 exchange for different PFTs. The seasonal amplitude in net CO2 uptake by deciduous boreal forests can easily be twice as large as for evergreen forests. In this presentation we will explore the relative influence of deciduous and evergreen plant functional types on the seasonal cycle of CO2 using FluxNet data and atmospheric transport modeling, and the potential effect of changing forest composition on CO2 amplitude trends. Understanding the processes affecting the seasonal cycle of NEE fluxes will allow better predictions of the net carbon-uptake or release in this climatically sensitive region.

  8. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    USGS Publications Warehouse

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  9. Early Holocene Meltwater Routing in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Pearce, C.; Andrews, J. T.; Hillaire-Marcel, C.; Seidenkrantz, M. S.; Lewis, M. C. F.

    2015-12-01

    The purpose of this study is to use the detrital carbonate (DC) records in sediment cores from the Labrador Sea western margin to study the spatial variability of the carbonate events and inferred sources and routing of glacial meltwater originating from Hudson Strait (HS) as well as potential contributions from Northern Baffin Bay (NBB) ice sheet margins. We use DC in sediment cores as a proxy for glacial meltwater and ice berg drift from these areas. More than 15 sediment cores with published DC, stable oxygen isotope, and radiocarbon stratigraphies provide the data for this study. Marine sediment core MD99-2236 from Cartwright Saddle is used as a template for freshwater forcing from HS outlet. Our hypothesis is that the complex interplay of current systems, shelf and slope bathymetry and location of meltwater and ice berg injection points will affect the spatial distribution of the DC events. In addition, differences in local ocean reservoir age for shelf, slope and open ocean sites may also contribute to offsets in the apparent ages of DC events. Identification of DC peaks also is influenced by sedimentation rates and sampling resolution. Quantitative x-ray diffraction is applied to differentiate the carbonate provenance between HS (calcite dominated) and NBB (dolomite dominated). To objectively correlate DC events, we study mostly published core data, removing all earlier assumptions about marine reservoir age and assess all core chronologies with their associated errors. Our results so far show that none of the DC events is found in all sites and no record captures all of the DC events. Despite this, some of the larger events occur in several records and are found along the entire Labrador margin allowing robust temporal and spatial mapping of the meltwater pathways. The end product will be a temporal and spatial reconstruction of meltwater and ice berg routing from HS and NBB outlets to the western N. Atlantic and serve as a contribution to modeling studies

  10. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    SciTech Connect

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm/sup 2/ in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs.

  11. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  12. Methane and carbon dioxide fluxes in a hydrologically changed wetland in Canada

    NASA Astrophysics Data System (ADS)

    Fleischer, Elisa; Berger, Sina; Burger, Magdalena; Forsyth, Jordan; Goebel, Marie; Wagner-Riddle, Claudia; Blodau, Christian; Klemm, Otto

    2015-04-01

    Northern peatlands store about 30 % of the global soil carbon and account for a significant contribution to methane emissions from natural sources. The carbon cycle in peatland ecosystems is very sensitive to hydrological changes so that it is important to quantify and analyze the direction and magnitude of carbon fluxes under such conditions. For example, increased water levels might decrease the carbon dioxide uptake and increase methane emissions. The Luther Bog in Ontario, Canada, has been flooded to create a reservoir in 1952. This changed the hydrological regime of the adjacent areas and the question arises whether the changed ecosystem acts as a sink or source for carbon, and how it affects global warming. In 2014, an eddy covariance measurement station was operated there from May to October to quantify the exchange of water vapor, carbon dioxide and methane between the bog and the atmosphere. The station was located in an area that got wetter through the construction of the dam. The magnitude and direction of the methane fluxes were independent from daily patterns. The constantly high water level excluded the effect of temperature changes on the methane production. A seasonal variation with increased emissions during the summer period was visible despite the slightly decreased water level. However, the difference was small. The study site was found to be a clear methane source. The carbon dioxide fluxes showed typical diurnal courses. Their magnitude was relatively constant during the measurement period apart from a slight decrease in fall. The uptake of carbon clearly overweighed the carbon loss, meaning that the bog is sequestering carbon. However, considering the global warming potential of carbon dioxide and methane the effect on climate change is only slightly negative. This points out that even changed wetland ecosystems can keep their important function of sequestering carbon and thereby counteract global warming. A comparison and combination of this

  13. Relevance of decadal variations in surface radiative fluxes for climate change

    NASA Astrophysics Data System (ADS)

    Wild, Martin

    2013-05-01

    Recent evidence suggests that radiative fluxes incident at Earth's surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected due to the increasing greenhouse effect, but also in the solar spectral range. Observations suggest that surface solar radiation, after a period of decline from the 1950s to the 1980s ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations, often in line with changes in anthropogenic air pollution. These decadal variations observed in both solar and thermal surface radiative fluxes have the potential to affect various aspects of climate change. Discussed here are specifically the evidence for potential effects on global warming, as seen in asymmetries in hemispheric warming rates as well as in differences in the decadal warming rates over land and oceans. These variations in observed warming rates fit well to our conceptual understanding of how aerosol and greenhouse gas-induced changes in the surface radiative fluxes should affect global warming. Specifically, on the Northern Hemisphere, the suppression of warming from the 1950s to the 1980s fits to the concurrent dimming and increasing air pollution, while the accelerated warming from the 1980s to 2000 matches with the brightening and associated reduction in pollution levels. The suppression of warming from the 1950s to the 1980s is even somewhat stronger over oceans than over land, in line with the conceptual idea that aerosol-induced dimming and brightening tendencies may be enhanced through cloud aerosol interactions particularly over the pristine ocean areas. On the Southern Hemisphere, the absence of significant pollution levels as well as trend reversals therein, fit to the observed stable warming rates over the entire 1950 to 2000 period.

  14. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    NASA Astrophysics Data System (ADS)

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.

    2017-04-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in

  15. Implications of climate change for the stomatal flux of ozone: a case study for winter wheat.

    PubMed

    Harmens, Harry; Mills, Gina; Emberson, Lisa D; Ashmore, Mike R

    2007-04-01

    Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.

  16. Statistical Observations and Predictions of Time Changes in Electron Flux at Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Larsen, B.; Friedel, R. H.; Geoffrey, R.

    2015-12-01

    A statistical survey of time changes in particle flux values (df/dt) at geosynchronous orbit reveals trends that are instructive to predictive magnetosphere models. A single spacecraft can provide short time scale df/dt measurements, while multiple spacecraft can provide values over periods comparable to the spacecraft separation. Using data from multiple LANL-GEO spacecraft provides a unique view of temporal and spatial variations that allow us to gauge time and length scales for changing particle fluxes at GEO. These scales provide a base ability to predict the plasma environment conditions for spacecraft crossing GEO. Probability distribution functions based on electron df/dt values are used to predict the electron flux at a given magnetic local time at GEO based on prior measurements. The predictions, when compared to new data taken in the same region, provide some measure of how the electron plasma environment at GEO has changed in the interim period. These predictions are compared to data from the Van Allen Probes as their orbits cross GEO to verify the validity of this technique.

  17. Understanding ecosystems' sub-daily water and carbon flux changes during dry-down events

    NASA Astrophysics Data System (ADS)

    Nelson, Jacob; Jung, Martin; Carvalhais, Nuno; Migliavacca, Mirco; Reichstein, Markus

    2016-04-01

    Sub-daily water and carbon flux patterns give important and sometimes overlooked information about ecosystem processes and land-atmosphere feedbacks. While models often perform well down to daily timescales, they can be uncertain with respect to the diurnal courses, especially during dry-down events where the fraction of T to ET is shifting. We analyzed events from multiple locations for unique pattern changes that were robust across sites. Of particular interest were the divergence of water and carbon fluxes during high radiation periods, which indicates changes in water use efficiency as drought conditions intensified. The validity of attributing the signatures to ecosystem transitions such as changes in phenology, switches in soil evaporation vs transpiration dominance, and physiological stress were evaluated by comparing to site specific sap flow, soil moisture, and remote sensing data. Going forward, these findings can be used to further understand ecosystem physiology under drought conditions, and can also be used to partition of water fluxes and better constrain future models.

  18. Evapotranspiration-Temperature Relationships Under Climate Change: Energy Flux vs. Energy Pulling Up a Chair

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Ruberg, A.

    2009-12-01

    The notion that increased air temperature causes increased evapotranspiration (ET) is a frequently stated paradigm when explaining how climate change affects the hydrologic cycle. However, this simple notion is shorthand for a more complicated set of interactions relating to partitioning of radiative energy inputs into latent and sensible heat fluxes. Empirical fits of ET to air temperature can provide skill in replicating the the annual cycle of ET, and ecological zones can be quite reliably distinguished by a combination of their annual precipitation and mean annual temperature. However, separation of Ameriflux data into long-term, annual, and short-term components of variation in temperature and ET shows that only the annual component has significant correlation between the two. In the seasonal cycle, the amount of energy coming into the land surface is quickly translated into flux of energy out from the surface, including latent heat flux, and this is tied closely to the annual temperature cycle. However, when heat is trapped by greenhouse gases, it does not strongly indicate a flux of energy, but a buildup of energy that encompasses both the surface and the atmosphere. Therefore, reliance on temperature as a primary predictor of changes in ET due to greenhouse gas-caused climate change, especially when based on the temperature-ET relations associated with the annual cycle, is likely to lead to an overestimation of warming's role in increasing ET. This talk will focus specifically on the case of a hydrologic model that has been repeatedly used to project the effect of greenhouse gas-induced warming on the levels of the Laurentian Great Lakes.

  19. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, T. L.

    2011-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approx. the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 and, more prominently, with improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contained by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  20. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Robertson, F. R.; Bosilovich, M. G.; Chen, J.; Miller, T. L.

    2010-12-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, these products have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) to determine variability in the climate system over the satellite record (~ the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the onset of passive microwave imaging (Special Sensor Microwave Imager, SSMI) in late 1987 as well as improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contamined by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  1. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  2. Recent changes in sea ice area flux through the Beaufort Sea during the summer

    NASA Astrophysics Data System (ADS)

    Howell, Stephen E. L.; Brady, Michael; Derksen, Chris; Kelly, Richard E. J.

    2016-04-01

    Over the annual cycle, sea ice is sequestered from the Canadian Basin and transported through the Beaufort Sea toward the Chukchi Sea. In recent years, the Beaufort Sea has experienced considerable ice loss during the summer, which may be indicative of recent changes to this process. In order to investigate this, we quantify the sea ice area flux using RADARSAT from 1997 to 2014 at three gates in Beaufort Sea: the Canadian Basin (entrance), mid-Beaufort (midpoint), and Chukchi (exit). There was a mean annual flux of 42 ± 56 × 103 km2 at the Canadian Basin gate, 94 ± 92 × 103 km2 at the mid-Beaufort gate and -83 ± 68 × 103 km2 at the Chukchi gate (positive and negative flux signs correspond to ice inflow and outflow, respectively). The majority of ice transport in Beaufort Sea was found to occur from October to May providing replenishment for ice lost during the summer months. The cross-strait gradient in sea level pressure explains ˜40% of the variance in the ice area flux at the gates. Remarkably, the mean July-October net sea ice area flux at the Chukchi gate decreased by ˜80% from 2008 to 2014 relative to 1997-2007 and became virtually ice-free every year since 2008. This reduction was associated with younger (thinner) ice that was unable to survive the summer melt season when either being sequestered from the Canadian Basin and transported through Beaufort Sea during the melt season (2008-2011) or remaining immobile and present in the vicinity of the Chukchi gate during the melt season (2012-2014).

  3. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, t. L.

    2010-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approximately the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 as well as improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contaminated by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  4. He bombardment of WEST tungsten grades: surface morphology changes and flux dependence

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Martin, C.; Meyer, F. W.; Bannister, M. E.; Cabie, M.; Campos, A.; Gardarein, J.-L.; Corre, Y.; Richou, M.; Addab, Y.; Roubin, P.

    2016-10-01

    We report measurements of the surface morphology changes induced by He ion bombardment of WEST grades polycrystalline tungsten at conditions relevant for the WEST He campaign (T =400-1000 °C and flux range 0.3-5.1020 m-2s-1).218 eV He impact energy bombardments were carried out at the ORNL MIRF, using a high-flux deceleration module and beam flux monitor. Surface analyses were performed at the PIIM laboratory using electron microscopy techniques (FIB-SEM and EBSD). At fluxes below 2.1020 m-2s-1, nano-wavy structures and pinholes are observed on individual grains, together with sub-surface bubbles. Interestingly, the wavy structures and pinholes were found preferentially on grains with surface orientations near 101 and 001, respectively. At fluxes above 2.1020 m-2s-1, the individual grain-to-grain variability disappears and the entire surface is covered by nano-fuzz structures. These results suggest that, at around 2.1020 m-2s-1, ion beam bombardment produces significant sub-surface damages with a high bubble density due to He saturation leading to a possible scenario that bubbles burst to form pinholes and then nanofuzz. Detailed analyses of the correlation between the grain orientation and the wavy structure as well as of the surface erosion, roughness and emissivity are underway. Research supported by A*MIDEX sponsored by the Investissements d'Avenir French program. Research at ORNL supported by the Office of Fusion Sciences of the U.S. Department of Energy.

  5. Seasonal changes in soil water repellency and their effect on soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil water repellency (SWR) is a seasonally variable phenomenon controlled by moisture content and at the same time a regulator of the distribution and conductivity of water in the soil. The distribution and availability of water in soil is also an important factor for microbial activity, decomposition of soil organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. It has been therefore hypothesised that SWR by restricting water availability in soil can affect the production and the transport of CO2 in the soil and between the soil and the atmosphere. This study investigates the effect of seasonal changes in soil moisture and water repellency on CO2 fluxes from soil. The study was conducted for 3 year at four grassland and pine forest sites in the UK with contrasting precipitation. The results show the temporal changes in soil moisture content and SWR are affected by rainfall intensity and the length of dry periods between the storms. Soils exposed to very high annual rainfall (>1200mm) can still exhibit high levels of SWR for relatively long periods of time. The spatial variation in soil moisture resulting from SWR affects soil CO2 fluxes, but the most profound effect is visible during and immediately after the rainfall events. Keywords: soil water repellency, CO2 flux, hydrophobicity, preferential flow, gas exchange, rainfall

  6. Large flux change due to the intervening cold absorbers in NGC 3516

    NASA Astrophysics Data System (ADS)

    Nogami, K.; Negoro, H.; Hong, S.; Mihara, T.

    2004-06-01

    NGC3516 in the low flux state shows a flat energy spectrum (photon index ~1) and an intense narrow iron line. Such spectra are also observed in other Seyfert galaxies, and a broad bump structure around 6 keV above the 'flat' power-law spectrum has been interpreted as the gravitationally red-shifted iron line, disk reflection, or cold and/or warm absorbers. However, six years if BeppoSAX observations, including our latest three ones in 2001, clearly demonstrate that energy spectra above 20 keV always exhibit steep power-laws with photon indices ~2, and the flux changes only by a factor of 2, while the soft X-ray flux by a factor of ~10. From this fact, using BeppoSAX and ASCA data, we have concluded that the flat spectrum results from reprocessed, and partially covered power-laws with Γ~1.8 by warm matter nearby the central source and a cold absorber moved in the line of sight, respectively, and that the broad iron line and disk reflection components are less significant than one ever thought. Thus, the long-term spectral variations can be considered by intervening absorbers rather than changes in the accretion rate.

  7. Sensitivity of soil water fluxes to changes in vegetation and root parameters

    NASA Astrophysics Data System (ADS)

    Slawitsch, Veronika; Birk, Steffen; Herndl, Markus

    2017-04-01

    Climate change will cause changes in soil water fluxes, on the one hand, because of the direct effect of changing precipitation and evaporative demand; on the other hand, climate change is expected to alter the vegetation cover and the plant roots, thus causing indirect effects on root water uptake and transpiration. In this work, the sensitivity of soil water fluxes to changes in vegetation and root parameters are examined using model scenarios implemented in Hydrus 1D. Reasonable ranges of Leaf Area Index, crop coefficient and root distribution parameters for Alpine grasslands affected by rising temperature and increasing carbon dioxide concentration of the atmosphere are derived from a literature review and from observations at the experimental Clim-Grass site (Herndl and Pötsch, 2013), where 54 plots equipped with the free-air carbon dioxide enrichment technique and infrared heaters (T-FACE technique) represent various combinations of increased carbon dioxide concentration and increased temperature. The results from this sensitivity study serve to identify the most influential vegetation and root parameters, thus supporting both the design of a monitoring strategy for the experimental site and future inverse modelling efforts aimed at identifying the effects of carbon dioxide enrichment and increasing temperature on the effective soil hydraulic and root distribution parameters.

  8. A Laboratory Investigation of the Effects of Subglacial Meltwater Plumes on Submarine Ablation at the Fronts of Tidewater Glaciers

    NASA Astrophysics Data System (ADS)

    Kerr, R. C.; McConnochie, C. D.

    2016-12-01

    We investigate experimentally the effect of a basal freshwater source on the ablation of a vertical ice wall in salty water. We measure as a function of height the turbulent wall plume velocity, the ablation velocity of the ice, and the temperature at the ice wall. By systematically varying the volume flow rate of the freshwater source, we determine where the turbulent wall plume transitions from a free convection regime (controlled by the distributed buoyancy flux due to dissolution of the ice) to a forced convection regime (controlled by the buoyancy flux Bs of the basal freshwater source). In the forced convection regime, we find that the turbulent plume velocity is uniform with height and is proportional to Bs1/3, the interface temperature is independent of Bs, and the ablation velocity increases with Bs. In the two convection regimes, we find that there are fundamental differences in the wall turbulent plume, the turbulent entrainment coefficient, and the detrainment from the turbulent plume at the top of the wall. Lateral variations in subglacial discharge rates can enable these regimes to occur simultaneously along the front of a tidewater glacier, which will result in subglacial meltwater and submarine meltwater being seen at differing depths in the Greenland fjords.

  9. Changes in Surface Radiation Flux Associated with Cloud Variability over Land during the Past 40+ Years

    NASA Astrophysics Data System (ADS)

    Norris, J. R.

    2014-12-01

    Clouds have a large impact on the surface energy budget over land, but it has been difficult to accurately quantify variability in cloud radiative effect at multidecadal time scales. One reason for this is that the longest satellite cloud records are inhomogeneous. Another reason is that surface visual records, available for a longer time period than satellite data, do not provide quantitative radiative information. The present study describes empirical methods for removing artifacts from satellite-derived surface radiation flux data and for quantifying the surface radiative impact of variability in visually-observed cloud cover. Changes in surface radiation flux associated with cloud variability during the past 40+ years are examined for multiple land regions.

  10. Using Bioconductor Package BiGGR for Metabolic Flux Estimation Based on Gene Expression Changes in Brain

    PubMed Central

    Murrell, Paul; van Beek, Johannes H. G. M.

    2015-01-01

    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer

  11. Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain.

    PubMed

    Gavai, Anand K; Supandi, Farahaniza; Hettling, Hannes; Murrell, Paul; Leunissen, Jack A M; van Beek, Johannes H G M

    2015-01-01

    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer

  12. Human impact on the historical change of CO2 degassing flux in River Changjiang

    PubMed Central

    Wang, FuShun; Wang, Yuchun; Zhang, Jing; Xu, Hai; Wei, Xiuguo

    2007-01-01

    The impact of water quality changes in River Changjiang (formally known as the Yangtze River) on dissolved CO2 and silicate concentrations and seasonal carbon flux in the past several decades (1960s–2000) was evaluated, based on monitoring data from hydrographic gauge. It was found that dissolved CO2 and silicate in Changjiang decreased dramatically during this decades, as opposed to a marked increase in nutrient (e.g. NO3-) concentrations. Our analyses revealed that dissolved CO2 in Changjiang was over-saturated with the atmosphere CO2, and its concentration had showed a declining trend since the 1960s, despite that fluvial DIC flux had maintained stable. Analysis results also suggested that the decrease in dissolved CO2 concentration was attributed to changes on the riverine trophic level and river damming activities in the Changjiang drainage basin. Due to the economic innovation (e.g. agriculture and industry development) across the Changjiang watershed, fertilizers application and river regulations have significantly altered the original state of the river. Its ecosystem and hydrological condition have been evolving toward the "lacustrine/reservoir" autotrophic type prevailing with plankton. Accordingly, average CO2 diffusing flux to the atmosphere from the river had been reduced by three-fourth from the 1960s to 1990s, with the flux value being down to 14.2 mol.m-2.yr-1 in the 1990s. For a rough estimate, approximately 15.3 Mt of carbon was degassed annually into the atmosphere from the entire Changjiang drainage basin in the 1990s. PMID:17686186

  13. Long-term lysimeter experiment to analyze the influence of the climate change on matter fluxes

    NASA Astrophysics Data System (ADS)

    Pütz, Thomas; Groh, Jannis; Wollschläger, Ute; Gerke, Horst; Priesack, Eckart; Kiese, Ralf; Borg, Erik; Vereecken, Harry

    2015-04-01

    Based on the TERENO SoilCan infrastructure, a long-term large-scale experiment was designed to study the effects of climate change on terrestrial systems. The water and matter fluxes in soil are the main focuses of SoilCan. In the frame of SoilCan, fully automated lysimeter systems were installed on several highly equipped experimental field sites of the TERENO-observatories and the relevant status variables of each ecosystem were monitored (e.g. climate, hydrology, biosphere-atmosphere exchange, biodiversity, etc.). In total, 90 lysimeters (1.5 m depth, 1m2 surface) were filled with soil monoliths at the four TERENO-observatories and were instrumented with TDRs, tensiometers, temperature sensors, soil heat flux plates, and CO2 sensors. For the controlling of the lower boundary condition, suction candle rakes were installed into the lysimeter bottoms. In combination with bi-directional pumps and tanks, the water content of the lysimeters was adjusted to the surrounded original field sites. To simulate the expected climate change, 48 lysimeters were transferred along temperature and rainfall gradients within the respective observatories and between the observatories, based on the principle 'Space for Time'. In case of the "Rur" observatory, three intensively instrumented field sites ("Wüstebach", "Rollesbroich" und "Selhausen") were equipped with lysimeter stations. These three field sites include different land uses, "Wüstebach" as a forest site, "Rollesbroich" as a grassland and "Selhausen" as an arable site. In order to standardize the agronomic management, the crop rotation at the arable lysimeters comprised winter wheat - winter rye - winter barley - oats. For investigation of the matter flux, soil solutions and leachates were regularly sampled. The water balances and the dynamics of the carbon and nitrogen fluxes in the first two years of the experiment will be presented.

  14. Representing moisture fluxes and phase changes in glacier debris cover using a single-reservoir approach

    NASA Astrophysics Data System (ADS)

    Collier, E.; Nicholson, L. I.; Brock, B. W.; Maussion, F.; Essery, R.; Bush, A. B. G.

    2014-03-01

    Due to the complexity of treating moisture in supraglacial debris, surface energy balance models to date have neglected moisture infiltration and phase changes in the debris layer. The latent heat flux (QL) is also often excluded due to the uncertainty in determining the surface vapour pressure. To quantify the importance of moisture on the surface energy and climatic mass balance (CMB) of debris-covered glaciers, we developed a simple, single-reservoir parameterization for the debris ice and water content, as well as an estimation of the latent heat flux. The parameterization was incorporated into a sophisticated CMB model adapted for debris-covered glaciers. We perform two point simulations using both our new "moist" and the conventional "dry" approaches, on the Miage Glacier, Italy, during summer 2008 and fall 2011. The former simulation coincides with available in situ glaciological and meteorological measurements, including the first eddy-covariance measurements of the turbulent fluxes over supraglacial debris, while the latter contains two refreeze events that permit evaluation of the influence of phase changes. The simulations demonstrate a clear influence of moisture on the glacier energy and mass dynamics. Heat transmission to the underlying ice is lower, as the effective thermal diffusivity of the debris is reduced by increases in the weighted density and specific heat capacity when water and ice are considered. In combination with surface heat extraction by QL, sub-debris ice melt is reduced by 2.3% in 2008 and by 2.8% in 2011 when moisture effects are included. However, mass loss due to surface vapour fluxes more than compensates for the reduction in ice melt, such that the total accumulated ablation increased by 5.3% in 2008 and by 2.8% in 2011. Although the parameterization is a simplified representation of the moist physics of glacier debris, it is a novel attempt at including moisture in a numerical model of debris-covered glaciers and opens up

  15. Widespread movement of meltwater onto and across Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Ely, Jeremy C.; Das, Indrani; Bell, Robin E.

    2017-04-01

    Surface meltwater drains across ice sheets, forming melt ponds that can trigger ice-shelf collapse, acceleration of grounded ice flow and increased sea-level rise. Numerical models of the Antarctic Ice Sheet that incorporate meltwater’s impact on ice shelves, but ignore the movement of water across the ice surface, predict a metre of global sea-level rise this century in response to atmospheric warming. To understand the impact of water moving across the ice surface a broad quantification of surface meltwater and its drainage is needed. Yet, despite extensive research in Greenland and observations of individual drainage systems in Antarctica, we have little understanding of Antarctic-wide surface hydrology or how it will evolve. Here we show widespread drainage of meltwater across the surface of the ice sheet through surface streams and ponds (hereafter ‘surface drainage’) as far south as 85° S and as high as 1,300 metres above sea level. Our findings are based on satellite imagery from 1973 onwards and aerial photography from 1947 onwards. Surface drainage has persisted for decades, transporting water up to 120 kilometres from grounded ice onto and across ice shelves, feeding vast melt ponds up to 80 kilometres long. Large-scale surface drainage could deliver water to areas of ice shelves vulnerable to collapse, as melt rates increase this century. While Antarctic surface melt ponds are relatively well documented on some ice shelves, we have discovered that ponds often form part of widespread, large-scale surface drainage systems. In a warming climate, enhanced surface drainage could accelerate future ice-mass loss from Antarctic, potentially via positive feedbacks between the extent of exposed rock, melting and thinning of the ice sheet.

  16. Global and regional fluxes of carbon from land use and land cover change 1850-2015

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Nassikas, Alexander A.

    2017-03-01

    The net flux of carbon from land use and land cover change (LULCC) is an important term in the global carbon balance. Here we report a new estimate of annual fluxes from 1850 to 2015, updating earlier analyses with new estimates of both historical and current rates of LULCC and including emissions from draining and burning of peatlands in Southeast Asia. For most of the 186 countries included we relied on data from Food and Agriculture Organization to document changes in the areas of croplands and pastures since 1960 and changes in the areas of forests and "other land" since 1990. For earlier years we used other sources of information. We used a bookkeeping model that prescribed changes in carbon density of vegetation and soils for 20 types of ecosystems and five land uses. The total net flux attributable to LULCC over the period 1850-2015 is calculated to have been 145 ± 16 Pg C (1 standard deviation). Most of the emissions were from the tropics (102 ± 5.8 Pg C), generally increasing over time to a maximum of 2.10 Pg C yr-1 in 1997. Outside the tropics emissions were roughly constant at 0.5 Pg C yr-1 until 1940, declined to zero around 1970, and then became negative. For the most recent decade (2006-2015) global net emissions from LULCC averaged 1.11 (±0.35) Pg C yr-1, consisting of a net source from the tropics (1.41 ± 0.17 Pg C yr-1), a net sink in northern midlatitudes (-0.28 ± 0.21 Pg C yr-1), and carbon neutrality in southern midlatitudes.

  17. Influence of glacial meltwater and humidity on evaporation of two Tibetan lakes indicated by delta 18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-04-01

    delta 18O and model results are adopted to study the affects of glacial meltwater and relative humidity in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, the lake water delta 18O of Yamdrok-tso Lake displays a seasonal fluctuation, whereas the lake water delta 18O is stable in Puma Yum-tso Lake in whole year. Spatially, the delta 18O value in Yamdrok-tso Lake is 2‰ higher than that in Puma Yum-tso Lake. delta 18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The largest difference, from the terminus of the Qiangyong Glacier to the depth of 35 m, is 14.1‰ and demonstrates the importance of glacial meltwater. Evaporation alters the changes of delta 18O in the two lake basins. Model results show that relative humidity is a major controlling factor of evaporation. delta 18O values of both Yamdrok-tso and Puma Yum-tso Lakes are at their steady condition, but Puma Yum-tso Lake has taken a longer time to approach the current condition, which might be attributed to higher humidity and more glacial meltwater at the lake.

  18. Two episodes of meltwater influx from glacial Lake Agassiz into the Lake Michigan basin and their climatic contrasts

    USGS Publications Warehouse

    Colman, Steven M.; Keigwin, L.D.; Forester, R.M.

    1994-01-01

    Two episodes of meltwater influx from glacial Lake Agassiz are recorded as prominent sedimentologic, isotopic, magnetic, and faunal signatures in southern Lake Michigan profundal sediments. As a tributary to the main path of eastward Lake Agassiz flow, southern Lake Michigan recorded only the largest, catastrophic discharges. The distinctive Wilmette Bed, a massive gray mud that interrrupts laminated red glaciolacustrine clays, marks the first episode, which occurred near the beginning of the Younger Dryas cooling events. The associated discharge may have played a role in the inception or severity of the Younger Dryas event. An oxygen isotope excursion in biogenic carbonate and changes in ostracode assemblages mark the second episode, which appears to have had at least two pulses, dated by accelerator mass spectrometer 14C ages on biogenic carbonate at about 8.9 and 8.6 ka. The second episode occurred during the early Holocene peak in global meltwater discharge and apparently had little widespread climatic or oceanographic effect. The contrast between the effects associated with these two episodes of meltwater discharge emphasizes the complexity of the ice sheet-ocean-climate system. -Authors

  19. Recent Southern Ocean surface cooling induced by sea-ice freshwater flux changes

    NASA Astrophysics Data System (ADS)

    Haumann, F. Alexander; Münnich, Matthias; Gruber, Nicolas

    2017-04-01

    Despite global warming, large areas of the Southern Ocean surface waters between the sea-ice edge and the Subantarctic Front have been cooling over recent decades. Yet, most global climate models simulate a warming of this region over this period. Here, we investigate the potential sources of the surface cooling by forcing a newly developed regional configuration of the Regional Ocean Modeling System (ROMS) for the Southern Ocean with atmospheric reanalysis data and with recent observation-based estimates of surface fluxes from sea ice and land ice for the period 1982 to 2008. We perform factorial sensitivity experiments in which we perturb either the surface freshwater fluxes or the surface wind stress according to the observed changes. We find that most of the surface cooling could be explained by increased northward freshwater transport by sea ice that freshens the open-ocean around the sea-ice edge in the model. The freshening increases the surface density stratification between the sea-ice edge and the Subantarctic Front that reduces mixing of warmer deep waters into the surface layer in winter. As a result, the surface ocean cools and the subsurface ocean warms significantly, especially in the Pacific sector where the largest sea-ice changes occurred. The spatial pattern of these simulated temperature changes agrees well with the satellite-observed trends and trends derived from ocean in-situ data, suggesting that the observed surface cooling occurs primarily due to an increased sea-ice freshwater flux. In contrast, the surface temperature weakly increases in response to the increased surface wind stress over this period. Overall, we find opposing tendencies induced by the surface wind stress changes and freshwater flux changes in the ocean hydrography. We conclude that the upwelling of deep waters in the Southern Ocean is highly sensitive to the freshwater transport to the sea-ice edge and that this process is a major driver of the observed recent cooling in

  20. Modelling Multidecadal Fluvial Sediment Fluxes to Deltas Under Future Environmental Change

    NASA Astrophysics Data System (ADS)

    Dunn, F. E.; Darby, S. E.; Nicholls, R. J.

    2015-12-01

    As low lying coastal regions deltas are prone to land loss, degradation, and flooding due to relative sea level rise. These processes endanger delta populations and infrastructure, a situation which is increasingly exacerbated by anthropogenic activities. The flux of fluvial sediment to deltas is a first order control on delta aggradation and thus the potential for the surface elevation of a delta to be maintained or rise relative to sea level. Aggradation may occur without anthropogenic interference, but it can also be induced by controlled flooding. This research investigates how future environmental changes through to 2100 will influence fluvial sediment delivery to a selection of 10 vulnerable deltas, thereby contributing to the understanding of relative sea level change projections for these fragile coastal systems. The key environmental changes investigated in this study include anthropogenic climate change, reservoir construction, and land cover changes induced by changes in agricultural practices and vegetation cover. The effects of these environmental changes on fluvial sediment delivery are being evaluated using the catchment numerical model WBMsed, which is being calibrated for the selection of deltas using historical reference data. As a test case, the inputs for modelling current and future sediment fluxes to the Ganges-Brahmaputra-Meghna delta are refined using economic and population projections as proxies for anthropogenic influences on delta catchments. This research will contribute to the prognosis for vulnerable deltas and inform their short- and long-term management by indicating the consequences of anthropogenic activities which affect delta elevation and sustainability via altering fluvial sediment processes. While this could give forewarning for the residents and managers of unsustainable deltas, it could also be used as an argument for or against various anthropogenic activities.

  1. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  2. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Zhengrong; Raub, Timothy D.; Macdonald, Francis A.; Evans, David A. D.

    2014-10-01

    Neoproterozoic cap carbonates host distinctive geochemical and sedimentological features that reflect prevailing conditions in the aftermath of Snowball Earth. Interpretation of these features has remained contentious, with hypotheses hinging upon timescale and synchronicity of deposition, and whether or not geochemical signatures of cap carbonates represent those of a well-mixed ocean. Here we present new high-resolution Sr and Mg isotope results from basal Ediacaran cap dolostones in South Australia and Mongolia. Least-altered Sr and Mg isotope compositions of carbonates are identified through a novel incremental leaching technique that monitors the purity of a carbonate sample and the effects of diagenesis. These data can be explained by the formation of these cap dolostones involving two chemically distinct solutions, a glacial meltwater plume enriched in radiogenic Sr, and a saline ocean residue with relatively lower 87Sr/86Sr ratios. Model simulations suggest that these water bodies remained dynamically stratified during part of cap-dolostone deposition, most likely lasting for ∼8 thousand years. Our results can potentially reconcile previous conflicts between timescales estimated from physical mixing models and paleomagnetic constraints. Geochemical data from cap carbonates used to interpret the nature of Snowball Earth and its aftermath should be recast in terms of a chemically distinct meltwater plume.

  3. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland

    NASA Astrophysics Data System (ADS)

    Deng, Jia; Li, Changsheng; Frolking, Steve

    2015-07-01

    Northern peatlands have accumulated a large amount of organic carbon (C) in their thick peat profile. Climate change and associated variations in soil environments are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is still highly uncertain. Verifying and understanding the influences of changes in environmental factors on C gas fluxes in biogeochemical models are essential for forecasting feedbacks between C gas fluxes and climate change. In this study, we applied a biogeochemical model, DeNitrification-DeComposition (DNDC), to assess impacts of air temperature (TA) and water table (WT) on C gas fluxes in an Alaskan peatland. DNDC was validated against field measurements of net ecosystem exchange of CO2 (NEE) and CH4 fluxes under manipulated surface soil temperature and WT conditions in a moderate rich fen. The validation demonstrates that DNDC was able to capture the observed impacts of the manipulations in soil environments on C gas fluxes. To investigate responses of C gas fluxes to changes in TA and soil water condition, we conducted a series of simulations with varying TA and WT. The results demonstrate that (1) uptake rates of CO2 at the site were reduced by either too colder or warmer temperatures and generally increased with increasing soil moisture; (2) CH4 emissions showed an increasing trend as TA increased or WT rose toward the peat surface; and (3) the site could shift from a net greenhouse gas (GHG) sink into a net GHG source under some warm and/or dry conditions. A sensitivity analysis evaluated the relative importance of TA and WT to C gas fluxes. The results indicate that both TA and WT played important roles in regulating NEE and CH4 emissions and that within the investigated ranges of the variations in TA and WT, changes in WT showed a greater impact than changes in TA on NEE, CH4 fluxes, and net C gas fluxes at the study fen.

  4. A fully automated meltwater monitoring and collection system for spatially distributed isotope analysis in snowmelt-dominated catchments

    NASA Astrophysics Data System (ADS)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2016-04-01

    In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter

  5. Lithologic controls on solute flux responses to climate change:A field and laboratory experimental approach

    NASA Astrophysics Data System (ADS)

    Dixon, John

    2017-04-01

    The impact of global warming is predicted to be greatest in Arctic and Alpine Environments. Increasing temperatures, and accompanying increasing precipitation, are likely to increase chemical erosion and solute fluxes in these environments. Field and laboratory experiments from Swedish Lapland demonstrate measurable responses to increasing temperature and precipitation over decadal scales. Additionally, CO2 flow-through experiments demonstrate 2-3-fold increases in solute output in response to 1-3 fold increase in CO2, the principal driver of global warming. Results of these experiments suggest considerable variability depending on lithologic setting. Sedimentary rocks demonstrate greater magnitudes of change than igneous and metamorphic lithologies. Surface fragment and subsurface weathering disk field experiments in Lapland using three different lithologies over a decade-long duration demonstrate statistically significant differences in weathering rates between the first and second half-decade periods of the study. Mean annual temperature and precipitation of the second half decade are statistically significantly greater than those of the first half decade. Limestone and dolomite lithologies showed statistically greater mass loss in the second decade compared to the first. The granite lithology showed little difference. Laboratory-based CO2 flow-through experiments using carbonate, and schist lithologies from the same valley demonstrate a two to three-fold increase in potassium and nitrogen (ammonium) production accompanying a tripling of CO2 through-flow. The strongest response in these experiments interestingly is from the schists compared to the carbonate. The results of these experiments suggest that the response of solute fluxes to global warming and CO2 driving in Arctic and Alpine environments may be strongly influenced by lithology. The solute flux response to changing environmental conditions may not be singularly uniform, but rather may exhibit

  6. Simultaneous measurement of changes in current and tracer flux in voltage-clamped squid giant axon.

    PubMed

    Rakowski, R F

    1989-04-01

    A method is described for the simultaneous measurement of changes in membrane current and unidirectional radiotracer flux in internally dialyzed voltage-clamped squid giant axons. The small currents that are produced by electrogenic transport processes or steady-state ionic currents can be resolved using this method. Because the use of grounded guard electrodes in the end pools is not, by itself, an adequate means of eliminating end-effects, two ancillary end pool clamp circuits are described to eliminate extraneous current flow from the ends of the axon. The end pool voltage-clamp circuits serve to minimize net current flow between the end pools and center pool, and employ stable, low-impedance calomel electrodes to monitor the potentials of the end and center pools. The adequacy of the method is demonstrated by experiments in which unidirectional 22Na efflux and current, flowing through tetrodotoxin (TTX)-sensitive Na channels into Na-free seawater, under K-free conditions, are shown to be equal. The equality of unidirectional TTX-sensitive flux and current is maintained over the entire range of membrane potentials examined (-60 to +20 mV). The method has been applied to a series of experiments in which the voltage dependence and stoichiometry of the Na/K pump have been measured (Rakowski et al., 1989), and can be applied in general to the simultaneous measurement of changes in current and flux of other electrogenic transport processes, and of currents through ionic channels that open under steady-state conditions.

  7. Motion and Magnetic Flux Changes of Coronal Bright Points Relative to Supergranular Cell Boundaries

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Safari, H.; Attie, R.; Alipour, N.

    2016-01-01

    To calculate the magnetic flux and the horizontal movement of coronal bright points (CBPs) in relation to supergranular cell boundaries, the time series of the SDO/HMI visible-light continuum images and SDO/AIA EUV images for 13 February 2011 have been studied. The supergranular lanes were detected in HMI continuum images using the automatic supergranular cell recognition method. The automatic identification and tracking method was applied for detecting the CBPs in AIA 193 Å images. By applying the ball-tracking method on HMI continuum images, the underlying flow fields were determined. By using the velocity fields and the automatic supergranular cell recognition method, the lanes and boundaries were detected. The locations of CBPs were projected on the photospheric co-spatial and co-temporal images. We found that about 90 % of the locations of CBPs correspond to the lane of the supergranular cell boundaries (network CBPs or NCBPs) of which about 40 % of them appeared at junctions. The remaining 10 % appeared within the supergranular regions (internetwork CBPs or INCBPs). The horizontal velocities for NCBPs and INCBPs were about 1.6±0.1 km s^{-1} and 1.7±0.1 km s^{-1}, respectively. Using the magnetic field extrapolation, we were able to detect the bipoles underlying CBPs, and we studied their magnetic evolution. The orientation of CBPs observed in the 171, 193, and 211 Å images and the orientation of their magnetic bipoles are positively correlated. For out of 50 INCBPs, 54 % showed cancellation, 32 % emergence, and 12 % complex flux changes. Out of 90 NCBPs, 60 % presented cancellation, 20 % showed emergence, and 20 % showed complex flux changes.

  8. Changes in SO2 flux degassing regime prior to the 2014 Stromboli eruption

    NASA Astrophysics Data System (ADS)

    Tamburello, Giancarlo; Delle Donne, Dario; Ripepe, Maurizio; Bitetto, Marcello; Cosenza, Paolo; Giudice, Gaetano; Riccobono, Giuseppe; Aiuppa, Alessandro

    2015-04-01

    Volcanic eruptions are often accompanied by release of huge amounts of magmatic SO2. Capturing sizeable precursory SO2 flux variations prior to eruption has revealed far more challenging, instead, in spite of the recent progresses in instrumental gas monitoring. Here, we report on the SO2 fluxes variations we detected at Stromboli volcano prior to the effusive eruption started on the 6th August 2014. The SO2 fluxes were regularly quantified at high-rate (0.5 Hz) using two fully autonomous permanent SO2 camera devices installed - within the framework the ERC-FP7 project "Bridge"- at two sites located at 0.5 km (Roccette) and 1.75 km (Sciara del Fuoco rim) distance from the crater terrace. This system provided sufficient spatial resolution, (~0.4 m) to allow for separate evaluation of gas emissions from the centrals/NE craters (CC and NEC, ~150 t/d on average) and from the northern hornitos (NH, ~15 t/d on average) that was active in summer 2014. Notwithstanding its marginal contribution to the total SO2 flux, the NH was vigorously active before the effusive eruption onset, and produced a large number of ash-free explosions, which individual SO2 output was easily measurable at high sampling rate with the SO2 cameras. From the beginning of June 2014, the NH exhibited a progressive increase of its explosive SO2 release (from ~1 t/d up to ~5 t/d) which culminated in correspondence with a sequence of lava overflows on the beginning of July 2014. A notable correlation between the explosive degassing pattern and co-acquired acoustic pressure and satellite-derived Volcanic Radiative Power was observed. The relative contributions of the individual degassing craters to the total gas emissions varied in response to the displacement of the magma level within the conduits, with the largest SO2 fluxes being observed during lava overflows. Our results here indicate detectable changes in the relative gas contribution from the different craters and in their degassing modes, although

  9. Developing an Understanding of Vegetation Change and Fluvial Carbon Fluxes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Puttock, A.; Brazier, R. E.; Dungait, J. A. J.; Bol, R.; Macleod, C. J. A.

    2012-04-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterised by the invasion of woody vegetation into grasslands. Transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events over six bounded plots with different vegetation coverage. The experiment takes advantage of a natural abundance stable 13C isotope shift from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentata). Data collected quantify fluvial fluxes of sediment and associated soil organic matter and carbon that is lost from across the grass-to-shrub and grass-to-woodland transition (where change in space is taken to indicate a similar change through time). Results collected during the 2010 and 2011 monsoon seasons will be presented, illustrating that soil and carbon losses are greater as the ecosystem becomes more dominated by woody plants. Additionally this project utilises novel

  10. Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach

    NASA Astrophysics Data System (ADS)

    Collier, E.; Nicholson, L. I.; Brock, B. W.; Maussion, F.; Essery, R.; Bush, A. B. G.

    2014-08-01

    Due to the complexity of treating moisture in supraglacial debris, surface energy balance models to date have neglected moisture infiltration and phase changes in the debris layer. The latent heat flux (QL) is also often excluded due to the uncertainty in determining the surface vapour pressure. To quantify the importance of moisture on the surface energy and climatic mass balance (CMB) of debris-covered glaciers, we developed a simple reservoir parameterization for the debris ice and water content, as well as an estimation of the latent heat flux. The parameterization was incorporated into a CMB model adapted for debris-covered glaciers. We present the results of two point simulations, using both our new "moist" and the conventional "dry" approaches, on the Miage Glacier, Italy, during summer 2008 and fall 2011. The former year coincides with available in situ glaciological and meteorological measurements, including the first eddy-covariance measurements of the turbulent fluxes over supraglacial debris, while the latter contains two refreeze events that permit evaluation of the influence of phase changes. The simulations demonstrate a clear influence of moisture on the glacier energy and mass-balance dynamics. When water and ice are considered, heat transmission to the underlying glacier ice is lower, as the effective thermal diffusivity of the saturated debris layers is reduced by increases in both the density and the specific heat capacity of the layers. In combination with surface heat extraction by QL, subdebris ice melt is reduced by 3.1% in 2008 and by 7.0% in 2011 when moisture effects are included. However, the influence of the parameterization on the total accumulated mass balance varies seasonally. In summer 2008, mass loss due to surface vapour fluxes more than compensates for the reduction in ice melt, such that the total ablation increases by 4.0%. Conversely, in fall 2011, the modulation of basal debris temperature by debris ice results in a decrease

  11. Enigmatic mounds in 'Subglacial Meltwater Corridors' on the Canadian Shield: a record of channelised, subglacial meltwater drainage during Laurentide deglaciation

    NASA Astrophysics Data System (ADS)

    Haiblen, Anna; Ward, Brent; Normandeau, Philippe; Campbell, Janet

    2017-04-01

    Esker networks have traditionally been invoked to represent the channelised subglacial drainage system in shield terrains. However, eskers are only one landform found within 'subglacial meltwater corridors' (SMCs) on the Canadian Shield. SMCs are tracts where till has been eroded, bedrock is exposed, and glaciofluvial sediments have been deposited. SMCs are regularly spaced, parallel deglacial ice-flow directions, have undulating longitudinal profiles, and cross modern drainage divides. Our lidar- and field-based mapping near Lac de Gras, Northwest Territories, west of the Keewatin Ice Divide (KID), reveals that eskers are not present in the majority of SMCs. Instead, enigmatic mounds are commonly the dominant landform type. Enigmatic mounds typically occur in groups of 20 to 200. They are commonly composed of sandy diamicton that is coarser grained and better sorted than regional till. This diamicton is occasionally draped with well-sorted, stratified glaciofluvial sediments. Some enigmatic mounds have a single highpoint (individual mounds) while others have a complex, irregular form (complex mounds). Individual mounds have an average long-axis length of 43 m and an average height of < 2 m, however, their size is highly variable: the largest mounds are 170 m long and 15 m high. Complex mounds are typically larger than individual mounds. Our morphometric analysis shows that individual mounds have a mean length-to-width ratio of 1.8. The average mound elongation direction parallels the final ice flow that affected the area. However, where meltwater- and ice-flow directions differ, mound long-axis orientations typically cluster about meltwater flow directions. We have also observed SMCs and enigmatic mounds in the South Rae region of Northwest Territories, 450 km SE of Lac de Gras. Multiple types of enigmatic mounds are present in this area: some are similar to those near Lac de Gras, some are composed of till, and some are composed of sorted and stratified sediments

  12. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

  13. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  14. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    PubMed

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO2 pulse, a rapid excitation in soil CO2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest. Soil CO2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO2 from litter layer only accounted for ~19% increases in soil CO2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO2 pulse. In addition, rain-induced changes in soil CO2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO2 pulses and microbial community composition, and may have significant implications for CO2 losses from tropical forest soils under future rainfall changes.

  15. Identifying Glacial Meltwater Sources in Greenland using Noble Gases as Tracers

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Castro, M. C.; Aciego, S.; Hall, C. M.; Stevenson, E. I.; Arendt, C. A.; Das, S. B.

    2015-12-01

    We present a noble gas study in glacial meltwater (GMW) from the Greenland Ice Sheet. It explores the information noble gases can provide in glacial environments with respect to GMW sources, relative source contributions, water residence times, and spatial locations where this GMW originates within the ice sheet. This study seeks to improve our understanding of the dynamics of the ice sheets, critical for the major role they play in climate change. This is possible due to the conservative nature of noble gases and the temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) which allows estimation of the altitude at which GMW originated. In addition, crustal He accumulates in water over time, allowing for estimation of water residence times. GMW samples were collected at five locations in southern Greenland. Results show that the major source of subglacial meltwater is ASW rather than old, compressed glacial ice, which has a distinct noble gas signature not seen in our samples. Given that, GMW samples do deviate to a certain extent from ASW, with concentrations displaying two distinct patterns. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, first observed in high-altitude springs in the Galápagos Islands (Warrier et al., 2012). The second one displays a mass-dependent pattern, first observed in Michigan rainwater (Warrier et al., 2013). Ne and Xe analysis suggests that about half of the samples equilibrated at a temperature of ~0°C and altitudes between 1 km and 2 km, with a few samples pointing to lower equilibration altitudes and temperatures between 2°C and 5°C. Two samples suggest an origin as melted ice and lack of equilibration with surface conditions. He concentrations vary between 1.1 and 7 times that of ASW and suggest glacial meltwater ages between 100 and 3600 yrs, a result that is consistent with a preliminary 3H analysis. References: Warrier, R. B., Castro, M. C., and Hall, C

  16. Drivers of potential GHG fluxes under bioenergy land use change in the UK

    NASA Astrophysics Data System (ADS)

    Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall

    2013-04-01

    The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and

  17. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram

    2016-03-01

    Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  18. Assessment of climate change impacts on diffuse nutrient and pesticide fluxes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Arabi, M.; Records, R.; Ahmadi, M.

    2012-12-01

    The study aims to assess the potential impacts of the changing climate on pollutant fluxes including sediment, phosphorus, nitrogen, and atrazine at the watershed scale over the 21st century. Specific objectives are (i) to understand changes in climatic conditions under a comprehensive set of 112 climate projections consistent with Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC-SRES) emission pathways and models; (ii) to fully enumerate and synthesize hydrologic and water quality responses to projected climate scenarios; and (iii) to investigate changes in dissolved and particulate water quality constituents. These objectives were investigated in a predominantly agricultural watershed in the Midwestern United States. The hydrologic model Soil and Water Assessment Tool (SWAT) was utilized to represent processes governing hydrology and water quality within the watershed. The SWAT model was driven with a suite of 112 distinct dynamically downscaled climate projections representing IPCC-SERES low, moderate, and high greenhouse gas emission pathways. Statistical downscaling procedures were used to derive daily climatic values for meteorological stations in the study area from grid-based dynamically downscaled monthly predictions. Predicted changes in hydroclimatic, nutrient, and pesticide fluxes under the 112 distinct simulations were then analyzed by emission pathway ensemble and characterized over early-, mid-, and late-century assessment periods (2015-2034, 2045-2064, and 2080-2099). Clear warming trends were apparent for temperature, while increases in precipitation were insignificant. Stream discharge, sediment yield, and total nutrient yields did not differ significantly between assessment periods, although atrazine yields were predicted to be slightly greater by late-century. However, the proportion of dissolved to total nutrients increased, with nitrate and soluble phosphorus yields increasing significantly between early

  19. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    SciTech Connect

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; Ciais, Philippe; Ichii, Kazuhito; Tian, Hanqin; Kondo, Masayuki; Piao, Shilong; Arneth, Almut; Harper, Anna B.; Ito, Akihiko; Kato, Etsushi; Koven, Charlie; Sitch, Stephen; Stocker, Benjamin D.; Vivoy, Nicolas; Wiltshire, Andy; Zaehle, Sönke; Poulter, Benjamin

    2016-07-08

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr-1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr-1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.

  20. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    DOE PAGES

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; ...

    2016-07-08

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and Southmore » Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr-1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr-1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.« less

  1. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of carbon dioxide.

    NASA Astrophysics Data System (ADS)

    van Gorsel, E.; Delpierre, N.; Leuning, R.

    2009-04-01

    Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (2007, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (Fc) and change in storage (Fs) of CO2 in the few hours after sundown. The sum of Fc and Fs reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of night time ecosystem respiration.

  2. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2

    SciTech Connect

    Gu, Lianhong; Van Gorsel, Eva; Leuning, Ray; Delpierre, Nicolas; Black, Andy; Chen, Baozhang; Munger, J. William; Wofsy, Steve; Aubinet, M.

    2009-11-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime

  3. Regional carbon fluxes from land use and land cover change in Asia, 1980-2009

    NASA Astrophysics Data System (ADS)

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; Ciais, Philippe; Ichii, Kazuhito; Tian, Hanqin; Kondo, Masayuki; Piao, Shilong; Arneth, Almut; Harper, Anna B.; Ito, Akihiko; Kato, Etsushi; Koven, Charlie; Sitch, Stephen; Stocker, Benjamin D.; Vivoy, Nicolas; Wiltshire, Andy; Zaehle, Sönke; Poulter, Benjamin

    2016-07-01

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the ‘Houghton’ bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980-1989, 1990-1999 and 2000-2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%-40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%-25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr-1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr-1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990-2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.

  4. Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica.

    PubMed

    Kohler, Tyler J; Van Horn, David J; Darling, Joshua P; Takacs-Vesbach, Cristina D; McKnight, Diane M

    2016-04-01

    Microbial mats are abundant in many alpine and polar aquatic ecosystems. With warmer temperatures, new hydrologic pathways are developing in these regions and increasing dissolved nutrient fluxes. In the McMurdo Dry Valleys, thermokarsting may release both nutrients and sediment, and has the potential to influence mats in glacial meltwater streams. To test the role of nutrient inputs on community structure, we created nutrient diffusing substrata (NDS) with agar enriched in N, P and N + P, with controls, and deployed them into two Dry Valley streams. We found N amendments (N and N + P) to have greater chlorophyll-a concentrations, total algal biovolume, more fine filamentous cyanobacteria and a higher proportion of live diatoms than other treatments. Furthermore, N treatments were substantially elevated in Bacteroidetes and the small diatom, Fistulifera pelliculosa. On the other hand, species richness was almost double in P and N + P treatments over others, and coccoid green algae and Proteobacteria were more abundant in both streams. Collectively, these data suggest that nutrients have the potential to stimulate growth and alter community structure in glacial meltwater stream microbial mats, and the recent erosion of permafrost and accelerated glacial melt will likely impact resident biota in polar lotic systems here and elsewhere.

  5. Longitudinal Inter-Comparison of Modeled and Measured West Greenland Ice Sheet Meltwater Runoff Losses (2004-2014)

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Overeem, I.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.

    2015-12-01

    Increased surface meltwater runoff, that exits the Greenland ice sheet (GrIS) margin via supra-, en-, and sub-glacial drainage networks into fjords, pro-glacial lakes and rivers, accounts for half or more of total mass loss. Despite its importance, modeled meltwater runoff fluxes are poorly constrained, primarily due to a lack of direct in situ observations. Here, we present the first ever longitudinal (north-south) inter-comparison of a multi-year dataset (2004-2014) of discharge for four drainage basins - Watson, Akuliarusiarsuup Kuua, Naujat Kuat, and North Rivers - along West Greenland. These in situ hydrologic measurements are compared with modeled runoff output from Modèle Atmosphérique Régional (MAR) regional climate model, and the performance of the model is examined. An analysis of the relationship between modeled and actual ice sheet runoff patterns is assessed, and provides insight into the model's ability to capture inter-annual and intra-annual variability, spatiotemporal patterns, and extreme melt events. This study's findings will inform future development and parameterization of ice sheet surface mass balance models.

  6. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change.

    PubMed

    Fleischer, Elisa; Khashimov, Ilhom; Hölzel, Norbert; Klemm, Otto

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Relationship between methane flux and peatland water-table and the feedback to global climate change

    SciTech Connect

    Braunschweig, A.M. )

    1993-06-01

    This field study examined the relationship between methane flux and peatland water-table height while limiting variation of other factors. My goal was to quantify the feedback that water-table drawdown, as-predicted by global climate change, will have on methane emission. Closed-chamber ground measurements were used from June through October to quantify methane emission from one drained and one undrained forested sphagnum bog in Minnesota. Water-table height in the drained bog varied, along a water-table gradient, from [minus]60 cm to [minus]5 cm (1991) and [minus]45 cm to +14 cm (1992). Water-table height in the undrained peatland ranged, on hummocks, hollows, and flooded bog corrals, from [minus]29 cm to +10 cm (1992). Mean methane emission in the drained bog was 11.2 mg CH[sub 4] m[sup [minus]2] day[sup [minus]1] (1991) and 14.3 mg CH[sub 4]m[sup [minus]2] day[sup [minus]1] (1992). Mean methane emission in the undrained bog was 99.1 mg CH[sub 4] m[sup [minus]2] day[sup [minus]1] (1992). A significant positive relationship was found between 1n (methane flux) and pleated water-table. This relationship implies a negative feedback to global warming. The results of this study suggest that the first stages in water-table drawdown will be the most significant in reducing methane emission from peatlands.

  8. The influence of meltwater on the thermal structure and flow of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Poinar, Kristin

    As the climate has warmed over the past decades, the amount of melt on the Greenland Ice Sheet has increased, and areas higher on the ice sheet have begun to melt regularly. This increase in melt has been hypothesized to enhance ice flow in myriad ways, including through basal lubrication and englacial refreezing. By developing and interpreting thermal ice-sheet models and analyzing remote sensing data, I evaluate the effect of these processes on ice flow and sea-level rise from the Greenland Ice Sheet. I first develop a thermal ice sheet model that is applicable to western Greenland. Key components of this model are its treatment of multiple phases (solid ice and liquid water) and its viscosity-dependent velocity field. I apply the model to Jakobshavn Isbrae, a fast-flowing outlet glacier. This is an important benchmark for my model, which I next apply to the topics outlined above. I use the thermal model to calculate the effect of englacial latent-heat transfer (meltwater refreezing within englacial features such as firn and crevasses) on ice dynamics in western Greenland. I find that in slow-moving areas, this can significantly warm the ice, but that englacial latent heat transfer has only a minimal effect on ice motion (60%) of the ice flux into the ocean, evidence of deep englacial warming is virtually absent. Thus, the effects of englacial latent heat transfer on ice motion are likely limited to slow-moving regions, which limits its importance to ice-sheet mass balance. Next, I couple a model for ice fracture to a modified version of my thermal model to calculate the depth and shape evolution of water-filled crevasses that form in crevasse fields. At most elevations and for typical water input volumes, crevasses penetrate to the top ~200--300 meters depth, warm the ice there by ~10°C, and may persist englacially, in a liquid state, for multiple decades. The surface hydrological network limits the amount of water that can reach most crevasses. We find that

  9. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    SciTech Connect

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  10. The response of methane and nitrous oxide fluxes to forest change in Europe

    NASA Astrophysics Data System (ADS)

    Gundersen, P.; Christiansen, J. R.; Alberti, G.; Brüggemann, N.; Castaldi, S.; Gasche, R.; Kitzler, B.; Klemedtsson, L.; Lobo-do-Vale, R.; Moldan, F.; Rütting, T.; Schleppi, P.; Weslien, P.; Zechmeister-Boltenstern, S.

    2012-10-01

    Forests in Europe are changing due to interactions between climate change, nitrogen (N) deposition and new forest management practices. The concurrent impact on the forest greenhouse gas (GHG) balance is at present difficult to predict due to a lack of knowledge on controlling factors of GHG fluxes and response to changes in these factors. To improve the mechanistic understanding of the ongoing changes, we studied the response of soil-atmosphere exchange of nitrous oxide (N2O) and methane (CH4) at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations, one or more per site, included N addition (4 sites), changes of climate (temperature, 1 site; precipitation, 2 sites), soil hydrology (3 sites), harvest intensity (1 site), wood ash fertilisation (1 site), pH gradient in organic soil (1 site) and afforestation of cropland (1 site). On average, N2O emissions increased by 0.06 ± 0.03 (range 0-0.3) g N2O-N m-2 yr-1 across all treatments on mineral soils, but the increase was up to 10 times higher in an acidic organic soil. Soil moisture together with mineral soil C / N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions were increased by elevated N deposition, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions. Oxidation (uptake) of CH4 was on average reduced from 0.16 ± 0.02 to 0.04 ± 0.05 g CH4-C m-2 yr-1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C / N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions. For most of the investigated forest manipulations or natural gradients, the response of both N2O and CH4 fluxes was towards reducing the overall GHG forest sink. The most resilient forests were dry Mediterranean forests, as well as forests with high

  11. Moisture fluxes towards Switzerland: investigating future changes in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Fazan, Valerie; Martius, Olivia; Martynov, Andrey; Panziera, Luca

    2017-04-01

    High integrated vapor transport (IVT) in the atmosphere directed perpendicular to the orography is an important proxy for flood related precipitation in many mountainous areas around the world. Here we focus on flood related IVT and its changes in a warmer climate in Switzerland, where most high-impact floods events in the past 30 years were connected to exceptional IVT upstream of the mountains. Our study aims at investigating how these critical IVT values are projected to evolve in the future in a changing climate. The IVT is computed from 15 CMIP5 climate models for the past (1950-2005) and the future (2006-2100) under the RCP 8.5 scenario ("business as usual"). In order to check the accuracy of the models and the effect of the varying resolution, present day IVT from the CMIP5 models is compared with the ERA-Interim reanalysis data (period 1979-2015). A quantile mapping technique is then used to correct biases. The same bias corrections are applied to the future (2006-2100) IVT data. Finally, future changes in extreme IVT are investigated. This includes an analysis of changes in the magnitude and direction of the moisture flux in the different seasons for different regions in Switzerland.

  12. Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal).

    PubMed

    Rafael, S; Martins, H; Marta-Almeida, M; Sá, E; Coelho, S; Rocha, A; Borrego, C; Lopes, M

    2017-05-01

    Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were applied for two climatological scenarios: a present (or reference, 1986-2005) scenario and a future scenario (2046-2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Orbital Forcing of High Elevation Meltwater Events along the Periphery of East Antarctica

    NASA Astrophysics Data System (ADS)

    Kowalewski, D. E.; Lewis, A. R.; Lepper, K. E.; Willenbring, J. K.; Zamora, F. J.; Valletta, R. D.; Johnson, J. V.

    2015-12-01

    Detailed studies of surface processes and landforms in periglacial environments have proven successful in unraveling the timing and duration of small-scale temperature shifts. Here, we use alluvial fans in the high elevations of the McMurdo Dry Valleys (MDV) of Antarctica as a novel proxy for climate change in the MDV. Alluvial fan depositional events require sufficient melting of the alcove snow (or ice) to enable sediment transport. Under current climate conditions the alluvial fans appear inactive, as there exists insufficient energy for adequate snowmelt. Hence, fan activation suggests times when climate conditions favor meltwater production (i.e. elevated temperatures). Our study reconstructs the depositional history of five high-elevation alluvial fans in the MDV by dating individual sedimentary units using optically stimulated luminescence (OSL). Ages of deposition appear clustered with two groupings in the Holocene and one cluster of deposits slightly older (~14-16ka). We identified high-elevation alluvial fan deposition is sensitive to long duration, low intense summers consistent with previous studies showing increase in cumulative positive degree days to be the primary driver for the terrestrial ice sheets and a warmer Antarctica. Alluvial fan deposition also occurs with short, high insolation summers; a forcing that is secondary or possibly lost in ice sheet or MDV alpine glacier fluctuation. The discovery of repeated high-elevation inland warming evident by meltwater events in the Holocene is unexpected when compared with the nearby geomorphic features including buried ice, rectilinear slopes, and paleosols that appear unmodified for millions of years. We are hopeful the inland alluvial fans will provide controls into the precise climatic conditions required to support surficial melting of the nearby East Antarctic Ice Sheet during times of high insolation or Quaternary interglacials.

  14. Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica: Ecosystems Waiting for Water

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Gooseff, M.; Cozzetto, K.

    2007-12-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12 weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone, evident as a damp area underneath and adjacent to the stream. The lower boundary of the hyporheic zone is determined by the depth to permafrost. On sunny days, stream temperatures can reach 15 °C, and advection of this warm water can erode the frozen lower boundary of the hyporheic zone. In cold summers, streamflow is fed mostly by melt from the faces of the source glaciers and a large portion of this meltwater may be stored in the hyporheic zone and then lost through sublimation, rather than discharged to the lakes. Some streams have thriving microbial mats composed of cyanobacteria and diatoms. These mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cynaobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of stream ecosystems to climatic and geomorphological change.

  15. Deglacial Record in the Illinois River Valley Explains Asynchronous Phases of Meltwater Pulses and Clay Mineral Excursions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    One prominent event of the Bølling/Allerød (B/A) interstadial was the large meltwater release to global oceans. The Laurentide Ice Sheet (LIS) is usually considered the main source. But, the large LIS meltwater discharge conflicts with the marine record showing an active North Atlantic meridional overturning circulation (AMOC) during the B/A interval. Continuous dune-lacustrine successions in the Illinois River Valley (IRV) have shown complete records of the last deglacial chronozones. Their grain-size distributions and accurate B/A age 14C dates of plant fossils from 15 m deep lacustrine sediment in the IRV suggest that most of the IRV and parts of the adjacent upland were inundated by water. The inundation was caused by a sediment dam interpreted to have been constructed and followed by a breach at the confluence of the Mississippi and Illinois Rivers during the B/A interval due to sediment mobilization by the large meltwater release. The grain size distributions correlate with meltwater pulses and mineralogical excursions in sediments from the Gulf of Mexico (GOM) very well. The blockage and release of illite and chlorite rich fine-grained sediments from the Lake Michigan basin changed the relative abundance of clay minerals and thus the ratio of smectite/(illite + chlorite) in the sediment of the GOM. This finding explains why the meltwater episodes from the LIS and the associated detrital discharges are not synchronous in the sediments in the GOM. The finding also ties meltwater pulses and associated detrital discharges in the GOM closely to the LIS discharges via the Mississippi River Valley on chronozonal scales. Three arguments can be made from this result: 1) unaffected AMOC during B/A interval resulted potentially from the hyperpycnal inflow into the GOM floor; 2) limited volume of the meltwater discharge did not significantly influence the AMOC; and 3) the freshwater input into the GOM from the LIS at this particular location did not significantly

  16. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems

    PubMed Central

    Atwood, T. B.; Hammill, E.; Kratina, P.; Greig, H. S.; Shurin, J. B.; Richardson, J. S.

    2015-01-01

    Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration. PMID:26631247

  17. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems.

    PubMed

    Atwood, T B; Hammill, E; Kratina, P; Greig, H S; Shurin, J B; Richardson, J S

    2015-12-01

    Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration. © 2015 The Author(s).

  18. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean

    NASA Astrophysics Data System (ADS)

    Bhatia, Maya P.; Kujawinski, Elizabeth B.; Das, Sarah B.; Breier, Crystaline F.; Henderson, Paul B.; Charette, Matthew A.

    2013-04-01

    The micronutrient iron is thought to limit primary productivity in large regions of the global ocean. Ice sheets and glaciers have been shown to deliver bioavailable iron to the coastal and open ocean in the form of sediment released from the base of icebergs and glacially derived dust. More direct measurements from glacial runoff are limited, but iron concentrations are thought to be in the nanomolar range. Here we present measurements of dissolved and particulate iron concentrations in glacial meltwater from the southwest margin of the Greenland ice sheet. We report micromolar concentrations of dissolved and particulate iron. Particulate iron concentrations were on average an order of magnitude higher than those of dissolved iron, and around 50% of this particulate iron was deemed to be potentially bioavailable, on the basis of experimental leaching. If our observations are scalable to the entire ice sheet, then the annual flux of dissolved and potentially bioavailable particulate iron to the North Atlantic Ocean would be approximately 0.3Tg. This is comparable to dust-derived soluble iron inputs to the North Atlantic. We suggest that glacial runoff serves as a significant source of bioavailable iron to surrounding coastal oceans, which is likely to increase as melting of the Greenland ice sheet escalates under climate warming.

  19. Developing an Understanding of Vegetation Change and Fluvial Carbon Fluxes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Puttock, A. K.; Dungait, J.; Bol, R.; MacLeod, C. J.; Brazier, R.

    2011-12-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterized by the invasion of woody vegetation into grasslands. Transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events over six bounded plots with different vegetation coverage. The experiment takes advantage of a natural abundance stable 13C isotope shift from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentate). Data collected quantify fluvial fluxes of sediment and associated soil organic matter and carbon that is lost from across the grass-to-shrub and grass-to-woodland transition (where change in space is taken to indicate a similar change through time). Results collected during the 2010 and 2011 monsoon seasons will be presented, illustrating that soil and carbon losses are greater as the ecosystem becomes more dominated by woody plants. Additionally this project utilises novel

  20. Determination of the magnetocaloric entropy change by field sweep using a heat flux setup

    SciTech Connect

    Monteiro, J. C. B. Reis, R. D. dos; Mansanares, A. M.; Gandra, F. G.

    2014-08-18

    We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. We found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.

  1. Influence of stem temperature changes on heat pulse sap flux density measurements.

    PubMed

    Vandegehuchte, Maurits W; Burgess, Stephen S O; Downey, Alec; Steppe, Kathy

    2015-04-01

    While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and Tmax methods changes in stem temperatures of up to 0.002 °C s(-1) did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A Double Dusty Dilemma - IRAC Flux Changes in Circumbinary Debris Disk

    NASA Astrophysics Data System (ADS)

    Parsons, Steven; Farihi, Jay; Gaensicke, Boris

    2015-10-01

    We have serendipitously discovered the first metal-polluted white dwarf with what appears to be a circumbinary dust disk. Both the atmospheric metals and infrared excess were found by our team a few years ago, but only recently did we (surprisingly!) identify a spectroscopic periodicity of 2.27 hr which unambiguously identifies this peculiar system as a close binary. Most remarkable for this proposal is that the system must be dynamically unstable, as a companion and canonical (flat, opaque) dust disk occupy overlapping orbital regions. We thus strongly suspected the system must be in a state of relatively rapid change, and recent DDT observations confirmed our hypothesis. We now propose to observe the system over a complete binary orbit to further constrain the changes in infrared flux, and to distentangle dust emission variability from any changes induced by the binary orbit itself. Micron-size dust grains should be subject to PR drag within a decade, and imply dust depletion on yearly timescales -- consistent with the DDT data. Our third epoch observations will provide an direct test by searching for a continuing decrease in dust emission. If such a decrease is not confirmed, it would imply the circumbinary dust reservoir is being replenished on yearly timescales.

  3. Changes in water and solute fluxes in the vadose zone after switching crops

    NASA Astrophysics Data System (ADS)

    Turkeltaub, Tuvia; Dahan, Ofer; Kurtzman, Daniel

    2015-04-01

    Switching crop type and therefore changing irrigation and fertilization regimes leads to alternation in deep percolation and concentrations of solutes in pore water. Changes of fluxes of water, chloride and nitrate under a commercial greenhouse due to a change from tomato to green spices were observed. The site, located above the a coastal aquifer, was monitored for the last four years. A vadose-zone monitoring system (VMS) was implemented under the greenhouse and provided continuous data on both the temporal variation in water content and the chemical composition of pore water at multiple depths in the deep vadose zone (~20 m). Chloride and nitrate profiles, before and after the crop type switching, indicate on a clear alternation in soil water solutes concentrations. Before the switching of the crop type, the average chloride profile ranged from ~130 to ~210, while after the switching, the average profile ranged from ~34 to ~203 mg L-1, 22% reduction in chloride mass. Counter trend was observed for the nitrate concentrations, the average nitrate profile before switching ranged from ~11 to ~44 mg L-1, and after switching, the average profile ranged from ~500 to ~75 mg L-1, 400% increase in nitrate mass. A one dimensional unsaturated water flow and chloride transport model was calibrated to transient deep vadose zone data. A comparison between the simulation results under each of the surface boundary conditions of the vegetables and spices cultivation regime, clearly show a distinct alternation in the quantity and quality of groundwater recharge.

  4. Glacial meltwater cooling of the Gulf of Mexico - GCM implications for Holocene and present-day climates

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Maasch, Kirk A.; Saltzman, Barry

    1989-01-01

    The NCAR Community Climate Model GCM is presently used to investigate the possible effects on regional and hemispheric climates of reduced SSTs in the Gulf of Mexico, in view of delta-O-18 records and terrestrial evidence for at least two major glacial meltwater discharges after the last glacial maximum. Three numerical experiments have been conducted with imposed gulfwide SST coolings of 3, 6, and 12 C; in all cases, significant reductions arise in the North Atlantic storm-track intensity, together with a strong decrease in transient eddy water vapor transport out of the Gulf of Mexico. Other statistically significant changes occur across the Northern Hemisphere.

  5. Glacial meltwater cooling of the Gulf of Mexico - GCM implications for Holocene and present-day climates

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Maasch, Kirk A.; Saltzman, Barry

    1989-01-01

    The NCAR Community Climate Model GCM is presently used to investigate the possible effects on regional and hemispheric climates of reduced SSTs in the Gulf of Mexico, in view of delta-O-18 records and terrestrial evidence for at least two major glacial meltwater discharges after the last glacial maximum. Three numerical experiments have been conducted with imposed gulfwide SST coolings of 3, 6, and 12 C; in all cases, significant reductions arise in the North Atlantic storm-track intensity, together with a strong decrease in transient eddy water vapor transport out of the Gulf of Mexico. Other statistically significant changes occur across the Northern Hemisphere.

  6. Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time

    DOE PAGES

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; ...

    2017-07-31

    The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of (234U/238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting. Meltwater samples,more » measured from the outflow, were analyzed for (238U), (222Rn) and (234U/238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of (234U/238U) ranged from 1.003 to 1.040, with the highest (238U), (222Rn) and (234U/238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less

  7. Observing and diagnosing biological fluxes and canopy mechanisms with implications for climate change and ecosystem disturbance

    NASA Astrophysics Data System (ADS)

    Reed, David E.

    Improving our predictions of ecosystem responses is an important challenge in ecological science due to the increasing number of stresses applied to biological systems. The assumption that ecosystems are operating in steady-state conditions at annual and longer time scales is far too simple of a model as ecosystems are an integral part of the earth system. Anthropogenic and non-anthropogenic forces acting on ecosystems within the earth system are numerous and include broad external factors such as climate change to specific internal factors such as infestations causing disturbance. This research quantifies changes in biogeochemical cycling and increases understanding of the mechanisms that control these cycles across two major ecosystems of the intermountain west with the broad goal of better predictive power of ecosystem responses. Eddy covariance methods were used to quantify carbon, water and energy fluxes at two different field sites in sagebrush ecosystems and one field site in a lodgepole pine ecosystem, in south-east Wyoming and northern Colorado. These measurements were supported with environmental and micrometeorological measurements in order to better understand physical mechanisms and canopy processes that control these biological fluxes. Results from the sagebrush component of this dissertation show how semi-arid sagebrush canopies interact with the lower atmosphere in ways that can alter environmental control of water loss with changing leaf area. This feedback has large implications combined with the large land area of these ecosystems and predictions of a dryer and more variable precipitation regime in the future. At the higher elevation lodgepole pine site, the ecosystem is undergoing a major mortality disturbance due to native bark beetles. Interestingly, even with ˜80% mortality of the canopy, few changes are observed to carbon and water cycling, as well as water use efficiency and energy cycling at the ecosystem scale. This calls into question

  8. Modeling Subglacial Meltwater Plumes across Greenland's Outlet Glaciers: Implications for Ice-Ocean Coupling in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Moon, T. A.; Hudson, B.; Noel, B.; Felikson, D.; Catania, G. A.; Nash, J. D.; Shroyer, E.; Bartholomaus, T.; Stearns, L. A.; van den Broeke, M.

    2015-12-01

    Meltwater accumulated on the Greenland Ice Sheet (GrIS) drains to glacier beds, often discharging into outlet glacier fjords hundreds of meters below sea level. The injection of buoyant meltwater at depth drives a turbulent plume that entrains warm bottom water as it rises along the ice face, resulting in increased submarine melt rates. Recent studies have used remotely sensed data to identify distinct seasonal flow patterns in GrIS outlet glacier dynamics, suggesting some glaciers are especially sensitive to changes at the terminus. However, we currently lack an understanding of the corresponding regional patterns in near-glacier circulation that are a first-order control on submarine melt rates and indirectly modulate the resultant estuarine exchange flow and mixing of fjord waters. In this study, we use a buoyant plume model combined with a synthesis of shipboard hydrography, moored observations, estimates of subglacial discharge, and remotely sensed data on glacier characteristics, to provide an estimate of plume properties across GrIS outlet glaciers in both time and space. We validate our model results with detailed ice-ocean measurements from neighboring outlet glacier fjords in Uummannaq Bay, west Greenland. Model and observations agree that strongly stratified fjords with deep outlet glaciers result in warm, subsurface plumes, while shallow fjords result in surface-intensified plumes that retain their cold meltwater signature. We compare these results to a high-resolution ocean model to provide an estimate of submarine melt rates during peak summer discharge. One advantage of our approach is the rapid characterization of distinct plume regimes across GrIS outlet glacier parameter space. Finally, we compare these plume regimes with characteristics of glacier behavior (ice velocity, surface elevation, terminus position), over decadal and seasonal time-scales. This comparison allows us to investigate which outlet glacier systems might be more sensitive to

  9. Effects of changing water content and atmospheric pressure on radon flux from surfaces of five soil types

    SciTech Connect

    Owczarski, P.C.; Holford, D.J.; Freeman, H.D.; Gee, G.W. )

    1990-05-01

    A computer code, Rn3D, was used to study the effects of varying the water content of five homogeneous soil types (clay, silt, loam, sand, and gravel) and atmospheric pressure on the transport of radon from soil surfaces. Temperature (20C) and radium content were assumed to be the same for all soils. Surface fluxes and soil pore space concentrations were computed for steady-state diffusion only, steady-state diffusion with steady pressure gradients, and sinusoidal (e.g., diurnal) changes in atmospheric pressure. Pressure gradients drive advective radon transport. A steady-state pressure gradient of {minus}0.5 Pa/m enhanced the total radon surface flux over the diffusive flux from 0.01% for clay to 1,000% for gravel at 0% saturation. At 90% saturation the enhancements were one-tenth as much. The degree of enhancement was approximately proportional to the gradient along the soil column. A net enhancement of surface flux over steady diffusive flux (up to 6%) for sinusoidal surface pressure changes was observed for all five soil types. The study reveals that radon flux is affected as much by varying soil water content as by varying soil type.

  10. Late-Quaternary changes of biogenic fluxes in the pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Giglio, F.; Langone, L.; Capotondi, L.; Morigi, C.; Focaccia, P.; Frignani, M.; Ravaioli, M.

    2003-04-01

    During the last decade the research project BIOSESO of the Italian National Research Program for Antarctica (PNRA) has collected 13 gravity cores and 3 box-cores along a N-S transect at about 175^oE in the Southern Ocean. In this presentation we discuss the results from 6 sediment cores sampled between 62^oS and 71^oS. This area embraces the Polar Front and the Marginal Ice Zone. The data set includes the contents of organic carbon, biogenic silica, CaCO_3 and some metals (Ba, Al, Fe, Mn) involved in the biogeochemical cycles. Chronologies were based on 230Thex profiles and the boundaries of the isotope stages were set assuming that biological productivity was enhanced during periods of less ice cover. Then , 230Thex, organic carbon, biogenic silica and biogenic Ba distributions were compared to the glacial-interglacial stage boundaries and corresponding ages of the δ18O record of Martinson et al. (1987). At the sampling sites sediment accumulation rates range between 0.2 to 3.8 cm ka-1. The higher values characterize the interglacial stages and the southern stations. Processes of sediment redistribution at sea bottom were enlightened by a comparison of measured and expected fluxes of 230Thex . The Polar Front zone is characterized by winnowing, whereas sediments along the continental slope of the Ross Sea are mainly subject to focussing processes. The environmental factors that drive changes of biogenic particle fluxes during glacial-interglacial transitions have been investigated.

  11. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    DOE PAGES

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; ...

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leafmore » photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.« less

  12. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water

    NASA Astrophysics Data System (ADS)

    Bau, Michael; Tepe, Nathalie; Mohwinkel, Dennis

    2013-02-01

    The rare earth elements (REE) are a group of trace elements that have short marine residence times and that in river, lake and marine surface waters are typically associated with organic and inorganic particles. Explosive volcanic eruptions, such as the 2010 eruptions of Eyjafjallajökull volcano in Iceland, produce volcanic ash particles which can be an important source of iron and other nutrients for aquatic organisms. To become bioavailable, however, this iron needs to be solubilized by complexing agents, such as siderophores. A well-studied example of such a chelator is the biogenic siderophore desferrioxamin-B (DFOB). Based on results from incubation experiments with glacial meltwater-rich river waters from southern Iceland, which are rich in suspended volcanic ash and that had been incubated with and without DFOB, respectively, we here show that siderophores not only enhance the release of iron, but also promote the mobilization of REE from these particles. In the presence of DFOB, partial dissolution of volcanic ash (and presumably other lithic particles) produces a flux of dissolved REE into ambient waters, that is characterized by depletion of the light REE over the middle REE and by selective enrichment of cerium, due to the formation of dissolved Ce(IV)-DFOB complexes. In siderophore-rich environments, this siderophore-bound REE flux has the potential to modify the concentrations and distribution of the dissolved REE and of the isotopic composition of dissolved Nd in glacial meltwaters, river waters and seawater and might be a component of the boundary effects between shelf sediments and seawater, which are assumed to account for the “missing Nd flux” to seawater. Thermodynamic data further suggest that siderophore-promoted element mobilization could also be important for other polyvalent (trace) elements, such as Hf.

  13. Non-linearities in hydrological connectivity and microbiological flux in nested catchments - implications of environmental change

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Soulsby, C.; Birkel, C.; Capell, R.; Speed, M.

    2009-12-01

    The non-linearities of catchment hydrological behaviour are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Such surface connectivity also controls the flux of microbiological pollutants (coliform bacteria) from areas of live stock grazing which can have serious health implications for potable water supplies. We report a nested catchment study where hydrological and tracer monitoring over a two year period has been coupled with regular sampling for faecal indicator organisms (FIOs). The study has been based in catchments with mixed landuse where FIOs are derived from livestock (sheep and cows) in agricultural land and wild animals (red deer) on moorlands. At all scales (3-1800km2), high levels of FIO were transient and episodic and strongly correlated with periods of high hydrological connectivity. We show how this non-linearity in connectivity can be captured within a dynamic hydrological model. The model was used, along with climate change predictions, to assess possible scenarios of change in connectivity and microbiological contamination in catchments with different land use.

  14. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  15. Temporal changes in semivariogram of ocean surface latent heat flux under linear trend

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Venkatachalam, P.

    2014-11-01

    One of the ways to study spatio-temporal variability of a process is to consider it as a temporal variation of a spatial process. Semivariogram is a measure of spatial variation in a process. If a process is undergoing a linear trend, then semivariogram parameters such as range, sill and nugget are bound to change. In this paper, a mathematical closed form of range, sill, and nugget and in turn semivariogram were expressed for a process under linear trend. The derived semivariogram was used to study the latent heat flux (LHF) over the Indian Ocean. LHF values depend on sea surface temperature (SST) and wind speed (WS) over ocean surface. Universal kriging (UK) was used to estimate the LHF with WS and SST as covariables. UK coefficients corresponding to covariables were found out for the years 2010, 2020, 2030, 2040 and 2050. In similar line, study has been attempted to see how empirical orthogonal function modes of a spatio-temporal process change with time under linear trend.

  16. Effects of interactive global changes on soil N-fluxes in managed grassland

    NASA Astrophysics Data System (ADS)

    Deltedesco, Evi; Gerding, Merle; Naynar, Maria; Zechmeister-Boltenstern, Sophie; Gorfer, Markus; Bahn, Michael; Pötsch, Erich M.; Herndl, Markus; Keiblinger, Katharina M.

    2017-04-01

    Climate projections for the next decades expect a significant increase in air temperature, atmospheric CO2 concentrations and the frequency and intensity of extreme weather events. The impact of individual environmental factors (warming and elevated CO2) on biogeochemical cycles of ecosystems is moderately well studied. However, the quantification of the impact of these combined environmental changes on N-cycling functions of ecosystems and their biogeochemical feedbacks to the climate system is still fraught with uncertainty, both in terms of magnitude and the interactions. The aim of the present study is the evaluation of the response of warming, elevated CO2 concentrations and their combined effect on N-gas emissions, microbial community structure and function in a managed grassland site. This project is implemented in a complex field experiment in a mountain region (Raumberg-Gumpenstein) and consists of a factorial approach. Individual and combined effects of air temperature (ambient, warming of 1.5 and 3˚ C) and atmospheric CO2-concentrations (ambient, +150 and +300 ppm) on N-pools and N-gas emissions is examined and related to soil microbial processes. In order to achieve our objectives, soil was sampled in autumn 2016. Intact soil cores were incubated at constant temperature to analyze N2O, NOx and NH3 emissions in a lab incubation experiment. Simultaneously, soil samples were taken to examine different N pools (DON, Nmic, NH4+ and NO3-). In addition the abundance of ammonia oxidizing bacteria and archaea (amoA) together with expression levels of involved N-cycling target genes (nirK, nirS, norB and nosZ) was evaluated. Variation in N-fluxes was observed and will be discussed. This research provides new insights on microbial processes in response to factorial climate change effects, and will enable us to evaluate changes through non-linear and non-additive effects of multiple factors of climate change.

  17. Atmospheric water vapor flux, bifurcation of the thermohaline circulation, and climate change

    SciTech Connect

    Wang, H.; Birchfield, G.E.

    1992-10-01

    Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth`s climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation have a significant effect on global climate. Paleoclimate evidence from the Greenland ice and deep sea sediment core suggests during much of glacial time the climate system oscillated between two different states. The role of atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean`s latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model is addressed here. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. For estimated values of water vapor transport for the present climate the model asserts that while vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changes little over the last 9000 years. 31 refs., 5 figs.

  18. Vatnajökull meltwater discharge variability: a Holocene climate sensor in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Striberger, J.; Björck, S.; Ingólfsson, Ó.; Kjær, K.; Sandgren, P.; Snowball, I.

    2009-04-01

    The Holocene glacial history of Vatnajökull and its many outlet glaciers is rather poorly known, even though it is one of the largest ice caps outside Antarctica and Greenland. Vatnajökull is positioned in the centre of the Nordic Seas, the region for North Atlantic Deep Water formation and it is influenced by humid-bearing cyclone systems from the southwest. Thus, it can be regarded as a sensor for a combination of different climatic driven processes. Lake Lögurinn (53 km2, 20 m a.s.l), situated northeast of Vatnajökull, is part of the drainage system of Eyjabakkajökull, one of the most conspicuous surging outlet glaciers of the ice cap. In addition to glacial meltwater, the lake also receives discharge from rivers that drain non-glaciated catchments. The mix of glacial and non-glacial suspension makes the sediments suitable for analyses of how the fluvial regime has varied over time and how this relates to meltwater discharge, fluvial discharge and general changes in climate and hydrology. A total of 17.8 m of sediment was obtained from the central part of the northernmost sub-basin in Lake Lögurinn at water depths of 38 and 16 m, respectively. The sediments are laminated in most parts of the sequence. 137Cs analyses of the surface core have confirmed that the laminated couplets are varves. Tephra horizons have been used as time markers throughout the sediments, and X-ray fluorescence and X-ray analyses as well as visual observations have been used in order to identify varves in the uppermost 3.8 m of the sequence. This section covers the time period AD 1262-2005. The sediment contains 610 varves for the periods AD 1262-1476 and AD 1603-2005 (a total of 618 years). A significant change in sedimentation rate is observed between AD 1477-1602 (from 5.9 mm/yr to 1.2 mm/yr). For this period only 18 varves are found. This abrupt change is likely related to a lower discharge rate, or to more turbulent conditions in the lake. The sedimentation rate of the

  19. Changes in Streamflow and the Flux of Nutrients in the Mississippi-Atchafalaya River Basin, USA, 1980-2007

    USGS Publications Warehouse

    Battaglin, William A.; Aulenbach, Brent T.; Vecchia, Aldo; Buxton, Herbert T.

    2010-01-01

    decreased. However, the flux of total phosphorus between the baseline period and subsequent 5-year periods has increased. The average spring (April, May, and June) streamflow and fluxes of silica, total nitrogen, nitrate, and orthophosphate to the Gulf of Mexico also decreased, whereas the spring flux of total phosphorus has increased. Similar changes in streamflow and nutrient flux were observed at many sites Buxtonwithin the basin. The inputs of water, total nitrogen, and total phosphorus from the major subbasins of the Mississippi-Atchafalaya River Basin as a percentage of the to-the-gulf totals have increased from the Ohio River Basin, decreased from the Missouri River Basin, and remained relatively unchanged from the Upper Mississippi, Red, and Arkansas River Basins. Changes in streamflow and nutrient fluxes are related, but short-term variations in sources of streamflow and nutrients complicate the interpretation of factors that affect nutrient delivery to the Gulf of Mexico. Parametric time-series models are used to try and separate natural variability in nutrient flux from changes due to other causes. Results indicate that the decrease in annual nutrient fluxes that has occurred between the 1980-1996 baseline period and more recent years can be largely attributed to natural causes (climate and streamflow) and not management actions or other human controlled activities in the Mississippi-Atchafalaya River Basin. The downward trends in total nitrogen, nitrate, ammonium, and orthophosphate that were detected at either the Mississippi River near St. Francisville, La., or the Atchafalaya River at Melville, La., occurred prior to 1995. In spite of the general decrease in nutrient flux, the average size of the Gulf of Mexico hypoxic zone has increased between 1997 and 2007. The reasons for this are not clear but could be due to the type or nature of nutrient delivery. Whereas the annual flux of total nitrogen to the Gulf of Mexico has decreased, the proporti

  20. Noble Gas Signatures in Athabasca Glacier - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hall, C. M.; Castro, M. C.; Aciego, S.; Arendt, C. A.

    2015-12-01

    We present a noble gas study in glacial meltwater (GMW) from the Athabasca Glacier (AG) in the Columbia Icefield, Canada. It constrains the relative contributions of GMW sources, water residence times, and spatial locations where the GMW originates in the alpine glacier. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) which allows for estimation of the altitude at which GMW originated. In addition, crustal He accumulates in water over time, allowing for estimation of water residence times. Water samples were collected in the morning on selected dates in May and July 2011 at two locations about 200 m apart near the terminus area at altitudes between 2000 m and 2100 m. Eight samples were collected in six different days. Results show that the major source of subglacial meltwater is ASW rather than old, compressed glacial ice, which has a distinct noble gas signature not seen in our samples. Given that, GMW samples from the AG do deviate to a certain extent from the ASW values corresponding to measured water temperature and altitude at collection points. Two patterns are observed in the concentrations of the AG samples. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, first observed in high-altitude springs in the Galápagos Islands (Warrier et al., 2012). The second one displays a mass-dependent pattern, first observed in Michigan rainwater (Warrier et al., 2013). A preliminary Xe analysis indicates equilibration altitudes between 2500 m and 3400 m, values compatible with local topography. Samples present He excess of 4% to 91%, and suggest an average residence time of ~400 yrs. References:Warrier, R. B., Castro, M. C., and Hall, C. M. (2012), Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes, Water Resour. Res., 48, W03508, doi:10.1029/2011WR010954. Warrier, R. B., Castro

  1. Effects of Environmental Change on Carbon and Nitrogen Fluxes from a Midwestern Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Riha, K. M.; Michalski, G.; Filley, T. R.; Dalzell, B. J.

    2009-12-01

    Climate change is expected to change precipitation patterns, which would alter the runoff of excess carbon and nitrogen into the surrounding waterways. If agricultural areas experience an increase in precipitation, then coastal areas downstream from these areas could expect to develop hypoxic conditions that are more widespread, continual, and severe causing loss of biodiversity in the ocean and economical loss to fishing industries. In the Midwest, these waterways feed into local drinking water reservoirs increasing the nitrate concentration and could easily surpass the EPA maximum nitrate concentration of 10ppm. In order to evaluate the damage to the environment due to excess nitrogen, and the possible gains by its mitigation, requires a thorough assessment of the environmental controls on nitrogen and carbon fluxes. To understand the extent of nitrogen and carbon runoff from agricultural ecosystems we are studying an 850 km2 Midwestern United States agricultural watershed located in west central Indiana. Previous studies by Dalzell et. al. examined organic carbon export from this watershed as a function of stream flow and precipitation events and observed shifts in the amount and type of carbon with season. We are interested in the nitrate concentration and how it couples with the carbon fluxes. Anions (Cl-, NO3-, and SO42-) were analyzed for the samples that were collected in 2002 and 2003. A correlation was seen between storm events, fertilizer application, and the nitrate runoff; with the highest nitrate concentration seen in April 2002 with a storm event. Recent fertilizer application is believed to be the cause. Cations were analyzed (Ca2+, Na+, K+, Fe2+, Mn2+ and Mg2+) to qualitatively determine a relationship between DOC and nitrate and determine possible flowpaths. Relationships were seen with storm events and cation fluxes, with highest concentrations seen in April 2002 during a storm event and a dilution peak seen in May 2002 which is characteristic of

  2. Record of Meltwater Discharge in the Lower Mississippi River: Insight into the Timing of Meltwater Diversion between the Mississippi River and Eastern Drainage Routes to the North Atlantic

    NASA Astrophysics Data System (ADS)

    Rittenour, T. M.; Blum, M. D.; Goble, R.

    2002-12-01

    During the last glacial maximum the Mississippi River served as the primary conduit for meltwater discharged from the southern margin of the Laurentide ice sheet. As ice retreated, lower drainage routes were opened to the east causing rapid drainage of glacial lakes, such as Lake Agassiz, and diversion of meltwater into the North Atlantic. Ice margin fluctuations during deglaciation repeatedly opened and closed these drainage routes and forced diversion of meltwater between the Mississippi River and the North Atlantic. Injection of freshwater into the North Atlantic has been modeled to reduce North Atlantic Deep Water (NADW) production (Rahmstorf, 1995, Nature v. 378, p. 145-149) and is proposed to have caused many rapid cooling events during deglaciation, including the Younger Dryas (Clark et al., 2001, Science v. 293, p. 283-287). Dating control for the timing of meltwater routing is based on bracketed radiocarbon age estimates on ice margin positions and glacial lake outlet occupation. No evidence from the Mississippi River has been used to constrain this chronology, primarily due to the lack of datable organic material in the channel belt sediments. Optical luminescence samples were collected from three large braided channel belts in the lower Mississippi valley to develop a detailed chronology of river response to discharge variations. Ages of these channel belts are 19.7-17.8, 16.5-15.0 and 12.1-12.5 cal. kyr. These ages correlate with times of meltwater routing to the North Atlantic (Clark et al., 2001). At times of high discharge, when meltwater was routed to the Mississippi, the channel belts were abandoned as the river incised to the level of the next lower surface. The age of these channel belts and the time of channel belt abandonment provide greater detail in the timing of freshwater forcing events in the North Atlantic during deglaciation.

  3. Glacial Meltwater as a Source of Amorphous Silica on Early Mars

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Horgan, B.; Havig, J. R.; Rampe, E. B.; Scudder, N. A.; Hamilton, T. L.

    2017-10-01

    Cold-climate silica cycling on mafic volcanics due to glacial meltwater alteration is a significant terrestrial weathering process. Amorphous silica deposits on Mars could be interpreted as mineralogical evidence for past ice sheet melt.

  4. Uncertainty of Methane Fluxes in a Northern Peatland under Global Climate Change

    NASA Astrophysics Data System (ADS)

    MA, S.; Jiang, J.; Huang, Y.; Luo, Y.

    2016-12-01

    Large uncertainty exists in predicting responses of methane fluxes to future climate change. How the uncertainty is related to methane production, oxidation, diffusion, ebullition and plant mediated transportation is still poorly understood, despite of the fact that these processes related to methane emission have been theoretically well represented. At the same time, in methane models many of the parameters are given to an empirical value according to measurements or models decades ago. It is unrealistic to testify all the parameters included in methane modules by actual in situ measurements due to the fact of high temporal and spatial variation. However it would be convincible and feasible to measure in field if models could offer better sampling strategy by telling which parameter is more important for estimation of methane emission, and project a constrained value for key parameters in each process. These feedbacks from field measurements could in turn testify the model accuracy for methane emission projection, as well as the optimization of model structures. We incorporated methane module into an existing process-based Terrestrial ECOsystem model (TECO), to simulate methane emission in a boreal peatland forest, northern Minnesota (Spruce and Peatland Responses Under Climatic and Environmental Change Experiment, SPRUCE). We performed sensitivity test and picked key parameters from the five processes for data assimilation using the Bayesian probability inversion and a Markov Chain Monte Carlo (MCMC) technique. We were able to constrain key parameters related to the five processes in the TECO-SPRUCE Methane model. The constrained model simulated daily methane emission fitted quite well with the data from field measurements. The improvement of more realistic and site-specific parameter values allow for reasonable projections of methane emission under different global changing scenarios, warming and elevated CO2, for instance, given the fact that methane emission

  5. Sedimentological fingerprint of modern and ancient meltwater outbursts across Antarctic continental shelves and slopes

    NASA Astrophysics Data System (ADS)

    Anderson, J. B.; Simkins, L. M.; Prothro, L. O.

    2016-12-01

    On formerly glaciated Antarctic continental shelves, the crystalline inner shelf is commonly dissected by linked subglacial lake and channel systems; however, signatures of meltwater are rare within subglacial and glacial-marine deposits on the middle to outer continental shelf. Recent observations of ice-marginal landforms incised by meltwater channels in the western Ross Sea indicate pulses of meltwater outbursts at marine-based grounding lines during deglaciation of the continental shelf. Here we present sedimentological evidence of meltwater outbursts and associated plumes from new and legacy cores collected on the continental shelf and slope within the Ross Sea, Amundsen Sea, and Marguerite Bay. Discrete fine-grained silt deposits are found overlying till and within proximal grounding line deposits and open-marine diatomaceous sediments. The deposits are massive to laminated, contain little to no coarser material, moderately sorted and dominated by a 10 μm grain-size mode. Grain-size measurements show no indication of winnowing; therefore, we interpret these deposits as meltwater deposits, transported by subglacial meltwater drainage systems to the grounding line and dispersed further seaward by meltwater plumes. The similarity of the deposits down-core and between shelf and slope sites within the Ross Sea, Amundsen Sea, and Marguerite Bay indicate that sorting and/or production of the fine silts occurs due to subglacial hydrodynamic processes. These distinctive meltwater deposits within the stratigraphic record provide an accessible proxy for identifying meltwater discharge from the Antarctic Ice Sheet and potentially be used to correlate cores on and off the continental shelf. Dating events on the continental shelf is notoriously difficult; therefore, deeper ocean records offer an easier means of bracketing the timing of meltwater discharge events. Longer records of ice dynamics from off the continental shelf are commonly used to reconstruct IRD records

  6. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    USDA-ARS?s Scientific Manuscript database

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  7. New insights on the late-stage history of glacial Lake Ojibway: implications for meltwater discharges of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Roy, Martin; Veillette, Jean J.; Godbout, Pierre-Marc

    2016-04-01

    located east of James Bay that preserve a well-developed drainage unit. There, the microfossil content and associated stable isotope geochemistry of the underlying Ojibway rhythmites indicate that the final drawdown of the lake was preceded by episodic subglacial drainage events. Radiocarbon dating of the sequence has also refined the timing of the final lake drainage. This event is also present deeper within the southeastern Ojibway basin where the grain size and geochemical composition of thinly bedded rhythmites, as well as the oxygen isotope of ostacods, document an anomalously thick and coarse-grained marker bed that records the abrupt termination of the lake in this region. Taken together, these results indicate that the late-stage history of Lake Ojibway was marked by significant changes in the areal extent and depth of the lake, which likely implied routing events into newly deglaciated regions and/or (subglacial) meltwater discharges into the North Atlantic. Our investigations also identify the James Bay region as a major drainage pathway for meltwater at the end of the last deglaciation. The elevation, extent and chronology of the Ojibway shoreline sequence are currently being refined in order to improve paleogeographic reconstructions and estimates of meltwater volumes, all aspects that are critically needed to evaluate the impact of freshwater discharges on ocean circulation.

  8. Legacy and emerging contaminants in meltwater of three Alpine glaciers.

    PubMed

    Ferrario, Claudia; Finizio, Antonio; Villa, Sara

    2017-01-01

    Meltwater samples collected in early and late summer from three Alpine glaciers were analysed to determine the occurrence of POPs (Persistent Organic Pollutants: DDTs, HCHs and PCBs) and emerging contaminants (current used pesticides and polycyclic musk fragrances). For legacy POPs, we reconstructed a concentration time series using data from previous surveys in the same areas (starting from 2000). The results suggest a declining tendency of these compounds, probably related to the introduction of international regulations, which has led the strong use reduction and ban of these compounds. Among the analysed current used pesticides the terbuthylazine and chlorpyrifos were found in all the analysed samples. The experimental results were in line with the prediction of the OECD tool screening model, which was applied to estimate the potential of these substances to undergo regional-scale atmospheric transport processes. Temporal and spatial differences in concentrations for these compounds were related to the timing of applications, weather conditions and crop distribution along the adjacent Po River Plain. Despite model predictions, the herbicide pendimethalin was never detected, probably due to the lower use of this compound in the agricultural practices. Conversely, concentrations of polycyclic musk fragrances galaxolide and tonalide were more homogeneous both temporally and spatially, in agreement with their continuous release from emission sources.

  9. Validation of the THIRMAL-1 melt-water interaction code

    SciTech Connect

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.

    1995-09-01

    The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

  10. Validation of the THIRMAL-1 melt-water interaction code

    SciTech Connect

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.

    1995-05-01

    The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt stream, as well as hydrogen generation due to oxidation of the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

  11. Transient nature of Arctic spring systems driven by subglacial meltwater

    NASA Astrophysics Data System (ADS)

    Scheidegger, J. M.; Bense, V. F.; Grasby, S. E.

    2012-06-01

    In the High Arctic, supra- and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet-based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps.

  12. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  13. Upper-level eddy angular momentum fluxes and tropical cyclone intensity change

    NASA Technical Reports Server (NTRS)

    Demaria, Mark; Baik, Jong-Jin; Kaplan, John

    1993-01-01

    The eddy flux convergence of relative angular momentum (EFC) at 200 mb was calculated for the named tropical cyclones during the 1989-1991 Atlantic hurricane seasons. A period of enhanced EFC within 1500 km of the storm center occurred about every five days due to the interaction with upper-level troughs in the midlatitude westerlies or upper-level, cold lows in low latitudes. Twenty-six of the 32 storms had at least one period of enhanced EFC. In about one-third of the cases, the storm intensified just after the period of enhanced EFC. In most of the cases in which the storm did not intensify the vertical shear increased, the storm moved over cold water, or the storm became extratropical just after the period of enhanced EFC. A statistically significant relationship was found between the EFC within 600 km of the storm center and the intensity change during the next 48 h. The EFC was also examined for the ten storms from the 1989-1991 sample that had the largest intensification rates. Six of the ten periods of rapid intensification were associated with enhanced EFC. In the remaining four cases the storms were intensifying rapidly in a low shear environment without any obvious interaction with upper-level troughs.

  14. Upper-level eddy angular momentum fluxes and tropical cyclone intensity change

    NASA Technical Reports Server (NTRS)

    Demaria, Mark; Baik, Jong-Jin; Kaplan, John

    1993-01-01

    The eddy flux convergence of relative angular momentum (EFC) at 200 mb was calculated for the named tropical cyclones during the 1989-1991 Atlantic hurricane seasons. A period of enhanced EFC within 1500 km of the storm center occurred about every five days due to the interaction with upper-level troughs in the midlatitude westerlies or upper-level, cold lows in low latitudes. Twenty-six of the 32 storms had at least one period of enhanced EFC. In about one-third of the cases, the storm intensified just after the period of enhanced EFC. In most of the cases in which the storm did not intensify the vertical shear increased, the storm moved over cold water, or the storm became extratropical just after the period of enhanced EFC. A statistically significant relationship was found between the EFC within 600 km of the storm center and the intensity change during the next 48 h. The EFC was also examined for the ten storms from the 1989-1991 sample that had the largest intensification rates. Six of the ten periods of rapid intensification were associated with enhanced EFC. In the remaining four cases the storms were intensifying rapidly in a low shear environment without any obvious interaction with upper-level troughs.

  15. Simulations of ice flux through Totten Glacier as ice shelf calving changes

    NASA Astrophysics Data System (ADS)

    Moore, John; Sun, Sainan; Åström, Jan

    2016-04-01

    Totten glacier is one of the most important ocean portals for the East Antarctic ice sheet. Melt rates under the ice shelf in front of the glacier are very high, and the ice shelf seems to suffer from extensive basal melt-induced calving. The ice shelf is underlain by a relatively narrow and convoluted cavity, which recent resurveying suggests maybe substantially different from Bedmap2 geometry. Here we use the BISICLES ice flow model and ice shelf buttressing derived from inverse modeling to simulate present day ice dynamics. We then use a discrete particle model so simulate ice shelf fracturing to simulate how the ice shelf geometry, calving patterns and buttressing force could evolve. The new ice shelf geometry is then used with the continuum model to asses ice flux through the region 50 years into the future. The results suggest considerable changes in glacier-ice shelf configuration, but which are sensitive to ice shelf pinning points and sub-shelf cavity geometry.

  16. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Dosio, Alessandro; Feyen, Luc

    2017-03-01

    In this study we conducted a comprehensive modeling analysis to identify global trends in extreme wave energy flux (WEF) along coastlines in the 21st century under a high emission pathway (Representative Concentration Pathways 8.5). For the end of the century, results show a significant increase up to 30% in 100 year return level WEF for the majority of the coastal areas of the southern temperate zone, while in the Northern Hemisphere large coastal areas are characterized by a significant negative trend. We show that the most significant long-term trends of extreme WEF can be explained by intensification of teleconnection patterns such as the Antarctic Oscillation, El Niño-Southern Oscillation, and North Atlantic Oscillation. The projected changes will have broad implications for ocean engineering applications and disaster risk management. Especially low-lying coastal countries in the Southern Hemisphere will be particularly vulnerable due to the combined effects of projected relative sea level rise and more extreme wave activities.

  17. Dynamic Conceptual Model of Sediment Fluxes Underlying Numerical Modelling of Spatial and Temporal Variability and Adjustment to Environmental Change

    NASA Astrophysics Data System (ADS)

    Hooke, J.

    2015-12-01

    It is essential that a strong conceptual model underlies numerical modelling of basin fluxes and is inclusive of all factors and routeways through the system. Even under stable environmental conditions river fluxes in large basins vary spatially and temporally. Spatial variations arise due to location in the basin, relation to sources and connectivity, and due to morphology, boundary resistance and hydraulics of successive reaches. Temporal variations at a range of scales, from seasonal to decadal, occur within averaged 'stable' conditions, which produce changes in morphology and flux and subsequent feedback effects. Sediment flux in a reach can differ between similar peak magnitude events, depending on duration, season, connectivity and supply state, and existing morphology. Autogenic processes such as channel pattern and position changes, vegetation changes, and floodplain cyclicity also take place within the system. The major drivers of change at decadal-centennial timescales are assumed to be climate, land use cover and practices, and direct catchment and channel modification. Different parts of the system will have different trajectories of adjustment, depending on their location and spatial relation to connectivity within the system and on the reach morphological and resistance characteristics. These will govern the rate and extent of transmission of changes. The changes will also be influenced by the occurrence and sequence of flow events and their feedback effects, in relation to changing thresholds produced by the response to the environmental changes. It is essential that the underlying dynamics and inherent variability are recognised in numerical modelling and river management and that spatial sequencing of changes and their feedbacks are incorporated. The challenge is to produce quantifiable relations of the rate or propagation of changes through a basin given spatial variability of reach characteristics, under dynamic flow scenarios.

  18. Spatial and temporal variability of Arctic summer sea-ice albedo and its dependence on meltwater hydraulics

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Perovich, D. K.; Grenfell, T. C.; Richter-Menge, J. A.; Frey, K.

    2001-12-01

    Next to ice extent and thickness, the area-averaged albedo of the summer sea-ice cover is a key parameter in determining the large-scale heat exchange over the Arctic Ocean. Various remote sensing applications have yielded a substantial data base for the former two parameters, not least due to the efforts of the National Snow and Ice Data Center (NSIDC) over the past 25 years. In contrast, the spatial and temporal variability of Arctic summer sea-ice albedo is much less well described. Despite its importance (incl. for ice-albedo feedback processes), few if any large-scale sea-ice and global circulation models actually predict summer ice based on the underlying physical processes. Most models employ simple parameterization schemes instead. Remote sensing of surface ice albedo also faces substantial challenges, some of which still need to be addressed in more detail. Here, we report on albedo measurements completed over first- and multi-year sea ice in the summers of 1998, 2000 and 2001 in the North American at the SHEBA drifting ice camp and in fast ice near Barrow, Alaska. As has been established in a number of studies, spatial and temporal variability in summer sea-ice albedo is mostly determined by the areal extent of meltwater ponding at the ice surface. Given the importance of this process, a comprehensive ice hydrological program (meltwater distribution, surface topography, meltwater flow and discharge, ice permeability) has been carried out in conjunction with the optical measurements. Measurements demonstrate that Arctic summer sea-ice albedo is critically dependent on the hydrology of surface melt ponds, as controlled by meltwater production rate, ice permeability and topography. Both, remarkable short-term variability (a reduction of albedo by 43% within two days) as well as the seasonal evolution of the pond fraction and hence area-averaged albedo are forced by changes in pond water level on the order of a few centimeters. While some of these forcing

  19. Abrupt drying events in the Caribbean related to large Laurentide meltwater pulses during the glacial-to-Holocene transition

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Scholz, Denis; Black, David; Zanchettin, Davide; Miller, Thomas E.

    2017-04-01

    At the end of the last deglaciation North Atlantic meltwater pulses from the retreating Laurentide ice sheet triggered a chain of oceanic and atmospheric responses including temporary slow-down of the thermohaline circulation and hemispheric-scale alterations of the atmospheric circulation. The 8.2 ka event (occurring about 8.2 ka BP) is the most pronounced meltwater pulse during the Holocene and serves as an analogue to understand how North Atlantic fresh water influxes can affect the ocean-atmosphere coupled system on a basin, hemispheric or global scale. This event left strong regional climate imprints, such as abrupt cooling reconstructed over the North Atlantic and Europe lasting 100 to 150 years and drying in the northern hemispheric tropics. However, there is a lack of high resolution proxies to learn about the event's temporal structure especially in the tropics. We present geochemical evidence from a stalagmite indicating sudden climate fluctuations towards drier conditions in the northeastern Caribbean possibly related to rapid cooling in the high northern latitudes and a southward shift of the Inter-Tropical Convergence Zone (ITCZ). Stalagmite PR-PA-1 was collected in Palco cave, Puerto Rico, and it is a remarkable record of the 8.2 ka event because 15 MC-ICPMS 230Th/U-dates produce a precise chronology of its Holocene period growing solely between 9.0 ka BP to 7.5 ka BP. Based on 240 trace element and stable isotope ratio measurement we reconstructed hydrological changes with sub-decadal resolution. Our proxy data show large and rapid climate variations before 8.0 ka. Pronounced peaks in the Mg/Ca and δ13C records indicate three major events of abrupt drying. These fluctuations towards drier conditions took place in less than 10 years and the climate remained drier than the natural range for 10 to 20 years, before it returned to pre-fluctuation conditions again. Our observations confirm previous studies suggesting that repeated meltwater pulses

  20. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  1. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  2. Last Interglacial (MIS5e) hydrographic shifts linked to meltwater discharges from the East Greenland margin

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Anastasia; Bauch, Henning A.; Van Nieuwenhove, Nicolas

    2016-04-01

    The East Greenland Current (EGC) plays a key role in transporting polar water from the Arctic to convectional sites of the Iceland and Labrador seas. Ongoing melting of the Greenland Ice Sheet (GIS) as well as the Arctic sea ice prompts freshening of the EGC and accumulation of low-density water in the subpolar North Atlantic, thus affecting the stabilities of water mass overturning and subsequent northward heat transfer. To assess natural eastern GIS dynamics and possible freshwater-induced regional oceanic reorganizations we analyzed several sediment sequences from the poorly investigated area along the eastern Greenland margin and the western Nordic Seas. Records span the last interglacial (LIG, MIS5e) cycle, including deglacial Termination 2 and the LIG climatic optimum. On a global scale, the latter is believed to have been warmer than present, with a higher sea level, and may, therefore, serve as a promising analogue for future hydrographic changes. Based on various proxy data (stable isotopes, planktic foraminiferal assemblages, ice-rafted debris) our reconstructions support the notion of a "two-step development" of Termination 2 which underwent severe surface freshening in the subpolar North Atlantic. This is shown in extremely light oxygen isotopic values registered all along the eastern Greenland margin during early MIS5e, which are indicative for pronounced eastern/central GIS retreat and a further propagation of the resulting meltwater southward via the EGC. In addition, we find compelling evidence for at least two separate meltwater episodes in proximity of the eastern GIS during early MIS5e. The climatic episode in between is correlated with an early LIG warm peak, which may be linked to enhanced presence of Atlantic water in the central Nordic Seas (Bauch et al., 2012) and further downstream along southern Greenland (Hillaire-Marcel et al., 1994, Irvali et al., 2012). Our data, therefore, reveal a complex and variable dynamic of the EGC during MIS5e

  3. Changing Land Use from Cotton to Bioenergy Crops in the Southern Great Plains: Implications on Carbon and Water Vapor Fluxes

    NASA Astrophysics Data System (ADS)

    Rajan, N.; Sharma, S.

    2016-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Although first-generation biofuels like corn ethanol are available, second-generation biofuels are gaining importance because they don't directly compete with food production. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). While we believe there would be environmental benefits associated with this change in land use, their exact nature and magnitude have not been investigated for this region. The overall goal of the proposed study was to investigate the water and carbon (C) fluxes associated with the change in agricultural land use to biofuels-dominated cropping systems in the semi-arid Southwestern U.S. Cotton Belt region. Eddy covariance flux towers were established at selected producer fields (cotton, perennial grasses and biomass sorghum) in the Southern Great Plains region. The fluxes of carbon dioxide, water vapor and sensible heat between the surface and the atmosphere will be measured throughout the year. The results have demonstrated that the dynamics of C and water vapor fluxes for these agroecosystems were strongly affected by environmental variables, management factors, and crop phenology. Detailed results will be presented at the meeting.

  4. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.

    PubMed

    Dreszer, C; Wexler, A D; Drusová, S; Overdijk, T; Zwijnenburg, A; Flemming, H-C; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s(-1)) and permeate flux (20 L m(-2)h(-1)). In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m(-2)h(-1)). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure. Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.

  5. Partitioning CO2 Fluxes in Transitional Bioenergy CROPS:EFFECT of Land Use Change

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Chen, J.; Hamilton, S. K.; Robertson, G. P.

    2010-12-01

    The demand for alternatives to petroleum is increasing the production of bioenergy. Undisturbed ecosystems in different part of the globe were converted to bioenergy cultivations. In this study we examined the effect of land conversion on C Pools and fluxes using the Eddy Covariance (EC) technique in seven sites in southwestern Michigan undergoing such conversions. Of the seven sites, four had been managed for the Conservation Reserve Program (CRP) during the last 20 years to maintain them as grasslands. The other three were cultivated in a corn/soybean rotation. The effects of land use change were studied during 2009 when six of the fields (three CRP and three crop fields) were converted to soybean cultivation, with the 7th site remained as a grassland reference. Daytime estimates of ecosystem respiration (Reco) were obtained from the night NEE-temperature relationship. An Arrhenius-type model was used to describe the temperature dependence of Reco. The Gross Primary Productivity (GPP) was then obtained by subtracting Reco from NEE. Soil CO2 fluxes (SRR) were measured in all sites with a portable EGM-4 infrared gas analyzer (PP-Systems, UK). SRR, soil temperature, and soil moisture were analyzed using a two-way ANOVA with repeated measures analyses on one factor. SRR was modeled using a nonlinear regression function to describe SRR as dependant on soil temperature and soil moisture, expressed as soil water content relative to the soil water content at field capacity (RSWC). Standard errors of nonlinear regression parameters were estimated by a bootstrapping algorithm. During winter the agricultural sites were essentially carbon (C) neutral while the grasslands were C sources, with average emissions of 15 g C m-2 month-1. The annual NEP at sites converted from CRP to soybeans had a net emission of 156 (± 25) - 128 (± 27) g C m-2 year-1. The sites previously cultivated as corn/soybean rotation was a net C uptake, with NEP ranging from -91 (± 26) to -57 (± 21) g

  6. Surface and subsurface meltwater ponding and refreezing on the Bach Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Haggard, Emily; Willis, Ian; Benedek, Corinne; Banwell, Alison

    2017-04-01

    There is growing concern about the stability and fate of Antarctic ice shelves, particularly those on the Antarctic Peninsula. Over the past few decades, of the original 12 major ice shelves, 4 have totally disintegrated, 3 have retreated significantly and 5 have remained relatively stable. It has been suggested that the boundary between instability and stability is marked by the -9oC mean annual temperature isotherm, that this isotherm is moving south, and that the Bach Ice Shelf (72°S 72°W), lying between Wilkins Ice Shelf and the southern ice front of George VI Ice Shelf, both of which have undergone major retreat in recent years, might be the next one under threat. The proximal causes of ice shelf instability are not fully known but an increase in surface melting leading to ponding, flexure, fracture and calving has been implicated. This study documents the changing surface hydrology of the Bach Ice Shelf over the last decade using a combination of Landsat optical and Sentinal-1A/B SAR data. It offers an opportunity to investigate the inter-annual variability in the area and volume of surface meltwater ponds, the area of subsurface ponds, the dates of pond onset and refreezing, and how this variability relates to climate. It provides a background against which future changes may be benchmarked.

  7. Concentration dependency in nicotine skin penetration flux from aqueous solutions reflects vehicle induced changes in nicotine stratum corneum retention.

    PubMed

    Kuswahyuning, Rina; Roberts, Michael S

    2014-06-01

    This study sought to understand the mechanism by which the steady state flux of nicotine across the human skin from aqueous solutions is markedly decreased at higher nicotine concentrations. Nicotine's steady state flux through human epidermis and its amount in the stratum corneum for a range of aqueous nicotine solutions was determined using Franz diffusion cells, with the nicotine analysed by high performance liquid chromatography (HPLC). Nicotine's thermodynamic activity in the various solutions was estimated from its partial vapour pressure and stratum corneum hydration was determined using a corneometer. The amount of nicotine retained in the stratum corneum was estimated from the nicotine amount found in individual stratum corneum tape strips and a D-Squame determined weight for each strip. The observed steady state flux of nicotine across human epidermis was found to show a parabolic dependence on nicotine concentration, with the flux proportional to its thermodynamic activity up to a concentration of 48% w/w. The nicotine retention in the stratum corneum showed a similar dependency on concentration whereas the diffusivity of nicotine in the stratum corneum appeared to be concentration independent. This retention, in turn, could be estimated from the extent of stratum corneum hydration and the nicotine concentration in the applied solution and volume of water in the skin. Nonlinear dependency of nicotine skin flux on its concentration results from a dehydration induced decrease in its stratum corneum retention at higher concentration and not dehydration induced changes nicotine diffusivity in the stratum corneum.

  8. Are changes in the phytoplankton community structure altering the flux of CO2 in regions of the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Ostle, C.; Landschutzer, P.; Johnson, M.; Schuster, U.; Watson, A. J.; Edwards, M.; Robinson, C.

    2016-02-01

    The North Atlantic Ocean is a globally important sink of carbon dioxide (CO2). However, the strength of the sink varies temporally and regionally. This study uses a neural network method to map the surface ocean pCO2 (partial pressure of CO2) and flux of CO2from the atmosphere to the ocean alongside measurements of plankton abundance collected from the Continuous Plankton Recorder (CPR) survey to determine the relationship between regional changes in phytoplankton community structure and regional differences in carbon flux. Despite increasing sea surface temperatures, the Grand Banks of Newfoundland show a decrease in sea surface pCO2 of -2 µatm yr-1 from 1993 to 2011. The carbon flux in the North Sea is variable over the same period. This is in contrast to most of the open ocean within the North Atlantic, where increases in sea surface pCO2 follow the trend of increasing CO2 in the atmosphere, i.e. the flux or sink remains constant. The increasing CO2 sink in the Grand Banks of Newfoundland and the variable sink in the North Sea correlate with changes in phytoplankton community composition. This study investigates the biogeochemical and oceanographic mechanisms potentially linking increasing sea surface temperature, changes in phytoplankton community structure and the changing carbon sink in these two important regions of the Atlantic Ocean. The use of volunteer ships to concurrently collect these datasets demonstrates the potential to investigate relationships between plankton community structure and carbon flux in a cost-effective way. These results not only have implications for plankton-dynamic biogeochemical models, but also likely influence carbon export, as different phytoplankton communities have different carbon export efficiencies. Extending and maintaining such datasets is critical to improving our understanding of and monitoring carbon cycling in the surface ocean and improving climate model accuracy.

  9. Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise

    NASA Astrophysics Data System (ADS)

    Gregoire, Lauren J.; Otto-Bliesner, Bette; Valdes, Paul J.; Ivanovic, Ruza

    2016-09-01

    Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions of 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.

  10. Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise

    PubMed Central

    Otto‐Bliesner, Bette; Valdes, Paul J.; Ivanovic, Ruza

    2016-01-01

    Abstract Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14–18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions of 21,000 years ago to present. We determine that the North American ice sheet produced 3–4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5–6 m when it triggers the ice sheet saddle collapse. PMID:27773954

  11. Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise.

    PubMed

    Gregoire, Lauren J; Otto-Bliesner, Bette; Valdes, Paul J; Ivanovic, Ruza

    2016-09-16

    Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions of 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.

  12. Meltwater Origin of the 2005 Mount Steller Landslide Confirmed by Analysis of Global Fiducials Program Imagery

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2012-12-01

    roof of the west wall channel tunnel had collapsed and its path could be discerned in the remaining ice and snow; (3) several near-summit depressions remained that suggested liquid water may have existed and been temporarily stored; (4) the surface on which the slide occurred had a slope that was >50 degrees; (5) the slide mass had many unique components suggesting a complex series of related failures; and (6) there was an absence of large rock bodies in the slide debris, suggesting that much of the failed material may have previously been fractured by freeze-thaw processes. The timely collection of GFP imagery confirmed the continued presence of meltwater near the point of origin of this slide. Coupled with the September 15 oblique photography, interpretation of these images suggests that a large volume of water had recently been flowing on Steller's east summit ridge and that the water might have had a role in triggering the landslide. The presence of a large volume of water close to the summit raises questions about climate change and its role in the future generation of high elevation landslides. Although Mt. Steller is tens of kilometers from the closest human infrastructure, there are numerous other settings around the world where mountains with similar elevations, hanging glaciers, and sun-facing orientations are in close proximity to human infrastructure.

  13. Geomorphological evidence of channelized subglacial meltwater drainage under the Scandinavian Ice Sheet

    NASA Astrophysics Data System (ADS)

    Adamczyk, Aleksander; Wysota, Wojciech; Sobiech, Marcin; Piotrowski, Jan A.

    2016-04-01

    The impact of subglacial meltwater erosion on shaping glacial landscapes is contentious and often difficult to constrain due to the lack of unequivocal diagnostic criteria. The same holds for the role of subglacial meltwater in glacier movement processes and sediment transport and deposition. Here we present new evidence of widespread channelized erosion under the southern, soft-bedded fringe of the last Scandinavian Ice Sheet (SIS) based on high-resolution terrain analysis with LiDAR imagery. We identify several tens of sites with "glacial curvilineation" landscapes first recognized by Lesemann et al. (2010, 2014) and considered as evidence of erosion by turbulent meltwater flows at the ice/bed interface. The "glacial curvilineation" landscapes mapped here consist of sets of parallel, winding ridges typically several metres high and up to several kilometres long occupying glacial overdeepenings and tunnel valleys. The ridges are aligned approximately perpendicular to the past ice sheet margins and they are composed of various deposits often pre-dating the last ice advance. We interpret them as erosional remnants of older landscapes dissected by high-energy subglacial meltwater flows. These findings suggest that the palaeoglaciological significance of meltwater drainage under the southern portion of SIS may have been grossly underestimated. References Lesemann, J.-E., Piotrowski, J.A. and Wysota, W., 2010. „Glacial curvilineations": New glacial landforms produced by longitudinal vortices in subglacial meltwater flows. Geomorphology 120, 153-161. Lesemann, J.-E., Piotrowski, J.A. and Wysota, W., 2014. Genesis of the "glacial curvilineation" landscape by meltwater processes under the former Scandinavian Ice Sheet, Poland. Sedimentary Geology 312, 1-18.

  14. Geomicrobiology of Meltwater From the Western Margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Dieser, M.; Choquette, K.; Cameron, K. A.; Sletten, R. S.; Liu, L.; Junge, K.; Christner, B. C.

    2014-12-01

    Subglacial environments are cold, dark, and possess a range of redox conditions. These environments are gaining attention in global biogeochemical cycles as to their role in releasing bioavailable micronutrients such as Fe and the production of greenhouse gases. However, there is uncertainty about how the microbial communities interact with lithology and mediate geochemical reactions under glacial conditions. We examined the microbial communities and their influence on elemental cycling in two glacial environments along the western Greenland Ice Sheet margin: Thule in the north (76ºN, 68ºW) and Kangerlussuaq in the south (67ºN, 51ºW). The north is dominated by supraglacial melting with considerable contribution from the periglacial environment; the south has a well-developed subglacial drainage system. The lithology is sedimentary rocks in the north and crystalline rocks in the south and this difference was reflected in the geochemistry of the drainages. Runoff in the north was oxygen saturated throughout the season. A change from Na and Cl dominance in spring to Ca and SO4 and overall increase in solute concentration marked a stronger contribution from active layer thawing. In the south, waters were undersaturated in oxygen at times, presumably due to biological and chemical sinks of subglacial origin. The meltwater here was dominated by HCO3, SO4 and Ca. In subglacial outflows Fe (oxyhydr)oxide concentrations increased with decreasing oxygen concentration suggesting their formation under oxygen limiting conditions. The high abundance of sulfate implies oxidation of iron sulfides which is consistent with inverse modeling of subglacial weathering processes under anoxic conditions. Meltwater in both locations transported reactive particulate iron which in the north consisted mainly of Fe oxides while Fe(oxyhydr)oxides dominated in the south. DNA and RNA signatures indicate microbial phylotypes that are active in iron reduction, sulfidic mineral weathering

  15. Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China.

    PubMed

    Dong, Zhiwen; Qin, Dahe; Chen, Jizu; Qin, Xiang; Ren, Jiawen; Cui, Xiaoqing; Du, Zhiheng; Kang, Shichang

    2014-09-15

    This work discusses the temporal variation of various physicochemical species in the meltwater runoff of Laohugou Glacier No. 12 (4260 ma.s.l.) in central Asia, and their correlation with dust particles, based on a two-year field observation in summer 2012 and 2013, mainly focusing on dust concentration and size distribution, meltwater chemistry, particles SEM-EDX analysis in the meltwater, and MODIS atmospheric optical depth fields around the Qilian Mountains in central Asia. We find that, the volume-size distribution of dust particles in the meltwater is mainly composed of three parts, which includes fine aerosol particles (with diameter of 0~3.0 μm, mainly PM 2.5), atmospheric dust (with diameter of 3.0~20 μm), and local dust particles (20~100 μm), respectively. Comparison of dust particles in the snowpack and meltwater runoff indicates that, large part of dust particles in the meltwater may have originated from atmospheric dust deposition to the snow and ice on the glacier, and transported into the meltwater runoff. Moreover, temporal variation of dust and major ions (especially crustal species) is very similar with each other, showing great influence of dust particles to the chemical constituents of the glacier meltwater. SPM and TDS implied significant influences of dust to the physical characteristics of the glacier meltwater. Results showed that, accelerated glacier melting may affect physicochemical characteristics of the meltwater at an alpine basin under global warming. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm, showed great influence of regional dust transportation over western Qilian Mountains in springtime. SEM-EDX analysis shows that dust particles in the glacier meltwater contain Si-, Al-, Ca-, K-, and Fe-rich materials, such as quartz, albite, aluminate, and fly ash, similar to that deposited in snowpack. These results showed great and even currently underestimated influences of atmospheric dust

  16. Monitoring Regional Changes in Alaskan Carbon Fluxes and Underlying Biophysical Processes Using In Situ Observations, Models and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Watts, J. D.; Kimball, J. S.; Du, J.; Kim, Y.; Klene, A. E.; Moghaddam, M.; Commane, R.

    2016-12-01

    The effects of climate change within Alaskan boreal and Arctic ecosystems are evident in a lengthening non-frozen season, deepening of the permafrost active layer, and contrasting shifts in regional surface water inundation, soil wetness and patterns of vegetation greening and browning. These biophysical processes play a crucial role in greenhouse gas (CO2, CH4) exchange and the stability of carbon cycling in wetlands and other permafrost landscapes. Here we examine recent (2003-2015) changes and spatiotemporal variability in daily and seasonal carbon fluxes across Alaska, integrating observations from field measurements, eddy covariance flux towers and satellite data driven Terrestrial Carbon Flux (TCF) model simulations at 1-km resolution. The use of integrated multi-channel passive microwave remote sensing from AMSR (Advanced Microwave Scanning Radiometer) sensor records and new lower frequency (L-band) retrievals from the NASA SMAP (Soil Moisture Active Passive) mission provide a comprehensive assessment of dynamic (bi-weekly to daily) changes in vegetation biomass, surface water inundation, soil thermal and moisture conditions, with relative insensitivity to solar illumination and atmosphere constraints. The satellite microwave based environmental records are used in conjunction with MODIS optical-infrared remote sensing and ancillary meteorological data to assess daily net ecosystem carbon exchange, including CH4 emissions from anaerobic soil conditions. The flux tower observations and TCF model simulations indicate that boreal-Arctic CH4 emissions can substantially reduce the net ecosystem carbon sink, while the magnitude of reduction depends on wetland vegetation type, surface water inundation and soil moisture regimes, and the timing of seasonal warming. Considerable year-to-year variability observed in the flux tower observations and satellite records emphasizes the importance of long-term monitoring across the high northern latitudes through an

  17. Linking GRACE-Derived Water Storage Accelerations to Changes in Hydro-Mteorological Fluxes over West Africa

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Eicker, A.; Springer, A.; Forootan, E.; Jütten, T.; Diekkrüger, B.

    2015-12-01

    Several researchers have postulated that, under a changing climate, an intensification of the water cycle is under way. This is usually related to increases in hydrological fluxes such as precipitation (P), evapotranspiration (E), and discharge (R). It is under debate, however, whether such observed or reconstructed flux changes are real for West Africa and on what scale. Large-scale increase or decrease of the flux deficit P-E-R, i.e. flux changes that do not compensate, would lead to acceleration or deceleration of water storage potentially visible in GRACE-derived time series. In agreement with earlier studies, we do find accelerations in global maps of gridded GRACE water storage anomalies (Eicker et al., submitted). For sub-Sahel West Africa such accelerations amount up to 7 mm/a2; i.e. statistically significant even seen the short GRACE record. However, W Africa water storage variability is strongly controlled by sea surface temperature and precipitation (Forootan et al., 2014), and interannual/decadal climate variability may mask long-term changes e.g. related to land use change. Yet, here we show that even after isolating and removing a global climate mode in the GRACE data that appears ENSO-related, using a new method, the observed signal over W Africa remains. We can explain this effect only partly with changing surface water levels (Volta reservoir). We then repeat our analysis with flux fields from global atmospheric reanalysis that include land surface models in online (ERA-Interim, CFSR) and off-line (MERRA-Land) mode, and TRMM precipitation data. We find that these fields show surprising skills in reconstructing water storage variability at the monthly timescale when compared to GRACE. In contrast, in particular ERA-Interim falls short in displaying trends that would correspond to GRACE accelerations. We hypothesize this may be due to time-varying biases in the reanalysis-generated fluxes as noticed in other studies. Essentially we conclude that

  18. Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation.

    PubMed

    Jørgensen, Susanne V; Cherubini, Francesco; Michelsen, Ottar

    2014-12-15

    Depletion in oil resources and environmental concern related to the use of fossil fuels has increased the interest in using second generation biomass as alternative feedstock for fuels and materials. However, the land use and land use change for producing second generation (2G) biomass impacts the environment in various ways, of which not all are usually considered in life cycle assessment. This study assesses the biogenic CO2 fluxes, surface albedo changes and biodiversity impacts for 100 years after changing land use from forest or fallow land to miscanthus plantation in Wisconsin, US. Climate change impacts are addressed in terms of effective forcing, a mid-point indicator which can be used to compare impacts from biogenic CO2 fluxes and albedo changes. Biodiversity impacts are assessed through elaboration on two different existing approaches, to express the change in biodiversity impact from one human influenced state to another. Concerning the impacts from biogenic CO2 fluxes, in the case of conversion from a forest to a miscanthus plantation (case A) there is a contribution to global warming, whereas when a fallow land is converted (case B), there is a climate cooling. When the effects from albedo changes are included, both scenarios show a net cooling impact, which is more pronounced in case B. Both cases reduce biodiversity in the area where the miscanthus plantation is established, though most in case A. The results illustrate the relevance of these issues when considering environmental impacts of land use and land use change. The apparent trade-offs in terms of environmental impacts further highlight the importance of including these aspects in LCA of land use and land use changes, in order to enable informed decision making.

  19. Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease.

    PubMed

    Lorenzi, M; Ayache, N; Pennec, X

    2015-07-15

    In this study we introduce the regional flux analysis, a novel approach to deformation based morphometry based on the Helmholtz decomposition of deformations parameterized by stationary velocity fields. We use the scalar pressure map associated to the irrotational component of the deformation to discover the critical regions of volume change. These regions are used to consistently quantify the associated measure of volume change by the probabilistic integration of the flux of the longitudinal deformations across the boundaries. The presented framework unifies voxel-based and regional approaches, and robustly describes the volume changes at both group-wise and subject-specific level as a spatial process governed by consistently defined regions. Our experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: cross-sectional deformation based morphometry, longitudinal discovery and quantification of group-wise volume changes, and statistically powered and robust quantification of hippocampal and ventricular atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wang, Houjie; Saito, Yoshiki; Zhang, Yong; Bi, Naishuang; Sun, Xiaoxiao; Yang, Zuosheng

    2011-09-01

    The five largest rivers in East and Southeast Asia (Yellow, Yangtze, Pearl, Red and Mekong) are important contributors of terrigenous sediment to the western Pacific Ocean. Although they have annually delivered ~ 2000 × 10 9 kg of sediment to the ocean since 1000 yr BP, they presently contribute only ~ 600 × 10 9 kg/yr, which is reverting to a level typical of the relatively undisturbed watersheds before the rise in human activities in East and Southeast Asia at 2000 yr BP. During the most recent decades flow regulation by dams and sediment entrapment by reservoirs, as well as human-influenced soil erosion in the river basins, have sharply reduced the sediment delivered from the large river basins to the ocean. We constructed a time series of data on annual water discharges and sediment fluxes from these large rivers to the western Pacific Ocean covering the period 1950-2008. These data indicate that the short-term (interannual scale) variation of sediment flux is dominated by natural climatic oscillations such as the El Niño/La Niña cycle and that anthropogenic causes involving dams and land use control the long-term (decadal scale) decrease in sediment flux to the ocean. In contrast to the relatively slow historical increase in sediment flux during the period 2000-1000 yr BP, the recent sediment flux has been decreased at an accelerating rate over centennial scales. The alterations of these large river systems by both natural and anthropogenic forcing present severe environmental challenges in the coastal ocean, including the sinking of deltas and declines in coastal wetland areas due to the decreasing sediment supply. Our work thus provides a regional perspective on the large river-derived sediment flux to the ocean over millennial and decadal scales, which will be important for understanding and managing the present and future trends of delivery of terrigenous sediment to the ocean in the context of global change.

  1. Validating hydro-meteorological fluxes using GRACE-derived water storage changes - a global and regional perspective

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Springer, Anne; Kusche, Jürgen; Jütten, Thomas; Diekkrüger, Bernd; Longuevergne, Laurent

    2016-04-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. While on short temporal scales (inter-annual down to sub-seasonal) the modeled fluxes agree remarkably well with GRACE water storage changes, the models exhibit large biases and fail to capture the long-term flux trends in P-E-R corresponding to GRACE accelerations (Eicker et al. 2016). This leads to the assumption that despite the short time span of available gravity field observations, GRACE is able to provide new information for constraining the long-term evolution of water fluxes in future atmospheric reanalyses. In this contribution we will investigate the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. We will perform a global analyses and we will additionally focus on selected river basins. The investigations will be carried out for various temporal scales, focussing on the short-term fluxes (month-to-month variations), for which models and GRACE agree well with correlations of the de-trended and de-seasoned fluxes time series reaching up to 0.8 and more. We will furthermore extent the study towards even higher temporal frequencies, investigating whether the modeled and observed fluxes show sub-monthly variability that can be detected in daily GRACE time series. Eicker, A., E. Forootan, A. Springer

  2. Effect of unsteady flow on nitrate loss in an oligotrophic, glacial meltwater stream

    NASA Astrophysics Data System (ADS)

    Koch, Joshua C.; McKnight, Diane M.; Baeseman, Jenny L.

    2010-03-01

    The McMurdo Dry Valleys of Antarctica are among the coldest, driest ecosystems on Earth. During the austral summer, glacial meltwater supports cyanobacterial mat communities in some streams, but they are not ubiquitous. We conducted a nitrate (NO3-) enrichment tracer injection in Huey Creek to quantify NO3- loss in a Dry Valley stream where algal mats would not obscure hyporheic microbial processes. Unsteady streamflow led to diel variability in the tracer concentration and in surface/subsurface water and solute exchange. Subsequently, concentrations of NO3-, nitrite (NO2-), ammonium (NH4+), and dissolved organic carbon (DOC) varied significantly during the injection, with a net loss of NO3-, NO2-, and DOC, and production of nitrous oxide. These mass changes within a reach were often coincident with high streamflows. Reactivity also coincided with the highest DOC concentrations, suggesting that DOC is the primary limitation to heterotrophic microbial activity in the stream. Together, streamflow and DOC availability create the hot spots and hot moments that dominate NO3- reactivity and removal in this polar desert ecosystem. The combination of spatially and temporally variable hyporheic dynamics and solute availability underscore the limitations of common nutrient uptake metrics and transient storage models when unsteady flow conditions exist.

  3. Effect of unsteady flow on nitrate loss in an oligotrophic, glacial meltwater stream

    NASA Astrophysics Data System (ADS)

    Koch, Joshua; McKnight, Diane; Baeseman, Jennifer

    2010-05-01

    The McMurdo Dry Valleys of Antarctica are among the coldest, driest ecosystems on Earth. During the austral summer, glacial meltwater supports cyanobacterial mat communities in some streams, but they are not ubiquitous. We conducted a nitrate(NO3)enrichment tracer injection in Huey Creek to quantify NO3 loss in a Dry Valley stream where algal mats would not obscure hyporheic microbial processes. Unsteady streamflow led to diel variability in the tracer concentration and in surface/subsurface water and solute exchange. Subsequently, concentrations of NO3, nitrite (NO2),ammonium (NH4+), and dissolved organic carbon (DOC)varied significantly during the injection, with a net loss of NO3, NO2, and DOC, and production of nitrous oxide. These mass changes within a reach were often coincident with high stream flows. Reactivity also coincided with the highest DOC concentrations, suggesting that DOM is the primary limitation to heterotrophic microbial activity in the stream. Together, streamflow and DOC availability create the hot spots and hot moments that dominate NO3 reactivity and removal in this polar desert ecosystem. The combination of spatially and temporally variable hyporheic dynamics and solute availability underscore the limitations of common nutrient uptake metrics and transient storage models when unsteady flow conditions exist.

  4. Challenges of Quantifying Meltwater Retention in Snow and Firn: AN Expert Elicitation

    NASA Astrophysics Data System (ADS)

    van As, Dirk; Box, Jason; Fausto, Robert

    2016-11-01

    Thirty-four experts took part in a survey of the most important and challenging topics in the field of meltwater retention in snow and firn, to reveal those topics that present the largest potential for scientific advancement. The most important and challenging topic to the expert panel is spatial heterogeneity of percolation, both in measurement and model studies. Studying percolation blocking by ice layering, particularly in modeling, also provides large potential for science advancement, as well as hydraulic conductivity and capillary forces in snow/firn. Model studies can benefit from improved initialization, and improved calculation of accumulation and liquid water at the surface. Firn coring should be performed more often, though we argue that also data that are relatively simple to collect, but of great importance to retention such as surface accumulation, density and temperature, are too sparse due to the high logistical expenses involved in field campaigns. Generally speaking, retention changes are expected to be of importance to the surface mass balance and thus ice loss in coming decades, more so for Greenland than Antarctica or ice masses elsewhere.

  5. Transverse Eskers in the Irish Midlands: Implications for Meltwater Pathways in Ice Sheets

    NASA Astrophysics Data System (ADS)

    Delaney, Cathy

    2013-04-01

    Large eskers in the Irish Midlands, formed during the last Glacial Termination (MIS 2) are thought to have formed time-transgressively in subglacial conduits feeding to a subaqueous margin, where conduit orientation was controlled by the ice sheet surface gradient in this area, and parallels ice flow direction as indicated by drumlinoid features. However, three eskers systems (the Ballyduff Esker, Kilcormac Esker and Streamstown Esker) have sections with orientations at up to 90 degrees to the dominant ridge orientation, over distances of up to 5km. These shifts in orientation are associated with a change in esker morphology from one or two continuous ridges to anabranching and fragmented ridges and small kames. Exposures in the Ballyduff and Kilcormac Eskers indicate water flow was both parallel and perpendicular to ridge orientation during formation, and that deposition occurred en- or supra-glacially. Deposition of the Streamstown ridges occurred subglacially. In all cases the shift in ridge orientation indicates the diversion of meltwater drainage into transverse crevasse systems, reflecting a temporary phase of extensional ice flow.

  6. Proglacial River Reveals Substantial Greenland Ice Sheet Climate Sensitivity and Meltwater Routing Delays

    NASA Astrophysics Data System (ADS)

    van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.

    2016-12-01

    A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.

  7. Last Interglacial (MIS5e) hydrographic shifts linked to meltwater discharges from the East Greenland margin

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Anastasia; Bauch, Henning A.; Van Nieuwenhove, Nicolas

    2017-05-01

    Proximal evidence of the surface ocean response to size reduction of the Greenland Ice Sheet (GIS) during the Last Interglacial (MIS5e) and preceding glacial termination (T2) remains largely elusive. Using a new sediment record from the western Iceland Sea, the behavior of the northeastern GIS and its relation to the subpolar North Atlantic surface hydrography is examined. Extremely light oxygen isotopic (δ18O) values are found off central East Greenland during early MIS5e and point to enhanced meltwater release, potentially from the northeastern sector of the GIS. Data from downstream the cold East Greenland Current (EGC) and its eastward branches suggest a far-reaching effect of this meltwater not only in the Nordic Seas but also in the SE Labrador Sea. In particular, whereas an early MIS5e warming (at ∼128.5-126.5 ka) in the two regions coincided with the relative reduction of meltwater input into the EGC, the subsequent cooling noted at ∼126.5 ka followed a renewed major freshwater event off central East Greenland. Our data further indicate persistent freshwater influence from the East Greenland margin over the entire MIS5e interval and, in addition, also reveal a late MIS5e meltwater event. The latter event occurred just prior to the last glacial inception and emphasizes the importance of Greenland meltwater as forcing factor on Interglacial climates.

  8. Increased Fluvial Dissolved Organic Carbon Fluxes over 130 Years of Land-Use Change in the Thames Basin

    NASA Astrophysics Data System (ADS)

    Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.

    2014-12-01

    This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1881 and 2011. Specifically, we consider how impacts of land-use change drive increases in DOC concentrations and fluxes at the basin outlet. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, SOC losses due to land-use change are partitioned into DOC lost to surface waters through runoff, DOC leached into deeper soils and groundwater, and losses to the atmosphere as CO2. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Soil carbon fluxes are calculated as the inter-annual change in SOC. We use a 130 year record of DOC concentration in the Thames, and parameters from previous long-term nitrate modeling, to constrain estimates of fluvial DOC rises caused by SOC losses. We developed a sewage model to evaluate the relative contribution of point and diffuse sources to the total DOC flux. The results show that sewage effluent point sources do not contribute to DOC concentration at the monitoring point, except for isolated periods of exceptionally low flow. Our work shows for the majority of years, diffuse sources are the main contributor to annual DOC loads. Moreover even though there are many small inter-annual variations in DOC concentration, the major change in both estimated SOC storage and fluvial DOC export occurred during WWII due to substantial changes in land-use, the legacy of which continues to date.

  9. Quantifying the magnitude, spatiotemporal variation and age of aquatic CO2 fluxes in western Greenland

    NASA Astrophysics Data System (ADS)

    Long, Hazel; Waldron, Susan; Hoey, Trevor; Garnett, Mark; Newton, Jason

    2015-04-01

    High latitude regions are experiencing accelerated atmospheric warming, and understanding the terrestrial response to this is of crucial importance as: a) permafrost soils hold vast amounts (1672 Pg; Tarnocai et al., 2009) of carbon (C) which may be released and feedback to climate change; and, b) ice sheet melt in this region is accelerating, and whilst this will cause albedo and heat flux changes, the role of this in atmospheric gas release is poorly known. To understand how sensitive arctic environments may respond to future warming, we need measurements that document current C flux rates and help to understand C cycling pathways. Although it has been widely hypothesised that Arctic regions may become increasingly significant C sources, the contribution of aquatic C fluxes which integrate catchment-wide sources has been little studied. Using a floating chamber method we directly measured CO2 fluxes from spatially distributed freshwaters (ice sheet melt, permafrost melt, and lakes/ponds) in the Kangerlussuaq region of western Greenland during the early part of the summer 2014 melt season. Fluxes from freshwaters with permafrost sources were in the range -3.15 to +1.28 μmol CO2 m-2 s-1. Fluxes from a river draining the ice sheet and the Russell Glacier were between -2.19 and +4.31 μmol CO2 m-2 s-1. These ranges show the systems can be both sources (efflux) and sinks (influx) of CO2. Much freshwater data worldwide shows CO2 efflux, and recording river/stream systems being a CO2 sink is unusual. Analysis of dissolved inorganic carbon (DIC) concentrations of the water sources revealed higher concentrations of DIC in the meltwater of permafrost systems (0.66-1.92 mmol) than the ice melt system (0.07 to 0.17 mmol), as well as differences in the carbon stable isotope ratio ranges (δ13C permafrost-melt, -9.5 to -1.2 permil; δ13C ice-melt, -11.7 to 7.3 permil). Where we recorded CO2 efflux we collected effluxed CO2 for radiocarbon analysis, and here we will present

  10. Teasing Apart Regional Climate and Meltwater Influences on Florida Straits Sea Surface Temperature and Salinity over the past 40 kyr

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Lynch-Stieglitz, J.

    2008-12-01

    Recent reconstructions of North Atlantic salinity variability over the last glacial cycle show that abrupt climate events are linked to major reorganizations in the low-latitude hydrologic cycle, affecting large-scale changes in evaporation minus precipitation (E-P) patterns. Although there is general agreement that the Intertropical Convergence Zone (ITCZ) migrates southward during cold stadials, it remains unclear how this shift affects the net E-P budget in the North Atlantic. In order to reconstruct a high resolution record of past sea surface temperature (SST) and salinity (SSS) in the Florida Straits across abrupt climate events of the last 40 kyr, we combine Mg/Ca paleothermometry and δ18O measurements in shells from the surface-dwelling foraminifera Globigerinoides ruber in cores KNR166-2-JPC29 (24°17'N, 83°16'W; 648 m depth; 8-20 cm/kyr sed. rate) and JPC26 (24°19.61'N, 83°15.14'W; 546 m depth; 18-240 cm/kyr sed. rate) and calculate δ18OSEAWATER (δ18OSW) variability. Removal of the δ18OSW signal due to continental ice volume variation results in the ice volume-free (IVF) δ18OSW record (a proxy for SSS variability). Although most waters flowing through the Florida Straits today originate in the tropical western Atlantic, major meltwater discharges from the Mississippi River across the last deglacial period also influenced SST and SSS in the Florida Straits. To constrain periods of increased meltwater discharge, we measured Ba/Ca ratios in G. ruber from select intervals. Because riverine waters have a much higher dissolved Ba+2 concentration relative to seawater, foraminifera Ba/Ca ratios can be used as an additional proxy to constrain periods of increase riverine discharge. Initial results suggest the hydrographic history of the Florida Straits is influenced by both meltwater discharge and regional climate variability linked to the high-latitude North Atlantic. Both the IVF- δ18OSW and Ba/Ca records reveal a prolonged period from 16.0-13.0 kyr

  11. No minimum threshold for ozone-induced changes in soybean canopy fluxes

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...

  12. Studies of methane fluxes reveal that desert soils can mitigate global climate change

    Treesearch

    Jean E. T. McLain; Dean A. Martens

    2005-01-01

    Moisture limitations have led researchers to believe that semiarid soils are not significant consumers or producers of trace gases, and these regions are often overlooked in greenhouse gas inventories. We are studying environmental influences on soil fluxes of methane (CH4) in southeastern Arizona. We found negligible CH4...

  13. Age-dependent changes in ecosystem carbon fluxes in managed forests in Northern Wisconsin, USA

    Treesearch

    Asko Noormets; Jiquan Chen; Thomas R. Crow

    2007-01-01

    The age-dependent variability of ecosystem carbon (C) fluxes was assessed by measuring the net ecosystem exchange of C (NEE) in five managed forest stands in northern Wisconsin, USA. The study sites ranged in age from 3-year-old clearcut to mature stands (65 years). All stands, except the clearcut, accumulated C over the study period from May to October 2002. Seasonal...

  14. Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide.

    NASA Astrophysics Data System (ADS)

    Matese, John J.; Whitman, Patrick G.; Innanen, Kimmo A.; Valtonen, Mauri J.

    1995-08-01

    The time variation of the flux of new Jupiter-dominated Oort cloud comets is considered here. It has previously been demonstrated that the major perturbation of these comets during the present epoch is due to the tidal field of the relatively smooth distribution of matter in the galactic disk. Over long time scales, secondary sources of the near-parabolic comet flux are stellar and molecular cloud impulses, both of which create brief comet showers from the inner Oort cloud. Substantial showers occur approximately every 50-500 Myr depending on the depth of the stellar penetration or the size of the molecular cloud. In contrast to these infrequent stochastic shower phenomena is the continuously varying tidal-induced flux due to the galaxy. As the Sun orbits the galactic center it undergoes quasi-harmonic ( Tz = 70 ± 15 Myr) motion about the galactic midplane which is superimposed on the small eccentricity, near-Keplerian motion in the plane having radial period TR = 170 ± 10 Myr and orbital period Tφ = 250 ± 15 Myr. In the process the galactic tidal field on the Sun/cloud system will adiabatically vary, causing a modulation of the observable Oort cloud flux. We have created a model of the galactic matter distribution as it affects the solar motion over a time interval ranging from 300 Myr in the past to 100 Myr into the future. As constraints on the disk's dark matter component we require (1) a fit to the observed galactic rotation curve, (2) consistency with the studies of K-giant and K-dwarf stellar velocity distributions, and (3) agreement with the observed energy distribution of new Oort cloud comets. The acceptable range of dark disk matter parameters is then determined and used to predict the related uncertainty in oscillation period and flux variability. We find that a model in which ≤40% of the disk matter is dark is consistent with these constraints. Under such circumstances the peak-to-trough Oort cloud comet flux variation will be as much as 4 to 1

  15. Vadose zone monitoring strategies to control water flux dynamics and changes in soil hydraulic properties.

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquin; Candela, Lucila

    2013-04-01

    ROSETTA based on soil textural fractions. Simulation of water flow using automatic and non-automatic date was carried out by HYDRUS-1D independently. A good agreement from collected automatic and non-automatic data and modelled results can be recognized. General trend was captured, except for the outlier values as expected. Slightly differences were found between hydraulic properties obtained from laboratory determinations, and from inverse modelling from the two approaches. Differences up to 14% of flux through the lower boundary were detected between the two strategies According to results, automatic sensors have more resolution and then they're more appropriated to detect subtle changes of soil hydraulic properties. Nevertheless, if the aim of the research is to control the general trend of water dynamics, no significant differences were observed between the two systems.

  16. Riverine nutrients fluxes to the North Sea and harmful algal blooms, what changed since 1984 ?

    NASA Astrophysics Data System (ADS)

    Passy, Paul; Gypens, Nathalie; Billen, Gilles; Garnier, Josette; Thieu, Vincent; Rousseau, Véronique; Callens, Julie; Parent, Jean-Yves; Lancelot, Christiane

    2013-04-01

    Nutrients fluxes delivered to the coastal zones reflect human activities taking place within watersheds. Silica (Si) fluxes mainly originate from soils and rocks weathering, so they are few impacted by human activities. On the contrary, nitrogen (N) and phosphorus (P) fluxes are dramatically impacted by human activities. N originates from urban waste water but mainly from agricultural activities. P originates mostly from urban and industrial waste waters. The enrichment of the hydrosystems in N and P leads to an imbalance between N and P in one hand and Si in the other hand. This imbalance leads to harmful algal blooms, which are damaging aquatic ecosystems, fishing activities and touristic activities. In 1992, the OSPAR convention was signed by 15 European States and targets to decrease the N and P fluxes delivered to the European coastal zones by 50 % with respect to the reference year of 1985. Focusing on the Seine, Somme and Scheldt watersheds (France and Belgium) and the adjacent coastal zone of the North Sea, we developed a retrospective modelling from 1984 to 2007 calculating nutrients fluxes from watersheds and Phaeocystis blooms occurring in the coastal zone. We coupled the biogeochemical deterministic model Seneque/Riverstrahler depicting processes occurring within hydrological networks with the marine model MIRO simulating Phaeocystis blooms in the coastal zone. The evolution of N and P fluxes were highly dissimilar. Indeed, P mainly originates from point sources. Thereby the banishment of P from the washing powders during the nineties, the development of sewage and the improvement of WWTP in terms of waste water treatment lead to a decrease of P fluxes delivered to the coastal zone. This decrease can be observed for the three watersheds. The P OSPAR objective is achieved since the middle of the 2000's years. On the other side, N, mostly originating from agricultural diffuse sources, did not decrease over the period. The fluxes even increased at the

  17. Pink marine sediments reveal rapid ice melt and Arctic meltwater discharge during Dansgaard-Oeschger warmings.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik

    2013-01-01

    The climate of the last glaciation was interrupted by numerous abrupt temperature fluctuations, referred to as Greenland interstadials and stadials. During warm interstadials the meridional overturning circulation was active transferring heat to the north, whereas during cold stadials the Nordic Seas were ice-covered and the overturning circulation was disrupted. Meltwater discharge, from ice sheets surrounding the Nordic Seas, is implicated as a cause of this ocean instability, yet very little is known regarding this proposed discharge during warmings. Here we show that, during warmings, pink clay from Devonian Red Beds is transported in suspension by meltwater from the surrounding ice sheet and replaces the greenish silt that is normally deposited on the north-western slope of Svalbard during interstadials. The magnitude of the outpourings is comparable to the size of the outbursts during the deglaciation. Decreasing concentrations of ice-rafted debris during the interstadials signify that the ice sheet retreats as the meltwater production increases.

  18. The influence of glacial meltwater on alpine aquatic ecosystems: a review.

    PubMed

    Slemmons, Krista E H; Saros, Jasmine E; Simon, Kevin

    2013-10-01

    The recent and rapid recession of alpine glaciers over the last 150 years has major implications for associated aquatic communities. Glacial meltwater shapes many of the physical features of high altitude lakes and streams, producing turbid environments with distinctive hydrology patterns relative to nival systems. Over the past decade, numerous studies have investigated the chemical and biological effects of glacial meltwater on freshwater ecosystems. Here, we review these studies across both lake and stream ecosystems. Focusing on alpine regions mainly in the Northern Hemisphere, we present examples of how glacial meltwater can affect habitat by altering physical and chemical features of aquatic ecosystems, and review the subsequent effects on the biological structure and function of lakes and streams. Collectively or separately, these factors can drive the overall distribution, diversity and behavior of primary producers, triggering cascading effects throughout the food web. We conclude by proposing areas for future research, particularly in regions where glaciers are soon projected to disappear.

  19. Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Timmermann, R.; Rodehacke, C. B.; Schröder, M.; Hellmer, H. H.

    2014-11-01

    It has been suggested that an increased melting of continental ice in the Amundsen Sea (AS) and Bellingshausen Sea (BS) is a likely source of the observed freshening of Ross Sea (RS) water. To test this hypothesis, we simulate the spreading of glacial meltwater using the Finite Element Sea Ice/Ice Shelf/Ocean Model. Based on the spatial distribution of simulated passive tracers, most of the basal meltwater from AS ice shelves flows toward the RS with more than half of the melt originating from the Getz Ice Shelf. Further, the model results show that a slight increase of the basal mass loss can substantially intensify the transport of meltwater into the RS due to a strengthening of the melt-driven shelf circulation and the westward flowing coastal current. This supports the idea that the basal melting of AS and BS ice shelves is one of the main sources for the RS freshening.

  20. Inner gorges cut by subglacial meltwater during Fennoscandian ice sheet decay.

    PubMed

    Jansen, J D; Codilean, A T; Stroeven, A P; Fabel, D; Hättestrand, C; Kleman, J; Harbor, J M; Heyman, J; Kubik, P W; Xu, S

    2014-05-09

    The century-long debate over the origins of inner gorges that were repeatedly covered by Quaternary glaciers hinges upon whether the gorges are fluvial forms eroded by subaerial rivers, or subglacial forms cut beneath ice. Here we apply cosmogenic nuclide exposure dating to seven inner gorges along ~500 km of the former Fennoscandian ice sheet margin in combination with a new deglaciation map. We show that the timing of exposure matches the advent of ice-free conditions, strongly suggesting that gorges were cut by channelized subglacial meltwater while simultaneously being shielded from cosmic rays by overlying ice. Given the exceptional hydraulic efficiency required for meltwater channels to erode bedrock and evacuate debris, we deduce that inner gorges are the product of ice sheets undergoing intense surface melting. The lack of postglacial river erosion in our seven gorges implicates subglacial meltwater as a key driver of valley deepening on the Baltic Shield over multiple glacial cycles.

  1. 21st century projections of terrestrial carbon fluxes over Northern Eurasia: the role of land legacy, future land use change and future climate change

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David; Sokolov, Andrei

    2015-04-01

    Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. In this study, we investigate possible changes in terrestrial fluxes of carbon dioxide over Northern Eurasia over the 21st century. We estimate the contributions of land legacy, future land use change and future climate change. We present three sets of simulations of terrestrial fluxes of carbon dioxide over Northern Eurasia from 1500 to 2100 using the MBL Terrestrial Ecosystem Model (TEM), a process-based ecosystem/biogeochemistry model: (1) fixed land cover corresponding to year 2005; (2) historical land use land cover change from 1500 to 2005 and fixed land cover corresponding to year 2005 until 2100; (3) historical land use land cover change from 1500 to 2005 and RCP land use land cover change scenarios until 2100. Each set of simulations is forced by a large ensemble of climate simulations using the MIT IGSM-CAM model, which accounts for the uncertainty in projections of future climate change in order to obtain robust estimates of the contribution of land legacy, land use change and climate change. The climate ensemble consists of: two emissions scenarios, a "business as usual" unconstrained emissions scenario and a stabilization scenario, similar to, respectively, the RCP8.5 and RCP4.5 scenarios; three values of climate sensitivity (2.0°C, 2.5°C and 4.5°C corresponding to the 5th percentile, median, and 95th percentile of the marginal posterior probability density function with uniform prior) and associated net aerosol forcing chosen to best reproduce observed climate change; and five different representations of natural variability. The results of this study provide new insight on projections of future terrestrial carbon fluxes over Northern Eurasia.

  2. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management.

    PubMed

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio

    2016-06-01

    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

  3. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  4. Measuring Bedload Sediment Flux in Large Rivers: New Data from the Mekong River and Its Applications in Assessing Geomorphic Change

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Parsons, D. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.

    2014-12-01

    Many large rivers are undergoing renewed and increasing anthropogenic-induced change as water diversions, new dams and greater water demands place enhanced stresses on these river basins. Examples of rivers undergoing significant change include the Amazon, Madeira, Nile, Yangtze and Mekong, with considerable ongoing debate raging as to the long-term geomorphic and ecological effects of major anthropogenic interventions. Assessing the effects of such change in large rivers is demanding, one reason being that sediment transport is often exceedingly difficult to measure, and thus data needed to inform the debate on the impact of anthropogenic change is frequently lacking. Here, we report on one aspect of research being undertaken as part of STELAR-S2S - Sediment Transfer and Erosion on Large Alluvial Rivers - that is seeking to better understand the relationship between climate, anthropogenic impacts and sediment transport in some of the world's largest rivers. We are using the Lower Mekong River as our study site, with the Mekong delta being one of only three in the world classified by the IPCC as 'extremely vulnerable' to future changes in climate. Herein, we describe details of bedload sediment flux estimation using repeated high-resolution multibeam echo sounder (MBES) bathymetric mapping along the Lower Mekong and Tonle Sap rivers in Cambodia. We are using MBES to quantify the spatial variation in sediment transport both along and also across the river at 11 sites in the study area. Predicted increases in the extraction of sediment from the river through sand dredging are thought likely to cause a significant decrease in downstream sediment flux, and future dam construction along the Mekong main channel potentially offers another source of significant change. These field results will be set in the light of these anthropogenic drivers on sediment flux in the Mekong River and their possible future effects on bar formation and channel migration.

  5. Swath bathymetry images of subglacial meltwater features in the Amundsen Sea Embayment

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Gohl, K.; Larter, R. D.; Jakobsson, M.; Anderson, J. B.; Jacobs, S. S.

    2011-12-01

    Increasing evidence for an elaborate subglacial drainage network underneath modern Antarctic ice sheets suggests that its basal meltwater has an important influence on ice stream flow. Swath bathymetry surveys from previously glaciated continental margins display morphological features indicative of meltwater flow in areas of paleo ice stream movements. Over the last few years several expeditions into the eastern Amundsen Sea have investigated the paleo ice streams connected to the Pine Island and Thwaites Glaciers. Unusually favorable sea ice conditions in early 2009 and 2010 allowed us to acquire high-resolution swath bathymetry over large, coherent areas of the of the Thwaites and Pine Island paleo ice streams. Together with previous collections, these data reveal details of a rough topography on the inner shelf including several deep channels that connect a series of deeper basins. This complex basin and channel network is indicative of meltwater flow beneath the paleo-Pine Island and Thwaites ice streams, along with substantial subglacial water inflow from the east. This meltwater could have enhanced ice flow over the rough bedrock topography. Meltwater features diminish with the onset of linear features north of the basins. Similar features have previously been observed at several other areas including the Getz trough in the central Amundsen Sea and Marguerite Bay in the Antarctic Peninsula. This suggests that these features and the processes that created them are common around the margin. A comparison of the different features allows the identification of the dominant processes and the creation of a conceptual model of subglacial meltwater flow and its interaction with the ice and underlying substrate.

  6. Assessing the effects of land use/cover change on carbon dioxide fluxes in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo

    2017-04-01

    Land use/cover change has been generally considered a local environmental issue. Our study focuses on the effects of land use/cover change on the carbon cycle using long-term continuous field observation data, which is measured by the eddy covariance (EC) technique. The study site is at Yulin (38.45N, 109.47E), which is a desert shrubland ecosystem in Mu Us sandland, China. Before June 2012, the vegetation in this site was covered with mixed vegetation: typical desert shrubs (e.g., Salix psammophila and Artemisia ordosica) and grass. After July 2012, a part of the land use/cover condition within the footprint was changed by the local farmers, which converted the land use/cover condition changed first from mixed vegetation to bare soil and then from bare soil to grassland resulting from the re-growing grass. Four-year carbon fluxes are selected and separated into three periods: Period I is from July 1 2011 to June 30 2012 when land use/cover condition did not change; Period II is from July 1 2012 to June 30 2014 when land use/cover condition changed from mixed vegetation (shrubs and grass) to the mix of bare soil and desert shrubs; Period III is from July 1 2014 to June 30 2015 when land use/cover condition changed from the mix of desert shrubs and bare soil to the mix of desert shrubs and re-growing grass. A linear statistical model will be used to evaluate and quantify the effects of land use/cover change on the uptake or release of carbon fluxes (net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP)). Moreover, this study is expected to get insights into how agricultural cultivation influences on the local carbon balance (e.g., how NEE, Reco and GPP respond to the land use/cover change; Is the annual carbon balance changed during the land use/cover change process; and the contribution of land use/cover change on these changes of carbon fluxes).

  7. An iodine mass-balance for Lake Constance, Germany: Insights into iodine speciation changes and fluxes

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2010-06-01

    Lake Constance is one of Europe's largest oligotrophic lakes and provides a water source for more than 4.5 million people in Germany and Switzerland. We present here a 12 month study on iodine concentrations, speciation and fluxes to and from the lake to gain a quantitative understanding of the limnic iodine cycle. Monthly water samples were obtained from all major tributaries (14) and the outflow to construct a mass-balance model. Sediment traps were also deployed in the lake for two years at two different stations. Total soluble iodine (TSI) in aqueous samples were analysed by ICP-MS and speciation (iodide, iodate and soluble organically bound iodine, SOI) by ion chromatography-ICP-MS. Iodine concentrations in the Alpine tributaries (1-2 μg l -1) decreased over the summer months due to increasing proportions of snow and glacial melt water from the Alps, while iodine levels in the lowland rivers (˜2-10 μg l -1) increased over the summer. Deposition of TSI to the catchment (16,340 kg I yr -1) was similar to the TSI out-flux by rivers (16,000 kg I yr -1). By also including the particulate riverine iodine flux out of the catchment (˜12,350 kg I yr -1) it is shown that the catchment is a net source of iodine, with the highest particulate fluxes coming from the Alpine rivers. The total TSI flux to the lake was 16,770 kg I yr -1, the largest proportion coming from the Alpenrhein (43%), followed by the Schussen (8%) and Bregenzer Ach (7.7%). Overall the mass-balance for TSI in the lake was negative, with more iodine flowing out of the lake than in (-2050 kg I yr -1; 12% of TSI in-flux). To maintain mass-balance, 8.8 μg I m -2 d -1 from the Obersee and 23 μg I m -2 d -1 from the Untersee must be released from the sediments into the water column. Thus, in comparison with the total iodine flux to the sediments measured by the sediment traps (4762-8075 kg I yr -1), up to 39% of the deposited iodine may be mobilised back into the lake. SOI was the dominant iodine

  8. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  9. Postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in overweight and obesity

    PubMed Central

    Ramos-Roman, Maria A.; Sweetman, Lawrence; Valdez, Maressa J.; Parks, Elizabeth J.

    2011-01-01

    Objective This study determined whether reductions in postprandial plasma FFA flux would lead to reductions in plasma acylcarnitine (AC) concentrations. Materials/Methods Plasma AC were measured by LC-MS/MS in the fasting state and over 6h after a high-fat (50% energy) meal was fed to 16 overweight and obese subjects with a wide range of insulin sensitivities. Body composition was measured by DEXA, insulin sensitivity by FSIVGTT, substrate oxidation by indirect calorimetry, blood metabolite and hormone concentrations biochemically, and fatty acid flux by using stable isotope tracers. Results Lean body mass (LBM) and fasting fat oxidation correlated positively (r > 0.522, P<0.05), while glucose oxidation correlated negatively (r < −0.551, P <0.04) with fasting AC. Postprandially, plasma glucose, insulin, and TG concentrations increased, and FFA concentrations decreased significantly. The responses of plasma AC species depended on chain length and saturation, with C14:0, C16:0, and C18:0 remaining unchanged, and unsaturated species (e.g., C14:1, C14:2) falling significantly (21–46%, P < 0.03). Post-meal nadir AC concentrations were positively associated with LBM, postprandial fatty acid flux and FFA concentrations (r > 0.515, P < 0.05). By contrast, nadir AC correlated negatively with insulin sensitivity and spillover of meal-derived fatty acids (r < −0.528, P < 0.04). Conclusions Conditions that impact fatty acid flux contribute to the control of postprandial plasma AC concentrations. These data underscore the need for a better understanding of postprandial fatty acid oxidation and dietary fat delivery in the setting of adipose insulin resistance to determine how postprandial lipemia contributes to chronic disease risk. PMID:21820684

  10. Long-term changes in consentrations and flux fo nitrogen in the Mississippi River Basin, USA

    USGS Publications Warehouse

    Goolsby, D.A.; Battaglin, W.A.

    2001-01-01

    Current and historical data show that nitrogen concentrations and flux in the Mississippi River Basin have increased significantly during the past 100 years. Most of the increase observed in the lower Mississippi River has occurred since the early 1970s and is due almost entirely to an increase in nitrate. The current (1980-99) average annual nitrogen (N) flux from the Mississippi Basin to the Gulf of Mexico is about 1 555 500 t year-1, of which about 62% is nitrate-N. The remaining 38% is organic nitrogen and a small amount of ammonium. The current (1980-99) average nitrate flux to the Gulf is almost three times larger than it was during 1955-70. This increased supply of nitrogen to the Gulf is believed to be partly responsible for the increasing size of a large hypoxic zone that develops along the Louisiana-Texas shelf each summer. This zone of oxygen-depleted water has doubled in areal extent since it was first measured in 1985. The increase in annual nitrate flux to the Gulf can be largely explained by three factors: Increased fertilizer use, annual variability in precipitation and increased streamflow, and the year-to-year variability in the amount of nitrogen available in the soil-ground water system for leaching to streams. The predominant source areas for the nitrogen transported to the Gulf of Mexico are basins draining southern Minnesota, Iowa, Illinois, Indiana, and Ohio. Basins in this region yield 1801 to 3050 kg N km-2 year-1 to streams, several times the N yield of basins outside this region.

  11. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  12. Meltwater input to the southern ocean during the last glacial maximum

    SciTech Connect

    Shemesh, A.; Burckle, L.H.; Hays, J.D.

    1994-12-02

    Three records of oxygen isotopes in biogenic silica from deep-sea sediment cores from the Atlantic and Indian sectors of the Southern Ocean reveal the presence of isotopically depleted diatomaceous opal in sediment from the last glacial maximum. This depletion is attributed to the presence of lids of meltwater that mixed with surface water along certain trajectories in the Southern Ocean. An increase in the drainage from Antarctica or extensive northward transport of icebergs are among the main mechanisms that could have produced the increase in meltwater input to the glacial Southern Ocean. Similar isotopic trends were observed in older climatic cycles at the same cores.

  13. Meltwater Pathways and Iron Delivery to the Antarctic Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Null, K. A.; Corbett, D. R.; Crenshaw, J.; Peterson, R. N.; Peterson, L.; Buck, C. S.; Lyons, W. B.

    2016-02-01

    Freshwater inputs to the Antarctic coastal ocean can occur through multiple pathways including calving, streams, and groundwater discharge. The impacts of submarine groundwater discharge on polar ecosystems are generally poorly understood and, until recently, had not been considered as an important physical process along the coast of the Antarctic continent. Here, we present a study utilizing multiple tracers (radium, radon, and stable water isotopes) to quantify freshwater inputs and chemical constituent fluxes associated with multiple discharge pathways, including submarine groundwater discharge, along the Western Antarctic Peninsula. Previous research has shown that primary production in iron-limited waters offshore of the Antarctic Peninsula is fueled in part by continentally-derived sediments, and our work demonstrates that subglacial/submarine groundwater discharge (SSGD) to continental shelf waters in the region is also an important source of dissolved iron (6.4 Gg yr-1; dFe). For reference, this flux equates to approximately 25 times the iron flux from calving in the study area. SSGD also contributed a significantly higher macronutrient flux than calving, although calving contributed more than twice as much freshwater. Thus, SSGD is likely a much more important source of macronutrients and dFe to the nearshore coastal ocean along the Western Antarctic Peninsula, and potentially to the continental shelf and offshore waters of the entire continent than previously recognized. If we assume similar discharge rates along the entire Antarctic coastline ( 45,000 km), the delivery of dFe via SSGD ( 216 Gg yr-1) is comparable to the other fluxes of Fe to the Southern Ocean via dust, icebergs, and glacial runoff from the Antarctic Ice Sheet, and should be considered in future geochemical budgets.

  14. Fluxes of N2O and CH4 from forest and grassland lysimeter soils in response to simulated climate change

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2015-04-01

    Central Europe is expected to be exposed to altered temperature and hydrological conditions, which will affect the vulnerability of nitrogen and carbon cycling in soils and thus production and fluxes of climate relevant trace gases. However, knowledge of the response of greenhouse gas fluxes to climate change is limited so far, but will be an important basis for future climate projections. Here we present preliminary results of an ongoing lysimeter field study which aims to assess the impact of simulated climate change on N2O and CH4 fluxes from a forest and a fertilized grassland soil. The lysimeters are part of the Germany-wide research infrastructure TERENO, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Lysimeters (A = 1m2) were established in 2010 at high elevated sites (HE, 500 and 600 m.a.s.l.) and subsequently transferred along an altitudinal gradient to a low elevated site (LE, 100 m.a.s.l.) within the Eifel / Lower Rhine Valley Observatory in Western Germany, thereby resulting in a temperature increase of 2.3 K whereas precipitation decreased by 160 mm during the present study period. Systematic monitoring of soil-atmosphere exchange of N2O and CH4 based on weekly manual closed chamber measurements at HE and LE sites has started in August 2013. Furthermore, we routinely determine dissolved N2O and CH4 concentrations in the seepage water using a headspace equilibration technique and record water discharge in order to quantify leaching losses of both greenhouse gases. Cumulative N2O fluxes clearly responded to simulated climate change conditions and increased by 250 % and 600 % for the forest and the grassland soil, respectively. This difference between the HE and LE sites was mainly caused by an exceptionally heavy precipitation event in July 2014 which turned the LE site sustainably to a consistently higher emission level. Nonetheless, emissions remained rather small and ranged between 20 and 40 μg m-2 h-1. In

  15. Can we reconstruct meltwater supplies from ice-sheet to the ocean from proxies ?

    NASA Astrophysics Data System (ADS)

    de Vernal, A.; Hillaire-Marcel, C.

    2006-12-01

    The transfer of water from ice sheets to the ocean occurs through iceberg or meltwater discharge. In the first case, sedimentary tracers provide information on source areas and dispersal patterns, but do not permit quantifying the volume of freshwater release. In the second case, sedimentary tracers can help identifying catastrophic discharge that are accompanied by turbulent flow and gravity currents on sea-floor. Otherwise, continuous input of freshwater from ice margins (or from river) into the ocean results in stratification in upper waters that is controlled by discharge rates up to some threshold of turbulence. In this situation, sedimentary tracers are not much helpful informative, but biogenic remains, their isotopic and elemental contents can provide relevant information. They allow identifying salinity anomalies related to the mixing of freshwater in surface water layers. However, the associated changes in the upper water mass structure have an impact on pelagic ecosystems. Most stenohaline organisms are affected and decrease in abundance unless they are able to migrate along the halocline to find suitable salinity conditions. In theory, the analysis of fossil assemblage permits to infer changes in salinity and/or in the stratification of the upper water masses, and through transfer function, to make quantitative reconstructions. This exercise has been tempted with biological tracers such as dinocysts. Other proxies should also reveal informative, notably diatoms that occur in all salinity domains. In theory also, if a given species is able to keep its depth habitat despite changes in salinity and/or water mass structure, isotopic or geochemical tracers allow identifying changes in water-mass properties. This assumption is however debatable. Thus, reconstructing freshwater discharge is a challenge and requires combining complementary tracers. Here, we examine records of the last deglaciation with special attention to the Younger Dryas (YD) and "8.2 ka

  16. Effect of climate change on flux of N and C: air-land-freshwater-marine links: synthesis.

    PubMed

    Stuanes, Arne O; de Wit, Heleen A; Hole, Lars R; Kaste, Oyvind; Mulder, Jan; Riise, Gunnhild; Wright, Richard F

    2008-02-01

    Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.

  17. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.

    PubMed Central

    Russell, R R; Taegtmeyer, H

    1991-01-01

    To determine the temporal relationship between changes in contractile performance and flux through the citric acid cycle in hearts oxidizing acetoacetate, we perfused isolated working rat hearts with either glucose or acetoacetate (both 5 mM) and freeze-clamped the tissue at defined times. After 60 min of perfusion, hearts utilizing acetoacetate exhibited lower systolic and diastolic pressures and lower cardiac outputs. The oxidation of acetoacetate increased the tissue content of 2-oxoglutarate and glutamate and decreased the content of succinyl-CoA suggesting inhibition of citric acid cycle flux through 2-oxoglutarate dehydrogenase. Whereas hearts perfused with either acetoacetate or glucose were similar with respect to their function for the first 20 min, changes in tissue metabolites were already observed within 5 min of perfusion at near-physiological workloads. The addition of lactate or propionate, but not acetate, to hearts oxidizing acetoacetate improved contractile performance, although inhibition of 2-oxoglutarate dehydrogenase was probably not diminished. If lactate or propionate were added, malate and citrate accumulated indicating utilization of anaplerotic pathways for the citric acid cycle. We conclude that a decreased rate of flux through 2-oxoglutarate dehydrogenase in hearts oxidizing acetoacetate precedes, and may be responsible for, contractile failure and is not the result of decreased cardiac work. Further, anaplerosis play an important role in the maintenance of contractile function in hearts utilizing acetoacetate. Images PMID:1671390

  18. Seasonal to interannual depth-dependent changes in phosphorus flux in Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Benitez-Nelson, C. R.; O'Neill, L.; Thunell, R.

    2004-12-01

    One of the major removal pathways of phosphorus (P) from the water column is through the formation, sinking, and burial of particles formed during marine biological production. Yet the flux of P containing particles to the seafloor remains one of the least studied components of the P cycle. In this study, particulate inorganic P (PIP) and particulate organic P (POP) fluxes were measured in a series of samples collected from sediment traps ranging in depth from 275 to 1255 m from November 1995 - November 2002 in Cariaco Basin, Venezuela. PIP concentrations averaged 40- 60 % (depending on depth) of the total particulate P (TPP) measured in the traps. PIP fluxes decreased by 75 % between the surface and deep waters, from a median of 28.6 to 6.3 \\mu mol m-2 d-1, whereas POP fluxes decreased by only 50 %, from 17.2 to 8.5 \\mu mol m-2 d-1. TPP, PIP and POP all vary seasonally and higher fluxes follow higher production during the upwelling season from late January to April. The relationship between particulate organic C (POC) and POP is relatively constant (POC:POP = 283) throughout the entire water column over the entire period (r2 = 0.58). However, there is a much tighter relationship between POP and POC in upwelling (January through April, r2 = 0.85) versus non upwelling (May through December, r2 = 0.40) seasons. Furthermore, upwelling, and hence higher production appears to be associated with higher POC:POP ratios (327 versus 258 in non upwelling periods). Higher than Redfield POC:POP ratios may indicate that preferential release of P containing organic matter is occurring, but if true, it is restricted to the upper 250 m of the water column above the shallowest sediment trap. An alternative explanation may be that the composition of plankton in the Cariaco Basin does not conform to the Redfield-ratio. Plankton tow samples collected over the upper 200 m with a > 200 um mesh had POC:POP ratios of 294 +/- 38. However, there is no other evidence that the euphotic zone

  19. Quantifying Long-term Methane Flux Change by Coupling Authigenic Mineral Distribution and Kinetic Modeling at Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Hong, W.; Torres, M. E.; Johnson, J. E.; Pinero, E.; Rose, K.

    2010-12-01

    To understand the complex feedbacks between methane flux and environmental change, we need to develop robust proxies that can record methane dynamics through time. Here we present data from the upper 100 mbsf drilled at Site 1252, during ODP Leg 204 in southern Hydrate Ridge offshore Oregon. We use a combined approach that incorporates a high-resolution record of sedimentary sulfur and barium with Mg/Ca ratios and carbon and oxygen isotopes from benthic foraminifera, as well as with shipboard magnetic susceptibility data. Our results document the presence of at least five iron sulfide fronts, which occur in low magnetic susceptibility, fine grained sediments and lie beneath high magnetic susceptibility slope failure deposits (see Johnson et al., this session). Two obvious barite fronts were also observed and confirmed by XRD. These fronts occur ~5 m deeper than the nearest slope failure sequence. This association suggests rapid sedimentation due to slope failure may be linked to the barite fronts. Barite fronts have long been known to develop at the sulfate methane interface (SMI) as a result of barite dissolution driven by sulfate depletion, and barite re-precipitation fueled by upward diffusion of barium and downward diffusion of sulfate. The ~5 m offset between the slope failure sequences and the nearest barite front at Site 1252 is similar to the depth of the modern SMI at this site. This suggests that the depth to the SMI (from the seafloor at times in the past) has not significantly changed over the ~100 thousand year interval covered by this sedimentary sequence. Thus the two paleo-barite fronts were probably formed under the same sulfate reduction rates as present day. Stable isotopes and Mg/Ca ratios of benthic foraminifera indicate that there are no apparent changes in temperature or carbon cycling at this site. A kinetic model was applied to reconstruct and simulate the changes in redox state and methane flux in response to the repeated cycles of slope

  20. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  1. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  2. Evidence and significance of major meltwater events between H1 and H2 along the eastern Canadian margin

    NASA Astrophysics Data System (ADS)

    Novak, A.; Saint-Ange, F.; Piper, D. J.; Gosse, J.

    2010-12-01

    Meltwater events between Heinrich (H) events 1 and 2 are investigated from deep-water cores to address spatial and temporal meltwater variability in response to ice sheet dynamics. Heinrich events are widely recognized on the eastern Canadian margin, though meltwater events between H1 and H2 have not been studied in detail. While ma-jor meltwater events have been identified on the European margin, only one site on the eastern Canadian margin (Laurentian Fan) has suggested a major meltwater event be-tween H1 and H2. Here we explore whether major meltwater events are observed at additional sites between H1 and H2. We will present data (e.g. color, carbonate content, IRD, etc.) from ~15 cores taken seaward of ice streams along the margin from Hudson Strait to Laurentian Channel. These cores indicate the existence of meltwater anomalies between H1 and H2 that can be traced and correlated along the margin. We find turbid-ites inter-layered with laminae of IRD, bracketed with hemipelagic sediments in cores proximal of major outlets, likely resulting from a combination of meltwater and iceberg discharge. Whereas IRD is nearly absent in similar turbidite sequences in cores proxi-mal of minor outlets, likely resulting from meltwater discharge only. Biogenic carbon-ate varies out-of-phase with inorganic carbonate and may reflect turbidite activity and the amount of terrigenous organic material delivered from land during meltwater events. Our results show that the Labrador Current and Gulf Stream play a significant role in distributing meltwater plumes from major outlets along the eastern Canadian margin and to the North Atlantic. Whereas sediments from minor outlets are transported directly to deepwater via turbidity currents, and the resulting meltwater plume trans-ported is diluted within the major currents. This dilution explains why meltwater sig-nals from minor outlets are not recorded in the North Atlantic. Nevertheless, minor out-lets are generating a significant

  3. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  4. A predictive model for routing of supraglacial meltwater to the bed of glaciers: application to Leverett Glacier, western Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Clason, Caroline; Mair, Douglas; Nienow, Peter

    2010-05-01

    penetration depths based on surface tensile stresses and the extent to which water pressure, which is controlled by surface meltwater influx rates and water depth, offsets the closure of crevasses due to the lithostatic stress of the ice (Van der Veen, 2007). The blunting effect of multiple crevasses on the stress intensity factor associated with tensile stress is also considered, as propagation depth of closely-spaced crevasses is significantly reduced in comparison to a single water-filled crevasse. Development of this modelling routine will allow for a rigorous quantitative evaluation of one of the key processes controlling ice sheet dynamic thinning. Representative incorporation of the mechanisms of ice mass change within ice sheet modelling is crucial, since estimates of future sea level change remain limited by major uncertainty surrounding the contribution from polar ice sheets. It is, therefore, timely that models of ice fracture and glacial hydrology be coupled. References Nye, J.F., (1957), The distribution of stress and velocity in glaciers and ice sheets, Proceedings of the Royal Society of London, Series A, 239 (1216), 113-133 Shepherd, A., Hubbard, A., Nienow, P., King, M., McMillan, M. & Joughin, I., (2009), Greenland ice sheet motion coupled with daily melting in the late summer, Geophysical Research Letters, 36, L01501; Van der Veen, C.J., (2007), Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophysical Research Letters, 34, L01501 Zwally, J.H., Abdalati, W., Herring, T., Larson, K., Saba, J. & Steffen, K., (2002), Surface Melt-Induced Acceleration of Greenland Ice Sheet Flow, Science, 297, 218-222

  5. Effect of the fission spectra changes on pressure-vessel flux determination

    SciTech Connect

    Remec, I.

    1999-07-01

    The impact is discussed of the differences in fission spectra from the SAILOR and BUGLE-96 cross-section libraries on reactor pressure vessel (RPV) flux determination. The fission spectra from the SAILOR library (ENDF/B-IV) and BUGLE-96 library (ENDF/B-VI) are compared. The SAILOR {sup 239}Pu spectrum was collapsed from the VITAMIN-C library, which was the basis for SAILOR. The high-energy parts of the spectra (above {approximately}3 MeV) are much higher in SAILOR than in BUGLE-96. To assess the effect of these differences, a series of transport calculations of the H.B. Robinson Unit 2 pressurized water reactor were performed with the DORT code. The combined fission spectrum was taken as 0.5 x {chi} ({sup 235}U) + 0.5 x {chi} ({sup 239}Pu). The calculations with SAILOR cross sections were done with the combined fission spectrum from SAILOR and BUGLE-96. The spectra in the surveillance capsule and in the cavity from the two calculations are compared. The differences in fission spectra are readily transported to the out-of-core locations. While group fluxes at 20 MeV differ by a factor of 2, the fast fluxes (E {gt} 1 MeV) from the two calculations agree within 3 to 4% in the capsule, inside the RPV, and in the cavity. Equivalent calculations with BUGLE-96 produced similar results. The calculated reaction rates are compared with the measurements. The calculations with the SAILOR fission spectra give higher average calculated-to-measured (C/M) ratios both in the capsule and in the cavity, and with both the SAILOR and BUGLE-96 cross sections. However, the C/M ratios obtained with the SAILOR fission spectra show systematic increases from lower to higher threshold dosimeters (left to right in Table 1) and larger variations of the C/M ratios. Both effects are more pronounced in the cavity.

  6. Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements

    NASA Astrophysics Data System (ADS)

    Murashko, K. A.; Mityakov, A. V.; Mityakov, V. Y.; Sapozhnikov, S. Z.; Jokiniemi, J.; Pyrhönen, J.

    2016-10-01

    The popularity of lithium-ion (Li-ion) batteries has increased over the recent years. Because of the strong dependence of the Li-ion battery operation characteristics on temperature, heat generation in the battery has to be taken into account. The entropy change of a Li-ion battery has a significant influence on heat generation, especially at a low C-rate current. Therefore, it is necessary to consider the entropy change profile in the estimation of heat generation. In the paper, a method to determine the entropy change (ΔS) profile by heat flux measurements of a cylindrical Li-ion cell is proposed. The method allows simultaneous measurements of the thermal diffusivity and ΔS of the cylindrical cell. The thermal diffusivity and ΔS measurements are carried out by a gradient heat flux sensor (GHFS). The comparison between the ΔS profile determined by the GHFS method with that obtained using a standard potentiometric method clearly shows that the entropy change measurements could be made by using a GHFS. Even though the uncertainty of the reported method is higher than that of the potentiometric method, a significant decrease in the experiment time compared with the potentiometric method is a major advantage of this method.

  7. Diurnal Cycles of Meltwater Percolation, Refreezing, and Drainage in the Supraglacial Snowpack of Haig Glacier, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Samimi, Samira; Marshall, Shawn J.

    2017-02-01

    Meltwater refreezing and storage in the supraglacial snowpack can reduce and delay meltwater runoff from glaciers. These are well-established processes in polar environments, but the importance of meltwater refreezing and the efficiency of meltwater drainage are uncertain on temperate alpine glaciers. To examine these processes and quantify their importance on a mid-latitude mountain glacier, we measured the temperature and meltwater content in the upper 50 cm of the supraglacial snowpack of Haig Glacier in the Canadian Rocky Mountains. Thermistors and TDR probes were installed at 10-cm intervals at two sites in the glacier accumulation area from May to September, 2015. A Denoth meter was used to make point measurements for comparison with the TDR inferences of snowpack dielectric properties. These data are supplemented by automatic weather station data, used to calculate surface melt rates and drive a model of subsurface temperature, refreezing, and drainage. We observed a strong diurnal cycle in snow water content throughout the summer melt season, but subsurface refreezing was only significant in May; after this, overnight refreezing was restricted to a thin surface layer of the snowpack. Overnight decreases in water content after May are associated with meltwater percolation and drainage. There was negligible meltwater retention in the snow on a daily basis, but the refrozen water does represent an ‘energy sink’, with 10-15% of the available melt energy diverted to recycled rather than new meltwater. This reduces the total meltwater runoff from the site, even though no meltwater is retained in the system.

  8. Solute, Discharge, and Nutrient Dynamics at Sub-daily Timescales in Glacial Meltwater Streams of the McMurdo Dry Valleys

    NASA Astrophysics Data System (ADS)

    Bernzott, E. D.; Gooseff, M. N.; McKnight, D. M.

    2011-12-01

    In the McMurdo Dry Valleys, Antarctica, streams and their hyporheic zones are responsible for the translation and evolution of meltwater, solutes, and nutrients from glacier sources to closed basin lakes. Streamflow in the Dry Valleys is highly variable on a sub-daily timescale due to fluctuating meteorological conditions, particularly the availability of solar radiation for meltwater generation. Flow seasons last for 6-12 weeks and there is substantial variability in daily discharge cycles throughout the season. Dissolved nitrate in Dry Valley streams comes from mineralization and atmospheric deposition, and is taken up by benthic algal mats and hyporheic microbes. We propose that stream discharge and hyporheic exchange are primary controls on stream nutrient concentrations. We calculated solute fluxes using long-term discharge and electrical conductivity data, reported at 15-minute intervals, at several permanent gauge sites in Taylor Valley. Relationships between nitrate concentrations and discharge were computed using samples retrieved approximately weekly throughout each flow season. These data were supplemented by 2-3 day deployments of a Submersible Nitrate Analyzer (SUNA) in several streams, which recorded nitrate concentrations on 15-minute intervals. Solute concentrations generally increased with increasing discharge, indicating a strong hyporheic interaction at higher discharges. Analysis of fluctuations in nitrate concentrations indicates a more complex relationship. Algal mats respond differently to wetting as the season progresses, adding a seasonal component to the relationship. This is complicated further by the compound effects of solar radiation on photosynthesis and melt, which are sub-daily fluctuations occurring at different timescales.

  9. Differences Between ERBE and CERES Tropical Means Fluxes: ENSO, Climate Change of Calibration?

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Young, David F.; Barkstrom, Bruce R.; Lee, R. B., III; Haeffelin, Martial

    1999-01-01

    Verner E. Soumi was the father of radiation budget measurements from space. He directed the team at the University of Wisconsin that developed the first radiation budget measurements on the Iota (Explorer VII) coverage) spacecraft in 1959. The first data published was from hand calculations of night-time long-wave fluxes, with absolute accuracy estimated as better than 10 percent, and the data shown as hand drawn maps with lines of equal "long-wave radiation loss, in Langleys per minute X 10(exp -3) (isolangleys)". The first comparisons of the new radiation data with nephanalyses showed that clouds dominated the radiation patterns. Soumi immediately proposed using the radiation fields to help understand the atmospheric heat sources necessary to drive the atmospheric circulation. This early work already pointed to the relationship between the outgoing longwave radiation at the top of the atmosphere and the vertical flux divergence of infrared radiation within the atmosphere. In the next 30 years, global satellite observations of the radiation balance of the planet have advanced both in accuracy, stability, and in their ability to address cause and effect in the climate system. The purpose of the present paper is to examine early results of the new Clouds and the Earth's Radiant Energy System (CERES) data on Tropical Rainfall Measuring System (TRMM) which started data collection in January, 1998. CERES is a direct descendant of the legacy of Soumi's foresight on understanding the global energetics using satellite observations of broadband radiation.

  10. Differences between ERBE and CERES Tropical Mean Fluxes: ENSO, Climate Change or Calibration?

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Young, David F.; Barkstrom, Bruce R.; Lee, R. B., III; Haeffelin, Martial

    2005-01-01

    Verner E. Soumi was the father of radiation budget measurements from space. He directed the team at the University of Wisconsin that developed the first radiation budget measurements on the Iota (Explorer VII) coverage) spacecraft in 1959. The first data published was from hand calculations of night-time long-wave fluxes, with absolute accuracy estimated as better than 10 percent, and the data shown as hand drawn maps with lines of equal "long-wave radiation loss, in Langleys per minute X 10(exp -3) (isolangleys)". The first comparisons of the new radiation data with nephanalyses showed that clouds dominated the radiation patterns. Soumi immediately proposed using the radiation fields to help understand the atmospheric heat sources necessary to drive the atmospheric circulation. This early work already pointed to the relationship between the outgoing longwave radiation at the top of the atmosphere and the vertical flux divergence of infrared radiation within the atmosphere. In the next 30 years, global satellite observations of the radiation balance of the planet have advanced both in accuracy, stability, and in their ability to address cause and effect in the climate system. The purpose of the present paper is to examine early results of the new Clouds and the Earth's Radiant Energy System (CERES) data on Tropical Rainfall Measuring System (TRMM) which started data collection in January, 1998. CERES is a direct descendant of the legacy of Soumi's foresight on understanding the global energetics using satellite observations of broadband radiation.

  11. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs

    PubMed Central

    Adamczyk, Emily M.; Shurin, Jonathan B.

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m-2 day-1. pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton. PMID:26473601

  12. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs.

    PubMed

    Adamczyk, Emily M; Shurin, Jonathan B

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m(-2) day(-1). pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton.

  13. Differences Between ERBE and CERES Tropical Means Fluxes: ENSO, Climate Change of Calibration?

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Young, David F.; Barkstrom, Bruce R.; Lee, R. B., III; Haeffelin, Martial

    1999-01-01

    Verner E. Soumi was the father of radiation budget measurements from space. He directed the team at the University of Wisconsin that developed the first radiation budget measurements on the Iota (Explorer VII) coverage) spacecraft in 1959. The first data published was from hand calculations of night-time long-wave fluxes, with absolute accuracy estimated as better than 10 percent, and the data shown as hand drawn maps with lines of equal "long-wave radiation loss, in Langleys per minute X 10(exp -3) (isolangleys)". The first comparisons of the new radiation data with nephanalyses showed that clouds dominated the radiation patterns. Soumi immediately proposed using the radiation fields to help understand the atmospheric heat sources necessary to drive the atmospheric circulation. This early work already pointed to the relationship between the outgoing longwave radiation at the top of the atmosphere and the vertical flux divergence of infrared radiation within the atmosphere. In the next 30 years, global satellite observations of the radiation balance of the planet have advanced both in accuracy, stability, and in their ability to address cause and effect in the climate system. The purpose of the present paper is to examine early results of the new Clouds and the Earth's Radiant Energy System (CERES) data on Tropical Rainfall Measuring System (TRMM) which started data collection in January, 1998. CERES is a direct descendant of the legacy of Soumi's foresight on understanding the global energetics using satellite observations of broadband radiation.

  14. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  15. Surface morphology changes and deuterium retention in Toughened, Fine-grained Recrystallized Tungsten under high-flux irradiation conditions

    NASA Astrophysics Data System (ADS)

    Oya, M.; Lee, H. T.; Ueda, Y.; Kurishita, H.; Oyaidzu, M.; Hayashi, T.; Yoshida, N.; Morgan, T. W.; De Temmerman, G.

    2015-08-01

    Surface morphology changes and deuterium (D) retention in Toughened, Fine-Grained Recrystallized Tungsten (TFGR W) with TaC dispersoids (W-TaC) and pure tungsten exposed to D plasmas to a fluence of 1026 D/m2 s were studied as a function of the D ion flux (1022-1024 D/m2 s). As the flux increased from 1022 D/m2 s to 1024 D/m2 s, the numbers of blisters increased for both materials. However, smaller blisters were observed on W-TaC compared to pure W. In W-TaC, cracks beneath the surface along grain boundaries were observed, which were comparable to the blister sizes. The reason for the smaller blister sizes may arise from smaller grain sizes of W-TaC. In addition, reduction of the D retention in W-TaC was observed for higher flux exposures. D depth profiles indicate this reduction arises due to decrease in trapping in the bulk.

  16. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    NASA Astrophysics Data System (ADS)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  17. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.

    2012-06-01

    A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.

  18. Deformation, warming and softening of Greenland’s ice by refreezing meltwater

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.

    2014-07-01

    Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.

  19. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    PubMed

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  20. Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs.

    PubMed

    Deutz, N E; Reijven, P L; Athanasas, G; Soeters, P B

    1992-11-01

    1. After operation, changes in nitrogen metabolism occur. Although increased flux of amino acids from peripheral to splanchnic organs after operation has been described, substrate utilization by the individual organs in the splanchnic area is less well characterized. We were specifically interested in substrate flux across the spleen as it is an organ with important immunological functions. 2. Therefore, hindquarter, gut, spleen and liver fluxes of amino acids, ammonia, glucose, lactate and blood gases were measured for 4 days after a standard operation in pigs. In a separate control group, fluxes were measured 2-3 weeks after this operation and these values were assumed to represent the normal situation. 3. One day after operation, the hindquarter effluxes of glutamine, alanine and several essential amino acids were increased (P > 0.001), but these normalized at the end of the observation period. In the same period, liver glutamine uptake increased (P < 0.01), concomitantly with increased HCO3-, glucose and urea production, which also normalized. Portal drained viscera ammonia production decreased, concomitant with decreased glutamine uptake (P < 0.001). After operation, the splenic release of ammonia increased sevenfold (P < 0.05) and that of lactate increased from -158 +/- 544 to 3294 +/- 642 nmol min-1 kg-1 body weight (P < 0.001). Glucose uptake increased from -964 +/- 632 to -3933 +/- 1524 nmol min-1 kg-1 body weight and glutamine efflux (391 +/- 143) reversed to uptake (-752 +/- 169 nmol min-1 kg-1 body weight) (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; hide

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  2. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.

    PubMed

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene

    2015-04-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  3. Evidence of Microbial Regulation of Biogeochemical Cycles from a Study on Methane Flux and Land Use Change

    PubMed Central

    Nazaries, Loïc; Pan, Yao; Bodrossy, Levente; Baggs, Elizabeth M.; Millard, Peter; Murrell, J. Colin

    2013-01-01

    Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios. Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time. We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland. Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites. This change in function was linked to a niche-specific separation of microbial communities (methanotrophs). The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle. Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles. PMID:23624469

  4. Subglacial source of meltwater discharge in an emerging ice-marginal channel, Bering Glacier, Alaska

    SciTech Connect

    Priscott, G.; Fleisher, P.J. . Dept. of Earth Sciences)

    1993-03-01

    The retreating eastern margin of Bering Piedmont Glacier terminates in two ice-contact lakes separated by an island that has been uncovered in the last decade. A semi-continuous aerial photo record (1978--1991) and field observations (1992) confirms a newly-developed ice-marginal channel linking these two lakes that is fed by a persistent subglacial conduit system. This investigation documents channel characteristic, discharge, turbidity, water temperature and the location of the present ice margin. Bathymetry along the channel reveals a highly irregular profile consisting of low-gradient reaches 3--5 m deep interrupted by shallow sills (< 1 m) of grounded, subaqueous ice and a 40 m basin among ice islands. Channel dimensions measured in 5 cross section reveal abrupt, small-scale changes typical of sub-bottom ice. Discharge varies from 72.24 cms near a node of upwelling to 40.38 cms 2 km down stream, then back up to 42.25 cms within 0.4 km, where the channel enters a lake. Turbidity values between 1.67 g/l and 4.20 g/l, of 10 water samples vary irregularly along the channel and with depth at-a-station. Early July water temperatures from 7 widely-spaced locations indicate the thermocline occurs at depths from 1 to 3 m and separates surface water at +1.1 C from supercooled water at [minus]1.0 C. Clusters of in situ platy frazil ice crystals several centimeters in diameter were observed on floating ice in the area of upwelling supercooled water. The presence of upwelling, highly-turbid, supercooled water indicates that the primary meltwater source is a subglacial conduit network at the ice margin, from which flow separates and discharges through a leaky channel into both lakes.

  5. Compensatory Flux Changes within an Endocytic Trafficking Network Maintain Thermal Robustness of Notch Signaling

    PubMed Central

    Shimizu, Hideyuki; Woodcock, Simon A.; Wilkin, Marian B.; Trubenová, Barbora; Monk, Nicholas A.M.; Baron, Martin

    2014-01-01

    Summary Developmental signaling is remarkably robust to environmental variation, including temperature. For example, in ectothermic animals such as Drosophila, Notch signaling is maintained within functional limits across a wide temperature range. We combine experimental and computational approaches to show that temperature compensation of Notch signaling is achieved by an unexpected variety of endocytic-dependent routes to Notch activation which, when superimposed on ligand-induced activation, act as a robustness module. Thermal compensation arises through an altered balance of fluxes within competing trafficking routes, coupled with temperature-dependent ubiquitination of Notch. This flexible ensemble of trafficking routes supports Notch signaling at low temperature but can be switched to restrain Notch signaling at high temperature and thus compensates for the inherent temperature sensitivity of ligand-induced activation. The outcome is to extend the physiological range over which normal development can occur. Similar mechanisms may provide thermal robustness for other developmental signals. PMID:24855951

  6. Microbial limitation in a changing world: A stoichiometric approach for predicting microbial resource limitation and fluxes

    NASA Astrophysics Data System (ADS)

    Midgley, M.; Phillips, R.

    2014-12-01

    Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.

  7. Water Resources in a Peruvian Mountain Watershed: Hydrochemical Tracing of Groundwater and Glacier Meltwater Impact on Streamflow

    NASA Astrophysics Data System (ADS)

    McKenzie, J. M.; Mark, B. G.

    2005-12-01

    The Callejon de Huaylas, Peru, is a large (~5000 km2; elevation range from ~1800 to 1650 masl) drainage basin for the Rio Santa, which is fed by the glacierized Cordillera Blanca and the non-glacierized Cordillera Negra. The region is well-populated, with extensive agricultural diversity and natural resources, but currently receding glaciers are threatening the future water supply. During the dry season (May to September) glacial melt water from the Cordillera Blanca partially buffers stream-flow, although the magnitude of this effect is not easily measured. We attempt to evaluate the relative contribution of glacier meltwater and groundwater to the regional stream discharge, from 1st order basins to the whole watershed. In July, 2004 and July, 2005 we collected 89 water samples from streams, springs, and groundwater within the Callejon de Huaylas and analyzed for major dissolved ions and the isotopes of oxygen and hydrogen. The water generally has a Ca-Mg-HCO3 chemical signal, consistent with the regional geology. Preliminary δ18O and δD values range from -15.6‰ to -4.9‰ and -113‰ to -51.3‰ respectively. Transects of surface water samples from Cordillera Blanca glaciers to the Rio Santa show isotopic enrichment with lower elevation. We sampled 14 groundwater wells and springs, and found the isotopic composition of the water to be isotopically enriched and very similar to surface water within the Cordillera Negra. The Rio Santa is a mixture of Cordillera Blanca and Cordillera Negra surface waters, and the down gradient transect becomes relatively depleted with lower elevation, possibly due to the distribution of glacier mass in the Cordillera Blanca. This research is the beginning of a long term water sampling and monitoring program to identify unique geochemical end-members for quantification of glacier meltwater and groundwater contributions and to assess changes in the hydrologic balance within the Callejon de Huaylas as a result of glacier recession.

  8. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  9. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India.

    PubMed

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar

    2017-04-01

    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO2 flux was measured along with the CO2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha(-1)year(-1)) and total ecosystem C pool (3.72MgCha(-1)year(-1)) increased with the age of reclamation (CO2 equivalent: 13.63MgCO2ha(-1)year(-1)). After 11years of reclamation, soil CO2 flux (2.36±0.95μmolm(-2)s(-1)) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO2 in the atmosphere.

  10. Change of soil carbon fluxes in European beech forest under different climate and management scenarios: an example from Serbia

    NASA Astrophysics Data System (ADS)

    Stojanović, Dejan; Orlović, Saša; Matović, Bratislav; Suckow, Felicitas; Lasch-Born, Petra; Galić, Zoran; Reyer, Christopher; Gutsch, Martin; Pekeč, Saša

    2013-04-01

    Soil texture and structure, rainfall, temperature conditions and forest management determine the rate of soil carbon sequestration in forest ecosystems. European beech is one of most important and most abundant tree species in Europe. Forest management strategy influences aboveground biomass as well as belowground biomass and soil organic and inorganic carbon. This study explores how different management strategies (i.e. thinning from above intensities with 10%, 20% and 30% removal of trees every ten years) under three different time periods 1971-2000, 2011-2040 and 2051-2080 of the IPCC SRES A2 climate change scenario, influence total soil carbon stock in a beech stand in eastern Serbia. For the simulations, the process-based tree growth model 4C was used. At the beginning of the simulations, the total soil carbon stock was about 85 tC/ha. The most intensive management strategy appears to provide highest carbon fluxes into the soil and the highest total carbon stock values (between 160 and 180 tC/ha) at the end of the simulation periods. All management strategies under the climate of the period 2051-2080 showed the lowest values (about 160 tC/ha). We analyse the interrelationships between management caused changes in litter fluxes and climate (mainly temperature) caused losses of carbon from soil by respiration. In some cases different thinning intensities showed similar fluxes for the same time periods, whereas both climate scenario periods showed quite similar influence for the same management scenarios. The influence of different management strategies on the final total soil carbon stock will be shown.

  11. Metabolic flux analysis gives an insight on verapamil induced changes in central metabolism of HL-1 cells.

    PubMed

    Strigun, Alexander; Noor, Fozia; Pironti, Alejandro; Niklas, Jens; Yang, Tae Hoon; Heinzle, Elmar

    2011-09-20

    Verapamil has been shown to inhibit glucose transport in several cell types. However, the consequences of this inhibition on central metabolism are not well known. In this study we focused on verapamil induced changes in metabolic fluxes in a murine atrial cell line (HL-1 cells). These cells were adapted to serum free conditions and incubated with 4 μM verapamil and [U-¹³C₅] glutamine. Specific extracellular metabolite uptake/production rates together with mass isotopomer fractions in alanine and glutamate were implemented into a metabolic network model to calculate metabolic flux distributions in the central metabolism. Verapamil decreased specific glucose consumption rate and glycolytic activity by 60%. Although the HL-1 cells show Warburg effect with high lactate production, verapamil treated cells completely stopped lactate production after 24 h while maintaining growth comparable to the untreated cells. Calculated fluxes in TCA cycle reactions as well as NADH/FADH₂ production rates were similar in both treated and untreated cells. This was confirmed by measurement of cell respiration. Reduction of lactate production seems to be the consequence of decreased glucose uptake due to verapamil. In case of tumors, this may have two fold effects; firstly depriving cancer cells of substrate for anaerobic glycolysis on which their growth is dependent; secondly changing pH of the tumor environment, as lactate secretion keeps the pH acidic and facilitates tumor growth. The results shown in this study may partly explain recent observations in which verapamil has been proposed to be a potential anticancer agent. Moreover, in biotechnological production using cell lines, verapamil may be used to reduce glucose uptake and lactate secretion thereby increasing protein production without introduction of genetic modifications and application of more complicated fed-batch processes.

  12. TERRECO: A Flux-Based Approach to Understanding Landscape Change, Potentials of Resilience and Sustainability in Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Tenhunen, J. D.; Kang, S.

    2011-12-01

    The Millenium Assessment has provided a broad perspective on the ways and degree to which global change has stressed ecosystems and their potential to deliver goods and services to mankind. Management of natural resources at regional scale requires a clear understanding of the ways that ongoing human activities modify or create new system stressors, leading to net gains or losses in ecosystem services. Ever since information from the International Biological Program (IBP) was summarized in the 1960s, we know that ecosystem stress response, recovery and resilience are related to changes in ecosystem turnover of materials, nutrient retention or loss, resource use efficiencies, and additional ecosystem properties that determine fluxes of carbon, water and nutrients. At landscape or regional scale, changes in system drivers influence land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), the seasonal course of soil resource stores, hydrology, and transport of nutrients and carbon into and through river systems. In today's terminology, shifts in these fluxes indicate a modification of potential ecosystem services provided to us by the landscape or region of interest, and upon which we depend. Ongoing modeling efforts of the TERRECO project carried out in S. Korea focus on describing landscape and regional level flow networks for carbon, water, and nutrients, but in addition monetary flows associated with gains and losses in ecosystem services (cf. Fig. 1). The description is embedded within a framework which examines the trade-offs between agricultural intensification versus yield of high quality water to reservoirs for drinking water supply. The models also quantify hypothetical changes in flow networks that would occur in the context of climate, land use and social change scenarios.

  13. Seasonal and short term fluctuations of iceberg flux from Hans Glacier Spitsbergen

    NASA Astrophysics Data System (ADS)

    Jania, Jacek; Blaszczyk, Malgorzata; Cieply, Michal; Grabiec, Mariusz; Budzik, Tomasz; Ignatiuk, Dariusz; Uszczyk, Aleksander; Tymrowska, Patrycja; Majchrowska, Elzbieta; Prominska, Agnieszka; Walczowski, Waldemar; Pastusiak, Tadeusz; Petlicki, Michal; Puczko, Dariusz

    2016-04-01

    Glacier iceberg flux due to calving might be an important source of freshwater deliver to Arctic fjords. Mass loss due to calving gives also significant contribution of glacier mass budget. Seasonal changes of dynamics of tidewater glaciers is generally known. After advance of glacier front during winter, summer recession occurs thanks to higher calving in the warmer period of the year. Nevertheless, annual course of iceberg flux intensity is not calculated frequently. Observations and survey of glacier dynamics were conducted on Hans Glacier a polythermal glacier ending down into Hornsund Fiord in Southern Spitsbergen. They provide information for discernment of seasonal calving intensity and iceberg supply to the fiord as a source of freshwater seasonally and in shorter periods of time. Source data on glacier front geometry, bathymetry of the fore bay, seasonal fluctuation of ice-cliff position and glacier velocity were obtained by different field survey and remote sensing methods. Time lapse photos, repeated terrestrial laser scanning and measurements of sea water temperature, salinity and dynamics as well, together with record from meteorological stations were used to determine factors of calving intensity. Calving flux from the glacier to Hornsund Fjord was calculated for short-period events and selected summer seasons between 2007 and 2015. Interannual differences in calving flux were also estimated. Ratios of meltwater to iceberg freshwater supply to the fiord was preliminarily estimated as well.

  14. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    PubMed

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-01-28

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO2 exchange (NEELAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature- and light-limited NEELAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (-20 g C m(-2) ) and wetland NEE (-24 g C m(-2) ) were similar, suggesting negligible wetland expansion effects on NEELAND . In contrast, we find non-negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m(-2) for a moderate and 103 ± 38 g C m(-2) for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by

  15. Changes in catchment-scale water fluxes due to time-variant soil hydraulic properties in a subtropical agricultural watershed

    NASA Astrophysics Data System (ADS)

    Verrot, Lucile; Geris, Josie; Gao, Lei; Peng, Xinhua; Hallett, Paul

    2017-04-01

    In agricultural landscapes, temporal fluxes in hydraulic properties due to tillage, grazing, crop root growth and cycles of wetting and drying influenced by irrigation, could have large impacts at catchment scale. These effects are particularly evident in tropical climates where long periods of drought are followed by intense rainfall that greatly exceeds the infiltration capacity of the soil. This work explores the impact of the seasonal development of crops and the shifts in time between crop types on soil physical properties and the relative changes in the probability distribution of the water storage and fluxes dynamics. We focussed on an agricultural catchment in south east China where the climatic conditions include periods of droughts and heavy rainfall. Using coupled 1-dimension and semi-distributed catchment modelling combined with basic water balance data and both on-site and literature values for soil and crop properties, we investigated the impact of soil physical changes in the root-zone of the soil over different time scales ranging from daily to annual. Our results also showed that the resulting time-variant spatial patterns in soil water storage and flow had an impact on the integrated catchment runoff response at different times of the year.

  16. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions.

    PubMed

    Lu, Ping; Müller, Warren J.; Chacko, Elias K.

    2000-05-01

    Circumferential and radial variations in xylem sap flux density in trunks of 13-year-old mango (Mangifera indica L.) trees were investigated with Granier sap flow sensor probes under limiting and non-limiting soil water conditions. Under non-limiting soil water conditions, circumferential variation was substantial, but there was no apparent relationship between sap flux density and aspect (i.e., the radial position of the sensor probes on the trunk relative to the compass). Hourly sap flux densities over 24 hours at different aspects were highly pair-wise correlated. The relationships between different aspects were constant during well-watered periods but highly variable under changing soil water conditions. Sap flux density showed marked radial variation within the trunk and a substantial flux was observed at the center of the trunk. For each selected aspect on each tree, changes in sap flux densities over time at different depths were closely correlated, so flux at a particular depth could be extrapolated as a multiple of flux from 0 to 2 cm beneath the cambium. However, depth profiles of sap flux density differed between trees and even between aspects within a tree, and also varied in an unpredictable manner as soil water conditions changed. Nevertheless, over a period of non-limiting soil water conditions, depth profiles remained relatively constant. Based on the depth profiles obtained during these periods, a method is described for calculating total sap flow in a mango tree from sap flux density at 0-2 cm beneath the cambium. Total daily sap flows obtained were consistent with water use estimated from soil water balance.

  17. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.).

    PubMed

    Kallarackal, Jose; Bauer, Susanne N; Nowak, Heike; Hajirezaei, Mohammad-Reza; Komor, Ewald

    2012-07-01

    Reports about diurnal changes of assimilates in phloem sap are controversial. We determined the diurnal changes of sucrose and amino acid concentrations and fluxes in exudates from cut aphid stylets on tansy leaves (Tanacetum vulgare), and sucrose, amino acid and K(+) concentrations and fluxes in bleeding sap of castor bean pedicel (Ricinus communis). Approximately half of the tansy sieve tubes exhibited a diurnal cycle of sucrose concentrations and fluxes in phloem sap. Data from many tansy plants indicated an increased sucrose flux in the phloem during daytime in case of low N-nutrition, not at high N-nutrition. The sucrose concentration in phloem sap of young Ricinus plants changed marginally between day and night, whereas the sucrose flux increased 1.5-fold during daytime (but not in old Ricinus plants). The amino acid concentrations and fluxes in tansy sieve tubes exhibited a similar diurnal cycle as the sucrose concentrations and fluxes, including their dependence on N-nutrition. The amino acid fluxes, but not the concentrations, in phloem sap of Ricinus were higher at daytime. The sucrose/amino acid ratio showed no diurnal cycle neither in tansy nor in Ricinus. The K(+)-concentrations in phloem sap of Ricinus, but not the K(+) fluxes, decreased slightly during daytime and the sucrose/K(+)-ratio increased. In conclusion, a diurnal cycle was observed in sucrose, amino acid and K(+) fluxes, but not necessarily in concentrations of these assimilates. Because of the large variations between different sieve tubes and different plants, the nutrient delivery to sink tissues is not homeostatic over time.

  18. On the relationship between the energetic particle flux morphology and the change in the magnetic field magnitude during substorms

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Lui, A. T. Y.; Sibeck, D. G.; Takahashi, K.; Mcentire, R. W.

    1989-01-01

    The relationship between the morphology of energetic particle substorm injections and the change in the magnetic field magnitude over the course of the event is examined. Using the statistical relationships between the magnetic field during the growth phase and the change in the field magnitude during substorms calculated by Lopez et al. (1988), a limited number of dispersionless ion injections observed by AMPTE CCE are selected. It is argued that this limited set is representative of a large set of events and that the conclusions drawn from examining those events are valid for substorms in general in the inner magnetosphere. It is demonstrated that in an event when CCE directly observed the disruption of the current sheet, the particle and field data show that the region of particle acceleration was highly turbulent and was temporally, and perhaps spatially, limited and that the high fluxes of energetic particles are qualitatively associated with intense inductive electric fields.

  19. Analysis of TLR-Induced Metabolic Changes in Dendritic Cells Using the Seahorse XF(e)96 Extracellular Flux Analyzer.

    PubMed

    Pelgrom, Leonard R; van der Ham, Alwin J; Everts, Bart

    2016-01-01

    Engagement of Toll-like receptors (TLRs) on dendritic cells (DCs) triggers the expression of a large set of genes involved in DC activation and maturation, which allow them to act efficiently as antigen-presenting cells. Recently, it has become clear that TLR signalling in DCs also results in dramatic metabolic changes that are integral to their changed biology. Here, we describe a detailed protocol on how DC metabolism can be studied after TLR stimulation using the 96-well format Extracellular Flux (XF(e)96) Analyzer from Seahorse Bioscience, a machine that allows one to simultaneously assess rates of oxidative phosphorylation and glycolysis in real-time, in live cells and in a high-throughput manner.

  20. Paleo response of the Northeast Greenland ice stream to changes in ice geometry and anomalously high geothermal flux

    NASA Astrophysics Data System (ADS)

    Muresan, Ioana S.; Khan, Shfaqat A.; Aschwanden, Andy; Rogozhina, Irina; MacGregor, Joseph A.; Fahnestock, Mark A.; Kjær, Kurt H.; Bjørk, Anders A.; Kjeldsen, Kristian K.

    2017-04-01

    The Northeast Greenland ice stream (NEGIS) extends more than 600 km into the interior of the Greenland Ice Sheet, and the observed recent increase in surface melting and dynamic thinning have raised questions about its future stability. Most numerical modelling studies have focused on understanding ice dynamics and processes occurring at the terminus, and a higher-dimension modelling characterization of the ice stream, especially 100-600 km upstream glacier, is still missing. Using the Parallel Ice Sheet Model we investigate the sensitivity of the NEGIS ice flow to past changes in ice geometry, anomalously high geothermal flux and subglacial hydrology routing. We use two subglacial hydrology models. In the first model, the water in the subglacial layer is not conserved and it is only stored locally in a layer of subglacial till up to 2 m. In the second model, the water is conserved in the map-plane and the excess water is transported downstream glacier horizontally. On millennial time scales (here 120 ka), the basal topography influences the spatial pattern of the ice flow by changing the longitudinal stress gradients in the ice, while the thermal boundary conditions at the base of the ice sheet influence the ice flow through changes in basal melt rates and subsequent basal sliding. Field observations interpreted together with numerical simulations suggest that a combination of anomalously high geothermal flux and subglacial hydrology routing, bed topography and time-evolved ice geometry could explain the observed speed and shape of the NEGIS. The model performance is assessed against observed ice flow velocities, surface elevation change from satellite and airborne laser and radar altimetry, and reconstructed terminus retreat.

  1. Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions

    NASA Astrophysics Data System (ADS)

    Bayer, Anita D.; Lindeskog, Mats; Pugh, Thomas A. M.; Anthoni, Peter M.; Fuchs, Richard; Arneth, Almut

    2017-02-01

    Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland-grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-the-art dynamic global vegetation model with a detailed representation of croplands and carbon-nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47 Pg C a-1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39 % of mean ELUC. Carbon stocks at the end of the 20th century vary by ±11 Pg C for vegetation and ±37 Pg C for soil C due to the choice of LUC

  2. Changes in shortwave and longwave radiative fluxes as observed at BSRN sites and simulated with CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin

    2017-02-01

    The high precision Baseline Surface Radiation Network (BSRN), established in the early 1990s, allows the monitoring of surface radiative fluxes and their changes with unprecedented accuracy. To investigate changes in the longwave spectrum, the longest records of downward longwave radiation currently available from BSRN have been analyzed. From 25 records covering altogether 353 years, an overall mean increase in downward longwave radiation of +2.0 Wm-2 per decade since the early 1990s was obtained. Thereby, three quarter of these BSRN sites showed increasing trends (19 sites in total, 9 of them significant), while one quarter indicated decreasing trends (6 sites, 3 significant). This change in downward longwave radiation quantitatively agrees very well with the respective change calculated by the latest generation of global climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In their simulations, including all known relevant climate forcings the downward longwave radiation shows a very similar increase of currently around +2 Wm-2 per decade. Thus the limited observational evidence on decadal changes in downward longwave radiation matches well with our understanding of the functioning of the greenhouse effect and its representation in climate models. Based on these considerations I argue that the flux of downward longwave radiation at the Earth's surface is currently increasing by around +2 Wm-2 per decade globally, indicative of an increasing concentration of greenhouse gases in the atmosphere. In the shortwave spectrum, substantial multidecadal changes in surface shortwave radiation have become evident in long-term observational records over the past 50 years, known as "dimming" and subsequent "brightening". The BSRN stations, starting not before the 1990s, only cover the more recent "brightening" period. A composite record based on 37 BSRN sites indicates an average increase of +2.0 Wm-2 per decade since the early 1990s. From the 23

  3. Persistent Surface River on Nansen Ice Shelf Drains Meltwater Preventing Collapse for Decades

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Chu, W.; Kingslake, J.; Das, I.; Tedesco, M.; Tinto, K. J.; Zappa, C. J.; Frezzotti, M.

    2016-12-01

    Meltwater ponding on the surface of Antarctic ice shelves has been advanced as the trigger for their collapse through loading and hydrofracturing. While ponding was associated with the Larsen B Ice Shelf collapse, draining meltwater off an ice shelf could limit the destructive role of increasing surface melt in the future. In this regard, we present the first evidence of the presence and evolution of a persistent active network of streams, ponds, and rivers on the Nansen Ice Shelf, Antarctica. This active drainage system has delivered meltwater into the Ross Sea since at least 1908, reducing the volume of water seasonally stored on the ice surface and protecting the ice shelf from collapsing. We integrated early 20th century observations with modern airborne and satellite imagery to identify three distinct surface hydrology systems on the Nansen Ice Shelf. Near the calving front, surface meltwater coalesces into surface streams and ponds that grow over days to weeks, eventually connecting to a shear margin river that drains at a large waterfall into the Ross Sea. Between 1989 and 2016, the shear margin river drained into a rift associated with a large calving event in 2016. The second system forms close to the grounding line where surface meltwater drains into regions of rifted mélange, possibly explaining the low salinity of the ice drilled in these regions. This surface meltwater is injected into the ice shelf cavity through the mélange and may foster basal melting beneath the shear margins. The third system develops on the steeper Priestly Glacier flow where surface melt is produced adjacent to exposed bedrock and moraines and then is transported by surface streams that terminate in firn-covered regions. Ice shelf hydrology is spatially complex, sensitive to glaciological and climatic conditions, and evolves seasonally. Surface streams that coalesce melt and rivers that export water off the ice shelf will limit the damage from ponding-induced hydrofracturing

  4. Changes in opal flux and the rain ratio during the last 50,000 years in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Richaud, Mathieu; Loubere, Paul; Pichat, Sylvain; Francois, Roger

    2007-03-01

    Changes in the orgC/CaCO 3 ratio in particles sinking from the surface to the deep ocean have the potential to alter the atmospheric pCO 2 over the span of a glacial/interglacial cycle. Recent paleoceanographic and modern observational studies suggest that silica is a key factor in the global carbon biogeochemical cycle that can influence the flux ratio, especially at low latitudes, through "silicic acid leakage" [Brzezinski, M., Pride, C., Franck, M., Sigman, D., Sarmiento, J., Matsumoto, K., Gruber, N., Rau, R., Coale, K., 2002. A switch from Si(OH) 4 to NO3- depletion in the glacial Southern Ocean. Geophysical Research Letters 29, 5]. To test this hypothesis, we reconstruct biogenic fluxes of CaCO 3, orgC and Si for three equatorial Pacific cores. We find evidence that a floral shift from a SiO 2-based community to a CaCO 3-based occurred, starting in mid-marine isotope stage (MIS) 3 (24-59 cal. ka) and declining toward MIS 2 (19-24 cal. ka). This could reflect the connection of the Peru upwelling system to the subantarctic region, and we postulate that excess silica was transported from the subantarctic via the deep Equatorial Undercurrent to the eastern equatorial Pacific. In the eastern equatorial Pacific only, we document a significant decrease in rain ratio starting mid-MIS 3 toward MIS 2. This decrease is concomitant with a significant decrease in silica accumulation rates at the seabed. This pattern is not observed in the Pacific influenced by equatorial divergence and shallow upwelling, where all reconstructed fluxes (CaCO 3, orgC, and opal) increase during MIS 2. We conclude that the overall calcium carbonate pump weakened in the EEP under Peru upwelling influence.

  5. Land-Use Change and Carbon Flux Between 1970s and 1990s in Central Highlands of Chiapas, Mexico.

    PubMed

    DE; CAIRNS; HAGGERTY; RAMÍREZ-MARCIAL; OCHOA-GAONA; MENDOZA-VEGA; GONZÁLEZ-ESPINOSA; MARCH-MIFSUT

    1999-04-01

    / We present results of a study in an intensively impacted and highly fragmented landscape in which we apply field-measured carbon (C) density values to land-use/land-cover (LU/LC) statistics to estimate the flux of C between terrestrial ecosystems and the atmosphere from the 1970s and 1990s. Carbon densities were assigned to common LU/LC classes on vegetation maps produced by Mexican governmental organizations and, by differencing areas and C pools, net C flux was calculated from the central highlands of Chiapas, Mexico, during a 16-year period. The total area of closed forests was reduced by half while degraded and fragmented forests expanded 56% and cultivated land and pasture areas increased by 8% and 30%, respectively. Total mean C densities ranged from a high of 504 tons C/ha in the oak and evergreen cloud forests class to a low of 147 tons C/ha in the pasture class. The differences in total C densities among the various LU/LC classes were due to changes in biomass while soil organic matter C remained similar. We estimate that a total of 19.99 thick similar 10(6) tons C were released to the atmosphere during the period of time covered by our study, equal to approximately 34% of the 1975 vegetation C pool. The Chiapas highlands, while comprising just 0.3% of Mexico's surface area, contributed 3% of the net national C emissions. KEY WORDS: Land use; Land cover; Carbon flux; Forests; Chiapas highlands; Mexico

  6. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong

    NASA Astrophysics Data System (ADS)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo

    2017-04-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (p<0.05), with the highest and lowest CO2 emissions being recorded in farmland and roadside planter, respectively. CH4 emission varied significantly among the land covers as well (p<0.05), with the highest and lowest CH4 emissions being recorded in farmland and urban forest, respectively. Farmland and urban forest showed the highest and lowest mean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  7. Gross nitrogen fluxes in intact beech-soil-microbe systems under experimentally simulated climate change

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Bilela, Silvija; Gasche Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Rennenberg, Heinz; Dannenmann, Michael

    2013-04-01

    The vulnerability of beech forests of Central Europe to projected climate change conditions is a current matter of debate and concern. In order to investigate the response of N cycling in a typical beech forest to projected climate change conditions, we transplanted small lysimeters with intact beech-soil systems from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Lysimeters transfers within the N exposure served as control. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed: (1) comparison between N and S slopes under ambient conditions; (2) comparison between N and S slopes after intensified drought at S exposure; (3) rewetting after the drought period. Homogenous triple isotope labeling (15N/13C glutamine, 15NH4+, 15NO3-) in combination with 15N tracing and -pool dilution approaches as well as molecular analyses of nitrogen cycling genes and mycorrhiza morphotyping allowed to simultaneously quantify all N turnover processes in the intact beech-soil-microbe system. Nitrate was the major N source of beech seedlings with little importance of ammonium and no importance of glutamine. Experimental simulation of climate change resulted in significantly reduced gene copies of ammonia oxidizing bacteria in soil (AOB), a dramatic attenuation of microbial gross nitrate production from 252±83 mg N m-2 day-1 for the control treatment to 49±29 mg N m-2 day-1 for the climate change treatment and associated strong declines in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech, which could not be compensated by uptake of ammonium or glutamine. Therefore, N content of beech seedlings was strongly reduced in the climate change treatment. Hence our data provide a microbial mechanism to explain nutritional limitations of beech under higher temperatures and drought and raise questions about

  8. The Phanerozoic δ88/86Sr record of seawater: New constraints on past changes in oceanic carbonate fluxes

    NASA Astrophysics Data System (ADS)

    Vollstaedt, Hauke; Eisenhauer, Anton; Wallmann, Klaus; Böhm, Florian; Fietzke, Jan; Liebetrau, Volker; Krabbenhöft, André; Farkaš, Juraj; Tomašových, Adam; Raddatz, Jacek; Veizer, Ján

    2014-03-01

    The isotopic composition of Phanerozoic marine sediments provides important information about changes in seawater chemistry. In particular, the radiogenic strontium isotope (87Sr/86Sr) system is a powerful tool for constraining plate tectonic processes and their influence on atmospheric CO2 concentrations. However, the 87Sr/86Sr isotope ratio of seawater is not sensitive to temporal changes in the marine strontium (Sr) output flux, which is primarily controlled by the burial of calcium carbonate (CaCO3) at the ocean floor. The Sr budget of the Phanerozoic ocean, including the associated changes in the amount of CaCO3 burial, is therefore only poorly constrained. Here, we present the first stable isotope record of Sr for Phanerozoic skeletal carbonates, and by inference for Phanerozoic seawater (δ88/86Srsw), which we find to be sensitive to imbalances in the Sr input and output fluxes. This δ88/86Srsw record varies from ˜0.25‰ to ˜0.60‰ (vs. SRM987) with a mean of ˜0.37‰. The fractionation factor between modern seawater and skeletal calcite Δ88/86Srcc-sw, based on the analysis of 13 modern brachiopods (mean δ88/86Sr of 0.176 ± 0.016‰, 2 standard deviations (s.d.)), is -0.21‰ and was found to be independent of species, water temperature, and habitat location. Overall, the Phanerozoic δ88/86Srsw record is positively correlated with the Ca isotope record (δ44/40Casw), but not with the radiogenic Sr isotope record ((87Sr/86Sr)sw). A new numerical modeling approach, which considers both δ88/86Srsw and (87Sr/86Sr)sw, yields improved estimates for Phanerozoic fluxes and concentrations for seawater Sr. The oceanic net carbonate flux of Sr (F(Sr)carb) varied between an output of -4.7 × 1010 mol/Myr and an input of +2.3 × 1010 mol/Myr with a mean of -1.6 × 1010 mol/Myr. On time scales in excess of 100 Myrs the F(Sr)carb is proposed to have been controlled by the relative importance of calcium carbonate precipitates during the “aragonite” and

  9. Direct comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes in grassland

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Leifeld, J.; Neftel, A.; Fuhrer, J.

    2012-04-01

    Experimental assessment of soil carbon (C) stock changes over time is typically based on the application of either one of two methods, namely (i) repeated soil inventory and (ii) determination of the ecosystem C budget or net biome productivity (NBP) by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports. However, there exist hardly any published study hitherto that directly compared the results of both methods. Here, we applied both methods in parallel to determine C stock changes of two temperate grassland fields previously converted from long-term cropland. The grasslands differed in management intensity with either intensive management (high fertilization, frequent cutting) or extensive management (no fertilization, less frequent cutting). Soil organic C stocks (0-45 cm depth) were quantified at the beginning (2001) and the end (2006) of a 5 year observational period using the equivalent soil mass approach. For the same period and in both fields, NBP was quantified from net CO2 fluxes monitored using eddy covariance systems, and measured C import by organic fertilizer and C export by harvest. Both NBP and repeated soil inventories revealed a consistent and significant difference between management systems of 170 ± 48 and 253 ± 182 g C m-2 a-1, respectively. For both fields, the inventory method showed a tendency towards higher C loss/smaller C gain than NBP. In the extensive field, a significant C loss was observed by the inventory but not by the NBP approach. Thus both, flux measurements and repeated soil sampling, seem to be adequate and equally suited for detecting relative management effects. However, the suitability for tracking absolute changes in SOC could not be proven for neither of the two methods. Overall, our findings stress the need for more direct comparisons to evaluate whether the observed difference in the outcome of the two approaches reflects a general methodological bias, which would

  10. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    NASA Astrophysics Data System (ADS)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  11. Ocean-atmosphere dynamics changes associated with prominent ocean surface turbulent heat fluxes trends during 1958-2013

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Liu, Jiping; Lohmann, Gerrit; Shi, Xiaoxu; Hu, Yongyun; Chen, Xueen

    2016-03-01

    Three prominent features of ocean surface turbulent heat fluxes (THF) trends during 1958-2013 are identified based on the Objectively Analyzed air-sea Fluxes (OAFlux) data set. The associated ocean-atmosphere dynamics changes are further investigated based on the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. First, the THF are enhanced over the mid-latitude expansions of the subtropical western boundary currents (WBCs). An intensified oceanic heat transport, forced by stronger near-surface zonal wind, is likely to be the cause of such THF tendency. Second, the THF are reduced over the tropical eastern Pacific Ocean, which is primarily caused by the decreasing near-surface wind speed and sea surface temperature (SST), associated with a local coupled ocean-atmosphere cooling mode. Finally, the THF are reduced over the northern tropical Atlantic Ocean, which is attributed to the decreasing air-sea humidity and temperature differences as a result of the convergence of near-surface air and the divergence of ocean currents (upwelling).

  12. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    NASA Astrophysics Data System (ADS)

    Wulf, H.; Bookhagen, B.; Scherler, D.

    2012-07-01

    The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001-2009) from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC) events. Our study identifies three key findings: First, peak SSC events (≥ 99th SSC percentile) coincide frequently (57-80%) with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and more frequent

  13. Land cover change in the zone of sporadic permafrost causes shift in landscape-scale turbulent energy fluxes

    NASA Astrophysics Data System (ADS)

    Helbig, M.; Wischnewski, K.; Kljun, N.; Chasmer, L.; Quinton, W. L.; Detto, M.; Sonnentag, O.

    2015-12-01

    Boreal forests in the sporadic permafrost zone have been shown to decline at the expense of wetlands following permafrost disappearance. These land cover changes cause shifts in ecosystem properties and affect biosphere-atmosphere interactions. The goal of our study is to examine the effects of permafrost disappearance on landscape-scale sensible (H) and latent heat fluxes (LE) and related potential feedbacks on regional air temperatures (Ta) We use a combination of nested eddy covariance flux towers, flux footprint and planetary boundary layer (PBL) dynamic modelling, and MOderate-resolution Imaging Spectroradiometer (MODIS) remote sensing products to resolve spatio-temporal dynamics in H and LE at the landscape scale at Scotty Creek, NWT (61º18' N; 121º18' W) and in radiometric land surface temperatures (LST) at the regional scale across the southern Taiga Plains in the sporadic permafrost zone of northwestern Canada. The heterogeneous landscape comprises boreal forests with permafrost and permafrost-free wetlands. Our results show that H above the heterogeneous landscape was about twice as high as above a nearby treeless, permafrost-free bog. In contrast, landscape-scale LE was only about 50 % of LE over the bog. These differences were primarily driven by higher heat transfer efficiency of the aerodynamically rougher forest and lower albedo of the forest compared to the bog (about 10 % lower during summer and about 40 % lower during late winter). Aerodynamic LST increased with the fraction of forest in the flux footprints. This effect was strongest (r2 = 0.55, slope = 0.06 K per % forest) at the end of winter when contrasts in albedo are largest. Bulk surface conductance increased with the fraction of wetlands in the footprints. On a regional scale, radiometric MODIS LST increased with tree cover during the snow cover period (0.06 K per % tree cover), but decreased during the summer (-0.04 K per % tree cover). Modelling results showed that a shift from the

  14. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    Treesearch

    Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randall K. Kolka; Carl P.J. Mitchell

    2017-01-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm...

  15. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?

    NASA Astrophysics Data System (ADS)

    Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.

    2017-06-01

    Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.

  16. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  17. Resolving Variations in Continental Weathering Flux From Changes in Continental Source Using Marine Radiogenic Isotope Records

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Gannoun, A.; Allegre, C. J.; Christensen, J. N.; Hein, J. R.

    2005-12-01

    Determining the past record of chemical weathering is essential for understanding changes in climate and atmospheric CO2, such as those that occur throughout the Cenozoic (the last 65 Million years) (e.g. 1). Many natural radiogenic isotopes in seawater are sensitive to variations in chemical weathering (e.g. 2), but none alone can distinguish such changes from those caused by variations in erosional source. Comparison of isotope systems with different sources and different behaviour in seawater can however resolve such effects. This study presents multi-isotope records for both long (Cenozoic) and short (glacial-interglacial) timescales, and these are used to deconvolve changes in the balance of continental weathering from those related to changes in source. Comparison of a high-resolution marine 187Os/188Os record for the Cenozoic with Pb, Hf and Nd isotopes (from the same sample [3-5]) strongly suggests that for much of the Cenozoic isotope variations reflect a simple change in the balance of continental versus hydrothermal input, with little change in continental source. Changes in this relationship at the middle Miocene climate transition, at least to some extent, reflect a major reorganisation of ocean circulation [6] resulting in a shift of the geographical sources of weathered continental material. Comparison of Sr, Os and Nd records for the past 140 ka from the Bay of Bengal suggest that changes in the Nd isotope composition of seawater are climatically driven by local changes in the composition of riverine input, whereas variations in Os likely reflect a change in the balance of continental weathering. These studies highlight the difficulties of using a single radiogenic isotope system as a proxy for continental weathering or source, but show that by using a combination of radiogenic isotopes with different sources to the oceans, different behaviour during weathering, and different residence times in the oceans it may sometimes be possible to resolve such

  18. Contemporary limnological and sedimentary analyses to investigate anthropogenic changes in nutrient fluxes at Lake Baikal, Siberia

    NASA Astrophysics Data System (ADS)

    Roberts, S.; McGowan, S.; Swann, G. E. A.; Mackay, A. W.; Panizzo, V.; Vologina, E.

    2014-12-01

    Large tectonic freshwater lakes face serious threats to their water quality, biological diversity and endemism through pollution and global warming. Lake Baikal is an important example as anthropogenic stressors (industrial pollution and cultural eutrophication) along with climate change could greatly affect the lake's unique ecosystem and pristine water conditions. Phosphorus, nitrogen and silica are thought to control phytoplankton development, however recent changes in nutrient impacts on Lake Baikal's phytoplankton remains unproven. This research aims to investigate the effect of anthropogenic and environmentally-driven changes on this large and biodiverse lake through seasonal sampling of the phytoplankton community (determined by chlorophyll and carotenoid pigments), chemical parameters (total phosphorus, dissolved organic carbon, silicate, nitrate and other major ions) and vertical profiles of pH, temperature and photosynethetically active radiation. Results show seasonal, vertical and spatial variability in the lake's phytoplankton biomass and composition with higher summer mixed-layer pigment concentrations in the south basin resulting in higher light attenuation coefficients and lower photic zone depths (R2=0.86, p < 0.05). Redundancy analysis shows that this distribution is primarily influenced by average dissolved organic carbon concentrations within the mixing layer, with the strongest negative correlation between picoplankton biomarkers and dissolved organic carbon concentrations (R2=-0.60, p < 0.05). Geochemical biomarkers (pigments and organic carbon [δ13Corganic]) from several sediment cores place these modern day observations within an historical context and allow the impact of past environmental changes on Lake Baikal's primary productivity over the last 60 years and natural climate-driven trends in past centuries to be assessed. These results show clear spatial and temporal changes between sites over this interval with greater increases in

  19. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone

  20. Climate and air quality impacts of altered BVOC fluxes from land cover change in Southeast Asia 1990 - 2010

    NASA Astrophysics Data System (ADS)

    Harper, Kandice; Yue, Xu; Unger, Nadine

    2016-04-01

    Large-scale transformation of the natural rainforests of Southeast Asia in recent decades, driven primarily by logging and agroforestry activities, including rapid expansion of plantations of high-isoprene-emitting oil palm (Elaeis guineensis) trees at the expense of comparatively low-emitting natural dipterocarp rainforests, may have altered the prevailing regime of biogenic volatile organic compound (BVOC) fluxes from this tropical region. Chemical processing of isoprene in the atmosphere impacts the magnitude and distribution of several short-lived climate forcers, including ozone and secondary organic aerosols. Consequently, modification of the fluxes of isoprene and other BVOCs from vegetation serves as a mechanism by which tropical land cover change impacts both air quality and climate. We apply satellite-derived snapshots of land cover for the period 1990 - 2010 to the NASA ModelE2-Yale Interactive Terrestrial Biosphere (ModelE2-YIBs) global carbon-chemistry-climate model to quantify the impact of Southeast Asian land cover change on atmospheric chemical composition and climate driven by changes in isoprene emission. NASA ModelE2-YIBs features a fully interactive land carbon cycle and includes a BVOC emission algorithm which energetically couples isoprene production to photosynthesis. The time-slice simulations are nudged with large-scale winds from the GMAO reanalysis dataset and are forced with monthly anthropogenic and biomass burning reactive air pollution emissions from the MACCity emissions inventory. Relative to the year 1990, regional isoprene emissions in 2010 increased by 2.6 TgC/yr from the expansion of Southeast Asian oil palm plantations and decreased by 0.7 TgC/yr from the loss of regional dipterocarp rainforest. Considering only the impact of land-cover-change-induced isoprene emission changes in Southeast Asia over this period, we calculate a spatially heterogeneous impact on regional seasonal surface-level ozone concentrations (minimum: -1

  1. The Meltwater routing and Ocean-Cryosphere-Atmosphere response (MOCA) project

    NASA Astrophysics Data System (ADS)

    Tarasov, L.; Members, Project

    2009-04-01

    MOCA is an INQUA (International Union for Quaternary Research) sponsored project examining meltwater/iceberg mediated ice and climate interactions. It brings together an international network of quaternary field specialists, paleoceanographers, and modelers. The principal objective of MOCA is to establish a constrained regional meltwater and iceberg discharge chronology for the northern hemisphere during the last deglaciation with well-defined error bars. The consequent objective is to establish a good conceptual understanding of the interactions between the cryosphere, ocean, and atmosphere associated with this chronology. This paper summarizes the initial constraint data sets, data calibrated glacial systems modeling that integrates observations with physics to generate probability distributions for the deglacial chronologies, and the interim results of this calibration. Further information on the project is available from the MOCA website: http://www.physics.mun.ca/~lev/MOCA.html

  2. Meltwater channel scars and the extent of Mid-Pleistocene glaciation in central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Marsh, Ben

    2017-10-01

    High-resolution digital topographic data permit morphological analyses of glacial processes in detail that was previously infeasible. High-level glaciofluvial erosional scars in central Pennsylvania, identified and delimited using LiDAR data, define the approximate ice depth during a pre-Wisconsin advance, > 770,000 BP, on a landscape unaffected by Wisconsin glaciation. Distinctive scars on the prows of anticlinal ridges at 175-350 m above the valley floor locate the levels of subice meltwater channels. A two-component planar GIS model of the ice surface is derived using these features and intersected with a digital model of contemporary topography to create a glacial limit map. The map is compared to published maps, demonstrating the limits of conventional sediment-based mapping. Additional distinctive meltwater features that were cut during deglaciation are modeled in a similar fashion.

  3. Detection of climate change impacts on boreal soil carbon cycling: A model-based analysis of carbon stock and flux changes over the coming decades

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Neff, J.

    2009-12-01

    Future changes in organic carbon (OC) cycling of northern soils due to climate change may have significant impacts on global C cycling. However such changes are still complex and poorly understood in part because boreal soils have unique factors that preserve OC (e.g. permafrost) and loss pathways that include CO2, CH4 and dissolved organic carbon (DOC) fluxes. Additionally, boreal soils contain large stocks of OC that challenge attempts to measure OC loss through repeat measurements of OC pools. With multiple pathways of OC loss and challenges to OC monitoring, it becomes critical to determine which component or property of boreal soil OC (e.g. thickness of OC layer, 14C in solid, liquid, or gas phase) is likely to most sensitive to potential climate changes and when changes in these components would become detectable using laboratory or field measurement. The objective of this study is to provide theoretical answers to the above questions using one single complex biogeochemical model along with various sensitivity analyses. Several existing models have been incorporated into the biogeochemical model, including 1) a multi-isotope OC dynamic model simulating the dynamics of OC layers through time, 2) soil thermal dynamics model simulating the soil heat transported by conduction and by convection via movement of liquid water and water vapor, 3) DOC dynamics model simulating the production, fate, and transport of DOC, and 4) CO2 dynamics model simulating the production and transport of CO2. Six synthesis sites with a factorial combination of drainage class (i.e., well-drained, intermediate well-drained, and poorly drained) and permafrost status (i.e., with or without permafrost underlain) were studied in this research. The results highlight the importance of DOC fluxes from the OC layers to the mineral soils; however the importance of DOC fluxes varied among sites and was strongly dependent on the soil physical properties including soil texture and moisture content

  4. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  5. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, AL.; Pottakkal, Jose George; Kumar, Manoj

    2014-01-01

    A systematic study on the seasonal variation of major cations and anions was carried out to understand the source of dissolved ions as well as the geochemical weathering processes controlling the meltwater chemistry of Gangotri glacier. Calcium and magnesium are the major cations while sulphate is the dominant anion followed by bicarbonate. The high ratios of (Ca + Mg)/(Na + K), Ca/Na, Mg/Na, HCO3/Na and low ratio of (Na + K)/TZ+ for pre-monsoon, monsoon and post-monsoon seasons indicate the dominance of carbonate weathering, which is a major source of the dissolved ions in the meltwater of Gangotri glacier followed by silicate weathering. High equivalent ratios of Na/Cl and K/Cl as compared to sea water indicate relatively lesser contribution from atmospheric input to the chemical composition of meltwater. Correlation matrix and factor analysis were used to identify various factors controlling the major ion chemistry. Marked seasonal and diurnal variations were observed in the dissolved ions and suspended sediment concentration. Daily mean suspended sediment concentration for pre-monsoon, monsoon and post-monsoon was observed as 1719, 3281 and 445 mgl-1, respectively. Highest suspended sediment load was observed in monsoon season followed by pre-monsoon and post-monsoon seasons. The cation denudation rates of Gangotri glacier meltwater were calculated to be 42.2, 46.5 and 15.9 t km-2 y-1 for pre-monsoon (June only), monsoon and post-monsoon respectively. These values are higher than that of other Himalayan glaciers. Whereas physical weathering rate of the Gangotri glacier catchment was observed to be 7056, 15,344 and 588 t km-2 y-1 for pre-monsoon (June only), monsoon and post-monsoon respectively, much higher than the Indian and world averages of river.

  6. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  7. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing

    NASA Astrophysics Data System (ADS)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; Saenko, Oleg A.; Stammer, Detlef; Winton, Michael

    2016-11-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the

  8. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of Sea-Level and Ocean Climate Change in Response to CO2 Forcing

    NASA Technical Reports Server (NTRS)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; hide

    2016-01-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model

  9. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) Contribution to CMIP6: Investigation of Sea-Level and Ocean Climate Change in Response to CO2 Forcing

    NASA Technical Reports Server (NTRS)

    Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia; Saenko, Oleg A.; Stammer, Detlef; Winton, Michael

    2016-01-01

    The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model

  10. Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system.

    PubMed

    Jin, L; Whitehead, P G; Sarkar, S; Sinha, R; Futter, M N; Butterfield, D; Caesar, J; Crossman, J

    2015-06-01

    Anthropogenic climate change has impacted and will continue to impact the natural environment and people around the world. Increasing temperatures and altered rainfall patterns combined with socio-economic factors such as population changes, land use changes and water transfers will affect flows and nutrient fluxes in river systems. The Ganga river, one of the largest river systems in the world, supports approximately 10% global population and more than 700 cities. Changes in the Ganga river system are likely to have a significant impact on water availability, water quality, aquatic habitats and people. In order to investigate these potential changes on the flow and water quality of the Ganga river, a multi-branch version of INCA Phosphorus (INCA-P) model has been applied to the entire river system. The model is used to quantify the impacts from a changing climate, population growth, additional agricultural land, pollution control and water transfers for 2041-2060 and 2080-2099. The results provide valuable information about potential effects of different management strategies on catchment water quality.

  11. Modern Sedimentation in the Northern Barents Sea: Input, Dispersal and Deposition of Suspended Sediments from Glacial Meltwater.

    DTIC Science & Technology

    1985-01-01

    transport. Glacial flour is supplied by several large stable meltwater outflow locations along the ice front. S__ Although the traction load deposits...sediments. Glacial flour is supplied by several large stable meltwater outflow locations along the ice front. Because the water is fresh and nearly the...deposits have been used to reconstruct former ice sheets , often implying dramatic climactic variations (Denton and Hughes 1981, Elverhoi in press). The

  12. Characterizing the roles of changing population size and selection on the evolution of flux control in metabolic pathways.

    PubMed

    Orlenko, Alena; Chi, Peter B; Liberles, David A

    2017-05-25

    Understanding the genotype-phenotype map is fundamental to our understanding of genomes. Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic pathways, flux through the pathway is an important next layer of biological organization up from the individual gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to contrast with those under stabilizing selection. Depending upon the underlying population genetic regime, fluctuating population size was found to increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local adaptation of the population. Further, during positive directional selection, as with more complex mutational scenarios, an increase in the observation of inter-molecular co-evolution was observed. Differences in patterns of evolution when systems are in and out of equilibrium, including during positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in changes in phenotypes.

  13. Influence of glacial meltwater on equilibrium process of two Tibetan lakes indicated by δ18O

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2009-12-01

    δ18O measurements based on systematic sampling and isotopic model have been adopted to study the affects of glacial meltwater in two lake basins (Lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10‰ from the termini of glaciers to the lake shores, by about 1‰ from the lakeshores to the lake center, by 0.4‰ from the water surface to depth in these lakes. The obvious annual δ18O variations indicate that lake water mixes sufficient in a short time. Model results show that glacial meltwater is an important factor on lake water equilibrium process. Equilibrium δ18O values decrease 0.8‰ for Yamdrok-tso Lake and 0.6‰ for Puma Yum-tso Lake when contributions of glacial meltwater to these lakes shrink by 60%. δ18O increases rapidly during the initial stages and then it takes a long time to approach the equilibrium value. The modeled results also show that the surface lake water temperature has only a little impact on this process.

  14. Microbial sequences retrieved from environmental samples from seasonal arctic snow and meltwater from Svalbard, Norway.

    PubMed

    Larose, Catherine; Berger, Sibel; Ferrari, Christophe; Navarro, Elisabeth; Dommergue, Aurélien; Schneider, Dominique; Vogel, Timothy M

    2010-03-01

    16S rRNA gene (rrs) clone libraries were constructed from two snow samples (May 11, 2007 and June 7, 2007) and two meltwater samples collected during the spring of 2007 in Svalbard, Norway (79 degrees N). The libraries covered 19 different microbial classes, including Betaproteobacteria (21.3%), Sphingobacteria (16.4%), Flavobacteria (9.0%), Acidobacteria (7.7%) and Alphaproteobacteria (6.5%). Significant differences were detected between the two sets of sample libraries. First, the meltwater libraries had the highest community richness (Chao1: 103.2 and 152.2) and Shannon biodiversity indices (between 3.38 and 3.59), when compared with the snow libraries (Chao1: 14.8 and 59.7; Shannon index: 1.93 and 3.01). Second, integral-LIBSHUFF analyses determined that the bacterial communities in the snow libraries were significantly different from those of the meltwater libraries. Despite these differences, our data also support the theory that a common core group of microbial populations exist within a variety of cryohabitats. Electronic supplementary material The online version of this article (doi:10.1007/s00792-009-0299-2) contains supplementary material, which is available to authorized users.

  15. Geological record of meltwater events at Qinghai Lake, China from the past 40 ka

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Liu, Taibei; Wang, Hao; An, Zhisheng; Cheng, Peng; Zhu, Yizhi; Burr, G. S.

    2016-10-01

    We report here on a previously unpublished sediment core from Qinghai Lake, China, that preserves a continuous record of sedimentation for the past 40 ka. A striking feature of the record is a set of distinct meltwater events recorded at 35, 19 and 14 ka respectively. These events are manifest as distinct pulses of relatively old organic radiocarbon in the sediments. We interpret these as a signal of glacial melting in the Qinghai Lake watershed. The meltwater signals are closely correlated to temperature and precipitation records associated with deglaciation. The events at 19 ka and 14 ka correspond to well-established high latitude Melt Water Pulse (MWP) events during Marine Isotope Stage (MIS) 2, and the 35 ka event corresponds to a period of pervasive high lake levels in western China during late MIS 3. We interpret these anomalous dates as the result of relatively old carbon that was destabilized by the glaciers, and released into the lake as the glaciers melted. The data indicate that this process takes thousands of years. We expect that the approach employed here to identify these events is generally applicable to any lake system with a significant glacial meltwater component.

  16. Subglacial hydraulic conditions of the former Barents Sea Ice Sheet inferred from meltwater landforms

    NASA Astrophysics Data System (ADS)

    Shackleton, Calvin; Bjarnadóttir, Lilja; Winsborrow, Monica; Esteves, Mariana; Andreassen, Karin

    2016-04-01

    A large multibeam dataset acquired by the MAREANO programme covering over 24,000 km2 at 5 m horizontal resolution has uncovered abundant subglacial meltwater landforms in the central Barents Sea. These landforms provide unprecedented insights into the nature of hydrological systems operating at the bed of the former Barents Sea Ice Sheet, helping us to understand the subglacial environments of marine based ice sheets as a whole. Large sinuous features up to 3.5 km wide and over 40 km long, with depths up to 40 m are interpreted as braided tunnel valleys, which would have drained vast amounts of water at the base of the ice sheet. Dendritic channels are also common, up to 42 km long and 24 m deep, along with several anastomosing channels and numerous complex esker systems. These features document that a wide range of subglacial hydraulic conditions and a well-established meltwater system existed beneath the former Barents Sea Ice Sheet. In conjunction with mapping of glacial landforms, these meltwater features provide the basis for a reconstruction of the subglacial drainage systems in the central Barents Sea and their interaction with the dynamic activity of the overlying ice sheet.

  17. Propagation of the MIS4 Eurasian Meltwater Event in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Polyak, L. V.; Spielhagen, R. F.; Norgaard-Pedersen, N.; Curry, W. B.

    2013-12-01

    Sediment records from the Arctic Ocean indicate multiple Pleistocene meltwater events from Eurasian and North American ice sheets. These events may have affected both the Arctic climate and the North Atlantic deep-water formation, and are important for understanding the stability of Pleistocene ice sheets. We investigate the distribution of meltwater during the discharge of large Eurasian proglacial lakes at the end of Marine Isotope Stage 4, approximately 50-60 ka, using stable isotope records in planktic and benthic foraminifers. Studies focused on lithological and radiogenic isotope proxies suggest that this meltwater pulse affected sedimentation in the Eurasian Basin all the way to the Lomonosov Ridge and at least part of the Amerasian Basin (Mendeleev Ridge). The analysis of stable-isotope data provides further insights. The spatial distribution of planktonic oxygen-18, with the lightest values in the Mendeleev Ridge area, reveals a strong cyclonic circulation extending into the western Arctic Ocean, similar to the negative Arctic Oscillation mode. This circulation pattern differs from that inferred from lithostratigraphy and neodymium isotopes indicating a stronger effect of Eurasian discharge on the Lomonosov Ridge. We propose that this discrepancy resulted from a decoupling of surface and deep-water circulation, where deep waters had a significant contribution of brines carrying deglacial sediments (hyperpicnal flows). The propagation of proglacial brines as far as the Amerasian Basin, suggested earlier from neodymium isotope data, is confirmed by benthic stable isotope records.

  18. Mapping and modelling of polythermal glacier structure in a meltwater-dominated thermal regime

    NASA Astrophysics Data System (ADS)

    Wilson, N.; Flowers, G. E.; Mingo, L.

    2012-12-01

    We have mapped zones of cold and temperate ice within two small polythermal glaciers in the Saint Elias Mountains of Yukon, Canada using ice-penetrating radar at multiple frequencies. Temperature measurements from instrumented boreholes provide validation of the radar data interpretation. Both glaciers exhibit temperate accumulation zones and cold termini indicating that accumulation zone entrapment and refreezing of meltwater constitute a primary heat source. When forced with a modern climate, a two-dimensional thermomechanically-coupled model based on a first-order momentum balance and an enthalpy method reproduces major features of the observations along the central flowband, such as the arrangement of and the approximate transition between cold and temperate ice. Concentrated rates of strain heating resulting from basal sliding provide a sufficient mechanism for explaining observed lateral heterogeneity in thermal structure. Meltwater entrapment serves as a direct connection between climate and thermal structure. Numerical experiments performed on a synthetic glacier geometry with a range of climatic conditions comparable to the study site reveal that similar glaciers in which meltwater entrapment is the dominant heat source are likely to experience declining temperate ice fractions in a warming climate.

  19. High flux diode packaging using passive microscale liquid-vapor phase change

    DOEpatents

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  20. A dynamic model to predict fat and protein fluxes and dry matter intake associated with body reserve changes in cattle.

    PubMed

    Tedeschi, Luis O; Fox, Danny G; Kononoff, Paul J

    2013-04-01

    The objective of this paper was to develop the structure and concepts of a dynamic model to simulate dry matter intake (DMI) pattern and the fluxes of fat and protein in the body reserves of cattle associated with changes in body condition score (BCS) for application within the structure of applied nutrition models. This model was developed to add the capability of evaluating the effects of factors affecting pre- and postcalving DMI, daily energy and protein balances, and changes in BCS over a reproductive cycle. Input variables are average DMI, diet metabolizable energy, and animal information (body weight, BCS, milk production, and calf birth body weight) from each diet fed over the reproductive cycle. Because the depletion and repletion of body reserves in cattle is a complex system of coordinated metabolic processes that reflect hormonal and physiological changes caused by negative or positive energy balances, the system dynamics modeling methodology was used to develop this model. The model was used to evaluate the effect of the dynamic interactions between dietary supply and animal requirements for energy and protein on the fluxes of body fat and body protein of dairy cows over the reproductive cycle and Monte Carlo simulations were used to assess the sensitivity of the parameters. The main long-term factor affecting DMI pattern was the growth of the gravid uterus causing an increase in the volume of abdominal organs and a compression of the rumen, consequentially reducing feed intake. Changes in body reserves (fat and protein) were computed based on metabolizable energy balance, assuming different efficiency of utilization coefficients for fat and protein during repletion and mobilization. The model was evaluated with data from 37 dairy cows individually fed 3 different diets over the lactation and dry periods. The model was successful in simulating the observed pattern of DMI (mean square error was 3.59, 3.97, and 3.66 for diets A, B, and C, respectively

  1. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review

    NASA Astrophysics Data System (ADS)

    Hergoualc'h, Kristell; Verchot, Louis V.

    2011-06-01

    The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire-damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha-1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha-1 in rice fields to 436.2 ± 77.0 Mg C ha-1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input-output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha-1 yr-1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha-1 or 17.1 ± 3.6 Mg C ha-1 yr-1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.

  2. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Völker, C.; Wang, T.; Hoppema, M.; Losch, M.; Wolf-Gladrow, D. A.

    2013-12-01

    Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.

  3. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Krasnorutskaya, K.; Kurbatova, J.

    2009-10-01

    Effects of possible climatic and vegetation changes on H2O and CO2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 °C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  4. Simulating tropical carbon stocks and fluxes in a changing world using an individual-based forest model.

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Huth, Andreas

    2014-05-01

    Large areas of tropical forests are disturbed due to climate change and human influence. Experts estimate that the last remaining rainforests could be destroyed in less than 100 years with strong consequences for both developing and industrial countries. Using a modelling approach we analyse how disturbances modify carbon stocks and carbon fluxes of African rainforests. In this study we use the process-based, individual-oriented forest model FORMIND. The main processes of this model are tree growth, mortality, regeneration and competition. The study regions are tropical rainforests in the Kilimanjaro region and Madagascar. Modelling above and below ground carbon stocks, we analyze the impact of disturbances and climate change on forest dynamics and forest carbon stocks. Droughts and fire events change the structure of tropical rainforests. Human influence like logging intensify this effect. With the presented results we could establish new allometric relationships between forest variables and above ground carbon stocks in tropical regions. Using remote sensing techniques, these relationships would offer the possibility for a global monitoring of the above ground carbon stored in the vegetation.

  5. Comprehensive Multiphase (CMP) NMR Monitoring of the Structural Changes and Molecular Flux Within a Growing Seed.

    PubMed

    Fortier-McGill, Blythe E; Dutta Majumdar, Rudraksha; Lam, Leayen; Soong, Ronald; Liaghati-Mobarhan, Yalda; Sutrisno, Andre; de Visser, Ries; Simpson, Myrna J; Wheeler, Heather L; Campbell, Malcolm; Gorissen, Antonie; Simpson, André J

    2017-08-16

    A relatively recent technique termed comprehensive multiphase (CMP) NMR spectroscopy was used to investigate the growth and associated metabolomic changes of (13)C-labeled wheat seeds and germinated seedlings. CMP-NMR enables the study of all phases in intact samples (i.e., liquid, gel-like, semisolid, and solid), by combining all required electronics into a single NMR probe, and can be used for investigating biological processes such as seed germination. All components, from the most liquid-like (i.e., dissolved metabolites) to the most rigid or solid-like (seed coat) were monitored in situ over 4 days. A wide range of metabolites were identified, and after 96 h of germination, the number of metabolites in the mobile phase more than doubled in comparison to 0 h (dry seed). This work represents the first application of CMP-NMR to follow biological processes in plants.

  6. Estuarine removal of glacial iron and implications for iron fluxes to the ocean

    NASA Astrophysics Data System (ADS)

    Schroth, Andrew W.; Crusius, John; Hoyer, Ian; Campbell, Robert

    2014-06-01

    While recent work demonstrates that glacial meltwater provides a substantial and relatively labile flux of the micronutrient iron to oceans, the role of high-latitude estuary environments as a potential sink of glacial iron is unknown. Here we present the first quantitative description of iron removal in a meltwater-dominated estuary. We find that 85% of "dissolved" Fe is removed in the low-salinity region of the estuary along with 41% of "total dissolvable" iron associated with glacial flour. We couple these findings with hydrologic and geochemical data from Gulf of Alaska (GoA) glacierized catchments to calculate meltwater-derived fluxes of size and species partitioned Fe to the GoA. Iron flux data indicate that labile iron in the glacial flour and associated Fe minerals dominate the meltwater contribution to the Fe budget of the GoA. As such, GoA nutrient cycles and related ecosystems could be strongly influenced by continued ice loss in its watershed.

  7. Estuarine removal of glacial iron and implications for iron fluxes to the ocean

    USGS Publications Warehouse

    Schroth, Andrew W.; Crusius, John; Hoyer, Ian; Campbell, Robert

    2014-01-01

    While recent work demonstrates that glacial meltwater provides a substantial and relatively labile flux of the micronutrient iron to oceans, the role of high-latitude estuary environments as a potential sink of glacial iron is unknown. Here we present the first quantitative description of iron removal in a meltwater-dominated estuary. We find that 85% of “dissolved” Fe is removed in the low-salinity region of the estuary along with 41% of “total dissolvable” iron associated with glacial flour. We couple these findings with hydrologic and geochemical data from Gulf of Alaska (GoA) glacierized catchments to calculate meltwater-derived fluxes of size and species partitioned Fe to the GoA. Iron flux data indicate that labile iron in the glacial flour and associated Fe minerals dominate the meltwater contribution to the Fe budget of the GoA. As such, GoA nutrient cycles and related ecosystems could be strongly influenced by continued ice loss in its watershed.

  8. Trends in riverine element fluxes: A chronicle of regional socio-economic changes.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Porcal, Petr; Posch, Maximilian

    2017-08-30

    We show how concentrations of water solutes in the Vltava River (Czech Republic) and their riverine outputs from the catchment were modified by socio-economic changes, land use, and hydrology between 1960 and 2015. In the early 1960s, HCO3 and Ca were the dominant ions. During 1960-1989 (a period of planned economy with an over-use of synthetic fertilizers, excessive draining of agricultural land and little environmental protection), the riverine concentrations of strong acid anions (SAAs: SO4, NO3, and Cl) increased 2-4-fold and their leaching was accompanied for by a 1.4-1.8-fold increase in concentrations of Ca, Mg, K, and Na. SAAs mostly originated from diffuse agricultural sources (synthetic fertilizers and mineralization of organic matter in freshly drained and deeply tilled agricultural land) and their annual average concentrations (as well as those of Ca, Mg, and K) were positively correlated with discharge. During 1990-2015 (a period of a re-established market economy, reduced fertilization, ceased drainage, partial conversion of arable land to pastures, and increasing environmental protection), concentrations of SO4 and NO3 significantly decreased due to reduced agricultural production and atmospheric pollution, and their positive correlations with discharge disappeared. In contrast, Na and Cl concentrations increased due to more intensive road de-icing, and their concentrations became negatively correlated with discharge. Trends in phosphorus concentrations reflected changes in its input by both diffuse (fertilizers) and point (wastewater) sources and were discharge independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux

    NASA Astrophysics Data System (ADS)

    Kayanne, Hajime; Hata, Hiroshi; Kudo, Setsuko; Yamano, Hiroya; Watanabe, Atsushi; Ikeda, Yutaka; Nozaki, Ken; Kato, Ken; Negishi, Akira; Saito, Hiroshi

    2005-09-01

    Monitoring seawater CO2 for a full year with seasonal observations of community metabolism in Ishigaki Island, Japan, revealed seasonal variation and anomalous values owing to the bleaching event in 1998. The daily average pCO2 showed a seasonal pattern on an annual scale, 280 to 320 μatm in winter and 360 to 400 μatm in summer, which was determined primarily by the seasonal change in seawater temperature. By contrast, the range in the diel variation in pCO2, 400 to 500 μatm in summer 200 to 300 μatm in winter, was attributed to the seasonal variation in community metabolism: Gross primary production (Pg) and respiration (R) were high in summer and low in winter. During the 1998 bleaching event, although Pg and R increased, community excess organic production (E) decreased by three quarters compared with the same month in 1999, when the coral community showed high recovery. This change in metabolism led to large diel range and increased average value of pCO2 levels in the seawater on the reef flat. The decrease in the range and increase in the average value of pCO2 were observed by monitoring the Palau barrier reef flat, where overall mortality of corals occurred after the bleaching. All the metabolic parameters, Pg, R, E and calcification (G) were reduced by half after the bleaching, which increased the average pCO2 value by 10 μatm and decreased its diel range from 200-400 μatm to 100-200 μatm. Bleaching and resultant mortality of coral reefs led to degradation of their metabolic performance, and thus resulted in the loss of their active interaction with the carbon cycle.

  10. Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Marty, J. C.; Goutx, M.; Guigue, C.; Leblond, N.; Raimbault, P.

    2009-01-01

    Short-term changes in the flux of particulate matter were determined in the central north western Mediterranean Sea (near DYFAMED site) using drifting sediment traps at 200 m depth in the course of the DYNAPROC 2 cruise (14 September-17 October, 2004). In this period of marked water column stratification, POC fluxes varied by an order of magnitude, in the range of 0.03-0.29 mg C m-2 h-1 over the month and showed very rapid and high variations. Particulate carbon export represented less than 5% of integrated primary production, suggesting that phytoplankton production was essentially sustained by internal recycling of organic matter and retained within the photic zone. While PON and POP fluxes paralleled one another, the elemental ratios POC/PON and POC/POP, varied widely over short-term periods. Values were always higher than the conventional Redfield ratio indicating that the settling material was in part degraded. This was confirmed by the very low chlorophyll-a flux recorded in the traps (mean 0.017 μg m-2 h-1), the high phaeopigment and free lipid concentrations of the settling material, which all together indicated that the organic matter reaching 200 m depth was reworked (by grazing, fecal pellets production, degradation, . . .) and that algal sinking made a small contribution to the downward flux. Over time, the relative abundance of individual lipid classes in organic matter (OM) changed from glycolipids-dominated to neutral (wax esters, triglycerides) and phospholipids-dominated, suggesting ecosystem maturation as well as rapid and continual exchanges between dissolved, suspended and sinking pools. Our most striking result was documenting the rapid change in fluxes of the various measured parameters. In the situation encountered here, with dominant regenerated production, the effect of wind events was a decrease of fluxes (probably through reduction of grazing). But fluxes increased as soon as calm conditions settle.

  11. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.

    2014-12-01

    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the <63µm fraction. A detailed reconstruction of CIS retreat has been generated based on the source of glaciomarine sediments and ice rafted debris (IRD), as well as evidence for processes such as GLOF events and iceberg discharge. At the Fraser Glaciation initiation (~30 ka) <63µm glaciomarine sediments deposited at MD02-2496 had a ~100 Ma volcanic rock source. The CIS passed over the Vancouver Island continental shelf at Tofino at ~20 ka ~75 km from the site dramatically increasing sedimentation. From ~19 to 17.3 ka GLOFs created cyclic (~80 year) sedimentary packages of ~300 Ma (ɛNd of ~-8) shale associated with terrestrial Corg, and ~100 Ma (ɛNd of ~-3) volcanic sediment associated with marine Corg. The GLOFs were likely to be associated with glacial lake Missoula outburst flooding, occurring during the interval of the coolest ocean temperatures (2-4°C) and most depleted δ18Oseawater (-1.75‰). At 17.3 ka as ocean temperatures increased by ~3°C and δ18Oseawater increased to ~0‰, IRD deposition increased dramatically at the site, terminating abruptly at 16.2 ka. At the Bølling, ocean temperatures rose by > 3°C to 10-12°C in association with an additional IRD

  12. Improving predictions of carbon fluxes in the tropics undre climatic changes using ED2

    NASA Astrophysics Data System (ADS)

    Feng, X.; Uriarte, M.

    2016-12-01

    Tropical forests play a critical role in the exchange of carbon between land and atmosphere, highlighting the urgency of understanding the effects of climate change on these ecosystems. The most optimistic predictions of climate models indicate that global mean temperatures will increase by up to 2 0C with some tropical regions experiencing extreme heat. Drought and heat-induced tree mortality will accelerate the release of carbon to the atmosphere creating a positive feedback that greatly exacerbates global warming. Thus, under a warmer and drier climate, tropical forests may become net sources, rather than sinks, of carbon. Earth system models have not reached a consensus on the magnitude and direction of climate change impacts on tropical forests, calling into question the reliability of their predictions. Thus, there is an immediate need to improve the representation of tropical forests in earth system models to make robust predictions. The goal of our study is to quantify the responses of tropical forests to climate variability and improve the predictive capacity of terrestrial ecosystem models. We have collected species-specific physiological and functional trait data from 144 tree species in a Puerto Rican rainforest to parameterize the Ecosystem Demography model (ED2). The large amount of data generated by this research will lead to better validation and lowering the uncertainty in future model predictions. To best represent the forest landscape in ED2, all the trees have been assigned to three plant functional types (PFTs): early, mid, and late successional species. Trait data for each PFT were synthesized in a Bayesian meta-analytical model and posterior distributions of traits were used to parameterize the ED2 model. Model predictions show that biomass production of late successional PFT (118.89 ton/ha) was consistently higher than mid (71.33 ton/ha) and early (13.21 ton/ha) PFTs. However, mid successional PFT had the highest contributions to NPP for the

  13. Simulated water-level responses, ground-water fluxes, and storage changes for recharge scenarios along Rillito Creek, Tucson, Arizona

    USGS Publications Warehouse

    Hoffmann, John P.; Leake, Stanley A.

    2005-01-01

    A local ground-water flow model is used to simulate four recharge scenarios along Rillito Creek in northern Tucson to evaluate mitigating effects on ground-water deficits and water-level declines in Tucson's Central Well Field. The local model, which derives boundary conditions from a basin-scale model, spans the 12-mile reach of Rillito Creek and extends 9 miles south into the Central Well Field. Recharge scenarios along Rillito Creek range from 5,000 to 60,000 acre-feet per year and are simulated to begin in 2005 and extend through 2225 to estimate long-term changes in ground-water level, ground-water storage, ground-water flux, and evapotranspiration. The base case for comparison of simulated water levels and flows, referred to as scenario A, uses a long-term recharge rate of 5,000 acre-feet per year to 2225. Scenario B, which increases the recharge along Rillito Creek by 9,500 acre-feet per year, has simulated water-level rises beneath Rillito Creek that range from about 53 feet to 86 feet. Water-level rises within the Central Well Field range from about 60 feet to 80 feet. More than half of these rises occur by 2050, and more than 95 percent occur by 2188. Scenario C, which increases the recharge along Rillito Creek by 16,700 acre-feet per year relative to scenario A, has simulated water-level rises beneath Rillito Creek that range from about 71 feet to 102 feet. Water-level rises within the Central Well Field range from about 80 feet to 95 feet. More than half of the rises occur by 2036, and more than 95 percent occur by 2100. Scenario D, which initially increases the recharge rate by about 55,000 acre-feet per year relative to scenario A, resulted in simulated water levels that rise to land surface along Rillito Creek. This rise in water level resulted in rejected recharge. As the water table continued to rise, the area of stream-channel surface intersected by the water table increased causing continual decline in the recharge rate until a long-term recharge

  14. The impacts of land use changes in the mercury flux in the Madeira River, Western Amazon.

    PubMed

    Lacerda, Luiz D; Bastos, Wanderley R; Almeida, Marcelo D

    2012-03-01

    Changes in hydrochemistry and Hg distribution in the Madeira River from Porto Velho to the confluence with the Amazon River were studied in two cruises in 1997 and 2002. Water conductivity was similar in both periods, but the pH was significantly higher in 2002, in particular along the middle reaches of the river. Total suspended matter concentrations also increased from 1997 to 2002 along the same river portion, which is a result of forest conversion to other land uses, in particular pastures and agriculture accelerated during the interval between the cruises. Dissolved Hg concentrations were similar along the river in both cruises, but particulate Hg concentrations increased significantly along the middle portion of the river, although the suspended matter from 2002 was relatively poorer in Hg compared to that from 1997. Since particulate Hg represents more than 90% of the total Hg present in the river water, there was a significant increase in the total Hg transport in the Madeira River. Although gold mining has nearly ceased to exist in the region, the remobilization of Hg from forest soils through conversion to other land uses is responsible for maintaining relatively high Hg content in the Madeira River environment.

  15. Temporal changes in photoreactivity of dissolved organic carbon and implications for aquatic carbon fluxes from peatlands

    NASA Astrophysics Data System (ADS)

    Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.

    2017-04-01

    Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is

  16. Measuring Bathymetry, Runup, and Beach Volume Change during Storms: New Methodology Quantifies Substantial Changes in Cross-Shore Sediment Flux

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2009-12-01

    Accurate predictions of beach change during storms are contingent upon a correct understanding of wave-driven sediment exchange between the beach and nearshore during high energy conditions. Conventional storm data sets use “pre” (often weeks to months prior) and “post” (often many days after the storm in calm conditions) collections of beach topography and nearshore bathymetry to characterize the effects of the storm. These data have led to a common theory for wave-driven event response of the nearshore system, wherein bars and shorelines are smoothed and straightened by strong alongshore currents into two-dimensional, linear forms. Post-storm, the shoreline accretes, bars migrate onshore, and three-dimensional shapes begin to build as low-energy swell returns. Unfortunately, these approaches have left us with a knowledge gap of the extent and timing of erosion and accretion during storms, arguably the most important information both for scientists trying to model storm damage or inundation, and homeowners trying to manage their properties. This work presents the first spatially extensive (10 km alongshore) and temporally high-resolution (dt = 12 hours) quantitative data set of beach volume and nearshore bathymetry evolution during a Nor’easter on North Carolina’s Outer Banks. During the Nor’easter, significant wave height peaked at 3.4 m, and was greater than 2 m for 37 hours, as measured by the Duck FRF 8 m array. Data were collected using CLARIS: Coastal Lidar and Radar Imaging System, a mobile system that couples simultaneous observations of beach topography from a Riegl laser scanner and nearshore bathymetry (out to ~1 km offshore) from X-Band radar-derived celerity measurements (BASIR). The merging of foreshore lidar elevations with 6-min averages of radar-derived swash runup also enables mapping of maximum-runup elevations alongshore during the surveys. Results show that during the storm, neither the shoreline nor nearshore bathymetry returned

  17. Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

    SciTech Connect

    Ma, Fangfang; Jazmin, Lara J.; Young, Jamey D.; Allen, Doug K.

    2014-11-03

    Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. Here, we performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m$-$2s$-$1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol∙m$-$2∙s$-$1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). In conclusion, this study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.

  18. Changes in soil thermal regime lead to substantial shifts in carbon and energy fluxes in drained Arctic tundra

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S. A.

    2016-12-01

    Climate change impacts in the Arctic will not only depend on future temperature trajectories in this region. In particular, potential shifts in hydrologic regimes, e.g. linked to altered precipitation patterns or changes in topography following permafrost degradation, can dramatically modify ecosystem feedbacks to warming. Here, we analyze how severe drainage affects both biogeochemical and biogeophysical processes within a formerly wet Arctic tundra, with a special focus on the interactions between hydrology and soil temperatures, and related effects on the fluxes of carbon and energy. Our findings are based on year-round observations from a decade-long drainage experiment conducted near Chersky, Northeast Siberia. Through our multi-disciplinary observations we can document that the drainage triggered a suite of secondary changes in ecosystem properties, including e.g. adaptation processes in the vegetation community structure, or shifts in snow cover regime. Most profoundly, a combination of low heat capacity and reduced heat conductivity in dry organic soils lead to warmer soil temperatures near the surface, while deeper soil layers remained colder. These changes in soil thermal regime reduced the contribution of deeper soil layers with older carbon pools to overall ecosystem respiration, as documented through radiocarbon signals. Regarding methane, the observed steeper temperature gradient along the vertical soil profile slowed down methane production in deep layers, while promoting CH4 oxidation near the surface. Taken together, both processes contributed to a reduction in CH4 emissions up to a factor of 20 following drainage. Concerning the energy budget, we observed an intensification of energy transfer to the lower atmosphere, particularly in form of sensible heat, but the reduced energy transfer into deeper soil layers also led to systematically shallower thaw depths. Summarizing, drainage may contribute to slow down decomposition of old carbon from deep

  19. Modelling Antarctic sea-level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse IA

    NASA Astrophysics Data System (ADS)

    Bassett, S. E.; Milne, G. A.; Bentley, M. J.; Huybrechts, P.

    2007-09-01

    We compare numerical predictions of glaciation-induced sea-level change to data from 8 locations around the Antarctic coast in order to test if the available data preclude the possibility of a dominant Antarctic contribution to meltwater pulse IA (mwp-IA). Results based on a subset of 7 spherically symmetric earth viscosity models and 6 different Antarctic deglaciation histories indicate that the sea-level data do not rule out a large Antarctic source for this event. Our preliminary analysis indicates that the Weddell Sea is the most likely source region for a large (˜9 m) Antarctic contribution to mwp-IA. The Ross Sea is also plausible as a significant contributor (˜5 m) from a sea-level perspective, but glacio-geological field observations are not compatible with such a large and rapid melt from this region. Our results suggest that the Lambert Glacier component of the East Antarctic ice sheet experienced significant retreat at the time of mwp-IA, but only contributed ˜0.15 m (eustatic sea-level change). All of the ice models considered under-predicted the isostatic component of the sea-level response in the Antarctic Peninsula and the Sôya Coast region of the East Antarctic ice sheet, indicating that the maximum ice thickness in these regions is underestimated. It is therefore plausible that ice melt from these areas, the Antarctic Peninsula in particular, could have made a significant contribution to mwp-IA.

  20. Variability in Light Use Efficiency With Changes in Vegetation Structure and Understory, Using a Temporally Changing Flux Footprint at the BERMS Old Jack Pine Site

    NASA Astrophysics Data System (ADS)

    Chasmer, L.; Barr, A.; Black, A.; Hopkinson, C.; Kljun, N.; McCaughey, H.; Treitz, P.; Shashkov, A.; Zha, T.

    2006-12-01

    Satellite remote sensing algorithms of vegetation gross primary productivity (GPP) often include a light use efficiency (LUE) term that varies depending on meteorological constraints and biome type. LUE is defined as the carbon fixed per mole of photosynthetically active radiation (PAR) absorbed by the canopy (APAR). LUE estimated using GPP from eddy covariance data is complex and changes over short time periods as the available resources (soil moisture, light, temperature, and nitrogen) vary. An understanding of the variability in LUE will improve local to regional estimates of GPP within complex vegetated land cover types using the variety of remote sensing technologies now available. This study examines variability in LUE and GPP at a mature jack pine site within the Fluxnet-Canada BERMS (Boreal Ecosystem Research and Monitoring Sites) study area using a flux footprint model (Kljun et al. 2004) and airborne lidar data (e.g. Chasmer et al. 2006). Three separate weeks of high frequency eddy covariance data are analyzed for June, July, and August 2002 to capture changes in photosynthesi