Sample records for changing nutrient concentrations

  1. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.

  2. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    USGS Publications Warehouse

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in, and transport by, the UMR, but the impacts of mitigation efforts will likely be only slowly realized. ?? USGS, US Government 2010.

  3. Swift recovery of Sphagnum nutrient concentrations after excess supply.

    PubMed

    Limpens, Juul; Heijmans, Monique M P D

    2008-08-01

    Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.

  4. Comparing Measures of Estuarine Ecosystem Production in a ...

    EPA Pesticide Factsheets

    Anthropogenic nutrient enrichments and concerted efforts at nutrient reductions, compounded with the influences of climate change, are likely changing the net ecosystem production (NEP) of our coastal systems. To quantify these changes, scientists monitor a range of physical, chemical, and biological parameters sampled at various frequencies. Water column chlorophyll concentrations are arguably the most commonly used indicator of net phytoplankton production, as well as a coarse indicator of NEP. We compared parameters that estimate production, including chlorophyll, across an experimental nutrient gradient and in situ in both well-mixed and stratified estuarine environments. Data from an experiment conducted in the early 1980s in mesocosms designed to replicate a well-mixed mid-Narragansett Bay (Rhode Island) water column were used to correlate changes in chlorophyll concentrations, pH, dissolved oxygen (O2), dissolved inorganic nitrogen, phosphate, and silicate concentrations, cell counts, and 14C carbon uptake measurements across a range of nutrient enrichments. The pH, O2, nutrient, and cell count measurements reflected seasonal cycles of spring blooms followed by late summer/early fall respiration periods across nutrient enrichments. Chlorophyll concentrations were more variable and rates of 14C productivity were inconsistent with observed trends in nutrient concentrations, pH, and O2 concentrations. Similar comparisons were made using data from a well-mixe

  5. Effects of nutrient management on nitrate levels in ground water near Ephrata Pennsylvania

    USGS Publications Warehouse

    Hall, David W.

    1992-01-01

    Effects of the implementation of nutrient management practices on ground-water quality were studied at a 55-acre farm in Lancaster County, Pennsylvania, from 1985-90. After nutrient management practices were implemented at the site in October 1986, statistically significant decreases (Wilcoxon Mann-Whitney test) in median nitrate concentrations in ground-water samples occurred at four of the five wells monitored. The largest decreases in nitrate concentration occurred in samples collected at the wells that had the largest nitrate concentrations prior to nutrient management. The decreases in median nitrate concentrations in ground-water samples ranged from 8 to 32 percent of the median concentrations prior to nutrient management and corresponded to nitrogen application decreases of 39 to 67 percent in contributing areas that were defined upgradient of these wells. Changes in nitrogen applications to the contributing areas of five water wells were correlated (Spearman rank-sum test) with nitrate concentrations of the well water. Changes in ground-water nitrate concentrations lagged behind the changes in applied-nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.

  6. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  7. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may provide insights into fundamental aspects of stream nutrient cycling.

  8. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  9. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha C.; Hou, Shuang-Li; Hu, Yan-Yu; Wei, Hai-Wei; Lü, Fu-Mei; Cui, Qiang; Han, Xing Guo

    2017-01-01

    Plant nutrient concentrations and stoichiometry drive fundamental ecosystem processes, with important implications for primary production, diversity, and ecosystem sustainability. While a range of evidence exists regarding how plant nutrients vary across spatial scales, our understanding of their temporal variation remains less well understood. Nevertheless, we know nutrients regulate plant function across time, and that important temporal controls could strongly interact with environmental change. Here, we report results from a 3-year assessment of inter-annual changes of foliar nitrogen (N) and phosphorus (P) concentrations and stoichiometry in three dominant grasses in response to N deposition and prescribed fire in a temperate steppe of northern China. Foliar N and P concentrations and their ratios varied greatly among years, with this temporal variation strongly related to inter-annual variation in precipitation. Nitrogen deposition significantly increased foliar N concentrations and N:P ratios in all species, while fire significantly altered foliar N and P concentrations but had no significant impacts on N:P ratios. Generally, N addition enhanced the temporal stability of foliar N and decreased that of foliar P and of N:P ratios. Our results indicate that plant nutrient status and response to environmental change are temporally dynamic and that there are differential effects on the interactions between environmental change drivers and timing for different nutrients. These responses have important implications for consideration of global change effects on plant community structure and function, management strategies, and the modeling of biogeochemical cycles under global change scenarios.

  10. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.

    PubMed

    Chernova, Anna A; Armitage, Judith P; Packer, Helen L; Maini, Philip K

    2003-09-01

    We examined the changes in swimming behaviour of the bacterium Rhodobacter sphaeroides in response to stepwise changes in a nutrient (propionate), following the pre-stimulus motion, the initial response and the adaptation to the sustained concentration of the chemical. This was carried out by tethering motile cells by their flagella to glass slides and following the rotational behaviour of their cell bodies in response to the nutrient change. Computerised motion analysis was used to analyse the behaviour. Distributions of run and stop times were obtained from rotation data for tethered cells. Exponential and Weibull fits for these distributions, and variability in individual responses are discussed. In terms of parameters derived from the run and stop time distributions, we compare the responses to stepwise changes in the nutrient concentration and the long-term behaviour of 84 cells under 12 propionate concentration levels from 1 nM to 25 mM. We discuss traditional assumptions for the random walk approximation to bacterial swimming and compare them with the observed R. sphaeroides motile behaviour.

  11. Scenarios of nutrient alterations and responses of phytoplankton in a changing Daya Bay, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Lin; Wang, You-Shao; Wang, Yu-Tu; Yin, Jian-Ping; Dong, Jun-De; Jiang, Zhao-Yu; Sun, Fu-Lin

    2017-01-01

    The coastal ecosystem in the Daya Bay is sensitive to the environmental changes induced by highly intensive human activities. We obtained and compiled the recent 30 years' field observational data on nutrients and phytoplankton communities to explore the changing ecosystem. Dissolved inorganic nitrogen concentration (DIN) has significantly increased, while phosphate concentration (DIP) dramatically decreased because of costal anthropogenic influence. The limited factors for phytoplankton have changed from nitrogen in the 1980s to phosphate in the mid-1990s. The net-collected phytoplankton communities has the miniaturized trend, while there is drastic increase of Chlorophyll a (Chl-a) concentration. Even though the diatoms still dominate in phytoplankton community, the dominant species have slightly changed. The alga bloom greatly changed from diatoms dominated to dinoflagellates due to changes of nutrient structure. All these changes on nutrients and phytoplankton communities appear to be closely associated with human activities along the coast of the Daya Bay.

  12. Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water.

    PubMed

    Shelton, D R; Pachepsky, Y A; Kiefer, L A; Blaustein, R A; McCarty, G W; Dao, T H

    2014-08-01

    As sediments increasingly become recognized as reservoirs of indicator and pathogen microorganisms, an understanding of the persistence of indicator organisms becomes important for assessment and predictions of microbial water quality. The objective of this work was to observe the response of water column and sediment coliform populations to the change in nutrient concentrations in the water column. Survival experiments were conducted in flow-through chambers containing sandy sediments. Bovine feces were collected fresh and introduced into sediment. Sixteen days later, the same fecal material was autoclaved and diluted to provide three levels - 1×, 0.5×, and 0.1× of nutrient concentrations - spike in water column. Total coliforms, Escherichia coli, and total aerobic heterotrophic bacterial concentrations were monitored in water and sediment. Bacteria responded to the nutrient spike with initial growth both in the water column and in sediment. The response of bacterial concentrations in water column was nonlinear, with no significant changes at 0.1 and .5× spikes, but a substantial change at 1× spike. Bacteria in sediment responded to the spikes at all added nutrient levels. Coliform inactivation rates both in sediment and in water after the initial growth occurred, were not significantly different from the inactivation rates before spike. These results indicate that introduction of nutrients into the water column results in nonlinear response of E. coli concentrations both in water and in sediments, followed by the inactivation with the same rate as before introduction of nutrients. Published by Elsevier Ltd.

  13. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  14. Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations

    PubMed Central

    2011-01-01

    Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30–40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past. PMID:21958109

  15. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on quality of surface runoff at a small carbonate-rock site near Ephrate, Pennsylvania, 1984-90

    USGS Publications Warehouse

    Hall, D.W.; Lietman, P.L.; Koerkle, E.J.

    1997-01-01

    The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.

  16. Long-Term Data Reveal Patterns and Controls on Stream Water Chemistry in a Forested Stream: Walker Branch, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Brian D; Mulholland, Patrick J; Bernhardt, Emily

    2012-01-01

    We present 20 years of weekly stream water chemistry, hydrology, and climate data for the Walker Branch watershed in eastern Tennessee, USA. Since 1989, the watershed has experienced a similar to 1.08 degrees C increase in mean annual temperature, a similar to 20% decline in precipitation, and a similar to 30% increase in forest evapotranspiration rates. As a result, stream runoff has declined by similar to 34%. We evaluate long-term trends in stream water concentrations and fluxes for nine solutes and use wet deposition data to calculate approximate watershed input-output budgets. Dissolved constituents were classified as geochemical solutes (Ca2+, Mg2+,more » and SO42-) or nutrients (NH4+, NO3-, soluble reactive phosphorus [SRP], total soluble nitrogen [TSN], total soluble phosphorus [TSP], and dissolved organic carbon [DOC]). Geochemical solutes are predominantly controlled by discharge, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes. Further, the trends in geochemical solute concentrations indicate shifting soil flowpath contributions to streamflow generation through time, with deep groundwater having a greater proportional contribution in recent years. Despite dramatic changes in watershed runoff, there were no trends in inorganic nutrient concentrations (NH4+, NO3-, and SRP). While most nutrients entering the watershed are retained, stream fluxes of nutrient solutes have declined significantly as a result of decreasing runoff. Nutrient concentrations in the stream exhibit large seasonality controlled by in-stream biological uptake. Stream benthic communities are sensitive to hydrologic disturbance, and changes in the frequency or intensity of storm events through time can affect nutrient fluxes. Stream NO3- concentrations are also sensitive to drought, with concentrations decreasing (increasing) if conditions during the three years prior to the time of sampling were drier (wetter) than the long-term mean. Future changes in the incidence of storm events, as well as the number and duration of droughts, have the potential to significantly alter watershed nutrient losses. Our analysis indicates that changing climates can differentially affect watershed element cycles either through changes in biogeochemical process rates or through changes in catchment hydrology. Furthermore, climate change can include both long-term trending in mean climate variables, as well as changes in the frequency and intensity of storms and droughts, with each of these types of change having distinct effects on the biological and geochemical processes governing different solutes.« less

  17. Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Guo, Xinyu; Zhao, Liang

    2018-01-01

    Using a three-dimensional coupled biophysical model, we simulated the responses of a lowtrophic ecosystem in the East China Sea (ECS) to long-term changes in nutrient load from the Changjiang (Yangtze) River over the period of 1960-2005. Two major factors affected changes in nutrient load: changes in river discharge and the concentration of nutrients in the river water. Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients, phytoplankton, and detritus in the ECS. Changes in dissolved inorganic nitrogen (DIN), silicate (SIL), phytoplankton, and detritus could be identified over a large area of the ECS shelf, but changes in dissolved inorganic phosphate (DIP) were limited to a small area close to the river mouth. The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the different responses in DIN, DIP, and SIL. As DIP is a candidate limiting nutrient, perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production. It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS. Phytoplankton decreases could be found in some areas close to the river mouth. A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume, although the present model is not suitable for examining the possibility in detail. Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN, DIP, phytoplankton, and detritus levels in the ECS, whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS, indicating that SIL is not a limiting nutrient for photosynthesis, based on our model results from 1960 to 2005. In both of the above-mentioned cases, the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth, suggesting that core sample data should be carefully interpreted.

  18. Impact of climate change on crop nutrient and water use efficiencies.

    PubMed

    Brouder, Sylvie M; Volenec, Jeffrey J

    2008-08-01

    Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.

  19. Long-term changes in forest floor processes in southern Appalachian forests

    Treesearch

    Jennifer D. Knoepp; Barbara C. Reynolds; D.A. Crossley; Wayne T. Swank

    2005-01-01

    Soil nutrient concentrations decreased in an aggrading southern Appalachian forest over a 20-year period. Construction of nutrient budgets showed significant nutrient sequestration aboveground including increased forest floor mass. We hypothesized that the changes in forest floor mass resulted from decreased litter decomposition rates because of decreased litter...

  20. Effects of fire on composition, biomass, and nutrients in oak scrub vegetation on John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Four stands of oak scrub two, four, eight, and 25 years since fire were sampled with permanent 15 m line transects. Percent cover by species was determined. Plant samples were analyzed for a variety of substances. Transects were resurveyed in 1985 for vegetation parameters. Nutrient pools in biomass were calculated from biomass data and tissue nutrient concentrations. Soil nutrient pools were calculated from nutrient concentrations and bulk density. Species distribution and soil chemical properties were found to be closely related to water table depth. The following fire-related conclusions are reached: (1) major structural changes occur in scrub after fire in that shrub height is reduced and requires four to six years to exceed 1 m; (2) reduction in shrub height affects the suitability of scrub for the Florida scrub jay (3) live biomass increases with time since fire; (4) nutrient concentrations in live biomass do not change with time since fire; (5) species composition and richness are little changed after fire; and (6) imposition of a continued regime of burning on a three-year cycle may have adverse impacts not indicated by the recovery of scrub from a single fire.

  1. Changes in soil nutrients after 10 years of cattle manure and swine effluent application

    USDA-ARS?s Scientific Manuscript database

    Application of cattle manure and swine effluent to cropland builds nutrient pools, affects soil quality, and increases crop productivity. The objective of the present study was to evaluate the rate of change in soil nutrient concentration and soil chemical properties due to cattle manure and swine e...

  2. The Effects of Groundwater-associated Nutrients on Benthic Community Composition in Maunalua Bay, Hawaíi

    NASA Astrophysics Data System (ADS)

    La Valle, F. F.; Thomas, F. I. M.

    2016-02-01

    As populations grow and development efforts continue in coastal regions throughout the world, eutrophication is one of the leading issues surrounding coastal ecosystems. Currently, studies on subterranean groundwater discharge (SGD) are confirming that SGD can contain substantial nutrient concentrations due to agricultural activities, urbanization, leaky septic and sewer systems, and use of fertilizers. Thus, it is important for SGD with high nutrient concentrations to be monitored for its impact on coastal dynamics. Coral reef systems are especially sensitive to changes in nutrient concentrations which can change community composition by creating advantageous biochemical environments for specific algal species. Excess nutrients along with decreased herbivory have been attributed to phase shifts from coral dominated to algal dominated reefs. In this study we mapped algal cover and nutrient load with respect to the groundwater in two fringing reefs (Black Point and Wailupe) in Maunalua Bay, Oahu, Hawaíi. We established relationships between salinity and nutrient concentrations for the two sites by sampling synoptically on an onshore to offshore transect from the SGD seeps (n = 48 Black Point, n = 40 Wailupe, R2 > 0.965). The groundwater end members at the two sites have different nutrient signatures: concentrations at Black Point averaged 167.3 uM N+N (NO3- + NO2-) and 3.57 uM PO43-, while at Wailupe nutrient concentrations averaged 68.7 uM N+N and 1.96 uM PO43-. We used these relationships to calculate nutrient time series after deploying 23 autonomous salinity sensors for one month across the benthos at each site respectively. Benthic surveys taken over 2 seasons indicate that the algal composition and distribution relative to the groundwater sources differ at the two sites. Growth rates of some major macroalgal species also differ with distance from SGD source. Further studies on the biological effects of high SGD-associated nutrients on coastal systems are warranted.

  3. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  4. Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.

    PubMed

    Wang, Yiyao; Li, Huaizheng; Xu, Zuxin

    2016-01-01

    Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.

  5. Effects of diurnal control in the mineral concentration of nutrient solution on tomato yield and nutrient absorption in hydroponics.

    PubMed

    Higashide, T; Shimaji, H; Takaichi, M

    1996-12-01

    We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.

  6. Nutrient dynamics and budget with the surface water-groundwater interaction in the tidal river in Japan

    NASA Astrophysics Data System (ADS)

    Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.

    2013-12-01

    In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.

  7. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    USGS Publications Warehouse

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public-supply wells. Are levels of nutrients in water increasing or decreasing? A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation's most pristine streams warrants consideration. The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult. Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.

  8. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Burow, Karen R.; Clark, Gregory M.; Gronberg, JoAnn M.; Hamilton, Pixie A.; Hitt, Kerie J.; Mueller, David K.; Munn, Mark D.; Nolan, Bernard T.; Puckett, Larry J.; Rupert, Michael G.; Short, Terry M.; Spahr, Norman E.; Sprague, Lori A.; Wilber, William G.

    2010-01-01

    National Findings and Their ImplicationsAlthough the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins.Do NAWQA findings substantiate national concerns for aquatic and human health?National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or “background” levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development.Nitrate concentrations above the Federal drinking-water standard—or Maximum Contaminant Level (MCL)—of 10 milligrams per liter (mg/L, as nitrogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public‑supply wells.Are levels of nutrients in water increasing or decreasing?A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation’s most pristine streams warrants consideration.The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult.Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.

  9. Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging

    DOE PAGES

    Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth; ...

    2017-03-06

    Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less

  10. Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Tiffany; Delpratt, Natalie; Cseke, Sarah Beth

    Symbiotic associations in the rhizosphere between plants and microorganisms lead to efficient changes in the distribution of nutrients that promote growth and development for each organism involved. Understanding these nutrient fluxes provides insight into the molecular dynamics involved in nutrient transport from one organism to the other. Here, to study such a nutrient flow, a new application of Fourier transform infrared imaging (FTIRI) was developed that entailed growing Populus tremulodes seedlings on a thin, nutrient-enriched Phytagel matrix that allows pixel to pixel measurement of the distribution of nutrients, in particular, nitrate, in the rhizosphere. The FTIR spectra collected from ammoniummore » nitrate in the matrix indicated the greatest changes in the spectra at 1340 cm -1 due to the asymmetric stretching vibrations of nitrate. For quantification of the nitrate concentration in the rhizosphere of experimental plants, a calibration curve was generated that gave the nitrate concentration at each pixel in the chemical image. These images of the poplar rhizosphere showed evidence for symbiotic sharing of nutrients between the plant and the fungi, Laccaria bicolor, where the nitrate concentration was five times higher near mycorrhizal roots than further out into the rhizosphere. This suggested that nitrates are acquired and transported from the media toward the plant root by the fungi. Similarly, the sucrose used in the growth media as a carbon source was depleted around the fungi, suggesting its uptake and consumption by the system. In conclusion, this study is the first of its kind to visualize and quantify the nutrient availability associated with mycorrhizal interactions, indicating that FTIRI has the ability to monitor nutrient changes with other microorganisms in the rhizosphere as a key step for understanding nutrient flow processes in more diverse biological systems.« less

  11. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.

    PubMed

    Porcal, Petr; Koprivnjak, Jean-François; Molot, Lewis A; Dillon, Peter J

    2009-09-01

    Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change. We review recent research on the mechanisms responsible for recent changes in aquatic DOC concentrations, DOC interactions with trace metals, N, and P, and on the possible impacts of climate change on DOC in mainly boreal lakes. We then speculate on how climate change may affect DOC export and in-lake processing and how these changes might alter nutrient and metal export and processing. Furthermore, the potential impacts of changing DOC cycling patterns on climate change are examined. It has been noted that DOC concentrations in lake and stream waters have increased during the last 30 years across much of Europe and North America. The potential reasons for this increase include increasing atmospheric CO(2) concentration, climate warming, continued N deposition, decreased sulfate deposition, and hydrological changes due to increased precipitation, droughts, and land use changes. Any change in DOC concentrations and properties in lakes and streams will also impact the acid-base chemistry of these waters and, presumably, the biological, chemical, and photochemical reactions taking place. For example, the interaction of trace metals with DOC may be significantly altered by climate change as organically complexed metals such as Cu, Fe, and Al are released during photo-oxidation of DOC. The production and loss of DOC as CO(2) from boreal lakes may also be affected by changing climate. Climate change is unlikely to be uniform spatially with some regions becoming wetter while others become drier. As a result, rates of change in DOC export and concentrations will vary regionally and the changes may be non-linear. Climate change models predict that higher temperatures are likely to occur over most of the boreal forests in North America, Europe, and Asia over the next century. Climate change is also expected to affect the severity and frequency of storm and drought events. Two general climate scenarios emerge with which to examine possible DOC trends: warmer and wetter or warmer and drier. Increasing temperature and hydrological changes (specifically, runoff) are likely to lead to changes in the quality and quantity of DOC export from terrestrial sources to rivers and lakes as well as changes in DOC processing rates in lakes. This will alter the quality and concentrations of DOC and its constituents as well as its interactions with trace metals and the availability of nutrients. In addition, export rates of nutrients and metals will also change in response to changing runoff. Processing of DOC within lakes may impact climate depending on the extent to which DOC is mineralized to dissolved inorganic carbon (DIC) and evaded to the atmosphere or settles as particulate organic carbon (POC) to bottom sediments and thereby remaining in the lake. The partitioning of DOC between sediments and the atmosphere is a function of pH. Decreased DOC concentrations may also limit the burial of sulfate, as FeS, in lake sediments, thereby contributing acidity to the water by increasing the formation of H(2)S. Under a warmer and drier scenario, if lake water levels fall, previously stored organic sediments may be exposed to greater aeration which would lead to greater CO(2) evasion to the atmosphere. The interaction of trace metals with DOC may be significantly altered by climate change. Iron enhances the formation of POC during irradiation of lake water with UV light and therefore may be an important pathway for transfer of allochthonous DOC to the sediments. Therefore, changing Fe/DOC ratios could affect POC formation rates. If climate change results in altered DOC chemistry (e.g., fewer and/or weaker binding sites) more trace metals could be present in their toxic and bioavailable forms. The availability of nutrients may be significantly altered by climate change. Decreased DOC concentrations in lakes may result in increased Fe colloid formation and co-incident loss of adsorbable P from the water column. Climate change expressed as changes in runoff and temperature will likely result in changes in aquatic DOC quality and concentration with concomitant effects on trace metals and nutrients. Changes in the quality and concentration of DOC have implications for acid-base chemistry and for the speciation and bioavailability of certain trace metals and nutrients. Moreover, changes in DOC, metals, and nutrients are likely to drive changes in rates of C evasion and storage in lake sediments. The key controls on allochthonous DOC quality, quantity, and catchment export in response to climate change are still not fully understood. More detailed knowledge of these processes is required so that changes in DOC and its interactions with nutrients and trace metals can be better predicted based on changes caused by changing climate. More studies are needed concerning the effects of trace metals on DOC, the effects of changing DOC quality and quantity on trace metals and nutrients, and how runoff and temperature-related changes in DOC export affect metal and nutrient export to rivers and lakes.

  12. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  13. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  14. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons.

    PubMed

    Scofield, Vinicius; Jacques, Saulo M S; Guimarães, Jean R D; Farjalla, Vinicius F

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different lagoons but seems to be related to the DOC concentration.

  15. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    PubMed Central

    Scofield, Vinicius; Jacques, Saulo M. S.; Guimarães, Jean R. D.; Farjalla, Vinicius F.

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different lagoons but seems to be related to the DOC concentration. PMID:25926827

  16. Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France.

    PubMed

    Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier

    2018-05-15

    Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than initial rate of recovery. These findings demonstrate the value of citizen science initiatives in quantifying long-term and seasonal consequences of changes in land management, which are necessary to identify sustainable limits and predict recovery timeframes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: A global meta-analysis.

    PubMed

    You, Chengming; Wu, Fuzhong; Yang, Wanqin; Xu, Zhenfeng; Tan, Bo; Yue, Kai; Ni, Xiangyin

    2018-06-08

    To test the hypothesis that nutrient-limited conditions can determine the responses of nitrogen (N) and phosphorus (P) stoichiometry to N addition, a meta-analysis was conducted to identify the different responses of foliar N and P concentrations and N-to-P ratios to N addition under N limitation, N and P co-limitation and P limitation. N addition increased the foliar N-to-P ratios and N concentrations by 46.2% and 30.2%, respectively, under N limitation, by 18.7% and 19.7% under N and P co-limitation, and by 4.7% and 12.9% under P limitation. However, different responses of foliar P concentrations to N addition were observed under different nutrient limitations, and negative, positive, and neutral effects on P concentrations were observed under N limitation, P limitation and N and P co-limitation, respectively. Generally, the effects of N addition on N-to-P ratios and N concentrations in herbaceous plants were dramatically larger than those in woody plants (with the exception of the N-to-P ratio under N limitation), but the opposite situation was true for P concentrations. The changes in N-to-P ratios were closely correlated with the changes in N and P concentrations, indicating that the changes in both N and P concentrations due to N addition can drive N and P stoichiometry, but the relative sizes of the contributions of N and P varied greatly with different nutrient limitations. Specifically, the changes in N-to-P ratios may indicate a minimum threshold, which is consistent with the homeostatic mechanism. In brief, increasing N deposition may aggravate P limitation under N-limited conditions but improve P limitation under P-limited conditions. The findings highlight the importance of nutrient-limited conditions in the stoichiometric response to N addition, thereby advancing our ability to predict global plant growth with increasing N deposition in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.; Holdren, G.C.

    2008-01-01

    The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ???940,000 kg around 1968 to ???1,450,000 kg in 2002 (???55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. ?? 2008 Springer Science+Business Media B.V.

  19. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Guzman, C. D.; Castro, A.; Morales, A.; Hoyos, F.; Moreno, P.; Steenhuis, T. S.

    2014-12-01

    A main goal of this study was to improve prediction of sediment and solute transport using soil surface and soil nutrient changes, based on field measurements, within small watersheds receiving conservation measures. Sediment samples and solute concentrations were measured from two streams in the southwestern region of the Colombian Andes. Two modeling approaches for stream discharge and sediment transport predicted were used with one of these being used for nutrient transport prediction. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations. Lateral transects in the upper, middle, and lower part of the hillsides in the Aguaclara watershed of the Rio Bolo watershed network showed differences in soil nutrient status and soil surface depth changes. The model based on semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used model indicating available options for comparison of conservation changes in the future.

  20. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts of permafrost thawing and forest fires on nutrient dynamics in arctic streams.

  1. Nutrient cycling associated with the seagrass Halophila ovalis in the Swan-Canning Estuary based on seasonal variations in biomass and tissue nutrients

    NASA Astrophysics Data System (ADS)

    Connell, E. L.; Walker, D. I.

    2001-09-01

    Halophila ovalis occupies about 20% (461 ha) of the Swan-Canning Estuary. To assess the role of this plant in the biogeochemical cycling of the estuary, its biomass, nutrient dynamics and oxygen release from its roots to the sediment were investigated. This paper describes a conceptual model developed to extrapolate these findings to the whole estuary.The model follows changes in H. ovalis meadows in the Swan-Canning Estuary on a seasonal basis over an annual cycle. Total maximum seagrass biomass was estimated as 346 t dry weight (DW) in summer, declining in winter. In spring, although H. ovalis biomass did not increase, tissue nutrient concentrations were higher when external nutrient concentrations were high. From spring to summer, when external nutrient concentrations in the water column were severely depleted, shoot to root-rhizome biomass ratios changed from 1 : 1 in winter to 1 : 1·5 in summer. Plant tissue nutrients also decreased in root-rhizomes and increased in shoots, indicating an allocation of internal nutrient resources to the shoots for growth. Despite depletion of nitrogen in the water column, ammonium was still available in the sediment. Ammonium concentrations in the sediment porewater decreased in summer, suggesting H. ovalis meadows were a sink for ammonium. With an increase in biomass in summer, including the density of roots, oxygen release from H. ovalis roots subsequently increased. H. ovalis meadows act as a substantial sink for nutrients in the Swan-Canning Estuary in spring and summer. In winter, when there are large losses of plant biomass, H. ovalis meadows become a source of nutrients to the estuary.

  2. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L

    2017-01-01

    To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.

  3. Trends in the nutrient enrichment of U.S. rivers during the late 20th century and their relation to changes in probable stream trophic conditions

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.

    2006-01-01

    We estimated trends in concentrations of total phosphorus (TP) and total nitrogen (TN) and the related change in the probabilities of trophic conditions from 1975 to 1994 at 250 nationally representative riverine monitoring locations in the U.S. with drainage areas larger than about 1,000 km2. Statistically significant (p < 0.05) declines were detected in TP and TN concentrations at 44% and 37% of the monitoring sites, and significant increases were detected at 3% and 9% of the sites, respectively. We used a statistical model to assess changes in the probable trophic-state classification of the sites after adjusting for climate-related variability in nutrient concentrations. The probabilistic assessment accounts for current knowledge of the trophic response of streams to nutrient enrichment, based on a recently proposed definition of "eutrophic," "mesotrophic," and "oligotrophic" conditions in relation to total nutrient concentrations. Based on these trophic definitions, we found that the trophic state improved at 25% of the monitoring sites and worsened at fewer than 5% of the sites; about 70% of the sites were unchanged. Improvements in trophic-state related to declines in TP were more common in predominantly forested and shrub-grassland watersheds, whereas the trophic state of predominantly agricultural sites was unchanged. Despite the declines in TP concentrations at many sites, about 50% of all monitoring sites, and more than 60% of the sites in predominantly agricultural and urban watersheds, were classified as eutrophic in 1994 based on TP concentrations. Contemporaneous reductions in major nutrient sources to streams, related to wastewater treatment upgrades, phosphate detergent bans, and declines in some agricultural sources, may have contributed to the declines in riverine nutrient concentrations and associated improvements in trophic conditions. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  4. Endemic grazers control benthic microalgal growth in a eutrophic tropical brackish ecosystem

    Treesearch

    T.S. Sakihara; B.D. Dudley; R.A. MacKenzie; J.P. Beets

    2015-01-01

    Anthropogenic changes to nutrient supply, numbers and behavior of grazers and interactions of these factors are known to change epilithon composition and biomass. In brackish waters, these changes occur across wide-ranging abiotic conditions (e.g. nutrient concentrations and salinity), which may alter their relative impacts on microphytobenthic communities. Such...

  5. Trends in nutrients

    USGS Publications Warehouse

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  6. Nutrient dynamics in two seagrass species, Posidonia coriacea and Zostera tasmanica, on Success Bank, Western Australia

    NASA Astrophysics Data System (ADS)

    Walker, D. I.; Campey, M. L.; Kendrick, G. A.

    2004-06-01

    Nutrient concentrations and seasonal differences in atomic ratios (N:P) in plant tissue of Posidonia coriacea Kuo and Cambridge and Zostera tasmanica Aschers (formerly Heterozostera tasmanica (Syst Bot 27 (2002) 468) were measured from multiple locations on Success Bank, southwestern Australia, and used to infer nutritional constraints on seagrass vegetative growth, particularly by phosphorus. Posidonia plant tissue at the west site had higher nitrogen than the east site in both summer and winter. Nitrogen concentrations increased in winter, particularly in sheath tissue, but there was little change in root nitrogen concentrations between sites or seasons. Nitrogen concentrations of leaf tissue were all less than median seagrass values reported by Duarte (Mar Ecol Prog Ser 67 (1990) 201). The seasonality in nutrient concentrations in plant tissues suggests greater nutritional constraints in summer, during periods of high growth. Vegetative growth of Posidonia coriacea was more nutrient limited than that of Zostera tasmanica. Translocation of nutrients along rhizomes to the apex may ensure that growing points are not nutrient limited and that growth can be maintained, and was more apparent in Z. tasmanica than P. coriacea. Sexual reproduction placed large demands on P. coriacea through the high investment of nutrients into fruit, resulting in reduced nutritional constraints on successful seedling recruitment by initially providing seedlings with nutrients.

  7. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the greatest impact on reducing nutrient export from the basin. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Ecosystem Modeling Applied to Nutrient Criteria Development in Rivers

    NASA Astrophysics Data System (ADS)

    Carleton, James N.; Park, Richard A.; Clough, Jonathan S.

    2009-09-01

    Threshold concentrations for biological impairment by nutrients are difficult to quantify in lotic systems, yet States and Tribes in the United States are charged with developing water quality criteria to protect these ecosystems from excessive enrichment. The analysis described in this article explores the use of the ecosystem model AQUATOX to investigate impairment thresholds keyed to biological indexes that can be simulated. The indexes selected for this exercise include percentage cyanobacterial biomass of sestonic algae, and benthic chlorophyll a. The calibrated model was used to analyze responses of these indexes to concurrent reductions in phosphorus, nitrogen, and suspended sediment in an enriched upper Midwestern river. Results suggest that the indexes would respond strongly to changes in phosphorus and suspended sediment, and less strongly to changes in nitrogen concentration. Using simulated concurrent reductions in all three water quality constituents, a total phosphorus concentration of 0.1 mg/l was identified as a threshold concentration, and therefore a hypothetical water quality criterion, for prevention of both excessive periphyton growth and sestonic cyanobacterial blooms. This kind of analysis is suggested as a way to evaluate multiple contrasting impacts of hypothetical nutrient and sediment reductions and to define nutrient criteria or target concentrations that balance multiple management objectives concurrently.

  9. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    NASA Astrophysics Data System (ADS)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (<20ppm) with water isotopic values reflecting precipitation, indicating preferential flow (>60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  10. Nutrient concentrations and their relations to the biotic integrity of wadeable streams in Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Graczyk, David J.; Garrison, Paul J.; Wang, Lizhu; LaLiberte, Gina; Bannerman, Roger

    2006-01-01

    Excessive nutrient (phosphorus and nitrogen) loss from watersheds is frequently associated with degraded water quality in streams. To reduce this loss, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the U.S. Environmental Protection Agency is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve a stream's water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria will be possible with a better understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. The U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 240 wadeable streams throughout Wisconsin to: 1) describe how nutrient concentrations and biotic-community structure vary throughout the State; 2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations; 3) determine reference water-quality and biotic conditions for different areas of the State; 4) determine how the biotic community of streams in different areas of the State respond to changes in nutrient concentrations; 5) determine the best regionalization scheme to describe the patterns in reference conditions and the responses in water quality and the biotic community; and 6) develop new indices to estimate nutrient concentrations in streams from a combination of biotic indices. The ultimate goal of this study is to provide the information needed to guide the development of regionally based nutrient criteria for Wisconsin streams. For total nitrogen (N) and suspended chlorophyll (SCHL) concentrations and water clarity, regional variability in reference conditions and in the responses in water quality to changes in land use are best described by subdividing wadeable streams into two categories: streams in areas with high clay-content soils (Environmental Phosphorus Zone 3, EPZ 3) and streams throughout the rest of the State. The regional variability in the response in total phosphorus (P) concentrations is also best described by subdividing the streams into these two categories; however, little consistent variability was found in reference P concentrations in streams throughout the State. Reference P concentrations are smilar throughout the State (0.03-0.04 mg/L). Reference N concentrations are divided into two categories: 0.6-0.7 mg/L in all streams except those in areas with high clay-content soils, where 0.4 mg/L is more appropriate. Reference SCHL concentrations are divided into two categories: 1.2-1.7 ?g/L in all streams except those in areas with high clay-content soils, where 1.0 ?g/L may be more appropriate. Reference water clarity is divided into two categories: streams in areas with high clay-content soils with a lower reference water clarity (Secchi tube depth, SD, of about 110 cm) and streams throughout the rest of the State (SD greater than or equal to about 115 cm). For each category of the biotic community (SCHL and benthic chlorophyll a concentrations (BCHL), periphytic diatoms, macroinvertebrates, and fish), a few biotic indices were more related to differences in nutrient concentrations than were others. For each of the indices more strongly related to nutrient concentrations, reference conditions were obtained by determining values corresponding to the worst 75th percentile value from a subset of minimally impacted streams (streams having reference nutrient concentrations). By examining the biotic community in streams having either reference P or N concentrations but not both, the relative importance of these two nutrients was determined. For SCHL, P was the more important limiting nutrient; however, for BCHL and all macroinvertebrate indices, it appears that N was the more important nutrient when concent

  11. Bioavailability of Dissolved Organic Carbon and Nitrogen From Tropical Montane Rainforest Streams Across a Geologic age Gradient

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.

    2005-05-01

    Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.

  12. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  13. Hydrologic processes and nutrient dynamics in a pristine mountain catchment

    USGS Publications Warehouse

    F. Richard Hauer,; Fagre, Daniel B.; Stanford, Jack A.

    2002-01-01

    Nutrient dynamics in watersheds have been used as an ecosystem-level indicator of overall ecosystem function or response to disturbance (e.g. Borman.N et al. 1974, WEBSTER et al. 1992). The examination of nutrients has been evaluated to determine responses to logging practices or other changes in watershed land use. Nutrient dynamics have been related to changing physical and biological characteristics (Mulholl AND 1992, CHESTNUT & McDowell 2000). Herein, the concentrations and dynamics of nitrogen, phosphorus and particulate organic carbon were examined in a large pristine watershed because they are affected by changes in discharge directly from the catchment and after passage through a large oligotrophic lake. 

  14. Elevated tropospheric ozone affects the concentration and allocation of mineral nutrients of two bamboo species.

    PubMed

    Zhuang, Minghao; Lam, Shu Kee; Li, Yingchun; Chen, Shuanglin

    2017-01-15

    The increase in tropospheric ozone (O 3 ) affects plant physiology and ecosystem processes, and consequently the cycle of nutrients. While mineral nutrients are critical for plant growth, the effect of elevated tropospheric O 3 concentration on the uptake and allocation of mineral nutrients by plants is not well understood. Using open top chambers (OTCs), we investigated the effect of elevated O 3 on calcium (Ca), magnesium (Mg) and iron (Fe) in mature bamboo species Phyllostachys edulis and Oligostachyum lubricum. Our results showed that elevated O 3 decreased the leaf biomass of P. edulis and O. lubricum by 35.1% and 26.7%, respectively, but had no significant effect on the biomass of branches, stem or root. For P. edulis, elevated O 3 increased the nutrient (Ca, Mg and Fe) concentration and allocation in leaf but reduced the concentration in other organs. In contrast, elevated O 3 increased the nutrient concentration and allocation in the branch of O. lubricum but decreased that of other organs. We also found that that P. edulis and O. lubricum responded differently to elevated O 3 in terms of nutrient (Ca, Mg and Fe) uptake and allocation. This information is critical for nutrient management and adaptation strategies for sustainable growth of P. edulis and O. lubricum under global climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea.

    PubMed

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.

  16. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE PAGES

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-05-28

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  17. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  18. Experimental and observational studies find contrasting responses of soil nutrients to climate change.

    PubMed

    Yuan, Z Y; Jiao, F; Shi, X R; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-06-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling.

  19. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  20. Predicted harvest time effects on switchgrass moisture content, nutrient concentration, yield, and profitability

    USDA-ARS?s Scientific Manuscript database

    Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...

  1. Dissolved Organic Carbon Degradation in Response to Nutrient Amendments in Southwest Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Burpee, B. T.; Northington, R.; Simon, K. S.; Saros, J. E.

    2014-12-01

    Aquatic ecosystems across the Arctic are currently experiencing rapid shifts in biotic, chemical, and physical factors in response to climate change. Preliminary data from multiple lakes in southwestern Greenland indicate decreasing dissolved organic carbon (DOC) concentrations over the past decade. Though several factors may be contributing to this phenomenon, this study attempts to elucidate the potential of heterotrophic bacteria to degrade DOC in the presence of increasing nutrient concentrations. In certain Arctic regions, nutrient subsidies have been released into lakes due to permafrost thaw. If this is occurring in southwestern Greenland, we hypothesized that increased nutrient concentrations will relieve nutrient limitation, thereby allowing heterotrophic bacteria to utilize DOC as an energy source. This prediction was tested using experimental DOC degradation assays from four sample lakes. Four nutrient amendment treatments (control, N, P, and N + P) were used to simulate in situ subsidies. Five time points were sampled during the incubation: days 0, 3, 6, 14, and 60. Total organic carbon (TOC) and parallel factor (PARAFAC) analysis were used to monitor the relative concentrations of different DOC fractions over time. In addition, samples for extracellular enzyme activity (EEA) analysis were collected at every time point. Early analysis of fulvic and humic pools of DOC do not indicate any significant change from days 0 to 14. This could be due to the fact that these DOC fractions are relatively recalcitrant. This study will be important in determining whether bacterial degradation could be a contributing factor to DOC decline in arctic lakes.

  2. Catchment Legacies and Time Lags: A Parsimonious Watershed Model to Predict the Effects of Legacy Storage on Nitrogen Export

    PubMed Central

    Van Meter, Kimberly J.; Basu, Nandita B.

    2015-01-01

    Nutrient legacies in anthropogenic landscapes, accumulated over decades of fertilizer application, lead to time lags between implementation of conservation measures and improvements in water quality. Quantification of such time lags has remained difficult, however, due to an incomplete understanding of controls on nutrient depletion trajectories after changes in land-use or management practices. In this study, we have developed a parsimonious watershed model for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy) and groundwater travel time distributions (hydrologic legacy). The model accurately predicted the time lags observed in an Iowa watershed that had undergone a 41% conversion of area from row crop to native prairie. We explored the time scales of change for stream nutrient concentrations as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change. Our results demonstrate that the existence of biogeochemical nutrient legacies increases time lags beyond those due to hydrologic legacy alone. In addition, we show that the maximum concentration reduction benefits vary according to the spatial pattern of intervention, with preferential conversion of land parcels having the shortest catchment-scale travel times providing proportionally greater concentration reductions as well as faster response times. In contrast, a random pattern of conversion results in a 1:1 relationship between percent land conversion and percent concentration reduction, irrespective of denitrification rates within the landscape. Our modeling framework allows for the quantification of tradeoffs between costs associated with implementation of conservation measures and the time needed to see the desired concentration reductions, making it of great value to decision makers regarding optimal implementation of watershed conservation measures. PMID:25985290

  3. Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export.

    PubMed

    Van Meter, Kimberly J; Basu, Nandita B

    2015-01-01

    Nutrient legacies in anthropogenic landscapes, accumulated over decades of fertilizer application, lead to time lags between implementation of conservation measures and improvements in water quality. Quantification of such time lags has remained difficult, however, due to an incomplete understanding of controls on nutrient depletion trajectories after changes in land-use or management practices. In this study, we have developed a parsimonious watershed model for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy) and groundwater travel time distributions (hydrologic legacy). The model accurately predicted the time lags observed in an Iowa watershed that had undergone a 41% conversion of area from row crop to native prairie. We explored the time scales of change for stream nutrient concentrations as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change. Our results demonstrate that the existence of biogeochemical nutrient legacies increases time lags beyond those due to hydrologic legacy alone. In addition, we show that the maximum concentration reduction benefits vary according to the spatial pattern of intervention, with preferential conversion of land parcels having the shortest catchment-scale travel times providing proportionally greater concentration reductions as well as faster response times. In contrast, a random pattern of conversion results in a 1:1 relationship between percent land conversion and percent concentration reduction, irrespective of denitrification rates within the landscape. Our modeling framework allows for the quantification of tradeoffs between costs associated with implementation of conservation measures and the time needed to see the desired concentration reductions, making it of great value to decision makers regarding optimal implementation of watershed conservation measures.

  4. Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities.

    PubMed

    Gomes, Patrícia Pereira; Ferreira, Verónica; Tonin, Alan M; Medeiros, Adriana Oliveira; Júnior, José Francisco Gonçalves

    2018-05-01

    Aquatic ecosystems worldwide have been substantially altered by human activities, which often induce changes in multiple factors that can interact to produce complex effects. Here, we evaluated the combined effects of dissolved nutrients (nitrogen [N] and phosphorus [P]; three levels: concentration found in oligotrophic streams in the Cerrado biome, 10× and 100× enriched) and oxygen (O 2 ; three levels: hypoxic [4% O 2 ], depleted [55% O 2 ], and saturated [96% O 2 ]) on plant litter decomposition and associated fungal decomposers in laboratory microcosms simulating stream conditions under distinct scenarios of water quality deterioration. Senescent leaves of Maprounea guianensis were incubated for 10 days in an oligotrophic Cerrado stream to allow microbial colonization and subsequently incubated in microcosms for 21 days. Leaves lost 1.1-3.0% of their initial mass after 21 days, and this was not affected either by nutrients or oxygen levels. When considering simultaneous changes in nutrients and oxygen concentrations, simulating increased human pressure, fungal biomass accumulation, and sporulation rates were generally inhibited. Aquatic hyphomycete community structure was also affected by changes in nutrients and oxygen availability, with stronger effects found in hypoxic treatments than in depleted or saturated oxygen treatments. This study showed that the effects of simultaneous changes in the availability of dissolved nutrients and oxygen in aquatic environments can influence the activity and composition of fungal communities, although these effects were not translated into changes in litter decomposition rates.

  5. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    PubMed

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  6. NUTRIENTS IN WATERSHEDS: DEVELOPING ENHANCED MODELING TOOLS

    EPA Science Inventory

    Nutrient enrichment is one of the most important stressors causing water-resource impairment. These impairments are causing devastating changes: 1) high nitrate concentrations have rendered the groundwaters and reservoirs in many regions impotable -- especially in the rural area...

  7. Algal community characteristics and response to nitrogen and phosphorus concentrations in streams in the Ozark Plateaus, Southern Missouri, 1993-95 and 2006-07

    USGS Publications Warehouse

    Femmer, Suzanne R.

    2012-01-01

    Nutrient and algae data were collected in the 1990s and 2000s by the U.S. Geological Survey for the National Water- Quality Assessment program in the Ozark Highlands, southern Missouri. These data were collected at sites of differing drainage area, land use, nutrient concentrations, and physiography. All samples were collected at sites with a riffle/pool structure and cobble/gravel bed material. A total of 60 samples from 45 sites were available for analyses to determine relations between nutrient concentrations and algal community structure in this region. This information can be used by the Missouri Department of Natural Resources to develop the State's nutrient criteria plan. Water samples collected for this study had total nitrogen concentrations ranging from 0.07 to 4.41 milligram per liter (mg/L) with a median of 0.26 mg/L, and total phosphorus concentrations ranging from 0.003 to 0.78 mg/L with a median of 0.007 mg/L. These nutrient concentrations were transformed into nutrient categories consisting of varying percentiles of data. Algal community data were entered into the U.S. Geological Survey's Algae Data Analysis System for the computation of more than 250 metrics. These metrics were correlated with nutrient categories, and four metrics with the strongest relation with the nutrient data were selected. These metrics were Organic Nitrogen Tolerance, Oxygen Tolerance, Bahls Pollution Class, and the Saprobien index with the 25th and 80th percentile nutrient categories. These data indicate that near the 80th percentile (Total Nitrogen = 0.84 mg/L, Total Phosphorus = 0.035 mg/L) the algae communities significantly changed from nitrogen-fixing species dominance to those species more tolerant of eutrophic conditions.

  8. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    NASA Astrophysics Data System (ADS)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  9. Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976-2012)

    NASA Astrophysics Data System (ADS)

    Jung, A. S.; Brinkman, A. G.; Folmer, E. O.; Herman, P. M. J.; van der Veer, H. W.; Philippart, C. J. M.

    2017-09-01

    Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus removal at waste water treatment plants, management of fertilization in agriculture and removal of phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient concentrations may be the result of different sediment-water exchange dynamics for P and N. It is hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser degree N, were stored in sediments as organic and inorganic nutrients. In the following period (1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P concentrations in the Wadden Sea remained high due to prolonged sediment release, whilst denitrification removed substantial amounts of N. From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were then depleted and denitrification continued. Under the present conditions (lower rates of sediment import and depleted P stores), nutrient concentrations in this area are expected to be more strongly influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from Lake IJssel. This implies that the consequences of climate change will be more important, than during the 1970s and 1980s.

  10. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-08-01

    This study investigates nutrient-related water quality conditions and change trends in the first management periods of the EU Water Framework Directive (WFD; since 2009) and Baltic Sea Action Plan (BASP; since 2007). With mitigation of nutrients in inland waters and their discharges to the Baltic Sea being a common WFD and BSAP target, we use Sweden as a case study of observable effects, by compiling and analyzing all openly available water and nutrient monitoring data across Sweden since 2003. The data compilation reveals that nutrient monitoring covers only around 1% (down to 0.2% for nutrient loads) of the total number of WFD-classified stream and lake water bodies in Sweden. The data analysis further shows that the hydro-climatically driven water discharge dominates the determination of waterborne loads of both total phosphorus and total nitrogen across Sweden. Both water discharge and the related nutrient loads are in turn well correlated with the ecosystem status classification of Swedish water bodies. Nutrient concentrations do not exhibit such correlation and their changes over the study period are on average small, but concentration increases are found for moderate-to-bad status waters, for which both the WFD and the BSAP have instead targeted concentration decreases. In general, these results indicate insufficient distinction and mitigation of human-driven nutrient components in inland waters and their discharges to the sea by the internationally harmonized applications of the WFD and the BSAP. The results call for further comparative investigations of observable large-scale effects of such regulatory/management frameworks in different parts of the world.

  11. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Litchman, E.; Klausmeier, C. A.; Miller, J. R.; Schofield, O. M.; Falkowski, P. G.

    2006-11-01

    Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes), nutrients (nitrate, ammonium, phosphate, silicate and iron), light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE) and subarctic North Pacific (ocean station Papa, OSP). The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the robustness of the predictions was determined. Change in the onset and duration of stratification altered the timing and the magnitude of the spring diatom bloom in the North Atlantic and increased total phytoplankton and zooplankton biomass in the North Pacific. Changes in nutrient concentrations in some cases changed dominance patterns of major groups, as well as total chlorophyll and zooplankton biomass. Based on these scenarios, our model suggests that global environmental change will inevitably alter phytoplankton community structure and potentially impact global biogeochemical cycles.

  12. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.

  13. Effect of cadmium accumulation on mineral nutrient levels in vegetable crops: potential implications for human health.

    PubMed

    Yang, Danping; Guo, Zhiqiang; Green, Iain D; Xie, Deti

    2016-10-01

    Consumption of vegetables is often the predominant route whereby humans are exposed to the toxic metal Cd. Health impacts arising from Cd consumption may be influenced by changes in the mineral nutrient content of vegetables, which may occur when plants are exposed to Cd. Here, we subjected model root (carrot) and leaf (lettuce) vegetables to soil Cd concentrations of 0.3, 1.5, 3.3, and 9.6 μg g(-1) for 10 weeks to investigate the effect of Cd exposure on Cd accumulation, growth performance, and mineral nutrient homeostasis. The findings demonstrated that Cd accumulation in lettuce (20.1-71.5 μg g(-1)) was higher than that in carrot (3.2-27.5 μg g(-1)), and accumulation exceeded the maximum permissible Cd concentration in vegetables when soil contained more than 3.3 μg g(-1) of Cd. There was a marked hormetic effect on carrot growth at a soil Cd concentration of 3.3 μg g(-1), but increasing the Cd concentration to 9.6 μg g(-1) caused decreased growth in both crops. Additionally, in most cases, there was a positive correlation between Cd and the mineral nutrient content of vegetables, which was due to physiological changes in the plants causing increased uptake and/or translocation. This may suggest a general mechanism whereby the plant compensated for disrupted mineral nutrient metabolism by increasing nutrient supply to its tissues. Increased nutrient levels could potentially offset some risks posed to humans by increased Cd levels in crops, and we therefore suggest that changes in mineral nutrient levels should be included more widely in the risk assessment of potentially toxic metal contamination. Graphical abstract The Cd concentration (μg g-1 in dry matter) in the root, shoot and translocation factor (TF) of Cd from root to shoot in the carrot and lettuce, and the percentage of root Cd to the gross Cd contents (%) in carrot (C) and lettuce (D) exposed to soil Cd (0 (control), 1, 3, and 9 μg g-1) for 70 days. Values are means ± SD (n = 5).

  14. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes

    USGS Publications Warehouse

    Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.

    2011-01-01

    The algal, invertebrate, and fish taxa and community attributes that best reflect the effects of nutrients along a gradient of low to high nutrient concentrations in wadeable, primarily midwestern streams were determined as part of the U.S. Geological Suvey's National Water-Quality Assessment (NAWQA) Program. Nutrient data collected from 64 sampling sites that reflected reference, agricultural, and urban influences between 1993 and 2006 were used to represent the nutrient gradient within Nutrient Ecoregion VI (Cornbelt and Northern Great Plains), VII (Mostly Glaciated Dairy Region), and VIII (Nutrient Poor Largely Glaciated Upper Midwest and Northeast). Nutrient Ecoregions VII and VIII comprise the Glacial North diatom ecoregion (GNE) and Nutrient Ecoregion VI represents the Central and Western Plains diatom ecoregion (CWPE). The diatom-ecoregion groupings were used chiefly for data analysis. The total nitrogen (TN) and total phosphorus (TP) data from 64 sites, where at least 6 nutrient samples were collected within a year at each site, were used to classify the sites into low-, medium-, and high-nutrient categories based upon the 10th and 75th percentiles of for sites within each Nutrient Ecoregion. In general, TN and TP concentrations were 3-5 times greater in Nutrient Ecoregion VI than in Nutrient Ecoregions VII and VIII. A subgroup of 54 of these 64 sites had algal-, invertebrate-, and fish-community data that were collected within the same year as the nutrients; these sites were used to assess the effects of nutrients on the biological communities. Multidimensional scaling was used to determine whether the entire region could be assessed together or whether there were regional differences between the algal, invertebrate, and fish communities. The biological communities were significantly different between the northern sites, primarily in the GNE and the southern sites, primarily in the CWPE. In the higher nutrient concentration gradient in the streams of the CWPE, algae exhibited greater differences than invertebrates and fish between all of the nutrient categories for both TN and TP; however, in the lower nutrient gradient in the streams of the GNE, invertebrates exhibited greater differences between the nutrient categories. Certain species of algae, invertebrates, and fish were more prevalent in low- and high-nutrient categories within each of the diatom ecoregions. Breakpoint analysis was used to identify the concentration at which the relations between the response variable (biological attribute) and the stressor variable (TN and TP) change. There were significant breakpoints for nutrients (TN and TP) and multiple attributes for algae, invertebrates, and fish communities within the CWPE and GNE diatom ecoregions. In general, more significant breakpoints, with lower concentrations, were found in the GNE than the more nutrient-rich CWPE. The breakpoints from all biological communities were generally about 3-5 times higher in the south (CWPE) than the north (GNE). In the north, breakpoints with similar lower concentrations were found for TN from all biological communities (around 0.60 milligram per liter) and for TP (between 0.02 and 0.03 milligram per liter) for the algae and invertebrate communities. The findings from our study suggest that the range in breakpoints for TN and TP from the GNE can be used as oligotrophic and eutrophic boundaries derived from biological response based on this ecoregion having (1) a gradient with sufficiently low to high nutrient concentrations, (2) distinctive differences in the biological communities in the low- to high-nutrient streams, (3) similarity of breakpoints within algal, invertebrate, and fish communities, (4) significant attributes with either direct relations to nutrients or traditional changes in community structure (that is, decreases in sensitive species or increases in tolerant species), and (5) similar breakpoints in other studies in this and other regions. In nutrie

  15. Experimental and observational studies find contrasting responses of soil nutrients to climate change

    PubMed Central

    Yuan, ZY; Jiao, F; Shi, XR; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-01-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling. DOI: http://dx.doi.org/10.7554/eLife.23255.001 PMID:28570219

  16. Flow Dynamics and Nutrient Reduction in Rain Gardens

    EPA Science Inventory

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  17. Impacts of human activities on nutrient transport in the Yellow River: The role of the Water-Sediment Regulation Scheme.

    PubMed

    Li, Xinyu; Chen, Hontao; Jiang, Xueyan; Yu, Zhigang; Yao, Qingzhen

    2017-08-15

    Anthropogenic activities alter the natural states of large rivers and their surrounding environment. The Yellow River is a well-studied case of a large river with heavy human control. An artificial managed water and sediment release system, known as the Water-Sediment Regulation Scheme (WSRS), has been carried out annually in the Yellow River since 2002. Nutrient concentrations and composition display significant time and space variations during the WSRS period. To figure out the anthropogenic impact of nutrient changes and transport in the Yellow River, biogeochemical observations were carried out in both middle reaches and lower reaches of the Yellow River during 2014 WSRS period. WSRS has a direct impact on water oxidation-reduction environment in the middle reaches; concentrations of nitrite (NO 2 - ) and ammonium (NH 4 + ) increased, while nitrate (NO 3 - ) concentration decreased by enhanced denitrification. WSRS changed transport of water and sediment; dissolved silicate (DSi) in the middle reaches was directly controlled by sediments release during the WSRS while in the lower reaches, DSi changed with both sediments and water released from middle reaches. During the WSRS, the differences of nutrient fluxes and concentrations between lower reaches and middle reaches were significant; dissolved inorganic phosphorous (DIP) and dissolved inorganic nitrogen (DIN) were higher in low reaches because of anthropogenic inputs. Human intervention, especially WSRS, can apparently change the natural states of both the mainstream and estuarine environments of the Yellow River within a short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008

    USGS Publications Warehouse

    Rogers, Mark W.; Bunnell, David B.; Madenjian, Charles P.; Warner, David M.

    2014-01-01

    Ecosystems undergo dynamic changes owing to species invasions, fisheries management decisions, landscape modifications, and nutrient inputs. At Lake Michigan, new invaders (e.g., dreissenid mussels (Dreissena spp.), spiny water flea (Bythotrephes longimanus), round goby (Neogobius melanostomus)) have proliferated and altered energy transfer pathways, while nutrient concentrations and stocking rates to support fisheries have changed. We developed an ecosystem model to describe food web structure in 1987 and ran simulations through 2008 to evaluate changes in biomass of functional groups, predator consumption, and effects of recently invading species. Keystone functional groups from 1987 were identified as Mysis, burbot (Lota lota), phytoplankton, alewife (Alosa pseudoharengus), nonpredatory cladocerans, and Chinook salmon (Oncorhynchus tshawytscha). Simulations predicted biomass reductions across all trophic levels and predicted biomasses fit observed trends for most functional groups. The effects of invasive species (e.g., dreissenid grazing) increased across simulation years, but were difficult to disentangle from other changes (e.g., declining offshore nutrient concentrations). In total, our model effectively represented recent changes to the Lake Michigan ecosystem and provides an ecosystem-based tool for exploring future resource management scenarios.

  19. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    NASA Astrophysics Data System (ADS)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  20. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  1. An exploratory analysis of Indiana and Illinois biotic ...

    EPA Pesticide Factsheets

    EPA recognizes the importance of nutrient criteria in protecting designated uses from eutrophication effects associated with elevated phosphorus and nitrogen in streams and has worked with states over the past 12 years to assist them in developing nutrient criteria. Towards that end, EPA has provided states and tribes with technical guidance to assess nutrient impacts and to develop criteria. EPA published recommendations in 2000 on scientifically defensible empirical approaches for setting numeric criteria. EPA also published eco-regional criteria recommendations in 2000-2001 based on a frequency distribution approach meant to approximate reference condition concentrations. In 2010, EPA elaborated on one of these empirical approaches (i.e., stressor-response relationships) for developing nutrient criteria. The purpose of this report was to conduct exploratory analyses of state datasets from Illinois and Indiana to determine threshold values for nutrients and chlorophyll a that could guide Indiana and Illinois criteria development. Box and whisker plots were used to compare nutrient and chlorophyll a concentrations between Illinois and Indiana. Stressor response analyses, using piece-wise linear regression and change-point analysis (Illinois only) were conducted to determine thresholds of change in relationships between nutrients and biotic assemblages. Impact stmt: The purpose of this report was to conduct exploratory analyses of state datasets from Illinois

  2. Response of Periphyton to Seasonal Changes in Nutrient Concentrations in Central Illinois Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Kirkham, K. G.; Perry, W. L.

    2005-05-01

    Headwater streams in central Illinois have been dredged and channelized to drain surrounding agricultural fields and has led to extensive erosion and eutrophication. Restoration of these systems through farmer implementation of Best Management Practices (BMPs) may be one solution. Examination of algal population dynamics may be useful in assessment of BMP effectiveness. We have monitored two small headwater streams, Bray Creek and Frog Alley, for a suite of physicochemical parameters focusing on dissolved oxygen, nitrogen, and phosphorus for three years. Nutrient concentrations suggested potential nutrient limitation by nitrates during late summer and phosphorus limitation in early summer. To determine seasonal algal dynamics with seasonally varying nutrient limitation in agricultural headwater streams, we used nutrient diffusing substrata (NDS). NDS with agar (controls) or amended with either nitrogen, phosphorus, or both were deployed for 21-24 days in both streams each month for a year. Slight nutrient limitation was observed in Bray Creek during August and November while phosphorus was limiting in September (P<0.05). We suggest agricultural streams are more dynamic than previously thought and algal populations may be seasonally nutrient limited and with consequent effects on dissolved oxygen concentrations.

  3. Stormflow influence on nutrient dynamics in micro-catchments under contrasting land use in the Cerrado and Amazon Biomes, Brazil

    NASA Astrophysics Data System (ADS)

    Edelmann, Katharina; Nóbrega, Rodolfo L. B.; Gerold, Gerhard

    2017-04-01

    The Amazon and Cerrado biomes in Brazil have been under intense land-use change during the past few decades. The conversion of native vegetation to pastures and croplands has caused impacts on hydrological processes in these biomes, resulting in increased streamflow and nutrient fluxes. Our aim was to compare the nutrient dynamics during stormflow events in two pairs of adjacent micro-catchments with similar physical characteristics under contrasting land use, i.e. native vegetation (rainforest or cerrado) and pasture. One pair of catchments was located in the Amazon and the other in the Cerrado, both on the Amazon Agricultural Frontier in the Brazilian states of Mato Grosso and Pará. We collected hydrological and hydrochemical data on 50 stormflow events on a sub-hourly resolution during the wet seasons of 2013 and 2014. We compared the dynamics of total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), nitrate (NO3), calcium (Ca), potassium (K), and magnesium (Mg) in different hydrograph parts, i.e. rising limb, peak and recession limb, between the catchments within the same biome. For the Cerrado biome, our findings show that the nutrient concentrations in the stormflows were higher in the pasture catchment than in the cerrado catchment. In the Amazon biome, we found an inverse relationship with higher concentrations in the forest catchment than in the pasture catchment, except for TIC and K. Most nutrients in the cerrado catchment had the highest concentrations in the rising limb. Mg, however, reached highest concentrations during peak discharge, and lowest in the recession limb. In the adjacent pasture catchment, in contrast, the highest nutrient concentrations were observed during the peak discharge (TIC, TOC, Ca) or the recession limb (DOC, NO3, K, Mg) with lowest in the rising limb, except for NO3, which showed the lowest concentrations during peak discharge. In the Amazon forest catchment, the peak discharge showed the highest nutrient concentrations, while concentrations in the recession limb were higher than in the rising limb. We also found that in this catchment K concentrations were lower in the recession limb than in the rising limb. In the Amazonian pasture catchment, the peak discharge showed the greatest concentrations for TIC, TOC, and Ca, and the rising limb the lowest. DOC and NO3 concentrations in this catchment were the highest in the rising and were lowest in peak discharge, while K increased over time. Based on that, we conclude that stormflow is an important driver of nutrients fluxes due to land-use change on the Amazon Agricultural Frontier, with significant increases and distinguished dynamics during the storm events, and higher nutrient concentrations in the catchments with pastures than in the ones with native vegetation, especially for TIC and K.

  4. Nutrient leaching, soil pH and changes in microbial community increase with time in lead-contaminated boreal forest soil at a shooting range area.

    PubMed

    Selonen, Salla; Setälä, Heikki

    2017-02-01

    Despite the known toxicity of lead (Pb), Pb pellets are widely used at shotgun shooting ranges over the world. However, the impacts of Pb on soil nutrients and soil microbes, playing a crucial role in nutrient cycling, are poorly understood. Furthermore, it is unknown whether these impacts change with time after the cessation of shooting. To shed light on these issues, three study sites in the same coniferous forest in a shooting range area were studied: an uncontaminated control site and an active and an abandoned shooting range, both sharing a similar Pb pellet load in the soil, but the latter with a 20-year longer contamination history. Soil pH and nitrate concentration increased, whilst soil phosphate concentration and fungal phospholipid fatty acid (PLFA) decreased due to Pb contamination. Our results imply that shooting-derived Pb can influence soil nutrients and microbes not only directly but also indirectly by increasing soil pH. However, these mechanisms cannot be differentiated here. Many of the Pb-induced changes were most pronounced at the abandoned range, and nutrient leaching was increased only at that site. These results suggest that Pb disturbs the structure and functions of the soil system and impairs a crucial ecosystem service, the ability to retain nutrients. Furthermore, the risks of shooting-derived Pb to the environment increase with time.

  5. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases in loading from most streams under different flow conditions. The results of the WRTDS model indicate a clear reduction in nutrient loading of nitrogen and phosphorus in all six streams. However, some streams show an increase in nutrient concentrations after 2000, suggesting the possible need for changes to the nutrient reduction management practices.

  6. Urban Effects on Microbial Processes and Food Webs in Coastal Watershed Streams

    EPA Science Inventory

    We conducted a stream survey in the Narragansett Bay Watershed that targeted a gradient of development intensity and examined how associated changes in nutrients, carbon, and stressors affected periphyton and macroinvertebrates. Concentrations of nutrients, cations, and anions we...

  7. Changes in the biomass and species composition of macroalgae in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; Lukatelich, R. J.; McComb, A. J.

    1991-07-01

    More than 20 years of data are presented on the macroalgal biomass, species composition and water quality of Peel-Harvey estuary in south-western Australia. The occurrence of macroalgal blooms was a sudden event in the late 1960s, and appears to have resulted from nutrient availability surpassing a threshold of some kind. Cladophora dominated the system until 1979 and appears to have had a competitive advantage in deep-water areas because of its morphology. A catastrophic event compounded by a series of unfavourable conditions resulted in the loss of Cladophora from the deep areas and its estuary-wide replacement by Chaetomorpha, which was more competitive in the shallows. Since 1979, changes in water quality have been reflected in changes in biomass and species composition in the system. Average annual biomass is linearly related to average light attenuation over the summer growth period. Periods of high nutrient concentrations favour Ulva and Enteromorpha, while Chaetomorpha resumes dominance during periods of lower mean nutrient concentrations. Nutrient concentrations appear to be more influential on an inter-annual than seasonal scale, except in the case of Ulva which, on the basis of tissue N and P concentrations, is seasonally nitrogen-limited. Light attenuation appears to have seasonal and long-term effects. The data support the hypothesis of other workers that inter-annual differences in hydrographic events and phytoplankton dynamics influence macroalgal dynamics. The concept is examined further in light of this extensive database.

  8. Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development

    NASA Astrophysics Data System (ADS)

    Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.

    2007-02-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.

  9. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: Implication to nutrient criteria development

    USGS Publications Warehouse

    Wang, L.; Robertson, Dale M.; Garrison, P.J.

    2007-01-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006 Springer Science+Business Media, Inc.

  10. Diatom Cell Size, Coloniality and Motility: Trade-Offs between Temperature, Salinity and Nutrient Supply with Climate Change

    PubMed Central

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720

  11. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    PubMed

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  12. Tree mineral nutrition is deteriorating in Europe.

    PubMed

    Jonard, Mathieu; Fürst, Alfred; Verstraeten, Arne; Thimonier, Anne; Timmermann, Volkmar; Potočić, Nenad; Waldner, Peter; Benham, Sue; Hansen, Karin; Merilä, Päivi; Ponette, Quentin; de la Cruz, Ana C; Roskams, Peter; Nicolas, Manuel; Croisé, Luc; Ingerslev, Morten; Matteucci, Giorgio; Decinti, Bruno; Bascietto, Marco; Rautio, Pasi

    2015-01-01

    The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth-limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992-2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992-2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered. © 2014 John Wiley & Sons Ltd.

  13. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2.

    PubMed

    Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael

    2017-12-04

    The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.

  14. Long-Term Changes in Nitrogen Budgets and Retention in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Eisele, Annika; van Beusekom, Justus E. E.; Wirtz, Kai

    2016-04-01

    Eutrophication remains one of the major factors influencing the ecological state of coastal ecosystems. Coastal eutrophication is in turn intimately linked to riverine nutrient loads. At the freshwater side of the estuary, nutrient loads can easily be quantified but estuarine processes including organic matter import from the sea and loss factors like denitrification can modify the actual nutrient loads reaching the coastal seas. We quantified and localized nutrient retention processes by analyzing changes of nutrient concentrations along the estuary and constructing nutrient budgets. Two methods -the Officer method based on conservative mixing and a new method based on changes in nitrogen concentrations along the freshwater part of the estuary- were compared using long term records for the Elbe River, a major European waterway. Nutrient budgets and dynamics reveal that nutrient retention processes in the water column play a substantial role in the Elbe River. Overall, ~25 mio mol/day N are imported into the Elbe estuary and ~20 mio mol/day DIN is exported, with obvious variations depending on river discharge and season. A nitrogen loss of about 20% falls within the range found in other studies. Whereas in the 1980s a significant part of the nitrogen input was retained by the estuary, in the 1990s and 2000s most of the imported total nitrogen was exported as DIN. At present, the retention of nitrogen -presumably due to increased denitrification- increases again. As these long-term changes in the retention capacity of the Elbe were supported by both methods, the calibrated station-based approach can now be used to calculate nutrient budgets in estuaries where no or only few transect data are available, such as the Weser and Ems estuary. Our presentation will finally discuss the possible impact of increased phytoplankton import from the Elbe River and increased import of suspended matter from the North Sea ecosystem on estuarine nitrogen dynamics.

  15. Status of selected nutrients in obese dogs undergoing caloric restriction.

    PubMed

    Linder, Deborah E; Freeman, Lisa M; Holden, Shelley L; Biourge, Vincent; German, Alexander J

    2013-10-24

    The purpose of this study was to test the hypothesis that dog plasma concentrations of selected nutrients decrease after undergoing caloric restriction for weight loss. Thirty-one overweight dogs that had successfully lost at least 15% of initial body weight were included in the study. Nutrients that had been previously identified to be at potential risk of deficiency during caloric restriction were measured in plasma (choline, amino acids) and urine (selenium) at the initiation and completion of a standardized weight loss regimen in dogs. Dogs remained healthy throughout the study, and no signs attributable to nutrient deficiency were noted. Percentage weight loss was 28.3% (16.0-40.1%) starting body weight, over a period of 250 days (91-674 days). Median energy intake during the weight loss period was 62 (44 to 74) Kcal/kg(0.75) target weight per day. Choline (P = 0.046) and threonine (P = 0.02) decreased after weight loss. Glycine (P = 0.041), and urinary selenium:creatinine ratio (P = 0.006) both increased after weight loss. There were no other significant differences in plasma nutrient concentrations. Since concentrations of most measured nutrients did not change significantly, the data are not consistent with widespread nutrient deficiency in dogs undergoing caloric restriction using a diet formulated for weight loss. However, the significance of the decrease in plasma choline concentration requires further assessment.

  16. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    PubMed

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.

  17. The short-term effects of management changes on watertable position and nutrients in shallow groundwater in a harvested peatland forest.

    PubMed

    Finnegan, J; Regan, J T; Fenton, O; Lanigan, G J; Brennan, R B; Healy, M G

    2014-09-01

    Management changes such as drainage, fertilisation, afforestation and harvesting (clearfelling) of forested peatlands influence watertable (WT) position and groundwater concentrations of nutrients. This study investigated the impact of clearfelling of a peatland forest on WT and nutrient concentrations. Three areas were examined: (1) a regenerated riparian peatland buffer (RB) clearfelled four years prior to the present study (2) a recently clearfelled coniferous forest (CF) and (3) a standing, mature coniferous forest (SF), on which no harvesting took place. The WT remained consistently below 0.3 m during the pre-clearfelling period. Results showed there was an almost immediate rise in the WT after clearfelling and a rise to 0.15 m below ground level (bgl) within 10 months of clearfelling. Clearfelling of the forest increased dissolved reactive phosphorus concentrations (from an average of 28-230 μg L(-1)) in the shallow groundwater, likely caused by leaching from degrading brash mats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.

    PubMed

    Chambers, Patricia A; Culp, Joseph M; Glozier, Nancy E; Cash, Kevin J; Wrona, Fred J; Noton, Leigh

    2006-02-01

    Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L(-1) in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L(-1), DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.

  19. Nutrient Concentrations and Their Relations to the Biotic Integrity of Nonwadeable Rivers in Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Weigel, Brian M.; Graczyk, David J.

    2008-01-01

    Excessive nutrient [phosphorus (P) and nitrogen (N)] input from point and nonpoint sources is frequently associated with degraded water quality in streams and rivers. Point-source discharges of nutrients are fairly constant and are controlled by the U.S. Environmental Protection Agency's (USEPA) National Pollutant Discharge Elimination System. To reduce inputs from nonpoint sources, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the USEPA is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria would be possible with improved understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. To achieve this general goal, the U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 282 streams and rivers throughout Wisconsin during 2001 through 2003 to: (1) describe how nutrient concentrations and biotic-community structure differ throughout the State, (2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations and biotic-community structure, (3) determine reference conditions for water quality and biotic indices for streams and rivers in the State, (4) determine how the biotic communities in streams and rivers in different areas of the State respond to differences in nutrient concentrations, (5) determine the best regionalization scheme to describe the patterns in reference conditions and the corresponding responses in water quality and the biotic communities (primarily for smaller streams), and (6) develop algorithms to estimate nutrient concentrations in streams and rivers from a combination of biotic indices. The ultimate goal of this study is to provide the information needed to guide the development of regionally based nutrient criteria for Wisconsin streams and rivers. In this report, data collected, primarily in 2003, from 42 nonwadeable rivers are used to describe nutrient concentrations and their relations to the biotic integrity of rivers in Wisconsin. In a separate report by Robertson and others (2006a), the data collected from 240 wadeable streams are used to describe these relations in streams in Wisconsin. Reference water-quality conditions for nonwadeable rivers were found to be similar throughout Wisconsin (approximately 0.035 milligrams per liter (mg/L) for total P (TP), 0.500 mg/L for total N (TN), 4 micrograms per liter for suspended chlorophyll a (SCHL), and greater than 110 centimeters for Secchi-tube depth (SD)). For each category of the biotic community (SCHL, macroinvertebrates, and fish), a few indices were more strongly related to differences in nutrient concentrations than were others. For the indices most strongly related to nutrient concentrations, reference conditions were obtained with a regression approach, from values corresponding to the worst 75th-percentile value from a subset of minimally impacted streams (streams having reference nutrient concentrations), and from the best 25th-percentile value of all the data. Concentrations of TP and TN in nonwadeable rivers increased as the percentage of agricultural land in the basin increased; these increases resulted in increased SCHL concentrations and decreased SDs. The responses in SDs and SCHL concentrations to changes in nutrient concentrations were similar throughout most of the State except in rivers in the southeastern part, where SCHL concentrations were lower than would be expected given their nutrient concentrations. Rivers in the southeastern part of the State had high concentrations of total suspended sediment compared to the SCHL concentrations. Many biotic indices responded to increases in nu

  20. Soil and tree ring chemistry changes in an oak forest.

    Treesearch

    Quentin D. Read

    2009-01-01

    Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...

  1. Disentangling nutrient concentrations trends in transfer pathways of agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Mellander, P. E.; Jordan, P.

    2017-12-01

    Targeted schemes designed to attenuate agricultural pollution to water are needed to reach goals of sustainable food production. Such approaches require insight into temporal and spatial variability in the most representative flows and active pollution transfer pathways. Interpreting changes in total stream flow can be misleading since some changes may only be apparent in specific pathways. The aim of this study was to investigate changing land use pressures on water quality. The objectives were to assess intra-annual and inter-annual changes in phosphorus (P) and nitrogen (N) concentrations and loads in apportioned pathways. Pathways were separated using hydrograph and loadograph separation techniques on a seven-year dataset of sub-hourly river discharge and concentrations of NO3-N, reactive P and total P in two intensively managed agricultural watersheds of contrasting hydrology in Ireland. Active transfer pathways were dictated by soil drainage. There were intra-annual variability in both P and N concentrations in different pathways and loads, and these had the largest influence of all-year baseflow (BF) concentrations and summer quickflow (QF) concentrations. Nutrient loss responded to seasonality in the river discharge in all pathways in both watersheds and was mostly transport limited. In both watersheds there were inter-annual trends in P concentration in some pathways and seasons that did not correspond to the trend of total river P concentration. The response in stream water quality to management, mitigation measures and changes in weather may be hidden by counteracting responses in different pathways. The hydrology had a major impact on seasonal changes in N and P loss. By apportioning different transfer pathways more information on the temporal and site-specific nature of nutrient transfer was provided. BF and QF pathways largely contributed to the river P concentrations in summer while all pathways contributed to the P and N loads in wintertime. The data indicated that increasing trends in river P concentrations were mostly linked to trends in BF concentration in both catchment types. This may be explained by increased point source influence, increased vertical transfer through increased soil P loading, or decreased stream bed attenuation. Each will require different policy considerations.

  2. Targeting Urban Watershed Stressor Gradients: Stream Survey Design, Ecological Responses, and Implications of Land Cover Resolution

    EPA Science Inventory

    We conducted a stream survey in the Narragansett Bay Watershed designed to target a gradient of development intensity, and to examine how associated changes in nutrients, carbon, and stressors affect periphyton and macroinvertebrates. Concentrations of nutrients, cations, and ani...

  3. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    Seasonal changes in water levels and flows in Big Cypress National Preserve (BICY) and Everglades National Park (EVER) affect water quality. As water levels and flows decline during the dry season, physical, geochemical and biological processes increase the breakdown of organic materials and the build-up of organic waste, nutrients, and other constituents in the remaining surface water. For example, concentrations of total phosphorus in the marsh are less than 0.01 milligram per liter (mg/L) during much of the year. Concentrations can rise briefly above this value during the dry season and occasionally exceed 0.1 mg/L under drought conditions. Long-term changes in water levels, flows, water management, and upstream land use also affect water quality in BICY and EVER, based on analysis of available data (1959-2000). During the 1980's and early 1990's, specific conductance and concentrations of chloride increased in the Taylor Slough and Shark River Slough. Chloride concentrations more than doubled from 1960 to 1990, primarily due to greater canal transport of high dissolved solids into the sloughs. Some apparent long-term trends in sulfate and total phosphorus were likely attributable, at least in part, to high percentages of less-than and zero values and to changes in reporting levels over the period of record. High values in nutrient concentrations were evident during dry periods of the 1980's and were attributable either to increased canal inflows of nutrient-rich water, increased nutrient releases from breakdown of organic bottom sediment, or increased build-up of nutrient waste from concentrations of aquatic biota and wildlife in remaining ponds. Long-term changes in water quality over the period of record are less pronounced in the western Everglades and the Big Cypress Swamp; however, short-term seasonal and drought-related changes are evident. Water quality varies spatially across the region because of natural variations in geology, hydrology, and vegetation and because of differences in water management and land use. Nutrient concentrations are relatively low in BICY and EVER compared with concentrations in parts of the northern Everglades that are near agricultural and urban lands. Concentrations of total phosphorus generally are higher in BICY (median values, 1991-2000, were mostly greater than 0.015 mg/L) than in EVER (median values, 1991-2000, less than 0.01 mg/L), probably because of higher phosphorus in natural sources such as shallow soils, rocks, and ground water in the Big Cypress region than in the Everglades region. Conversely, concentrations of chloride and sulfate are higher in EVER (median values in Shark River Slough, 1991-2000, mostly greater than 2 mg/L sulfate and 50 mg/L chloride) than in BICY (median values, 1991-2000, less than 1 mg/L sulfate and at most sites less than 20 mg/L chloride), probably because of the canal transport system, which conveys more water from an agricultural source into EVER than into BICY. Trace elements and contaminants such as pesticides and other toxic organic compounds are in relatively low concentrations in BICY and EVER compared with concentrations in parts of the northern Everglades near agricultural and urban sources. Concentrations rarely exceeded aquatic life criteria in BICY and EVER. Atrazine was the only pesticide found in water that exceeded the criteria (in 2 out of 304 samples). The pesticides heptachlor expoxide, lindane, and p,p?-DDE exceeded criteria in canal bed sediments in 1, 2, and 16 percent of the samples, respectively.

  4. Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant.

    PubMed

    Stephen, Dayana Priyadharshini; Ayalur, Bakthavatsalam Kannappan

    2017-05-01

    The ability of Chlorella pyrenoidosa, a freshwater microalga, to degrade phenolic effluent of coal-based producer gas plant under ambient conditions was investigated. C. pyrenoidosa was able to grow in high-strength phenolic effluent. Major contaminant present in the effluent was phenol (C 6 H 5 OH). The effluent has 1475.3 ± 68 mg/L of initial total phenolic concentration. The effect of nutrients used for algal cultivation in phenol degradation was analyzed by inoculating four different concentrations, viz.,1, 2, 3, and 4 g of wet biomass/L of raw effluent of C. pyrenoidosa mixed with effluent into two batches (with and without nutrients). C. pyrenoidosa was able to degrade more than 95% of the phenol (C 6 H 5 OH) concentration with the algal concentrations of 3 and 4 g/L when supplemented with nutrients. With effluent devoid of nutrients, the average percent reduction in total phenolic compounds was observed to a maximum of 46%. No physical changes in the C. pyrenoidosa were observed during degradation. C. pyrenoidosa was able to consume the organic carbon present in the phenolic compounds as carbon source for its growth despite the inorganic carbon supplemented externally.

  5. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Hoyos Villada, Fanny; Morales Vargas, Amalia; Rivera, Baudelino; Da Silva, Mayesse; Moreno Padilla, Pedro; Steenhuis, Tammo

    2015-04-01

    Sediment samples and solute concentrations were measured from the La Vega micro watershed in the southwestern region of the Colombian Andes. A main goal of this study was to improve prediction of soil surface and soil nutrient changes, based on field measurements, within small basin of the Aguaclara watershed network receiving different types of conservation measures. Two modeling approaches for stream discharge and sediment transport predictions were used with one of these based on infiltration-excess and the other on saturation-excess runoff. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations between scales. Lateral transects in the upper, middle, and lower part of the hillsides in the La Vega micro watershed showed differences in soil nutrient status and soil surface depth changes. The model based on saturation-excess, semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used infiltration excess model indicating available options for comparison of conservation changes in the future.

  6. Nutrient status: a missing factor in phenological and pollen research?

    PubMed Central

    Jochner, Susanne; Höfler, Josef; Beck, Isabelle; Göttlein, Axel; Ankerst, Donna Pauler; Traidl-Hoffmann, Claudia; Menzel, Annette

    2013-01-01

    Phenology ranks among the best ecosystem processes for fingerprinting climate change since temperature explains a high percentage of the interannual or spatial variation in phenological onset dates. However, roles of other environmental variables, such as foliar nutrient concentrations, are far from adequately understood. This observational study examined the effects of air temperature and 11 nutrients on spring phenology of Betula pendula Roth (birch) along an urban–rural gradient in Munich, Germany, during the years 2010/2011. Moreover, the influence of temperature, nutrients, and air pollutants (NO2 and O3) on the amounts of pollen and catkin biomass in 2010 was evaluated. In addition to the influence of higher temperatures advancing phenological onset dates, higher foliar concentrations of potassium, boron, zinc, and calcium were statistically significantly linked to earlier onset dates. Since flushing of leaves is a turgor-driven process and all the influential nutrients are involved in cell extension, membrane function, and stability, there might be a reasonable physiological interpretation of the observed association. The amounts of pollen were negatively correlated with temperature, atmospheric NO2, and foliar iron concentration, suggesting that these variables restrict pollen production. The results of this study suggested an influence of nutritional status on both phenology and pollen production. The interaction of urbanization and climate change should be considered in the assessment of the impact of global warming on ecosystems and human health. PMID:23630329

  7. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  8. Temporal trends and spatial patterns in nutrient export along the Mississippi River and its Tributaries

    NASA Astrophysics Data System (ADS)

    Stewart, B.; Li, L.

    2017-12-01

    The Mississippi River, the largest river in the U. S., exports excessive nutrients from the land to the sea, causing the problem of hypoxia in the Gulf of Mexico. In this research, we examined nutrient export along the Mississippi River and its tributaries to understand its trends and patterns and to identify the major factors contributing to these trends. We examined nutrient data from 1950 - 2017 for four sites along the Mississippi River and four tributary sites from the U. S. Geological Survey. The species included: total nitrogen, organic nitrogen, ammonia, nitrate, orthophosphate, and phosphorous. We analyzed the power law relationship of concentration and discharge, for which the export of nutrient species exhibited several trends. Both nitrogen (N) and phosphorous (P) species exhibited mostly chemodynamic behavior. This is in contrast to previous observations in smaller agricultural land where N and P export was mostly chemostatic with no significant change in concentration as discharge varies, suggesting possible scaling effects at different spatial scales. We also compared the average annual concentration over time at each site. The N concentration decreased from upstream to downstream, likely due to greater agricultural activities in the upstream Mississippi river and possible denitrification along the river. The N concentration also increased with time. The P species, however, fluctuated from site to site with no clear spatial patterns, but consistently exhibited higher concentrations at upstream sites with greater agricultural activities. The P species also fluctuated over time, likely due to patterns in discharge and agricultural activities. The results of this research can be further explored by calculating the total export of nutrients into the Gulf of Mexico to determine limits and drivers of nutrient export for better water management, thus helping prevent hypoxia and eutrophication within the Mississippi River basin.

  9. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    PubMed

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were <100 μm in spring, but colonies within moderate-size (100-500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was achieved at the Middle Basin WWTF. At the Tomahawk Creek WWTF, after the addition of chemically enhanced primary treatment in 2009, effluent discharges also had total phosphorus concentrations below 1.5 mg/L. After the addition of biological nutrient removal, annual total nitrogen and phosphorus loads from the Middle Basin WWTF decreased by 42 and 54 percent, respectively, even though effluent volume increased by 11 percent. Annual total phosphorus loads from the Tomahawk Creek WWTF after the addition of chemically enhanced primary treatment decreased by 54 percent despite a 33-percent increase in effluent volume. Total nitrogen and phosphorus from the WWTFs contributed between 30 and nearly 100 percent to annual nutrient loads in Indian Creek depending on streamflow conditions. In-stream total nitrogen primarily came from wastewater effluent except during years with the highest streamflows. Most of the in-stream total phosphorus typically came from effluent during dry years and from other urban sources during wet years. During 2010 through 2013, annual mean discharge from the Middle Basin WWTF was about 75 percent of permitted design capacity. Annual nutrient loads likely will increase when the facility is operated at permitted design capacity; however, estimated maximum annual nutrient loads from the Middle Basin WWTF were 27 to 38 percent lower than before capacity upgrades and the addition of biological nutrient removal to treatment processes. Thus, the addition of biological nutrient removal to the Middle Basin wastewater treatment process should reduce overall nutrient loads from the facility even when the facility is operated at permitted design capacity. The effects of wastewater effluent on the water quality of Indian Creek were most evident during below-normal and normal streamflows (about 75 percent of the time) when wastewater effluent represented about 24 percent or more of total streamflow. Wastewater effluent had the most substantial effect on nutrient concentrations in Indian Creek. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 10 to 100 times higher than at the upstream sites, even after changes in treatment practices at the WWTFs. Median total phosphorus concentrations during below-normal and normal streamflows at a downstream site were 43 percent lower following improvements in wastewater treatment processes. Similar decreases in total nitrogen were not observed, likely because total nitrogen concentrations only decreased in Middle Basin effluent and wastewater contributed a higher percentage to streamflows when nutrient samples were collected during the after-upgrade period. The wastewater effluent discharges to Indian Creek caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher concentrations of bioavailable nutrients (nitrate and orthophosphorus) and warmer water temperatures during winter months. Other urban sources of contaminants also caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher turbidities downstream from construction areas and higher specific conductance and chloride concentrations during winter months. Chloride concentrations exceeded acute and chronic exposure criteria at all Indian Creek study sites, regardless of wastewater influence, for weeks or months during winter. Streambed sediment chemistry was affected by wastewater (elevated nutrient and organic wastewater-indicator compound concentrations) and other contaminants from urban sources (elevated polyaromatic hydrocarbon concentrations). Overall habitat conditions were suboptimal or marginal at all sites; general decline in habitat conditions along the upstream-downstream gradient likely was caused by the cumulative effects of urbanization with increasing drainage basin size. Wastewater effluent likely affected algal periphyton biomass and community composition, primary production, and community respiration in Indian Creek. Functional stream health, evaluated using a preliminary framework based on primary production and community respiration, was mildly or severely impaired at most downstream sites relative to an urban upstream Indian Creek site. The mechanistic cause of the changes in these biological variables are unclear, though elevated nutrient concentrations were positively correlated with algal biomass, primary production, and community respiration. Macroinvertebrate communities indicated impairment at all sites, and Kansas Department of Health and Environment aquatic life support scores indicated conditions nonsupporting of aquatic life, regardless of wastewater influences. Urban influences, other than wastewater effluent discharge, likely control macroinvertebrate community structure in Indian Creek. Changes in treatment processes at the Middle Basin and Tomahawk Creek WWTFs improved wastewater effluent quality and decreased nutrient loads, but wastewater effluent discharges still had negative effects on the environmental and biological conditions at downstream Indian Creek sites. Wastewater effluent discharge into Indian Creek likely contributed to changes in measures of ecosystem structure (streamflow, water and streambed-sediment chemistry, algal biomass, and algal periphyton community composition) and function (primary production and community respiration) along the upstream-downstream gradient. Wastewater effluent discharges maintained streamflows and increased nutrient concentrations, algal biomass, primary production, and community respiration at the downstream sites. Functional stream health was severely impaired downstream from the Middle Basin WWTF and mildly impaired downstream from the Tomahawk WWTF relative to the urban upstream site. As distance from the Middle Basin WWTF increased, nutrient concentrations, algal biomass, primary production, and community respiration decreased, and functional stream health was no longer impaired 9.5 kilometers downstream from the discharge relative to the urban upstream site. Therefore, although wastewater effluent caused persistent changes in environmental and biological conditions and functional stream health at sites located immediately downstream from WWTF effluent discharges, some recovery to conditions more similar to the urban upstream site occurred within a relatively short distance.

  11. [Nutrients in atmospheric wet deposition in the East China Sea].

    PubMed

    Zhu, Yu-Mei; Liu, Su-Mei

    2011-09-01

    92 rainwater samples were collected at Shengsi Archipelago from January 2008 to December 2009. The pH and the concentrations of nutrients (NH4(+), NO3(-) + NO2(-), PO4(3-), SiO3(2-)) were analyzed using spectrophotometry to understand the impacts of the atmospheric wet deposition on the ecosystem of the East China Sea. The results showed that the pH of 85% samples were less than 5.0, and had significant effect on the environment. There were significant differences among monthly average concentrations of nutrients and rainfall and seasonal average wet deposition of nutrients in investigation periods. The annual average wet deposition flux was 52.05 mmol x (m2 x a) (-1) for DIN, 0.08 mmol x (m2 x a) (-1) for PO4(3-), 2.05 mmol x (m2 x a) (-1) for SiO3(2-). The average molar ratios of NO3(-)/NH4(+) is 0.73, N: P ratio is 684: 1, indicating that nutrients composition in rainwater was different from seawater of the East China Sea Shelf (10-150). The wet deposition may change the nutrients structure, pH and lead to change the phytoplankton production in the surface seawater of the East China Sea, even lead to the red tide.

  12. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN

    PubMed Central

    Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus

    2013-01-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440

  13. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  14. Breakpoint analysis and relations of nutrient and turbidity stressor variables to macroinvertebrate integrity in streams in the Crawford-Mammoth Cave Uplands Ecoregion, Kentucky, for the development of nutrient criteria

    USGS Publications Warehouse

    Crain, Angela S.; Caskey, Brian J.

    2010-01-01

    To assist Kentucky in refining numeric nutrient criteria in the Pennyroyal Bioregion, the U.S. Geological Survey and the Kentucky Division of Water collected and analyzed water chemistry, turbidity, and biological-community data from 22 streams throughout the Crawford-Mammoth Cave Upland ecoregion (U.S. Environmental Protection Agency Level IV Ecoregion, 71a) within the Pennyroyal Bioregion from September 2007 to May 2008. Statistically significant and ecologically relevant relations among the stressor (total phosphorus, total nitrogen, and turbidity) variables and response (macroinvertebrate-community attributes) variables and the breakpoint values of biological-community attributes and metrics in response to changes in stressor variables were determined. Thirteen of 18 macroinvertebrate attributes were significantly and ecologically correlated (p-value < 0.10) with at least one nutrient measure. Total number of individuals, Ephemeroptera-Plecoptera-Trichoptera richness, and average tolerance value were macroinvertebrate measures that most strongly correlated with the concentrations of nutrients. Comparison of the average macroinvertebrate-breakpoint value for the median concentration of total phosphorus (TP, 0.033 mg/L) and for median concentration of total nitrogen (TN, 1.1 mg/L) to Dodds' trophic classification for TP and TN indicates streams in the Crawford-Mammoth Cave Uplands ecoregion within the Pennyroyal Bioregion would be classified as mesotrophic-eutrophic. The biological breakpoint relations with median concentrations of TP in this study were similar to the U.S. Environmental Protection Agency proposed numeric TP criteria (0.037 mg/L), but were 1.5 times higher than the proposed numeric criteria for concentrations of TN (0.69 mg/L). No sites were impacted adversely using median turbidity values based on a 25 Formazin nephelometric turbidity unit biological threshold. The breakpoints determined in this study, in addition to Dodds' trophic classifications, were used as multiple lines of evidence to show changes in macroinvertebrate community and attributes based on exposure to nutrients.

  15. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    PubMed Central

    Gong, Yao; Yu, Zhigang; Yao, Qingzhen; Chen, Hongtao; Mi, Tiezhu; Tan, Jiaqiang

    2015-01-01

    The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR) watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1) with a lower concentration of dissolved silicate (average 131 μmol·L−1) and relatively low dissolved phosphate (average 0.35 μmol·L−1). Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth. PMID:26287226

  16. Anthropogenic Enrichment and Nutrients in Some Tropical Lagoons of Ghana, West Africa

    EPA Science Inventory

    As part of a larger study of demographic change in coastal Ghana, we measured the concentrations of major plant nutrients and phytoplankton chlorophyll in eight coastal lagoons with different land use and human population density. The purpose of our study was to relate human acti...

  17. Modeling the Sensitivity of Primary Production in Lake Michigan to Nutrient Loads with and without Dreissenid Mussels

    EPA Science Inventory

    Dreissenid (quagga) mussels became established in large numbers in Lake Michigan beginning around 2004. Since then, significant changes have been observed in Lake Michigan open-water chlorophyll and nutrient concentrations, and in primary production. We updated the LM3-Eutro mode...

  18. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins.

    PubMed

    Lürling, Miquel; van Oosterhout, Frank; Faassen, Elisabeth

    2017-02-11

    Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC) concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C) with and without additional nutrients added (eutrophication) mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll- a and 25 times more eukaryote algal chlorophyll- a . At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll- a being 17 times and eukaryote algal chlorophyll- a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis . This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.

  19. Benthic nitrogen turnover processes in coastal sediments at the Danube Delta

    NASA Astrophysics Data System (ADS)

    Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian

    2017-04-01

    The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.

  20. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position.

    PubMed

    Gargallo-Garriga, Albert; Wright, S Joseph; Sardans, Jordi; Pérez-Trujillo, Míriam; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Fernández-Martínez, Marcos; Parella, Teodor; Peñuelas, Josep

    2017-01-01

    Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.

  1. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles.

    PubMed

    Luiro, Jukka; Kukkola, Mikko; Saarsalmi, Anna; Tamminen, Pekka; Helmisaari, Heljä-Sisko

    2010-01-01

    The aim of this study was to compare how conventional stem harvesting (CH) and whole-tree harvesting (WTH) in the first, and in some cases also in the second, thinning affect the needle nutrient status of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands in Finland. A series of 12 long-term field experiments was studied. The experiments were established during 1978-86. The effects of logging residue removal after thinnings on the needle nutrient concentrations were generally minor and without any overall trends, but there were differences between experiments. Trees tend to maintain their current needle nutrient concentrations at the same level by re-utilizing the nutrients stored in the older tissues and by changing C allocation in the whole tree. Thus, needle analysis should be combined with stem growth data in order to achieve a more comprehensive understanding of the effects of WTH on the nutrient status of trees.

  2. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?

    PubMed

    Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann

    2017-05-01

    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH 4 -N g -1 , 1.95 mg PO 4 -P g -1 and 13.01 mg DOC g -1 , but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC removal efficiencies compared to biochar alone, but did not significantly change PO 4 -P removal efficiencies. Removal efficiencies with combined sorbents were up to 67% for ammonium, 58% for DOC and 58% for potassium. Clinoptilolite showed higher removal efficiencies compared to biochar alone, and combining clinoptilolite with biochar improved only total P removal efficiency. Concentrating nutrients with clinoptilolite and biochar may be an option when both sorbents are available at low cost.

  3. Phosphorus and nitrogen trajectories in the Mediterranean Sea (1950-2030): Diagnosing basin-wide anthropogenic nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe

    2018-03-01

    Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950-2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO3) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950-2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories.

  4. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    PubMed

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target controllable risk factors, such as soil nutrient status, soil condition and crop cover. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Status of selected nutrients in obese dogs undergoing caloric restriction

    PubMed Central

    2013-01-01

    Background The purpose of this study was to test the hypothesis that dog plasma concentrations of selected nutrients decrease after undergoing caloric restriction for weight loss. Thirty-one overweight dogs that had successfully lost at least 15% of initial body weight were included in the study. Nutrients that had been previously identified to be at potential risk of deficiency during caloric restriction were measured in plasma (choline, amino acids) and urine (selenium) at the initiation and completion of a standardized weight loss regimen in dogs. Results Dogs remained healthy throughout the study, and no signs attributable to nutrient deficiency were noted. Percentage weight loss was 28.3% (16.0-40.1%) starting body weight, over a period of 250 days (91–674 days). Median energy intake during the weight loss period was 62 (44 to 74) Kcal/kg0.75 target weight per day. Choline (P = 0.046) and threonine (P = 0.02) decreased after weight loss. Glycine (P = 0.041), and urinary selenium:creatinine ratio (P = 0.006) both increased after weight loss. There were no other significant differences in plasma nutrient concentrations. Conclusions Since concentrations of most measured nutrients did not change significantly, the data are not consistent with widespread nutrient deficiency in dogs undergoing caloric restriction using a diet formulated for weight loss. However, the significance of the decrease in plasma choline concentration requires further assessment. PMID:24156605

  6. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    NASA Technical Reports Server (NTRS)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  7. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; McComb, A. J.

    1991-03-01

    The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.

  8. Increased fluxes of shelf-derived materials to the central Arctic Ocean

    PubMed Central

    Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.

    2018-01-01

    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980

  9. A quantitative assessment of the contributions of climatic indicators to changes in nutrients and oxygen levels in a shallow reservoir in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhang, Wenna; Liu, Hanan; Gao, Xueping; Huang, Yixuan

    2017-06-01

    Climate change has an indirect effect on water quality in freshwater ecosystems, but it is difficult to assess the contribution of climate change to the complex system. This study explored to what extent climatic indicators (air temperature, wind speed, and rainfall) influence nutrients and oxygen levels in a shallow reservoir, Yuqiao Reservoir, China. The study comprises three parts—describing the temporal trends of climatic indicators and water quality parameters during the period 1992-2011, analyzing the potential impacts of climate on water quality, and finally developing a quantitative assessment to evaluate how climatic factors govern nutrient levels in the reservoir. Our analyses showed that the reservoir experienced substantial cold periods (1992-2001) followed by a warm period (2002-2011). The results showed that increasing air temperature in spring, autumn, and winter and increasing annual wind speed decrease total phosphorus (TP) concentration in the reservoir in spring, summer, and winter. According to the quantitative assessment, the increase in air temperature in spring and winter had a larger contribution to the decrease in TP concentration (47.2 and 64.1%), compared with the influence from decreased wind speed and rainfall. The field data suggest that nutrients decline due to enhanced uptake by macrophytes in years when spring was warmer and the macrophytes started to grow earlier in the season. The increasing wind speed and air temperature in spring also significantly contribute to the increase in dissolved oxygen concentration. This study helps managers to foresee how potential future climate change might influence water quality in similar lake ecosystems.

  10. Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems.

    PubMed

    La Pierre, Kimberly J; Smith, Melinda D

    2016-02-01

    Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.

  11. The response of epiphytic bacteria on Vallisneria natans (Lour.) Hara (Hydrocharitaceae) to increasing nutrient loadings.

    PubMed

    Cai, Xianlei; Yao, Ling; Gao, Guang; Xie, Yinfeng; Zhang, Yingying; Tang, Xiangming

    2016-06-01

    To investigate the effects of water column nutrient loading on epiphytic bacteria, we determined the abundance and community composition of epiphytic bacteria on the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June-October) under four different nutrient concentrations (nitrogen (N)-phosphorus (P) in mg L(-1) : 0.5-0.05, 1.0-0.1, 5.0-0.5, 10.0-1.0; hereafter NP-1, NP-2, NP-3, NP-4, respectively), using epifluorescence microscopy method and terminal restriction fragment length polymorphism (T-RFLP) analysis, respectively. Relative to low nutrient conditions (NP-1), there was no significant effect on the epiphytic bacterial community, and even a decrease in the number of epiphytic bacteria, which linked to the well growth status of host macrophytes at moderate nutrient conditions (NP-2). However, further nutrient enrichment induced significant increase in the abundance of epiphytic bacteria, and marked changes in the community structures of epiphytic bacteria. Furthermore, at high nutrient conditions, epiphytic bacterial communities varied widely temporally, and were not stable compared with those at the lower nutrient conditions. These results indicated that the effects of nutrient enrichment on epiphytic bacteria were nonlinear and dependent on the nutrient concentrations in the water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    USGS Publications Warehouse

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The observations from this study, if repeatable and driven primarily by changes in gate operations, can inform nutrient management strategies for Hoover Reservoir. Increased mixing across the thermocline may potentially supply nutrients from the hypolimnion to algae in the epilimnion. Although operation of the lower gate has the potential to export nutrients from the hypolimnion (where the concentrations of nutrients have typically been higher during summer months) through two mechanisms (direct withdrawal and mixing into the epilimnion), supply of nutrients to the epilimnion through enhanced mixing could lead to a short-term increase in algal populations. Therefore, further study is recommended to (1) test the repeatability of the results of gate changes on water-quality distributions and circulation patterns in lower Hoover Reservoir, (2) identify the immediate effect of gate changes on nutrient concentrations in the water column, and (3) identify the best management practices to reduce the nutrient storage in the hypolimnion of Hoover Reservoir without increasing the potential for nutrient transport to the highly productive epilimnion.

  13. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    NASA Astrophysics Data System (ADS)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  14. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    PubMed

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  15. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    PubMed Central

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  16. A Novel Method of Supplying Nutrients Permits Predictable Shoot Growth and Root : Shoot Ratios of Pre-transplant Bedding Plants

    PubMed Central

    Greenwood, Duncan J.; Mckee, John M. T.; Fuller, Deborah P.; Burns, Ian G.; Mulholland, Barry J.

    2007-01-01

    Background and Aims Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. Methods A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m−2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. Key Results For each level of nutrient supply Ws increased with time (t) in days, according to the equation ΔWs/Δt=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro≈Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. Conclusion The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions. PMID:17210608

  17. Modelling the formation of necrotic regions in avascular tumours.

    PubMed

    Tindall, M J; Please, C P; Peddie, M J

    2008-01-01

    The mechanisms underlying the formation of necrotic regions within avascular tumours are not well understood. In this paper, we examine the relative roles of nutrient deprivation and of cell death, from both the proliferating phase of the cell cycle via apoptosis and from the quiescent phase via necrosis, in changing the structure within multicellular tumour spheroids and particularly the accumulation of dead cell material in the centre. A mathematical model is presented and studied that accounts for nutrient diffusion, changes in cell cycling rates, the two different routes to cell death as well as active motion of cells and passive motion of the dead cell material. In studying the accumulation of dead cell matter we do not distinguish between the route by which each was formed. The resulting mathematical model is examined for a number of scenarios. Results show that in many cases the size of the necrotic core is closely correlated with low levels in nutrient concentration. However, in certain cases, particularly where the rate of necrosis is large, the resulting necrotic core can lead to regions of non-negligible nutrient concentration-dependent upon the mode of cell death.

  18. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    NASA Astrophysics Data System (ADS)

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-07-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  19. Impacts of elevated atmospheric CO₂ on nutrient content of important food crops.

    PubMed

    Dietterich, Lee H; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Norton, Robert; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.

  20. Impacts of elevated atmospheric CO2 on nutrient content of important food crops

    PubMed Central

    Dietterich, Lee H.; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D. B.; Bloom, Arnold J.; Carlisle, Eli; Fernando, Nimesha; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N. Michele; Nelson, Randall L.; Norton, Robert; Ottman, Michael J.; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A.; Schwartz, Joel; Seneweera, Saman; Usui, Yasuhiro; Yoshinaga, Satoshi; Myers, Samuel S.

    2015-01-01

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients. PMID:26217490

  1. Nutrient variation in an urban lake chain and its consequences for phytoplankton production.

    PubMed

    Roach, W John; Grimm, Nancy B

    2009-01-01

    In the Central Arizona-Phoenix (CAP) ecosystem, managers divert mixed stream water and groundwater to maintain an artificial lake chain in Indian Bend Wash (IBW), a historically flashy, ephemeral, desert stream. Nutrient concentrations in the CAP ecosystem's groundwater, stream water, and floodwater differ: stream water has low concentrations of both inorganic N and P, while groundwater is low in inorganic P but rich in nitrate (NO(3)(-)). Consequently, groundwater contribution drives inorganic N concentrations in the lake chain. In contrast, floodwater typically has high P concentrations while remaining low in N. Thus we expected N and P concentrations in IBW lakes to vary with the mix of water flowing through them. Elevated NO(3)(-) and low inorganic P concentrations were predicted when groundwater pumping was pronounced and this prediction was supported. We hypothesized that these predictable changes in water chemistry would affect nutrient limitation of phytoplankton. Laboratory nutrient-addition bioassays demonstrated that phytoplankton growth was P-limited throughout the summer of 2003 when N/P was high. However, after a late-season flood drove N/P below 31:1, the expected threshold between N and P limitation, N limitation was observed. Our results indicate that effects of floods, the preeminent historic drivers of Sonoran Desert stream biogeochemistry, are mitigated in urban ecosystems by decisions about which spigots to turn. Consequently, nutrient limitation of urban streams is driven as much by management decisions as by natural hydrologic variation.

  2. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    DOE PAGES

    Griffiths, Natalie A.; Hill, Walter

    2014-06-19

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less

  3. Temporal variation in the importance of a dominant consumer to stream nutrient cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Hill, Walter

    Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less

  4. Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3.

    PubMed

    Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D

    2011-11-02

    In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

  5. Supplementation of laying-hen feed with palm tocos and algae astaxanthin for egg yolk nutrient enrichment.

    PubMed

    Walker, Laurie A; Wang, Tong; Xin, Hongwei; Dolde, David

    2012-02-29

    Adding supplements to hen feed can increase egg nutritional value. Astaxanthin, tocotrienols, and tocopherols are potent antioxidants that provide health benefits to humans. We hypothesized that the addition of these nutrients to hen feed would result in an increased nutrient content in egg yolk with minimum changes in functional properties. Laying hens (Hy-Line W-36 breed) were fed four diets with different supplementation levels of palm toco concentrate and algae biomass containing astaxanthin for 8 weeks. Egg yolks were analyzed for physical, chemical, and functional properties. The feed with the highest nutrient concentration was also studied for stability of these antioxidants using the Arrhenius approach. No significant differences were observed in functional properties except for emulsification capacity and sensory characteristics among eggs from different diet treatments. Changes in egg yolk color reached the maximum values at day 8. Incorporation of tocopherols and tocotrienols increased until day 8, astaxanthin incorporation increased until day 10, and all decreased thereafter. Feed nutrients resulted in a dose-response relationship of these compounds in the egg yolk. The transfer efficiency ranged from 0 to 9.9% for tocotrienols and tocopherols and from 7.6 to 14.9% for astaxanthin at their peak values. Results of the Arrhenius accelerated stability study showed significant differences in the shelf life of various nutrients, and these results can be used to properly formulate and store the feed materials.

  6. A new insight into root responses to external cues: Paradigm shift in nutrient sensing

    PubMed Central

    Bhardwaj, Deepak; Medici, Anna; Gojon, Alain; Lacombe, Benoît; Tuteja, Narendra

    2015-01-01

    Higher plants are sessile and their growth relies on nutrients present in the soil. The acquisition of nutrients is challenging for plants. Phosphate and nitrate sensing and signaling cascades play significant role during adverse conditions of nutrient unavailability. Therefore, it is important to dissect the mechanism by which plant roots acquire nutrients from the soil. Root system architecture (RSA) exhibits extensive developmental flexibility and changes during nutrient stress conditions. Growth of root system in response to external concentration of nutrients is a joint operation of sensor or receptor proteins along with several other cytoplasmic accessory proteins. After nutrient sensing, sensor proteins start the cellular relay involving transcription factors, kinases, ubiquitin ligases and miRNA. The complexity of nutrient sensing is still nebulous and many new players need to be better studied. This review presents a survey of recent paradigm shift in the advancements in nutrient sensing in relation to plant roots. PMID:26146897

  7. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position

    PubMed Central

    Gargallo-Garriga, Albert; Wright, S. Joseph; Sardans, Jordi; Pérez-Trujillo, Míriam; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Fernández-Martínez, Marcos; Parella, Teodor; Peñuelas, Josep

    2017-01-01

    Background Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. Methodology/Principal findings We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the “mid canopy” species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. Conclusions/Significance The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory. PMID:28493911

  8. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    PubMed

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015

    USGS Publications Warehouse

    Krempa, Heather M.; Flickinger, Allison K.

    2017-08-01

    This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites, indicating factors besides stream variability did not have substantial effects on TN and TP concentrations. Flow-weighted TN and TP concentrations at Lower Grand River Mississippi River Basin Healthy Watershed Initiative sites increase with increasing streamflow, which indicates runoff, within-bank nutrients that are suspended during higher streamflows, or both, have more effect on stream TN and TP concentrations than consistent point sources or groundwater sources. Timing of TN and TP concentration increases compared to streamflow increases indicate that nitrogen and phosphorus loads are more strongly related to streamflow than to a particular period of the year, indicating that runoff, within-bank nutrients that are suspended during higher streamflows, or both are a substantial source of nutrients regardless of timing.

  10. Wood decomposition of Cyrilla racemiflora in a tropical montane forest.

    Treesearch

    Juan A. Torres

    1994-01-01

    Changes in wood density, nutrient content, and invertebrate populations throughout the decay of Cyrilla racemiflora (Cyrillaceaea) were compared with those observed in temperate woody tree species. Wood density tended ro remain constant as decay advanced except in the late stages. Nutrients (N, P, Ca, Mg) were in highest concentrations in intact bark, surface wood, and...

  11. Application of a Two-Dimensional Reservoir Water-Quality Model of Beaver Lake, Arkansas, for the Evaluation of Simulated Changes in Input Water Quality, 2001-2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2007-01-01

    Beaver Lake is considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the system. A previously calibrated two-dimensional, laterally averaged model of hydrodynamics and water quality was used for the evaluation of changes in input nutrient and sediment concentrations on the water quality of the reservoir for the period of April 2001 to April 2003. Nitrogen and phosphorus concentrations were increased and decreased and tested independently and simultaneously to examine the nutrient concentrations and algal response in the reservoir. Suspended-solids concentrations were increased and decreased to identify how solids are distributed in the reservoir, which can contribute to decreased water clarity. The Beaver Lake model also was evaluated using a conservative tracer. A conservative tracer was applied at various locations in the reservoir model to observe the fate and transport and how the reservoir might react to the introduction of a conservative substance, or a worst-case spill scenario. In particular, tracer concentrations were evaluated at the locations of the four public water-supply intakes in Beaver Lake. Nutrient concentrations in Beaver Lake increased proportionally with increases in loads from the three main tributaries. An increase of 10 times the calibrated daily input nitrogen and phosphorus in the three main tributaries resulted in daily mean total nitrogen concentrations in the epilimnion that were nearly 4 times greater than the calibration concentrations at site L2 and more than 2 times greater than the calibrated concentrations at site L5. Increases in daily input nitrogen in the three main tributaries independently did not correspond in substantial increases in concentrations of nitrogen in Beaver Lake. The greatest proportional increase in phosphorus occurred in the epilimnion at sites L3 and L4 and the least increase occurred at sites L2 and L5 when calibrated daily input phosphorus concentrations were increased. When orthophosphorus was increased in all three tributaries simultaneously by a factor of 10, daily mean orthophosphorus concentrations in the epilimnion of the reservoir were almost 11 times greater than the calibrated concentrations at sites L2 and L5, and 15 times greater in the epilimnion of the reservoir at sites L3 and L4. Phosphorus concentrations in Beaver Lake increased less when nitrogen and phosphorus were increased simultaneously than when phosphorus was increased independently. The greatest simulated increase in algal biomass (represented as chlorophyll a) occurred when nitrogen and phosphorus were increased simultaneously in the three main tributaries. On average, the chlorophyll a values only increased less than 1 microgram per liter when concentrations of nitrogen or phosphorous were increased independently by a factor of 10 at all three tributaries. In comparison, when nitrogen and phosphorus were increased simultaneously by a factor of 10 for all three tributaries, the chlorophyll a concentration increased by about 10 micrograms per liter on average, with a maximum increase of about 57 micrograms per liter in the epilimnion at site L3 in Beaver Lake. Changes in algal biomass with changes in input nitrogen and phosphorus were variable through time in the Beaver Lake model from April 2001 to April 2003. When calibrated daily input nitrogen and phosphorus concentrations were increased simultaneously for the three main tributaries, the increase in chlorophyll a concentration was the greatest in late spring and summer of 2002. Changes in calibrated daily input inorganic suspended solids concentrations were examined because of the effect they may have on water clarity in Beaver Lake. The increase in total suspended solids was greatest in the hypolimnion at the upstream end of Beaver Lake, and negligible changes

  12. Carbon and nutrients recycling when leaves falling off: mycorrhizal association matters

    NASA Astrophysics Data System (ADS)

    Zhang, H., II; Lü, X. T.; Hartmann, H.; Han, X.; Trumbore, S.

    2016-12-01

    Root-associated mycorrhizal fungi is being increasingly recognized for their roles in influencing soil carbon (C) storage, plant growth and nutrient cycling, whereas mycorrhizae-mediated C dynamics and nutrient acquisition strategy strongly different. Because of a reinforcing feedback from belowground, how different mycorrhizal plants differ in aboveground nutrient status and recycle from senesced to green leaves remains unknown. Based on a global database of C and nutrients concentrations in plant green and senesced leaves, we further identified plant mycorrhizal types (here focus on arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants) for woody species and tested whether mycorrhizal types showing consistent effects in plant nutrient status and recycle. Generally, nutrient resorptions from senesced to green leaves for ECM plants are more conservative, balanced and sensitive to climate compare to AM plants. Specifically, we first found lower nutrients concentrations in green and senesced leaves whereas greater nutrient resorption efficiency (NuR) for ECM vs. AM plants. However, C concentration in green and senesced leaves were significant greater while NuR was lower for ECM plants. Second, compare to that for AM plants, we found a general balanced N:P resorption ratio ( 1) for ECM plants, indicating ECM plants had greater ability to balance their N and P resorption simultaneously. Third, we found NuR in N, P and K (potassium) for ECM plants were sensitive to the variation of MAT and MAP while these for AM plants showed no clear trend. Our results suggested that accounting for the influence of mycorrhizae on C and nutrient dynamics in vegetation models will be critical for predicting ecosystem responses and feedbacks to climate change.

  13. The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S).

    PubMed

    León-Muñoz, Jorge; Echeverría, Cristian; Marcé, Rafael; Riss, Wolfgang; Sherman, Bradford; Iriarte, Jose Luis

    2013-10-15

    Water and sediment quality in North Patagonia's large, oligotrophic lakes are expected to suffer as native forest continues to be fragmented and degraded by its conversion to cropping and pasture land uses. These changes in land use are expected to increase diffuse nutrient loads to the region's lakes. In addition, these lakes are home to the world's second largest salmon aquaculture industry which provides additional point sources of nutrients within the lakes. We studied the combined influences of land use change and salmon farming on the nutrient concentrations in a North Patagonian lake (Lake Rupanco, 233 km(2) water surface, 163 m average depth) in four sub-watersheds ranging in disturbance from near-pristine forest to 53% converted to cropping and pasture. Nitrogen exports from the tributary sub-watersheds increased from 33 kg TN/km(2)/y to 621 kg TN/km(2)/y as the proportion of crop and pasture land increased. The combined nutrient load from land use change and salmon farming has led to significant differences in the nitrogen concentrations of the lake's water column and sediments in the near-shore zones across the lake. Total nitrogen concentrations in the sediments varied from 37 ± 18 mg/kg in near-pristine sub-watersheds without salmon farming to 6400 ± 698 mg/kg where the sub-watershed was dominated by crop and pasture lands combined with the presence of salmon farming. These results demonstrate the importance of considering the impacts of both salmon farming and land use on water and sediment quality for future environmental planning, management and decision making. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A global model of carbon-nutrient interactions

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Gildea, Patricia; Vorosmarty, Charles; Mellilo, Jerry M.; Peterson, Bruce J.

    1985-01-01

    The global biogeochemical model presented has two primary objectives. First, it characterizes natural elemental cycles and their linkages for the four elements significant to Earth's biota: C, N, S, and P. Second, it describes changes in these cycles due to human activity. Global nutrient cycles were studied within the drainage basins of several major world rivers on each continent. The initial study region was the Mississippi drainage basin, concentrating on carbon and nitrogen. The model first establishes the nutrient budgets of the undisturbed ecosystems in a study region. It then uses a data set of land use histories for that region to document the changes in these budgets due to land uses. Nutrient movement was followed over time (1800 to 1980) for 30 ecosystems and 10 land use categories. A geographically referenced ecological information system (GREIS) was developed to manage the digital global data bases of 0.5 x 0.5 grid cells needed to run the model: potential vegetation, drainage basins, precipitation, runoff, contemporary land cover, and FAO soil maps of the world. The results show the contributions of land use categories to river nutrient loads on a continental scale; shifts in nutrient cycling patterns from closed, steady state systems to mobile transient or open, steady state systems; soil organic matter depletion patterns in U.S. agricultural lands; changing nutrient ratios due to land use changes; and the effect of using heavy fertilizer on aquatic systems.

  15. Wildfires and geochemical change in a subalpine forest over the past six millennia

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Higuera, Philip E.; McLauchlan, Kendra K.; Dunnette, Paul V.

    2016-12-01

    The frequency of large wildfires in western North America has been increasing in recent decades, yet the geochemical impacts of these events are poorly understood. The multidecadal timescales of both disturbance-regime variability and ecosystem responses make it challenging to study the effects of fire on terrestrial nutrient cycling. Nonetheless, disturbance-mediated changes in nutrient concentrations could ultimately limit forest productivity over centennial to millennial time scales. Here, we use a novel approach that combines quantitative elemental analysis of lake sediments using x-ray fluorescence to assess the geochemical impacts of high-severity fires in a 6200 year long sedimentary record from a small subalpine lake in Rocky Mountain National Park, Colorado, USA. Immediately after 17 high-severity fires, the sedimentary concentrations of five elements increased (Ti, Ca, K, Al, and P), but returned to pre-fire levels within three decades. Multivariate analyses indicate that erosion of weathered mineral material from the catchment is a primary mechanism though which high-severity fires impact element cycling. A longer-term trend in sediment geochemistry was also identified over millennial time scales. This decrease in the concentrations of six elements (Al, Si, K, Ti, Mn, and Fe) over the past 6200 years may have been due to a decreased rate of high-severity fires, long-term ecosystem development, or changes in precipitation regime. Our results indicate that high-severity fire events can determine elemental concentrations in subalpine forests. The degree of variability in geochemical response across time scales suggests that shifting rates of high-severity burning can cause significant changes in key rock-derived nutrients. To our knowledge, these results are the first to reveal repeated loss of rock-derived nutrients from the terrestrial ecosystem due to high-severity fires. Understanding the future of fire-prone coniferous forests requires further documentation and quantification of this important mechanism linking fire regimes and biogeochemical cycles.

  16. Using Hyperspectral Aircraft Remote Sensing to Support Ecosystems Services Research in New England Lakes and Ponds

    NASA Astrophysics Data System (ADS)

    Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.

    2010-12-01

    Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem services on a regional scale. Under the EPA Ecological Services Research Program (ESRP), this information will provide managers and researchers with a better understanding of links between management decisions affecting nutrient fluxes and impacts on selected ecosystem services.

  17. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.

    PubMed

    Lizotte, Richard E; Yasarer, Lindsey M W; Locke, Martin A; Bingner, Ronald L; Knight, Scott S

    2017-03-01

    Watershed-scale management efforts to reduce nutrient loads and improve the conservation of lakes in agricultural watersheds require effective integration of a variety of agricultural conservation best management practices (BMPs). This paper documents watershed-scale assessments of the influence of multiple integrated BMPs on oxbow lake nutrient concentrations in a 625-ha watershed of intensive row-crop agricultural activity during a 14-yr monitoring period (1996-2009). A suite of BMPs within fields and at field edges throughout the watershed and enrollment of 87 ha into the Conservation Reserve Program (CRP) were implemented from 1995 to 2006. Total phosphorus (TP), soluble reactive phosphorus (SRP), ammonium, and nitrate were measured approximately biweekly from 1996 to 2009, and total nitrogen (TN) was measured from 2001 to 2009. Decreases in several lake nutrient concentrations occurred after BMP implementation. Reductions in TP lake concentrations were associated with vegetative buffers and rainfall. No consistent patterns of changes in TN or SRP lake concentrations were observed. Reductions in ammonium lake concentrations were associated with conservation tillage and CRP. Reductions in nitrate lake concentrations were associated with vegetative buffers. Watershed simulations conducted with the AnnAGNPS (Annualized Agricultural Non-Point Source) model with and without BMPs also show a clear reduction in TN and TP loads to the lake after the implementation of BMPs. These results provide direct evidence of how watershed-wide BMPs assist in reducing nutrient loading in aquatic ecosystems and promote a more viable and sustainable lake ecosystem. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients.

    PubMed

    Satpathy, K K; Mohanty, A K; Natesan, U; Prasad, M V R; Sarkar, S K

    2010-05-01

    A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.

  19. Effects of detention on water quality of two stormwater detention ponds receiving highway surface runoff in Jacksonville, Florida

    USGS Publications Warehouse

    Hampson, P.S.

    1986-01-01

    Water and sediment samples were analyzed for major chemical constituents, nutrients, and heavy metals following ten storm events at two stormwater detention ponds that receive highway surface runoff in the Jacksonville, Florida, metropolitan area. The purpose of the sampling program was to detect changes in constituent concentration with time of detention within the pond system. Statistical inference of a relation with total rainfall was found in the initial concentrations of 11 constituents and with antecedent dry period for the initial concentrations of 3 constituents. Based on graphical examination and factor analysis , constituent behavior with time could be grouped into five relatively independent processes for one of the ponds. The processes were (1) interaction with shallow groundwater systems, (2) solubilization of bottom materials, (3) nutrient uptake, (4) seasonal changes in precipitation, and (5) sedimentation. Most of the observed water-quality changes in the ponds were virtually complete within 3 days following the storm event. (Author 's abstract)

  20. Defining appropriate methods for studying toxicities of trace metals in nutrient solutions.

    PubMed

    Li, Zhigen; Wang, Peng; Menzies, Neal W; Kopittke, Peter M

    2018-01-01

    The use of inappropriate experimental conditions for examining trace metal phytotoxicity results in data of questionable value. The present study aimed to identify suitable parameters for study of phytotoxic metals in nutrient solutions. First, the literature was reviewed to determine the concentration of six metals (Cd, Cu, Hg, Ni, Pb, and Zn) from solution of contaminated soils. Next, the effects of pH, P, Cl, NO 3 , and four Fe-chelators were investigated by using thermodynamic modelling and by examining changes in root elongation rate of soybean (Glycine max cv. Bunya). The literature review identified that the solution concentrations of metals in soils were low, ranging from (µM) 0.069-11Cd, 0.19-15.8 Cu, 0.000027-0.000079 Hg, 1.0-8.7 Ni, 0.004-0.55 Pb, and 0.4-36.3 Zn. For studies in nutrient solution, pH should generally be low given its effects on solubility and speciation, as should the P concentration due to the formation of insoluble phosphate salts. The concentrations of Cl, NO 3 , and various chelators also influence metal toxicity through alteration of metal speciation. The nutrient solutions used to study metal toxicity should consider environmentally-relevant conditions especially for metal concentrations, with concentrations of other components added at levels that do not substantially alter metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    PubMed

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary

    NASA Astrophysics Data System (ADS)

    Lawrie, Robynne A.; Stretch, Derek D.; Perissinotto, Renzo

    2010-04-01

    Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (≳50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m -3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.

  3. Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015

    USGS Publications Warehouse

    Lucena, Zulimar; Lee, Michael T.

    2017-02-21

    The U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program, collected streamflow and water-quality data at USGS streamflow-gaging stations in the lower Trinity River watershed from May 2014 to December 2015 to characterize and improve the current understanding of the quantity and quality of freshwater inflow entering Galveston Bay from the Trinity River. Continuous streamflow records at four USGS streamflow-gaging stations were compared to quantify differences in streamflow magnitude between upstream and downstream reaches of the lower Trinity River. Water-quality conditions were characterized from discrete nutrient and sedi­ment samples collected over a range of hydrologic conditions at USGS streamflow-gaging station 08067252 Trinity River at Wallisville, Tex. (hereinafter referred to as the “Wallisville site”), approximately 4 river miles upstream from where the Trinity River enters Galveston Bay.Based on streamflow records, annual mean outflow from Livingston Dam into the lower Trinity River was 2,240 cubic feet per second (ft3/s) in 2014 and 22,400 ft3/s in 2015, the second lowest and the highest, respectively, during the entire period of record (1966–2015). During this study, only about 54 percent of the total volume measured at upstream sites was accounted for at the Wallisville site as the Trinity River enters Galveston Bay. This difference in water volumes between upstream sites and the Wallisville site indicates that at high flows a large part of the volume released from Lake Livingston does not reach Galveston Bay through the main channel of the Trinity River. These findings indicate that water likely flows into wetlands and water bodies surrounding the main channel of the Trinity River before reaching the Wallisville site and is being stored or discharged through other channels that flow directly into Galveston Bay.To characterize suspended-sediment concentrations and loads in Trinity River inflow to Galveston Bay, a regression model was developed to estimate suspended-sediment concentrations by using acoustic backscatter data as a surrogate. The model yielded an adjusted coefficient of determination value of 0.92 and a root mean square error of 1.65 milligrams per liter (mg/L). The mean absolute percentage error between measured and estimated suspended-sediment concentration was 35 percent. During this study, estimated suspended-sediment concentrations ranged from 2 to 701 mg/L, with a mean of 97 mg/L. Suspended-sediment concentrations varied in response to changes in discharge, with peak suspended-sediment concentrations occurring 1 to 2 days before the peak discharge for each event. The total suspended-sediment load at the Wallisville site during May 2014–December 2015 was approximately 2,200,000 tons, with a minimum monthly suspended-sediment load of 100 tons in October 2014 and a maximum monthly load of 441,000 tons in November 2015.Results from nutrient samples collected at the Wallisville site indicate that total nitrogen and total phosphorus concen­trations fluctuated at a similar rate, with the highest nutrient concentrations occurring during periods of high flow corresponding to releases from Lake Livingston. The mean concen­trations of total nitrogen and total phosphorus were approxi­mately 75 percent higher during high flow releases than during periods of low flow, overshadowing variations in nutrient concentrations caused by seasonality at the Wallisville site.Results from the study indicate nutrient delivery to Galveston Bay from the main channel of the Trinity River is likely controlled primarily by high-flow releases from Lake Livingston. For most samples collected at the Wallisville site, organic nitrogen was the predominant form of nitrogen; however, when discharge increased because of releases from Lake Livingston, the percentage of organic nitrogen typically decreased and the percentage of nitrate increased. The concentrations of total phosphorus also increased during high-flow events, likely as a result of suspended sediment within Lake Livingston releases and mobilization of sediment particles in the river channel and flood plain during these periods of high flow. The predominant source of phosphorous to Galveston Bay from the Trinity River is in particulate form closely tied to suspended-sediment concentrations. The changes in nutrient concentration and composition caused by releases from Lake Livingston during this study indicate the reservoir may play an important role in the delivery of nutrients into Galveston Bay. Further study is required to better understand the processes in Lake Livingston influencing the characteristics of nutrient and sediment inflow to Galveston Bay. With phosphorous concentrations correlated to suspended-sediment concentra­tions (coefficient of determination value of 0.75) and with the concentrations of nutrients changing as the discharge changes, the diversion of water and suspended sediment into surround­ing wetlands and channels outside of the main channel of the Trinity River may play a large role in regulating nutrient inputs into Galveston Bay.

  4. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems

    PubMed Central

    Xu, Wenting; Zhou, Guoyi; Bai, Yongfei; Li, Jiaxiang; Tang, Xuli; Liu, Qing; Ma, Wenhong; Xiong, Gaoming; He, Honglin; Guo, Yanpei; Guo, Qiang; Zhu, Jiangling; Han, Wenxuan; Hu, Huifeng; Fang, Jingyun; Xie, Zongqiang

    2018-01-01

    Plant nitrogen (N) and phosphorus (P) content regulate productivity and carbon (C) sequestration in terrestrial ecosystems. Estimates of the allocation of N and P content in plant tissues and the relationship between nutrient content and photosynthetic capacity are critical to predicting future ecosystem C sequestration under global change. In this study, by investigating the nutrient concentrations of plant leaves, stems, and roots across China’s terrestrial biomes, we document large-scale patterns of community-level concentrations of C, N, and P. We also examine the possible correlation between nutrient content and plant production as indicated by vegetation gross primary productivity (GPP). The nationally averaged community concentrations of C, N, and P were 436.8, 14.14, and 1.11 mg·g−1 for leaves; 448.3, 3.04 and 0.31 mg·g−1 for stems; and 418.2, 4.85, and 0.47 mg·g−1 for roots, respectively. The nationally averaged leaf N and P productivity was 249.5 g C GPP·g-1 N·y−1 and 3,157.9 g C GPP·g–1 P·y−1, respectively. The N and P concentrations in stems and roots were generally more sensitive to the abiotic environment than those in leaves. There were strong power-law relationships between N (or P) content in different tissues for all biomes, which were closely coupled with vegetation GPP. These findings not only provide key parameters to develop empirical models to scale the responses of plants to global change from a single tissue to the whole community but also offer large-scale evidence of biome-dependent regulation of C sequestration by nutrients. PMID:29666316

  5. Nutrient enrichment can increase the susceptibility of reef corals to bleaching

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Jörg; D'Angelo, Cecilia; Smith, Edward G.; Hunt, Alan N.; Legiret, François-Eric; Postle, Anthony D.; Achterberg, Eric P.

    2013-02-01

    Mass coral bleaching, resulting from the breakdown of coral-algal symbiosis has been identified as the most severe threat to coral reef survival on a global scale. Regionally, nutrient enrichment of reef waters is often associated with a significant loss of coral cover and diversity. Recently, increased dissolved inorganic nitrogen concentrations have been linked to a reduction of the temperature threshold of coral bleaching, a phenomenon for which no mechanistic explanation is available. Here we show that increased levels of dissolved inorganic nitrogen in combination with limited phosphate concentrations result in an increased susceptibility of corals to temperature- and light-induced bleaching. Mass spectrometric analyses of the algal lipidome revealed a marked accumulation of sulpholipids under these conditions. Together with increased phosphatase activities, this change indicates that the imbalanced supply of dissolved inorganic nitrogen results in phosphate starvation of the symbiotic algae. Based on these findings we introduce a conceptual model that links unfavourable ratios of dissolved inorganic nutrients in the water column with established mechanisms of coral bleaching. Notably, this model improves the understanding of the detrimental effects of coastal nutrient enrichment on coral reefs, which is urgently required to support knowledge-based management strategies to mitigate the effects of climate change.

  6. Effects of enhanced loads of nutrients on epiphytes on leaves and rhizomes of Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Balata, David; Piazzi, Luigi; Nesti, Ugo; Bulleri, Fabio; Bertocci, Iacopo

    2010-04-01

    The increase of anthropogenic activities has severely altered both terrestrial and aquatic systems. Urbanisation, excessive use of agricultural fertilisers, organic runoff and climate change have caused an increase of nutrients in coastal waters, altering the diversity and food-web structure of benthic assemblages. The aims of the present paper were to text if an experimentally increased availability of nutrients, primarily nitrogen and phosphorous, in an oligotrophic basin, would affect epiphytic assemblages on leaves and rhizomes of P. oceanica and whether this could change rates of consumption of the plant by herbivores. In particular, we tested the hypothesis i) that changes to species composition and abundance of epiphytic assemblages generated by nutrients enrichment would vary between leaves and rhizomes and that ii) alterations to epiphytic assemblages on leaves might, in turn, modify feeding rates of herbivorous fish. After two years, the structure of both leaf and rhizome epiphytic assemblages responded to changes in nutrient concentrations before the occurrence of drastic alterations to the host plant, but only the former showed significant changes in terms of species composition. Moreover, a larger intensity of grazing on P. oceanica leaves was documented in experimentally enriched areas than in controls. The present findings and conclusions are applicable to other systems where patterns of biodiversity depend on changes in the availability of nutrients due to natural or anthropogenic events, likely interacting with biological processes, such as competition and grazing.

  7. Possible mechanism linking ocean conditions to low body weight and poor recruitment of age-0 walleye pollock (Gadus chalcogrammus) in the southeast Bering Sea during 2007

    NASA Astrophysics Data System (ADS)

    Gann, Jeanette C.; Eisner, Lisa B.; Porter, Steve; Watson, Jordan T.; Cieciel, Kristin D.; Mordy, Calvin W.; Yasumiishi, Ellen M.; Stabeno, Phyllis J.; Ladd, Carol; Heintz, Ron A.; Farley, Edward V.

    2016-12-01

    Changes to physical and chemical oceanographic structure can lead to changes in phytoplankton biomass and growth, which, in-turn, lead to variability in the amount of energy available for transfer to higher trophic levels (e.g., forage fish). In general, age-0 (juvenile) walleye pollock (Gadus chalcogrammus) have been shown to have low fitness (determined by energy density and size), in warm years compared to average or cold years in the southeastern Bering Sea. Contrary to these findings, the year 2007 was a cold year with low fitness of age-0 pollock compared to the transition year of 2006 (transitioning from warm to cold conditions) and cold years, 2008-2011. In late summer/early fall (mid-August through September), significantly lower surface silicic acid concentrations coupled with low phytoplankton production and chlorophyll a (Chl a) biomass were observed in 2007 among 2006-2012 (P<0.05). We postulate that the low silicic acid concentrations may be an indication of reduced surface nutrient flux during summer, leading to low primary productivity (PP). The nutrient replenishing shelf/slope water exchange that occurred during late October-February (2006-2007) indicates that deep-water nutrient/salinity reserves for the start of the 2007 growing season were plentiful and had similar concentrations to other years (2006-2012). The spring bloom magnitude appeared to be slightly below average, and surface silicic acid concentrations at the end of the spring bloom period in 2007 appeared similar to other years in the middle domain of the southeastern Bering Sea. However, during summer (June-August) 2007, high stratification and the low number of storm events resulted in low flux of nutrients to surface waters, indicated by the low surface silicic acid concentrations at the end of summer (mid-August through September). Surface silicic acid may be useful as an indicator of surface nutrient enrichment (and subsequent PP) during summer since other macronutrients (e.g. nitrate) are usually near or below detection limits at this time, and diatoms are generally scarce during summer. Surface silicic acid concentration was also positively associated with the size of juvenile fish (age-0 pollock weight and length). This reinforces the theory that nutrient availability and primary productivity are important to energy allocation for higher trophic levels during summer, and possibly provides links between stratification and wind mixing, surface nutrient input, PP and juvenile fish size and condition.

  8. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  9. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater

  11. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012.

    PubMed

    Yang, Qichun; Tian, Hanqin; Li, Xia; Ren, Wei; Zhang, Bowen; Zhang, Xuesong; Wolf, Julie

    2016-01-15

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.8 9 ± 0.64 Tg N yr.(-1) (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg Pyr.(-1) (1 Tg = 10(12)g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global change. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Tian, Hanqin; Li, Xia

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.89 +/- 0.64 Tg N yr.(-1) (Mean +/- Standard Deviation) and 1.73 +/- 0.29 Tg P yr.(-1) (1 Tg=10(12) g), and increased by 46% and 92% from 1930 to 2012, respectively. Priormore » to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs inmanure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global change.« less

  13. Nutrient loading and consumers: Agents of change in open-coast macrophyte assemblages

    PubMed Central

    Nielsen, Karina J.

    2003-01-01

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities. PMID:12796509

  14. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages.

    PubMed

    Nielsen, Karina J

    2003-06-24

    Human activities are significantly altering nutrient regimes and the abundance of consumers in coastal ecosystems. A field experiment in an open-coast, upwelling ecosystem showed that small increases in nutrients increased the biomass and evenness of tide pool macrophytes where consumer abundance and nutrient loading rates were low. Consumers, when abundant, had negative effects on the diversity and biomass of macrophytes. Nutrient loading increases and consumers are less abundant and efficient as wave exposure increases along open coastlines. Experimentally reversing the natural state of nutrient supply and consumer pressure at a wave-protected site to match wave-exposed sites caused the structure of the macrophyte assemblage to converge on that found naturally in wave-exposed pools. The increases in evenness and abundance were driven by increases in structurally complex functional groups. In contrast, increased nutrient loading in semienclosed marine or estuarine ecosystems is typically associated with declines in macrophyte diversity because of increases in structurally simple and opportunistic functional groups. If nutrient concentration of upwelled waters changes with climatic warming or increasing frequency of El Niños, as predicted by some climate models, these results suggest that macrophyte abundance and evenness along wave-swept open-coasts will also change. Macrophytes represent a significant fraction of continental shelf production and provide important habitat for many marine species. The combined effects of shifting nutrient regimes and overexploitation of consumers may have unexpected consequences for the structure and functioning of open-coast communities.

  15. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    USGS Publications Warehouse

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35 percent below normal prior to nutrient management, whereas precipitation was 4 percent above normal and streamflow was 3 percent below normal during the first 2 years of nutrient management. Eighty-four percent of the 20.44 inches of streamflow was base flow prior to nutrient management and 54 percent of the 31.14 inches of streamflow was base flow during the first 2 years of the nutrient-management phase. About 31 percent of the measured precipitation during the first 4 years of the study was discharged as surface water; the remaining 69 percent was removed as evapotranspiration or remained in ground-water storage. Median concentrations of total nitrogen and dissolved nitrate plus nitrite in base flow increased from 4.9 and 4.1 milligrams per liter as nitrogen, respectively, prior to nutrient management to 5.8 and 5.0 milligrams per liter, respectively, during nutrient management. Median concentrations of ammonia nitrogen and organic nitrogen did not change significantly in base flow. Median concentrations of total and dissolved phosphorus in base flow did not change significantly and were 0.05 and 0.03 milligrams per liter as phosphorus, respectively, prior to the management phase, and 0.05 and 0.04 milligrams per liter, respectively, during the management phase. Concentrations and loads of dissolved nitrite plus nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations and loads decreased as nutrient utilization and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment 5,300 pounds of nitrogen, and 70.4 pounds of phosphorous discharged in base flow in the 2 years prior to nutrient management. During the first 2 years of nutrient management about 2,860 pounds of suspended sediment, 5,700 pounds of nitrogen, and 46.6 pounds of phosphorus discharged in base flow. Prior to nutrient management, about 260,000 pounds of suspende

  16. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    PubMed

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  18. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Treesearch

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  19. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments.

    PubMed

    Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean

    2018-04-01

    Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.

  20. Lipid production from tapioca wastewater by culture of Scenedesmus sp. with simultaneous BOD, COD and nitrogen removal

    NASA Astrophysics Data System (ADS)

    Romaidi; Hasanudin, Muhammad; Kholifah, Khusnul; Maulidiyah, Alik; Putro, Sapto P.; Kikuchi, Akira; Sakaguchi, Toshifumi

    2018-05-01

    The use of microalgae to produce biodiesel or possibly remove nutrients from industrial wastewater has gained important attention during recent years due to their photosynthetic rate and its versatile nature to grow in various wastewater systems. In this study, a microalgae, Scenedesmus sp., was cultured to enhance the lipid production and nutrients removal from tapioca wastewater sample. To assess lipid production, Scenedesmus sp. was cultured in different concentration of tapioca wastewater sample (from 0 to 100 %), and nutrient removal including BOD, COD, NH4, NO2, NO3 level by Scenedesmus sp. was assessed in 100% of tapioca wastewater culture. After 8 days of culture, it was found out that 50% of tapioca wastewater sample resulted in highest concentration of lipid content than that of the other concentrations. The level of environment indicator as nutrient removal such as BOD, COD, NH4, NO2, NO3 were also decreased up to 74%, 72%, 95%, 91%, and 91%, respectively. The pH condition changed from initial condition acidic (pH: 4) to neutral or basic condition (pH: 7-8) as recommended in wastewater treatment system. This research provided a novel approach and achieved efficient simultaneous lipid production and nutrients removal from tapioca wastewater sample by Scenedesmus’s culture system.

  1. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  2. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming.

    PubMed

    Davidson, Thomas A; Audet, Joachim; Svenning, Jens-Christian; Lauridsen, Torben L; Søndergaard, Martin; Landkildehus, Frank; Larsen, Søren E; Jeppesen, Erik

    2015-12-01

    Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes. © 2015 John Wiley & Sons Ltd.

  3. Data-driven nutrient analysis and reality check: Human inputs, catchment delivery and management effects

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2017-12-01

    Measures for mitigating nutrient loads to aquatic ecosystems should have observable effects, e.g, in the Baltic region after joint first periods of nutrient management actions under the Baltic Sea Action Plan (BASP; since 2007) and the EU Water Framework Directive (WFD; since 2009). Looking for such observable effects, all openly available water and nutrient monitoring data since 2003 are compiled and analyzed for Sweden as a case study. Results show that hydro-climatically driven water discharge dominates the determination of waterborne loads of both phosphorus and nitrogen. Furthermore, the nutrient loads and water discharge are all similarly well correlated with the ecosystem status classification of Swedish water bodies according to the WFD. Nutrient concentrations, which are hydro-climatically correlated and should thus reflect human effects better than loads, have changed only slightly over the study period (2003-2013) and even increased in moderate-to-bad status waters, where the WFD and BSAP jointly target nutrient decreases. These results indicate insufficient distinction and mitigation of human-driven nutrient components by the internationally harmonized applications of both the WFD and the BSAP. Aiming for better general identification of such components, nutrient data for the large transboundary catchments of the Baltic Sea and the Sava River are compared. The comparison shows cross-regional consistency in nutrient relationships to driving hydro-climatic conditions (water discharge) for nutrient loads, and socio-economic conditions (population density and farmland share) for nutrient concentrations. A data-driven screening methodology is further developed for estimating nutrient input and retention-delivery in catchments. Its first application to nested Sava River catchments identifies characteristic regional values of nutrient input per area and relative delivery, and hotspots of much larger inputs, related to urban high-population areas.

  4. Environmental and biogeochemical changes following a decade's reclamation in the Dapeng (Tapong) Bay, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, J.-J.; Huang, W.-C.; Yu, C.-S.

    2013-09-01

    This study examines the environmental and biogeochemical changes in Dapeng (formerly spelled Tapong) Bay, a semi-enclosed coastal lagoon in southwestern Taiwan, after two major reclamation works performed between 1999 and 2010. The lagoon was largely occupied by oyster culture racks and fish farming cages before December, 2002. Substantial external inputs of nutrients and organic carbon and the fairly long water exchange time (τ) (10 ± 2 days) caused the lagoon to enter a eutrophic state, particularly at the inner lagoon, which directly received nutrient inputs. However, the entire lagoon showed autotrophic, and the estimated net ecosystem production (NEP) during the first stage was 5.8 mol C m-2 yr-1. After January, 2003, the aquaculture structures were completely removed, and the τ decreased to 6 ± 2 days. The annual mean concentrations of dissolved oxygen increased, and nutrients decreased substantially, likely due to improved water exchange, absence of feeding and increased biological utilization. The NEP increased 37% to 7.7 mol C m-2 yr-1 after structure removal. The second reclamation work beginning from July, 2006, focused on establishing artificial wetlands for wastewater treatment and on dredging bottom sediment. Although the τ did not change significantly (8 ± 3 days), substantial decreases in nutrient concentrations and dissolved organic matter continued. The NEP (14.3 mol C m-2 yr-1) increased 85% compared to that in the second stage. The data suggest that the reclamations substantially improved water quality, carbon and nutrient biogeochemical processes and budgets in this semi-enclosed ecosystem.

  5. San Francisco Bay nutrients and plankton dynamics as simulated by a coupled hydrodynamic-ecosystem model

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Chai, Fei; Dugdale, Richard; Chao, Yi; Xue, Huijie; Rao, Shivanesh; Wilkerson, Frances; Farrara, John; Zhang, Hongchun; Wang, Zhengui; Zhang, Yinglong

    2018-06-01

    An open source coupled physical-biogeochemical model is developed for San Francisco Bay (SFB) to study nutrient cycling and plankton dynamics as well as to assist ecosystem based management and risk assessment. The biogeochemical model in this study is based on the Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) model, and coupled to the unstructured grid, Semi-Implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The SCHISM-CoSiNE model reproduces the spatial and temporal variability in nutrients and plankton biomass, and its physical and biogeochemical performance is successfully tested using comparisons with shipboard and fixed station observations. The biogeochemical characteristics of the SFB during wet and dry years are investigated by changing the input of the major rivers. River discharges from the Sacramento and San Joaquin Rivers affect the phytoplankton biomass in North SFB through both advection and dilution of nutrient (including ammonium, NH4) concentrations in the river. The reduction in residence time caused by increased inflows can result in decreased biomass accumulation, while the corresponding reduction in NH4 concentration favors the growth of biomass. In addition, the model is used to make a series of sensitivity experiments to examine the response of SFB to changes in 1) nutrient loading from rivers and wastewater treatment plants (WWTPs), 2) a parameter (ψ) defining NH4 inhibition of nitrate (NO3) uptake by phytoplankton, 3) bottom grazing and 4) suspended sediment concentration. The model results show that changes in NH4 input from rivers or WWTPs affect the likelihood of phytoplankton blooms via NH4 inhibition and that the choice of ψ is critical. Bottom grazing simulated here as increased plankton mortality demonstrates the potential for bivalve reduction of chlorophyll biomass and the need to include bivalve grazing in future models. Furthermore, the model demonstrates the need to include sediments and their contribution to turbidity and availability of light. This biogeochemical model is suitable for other estuaries with similar ecological issues and anthropogenic stressors.

  6. The Pattern of Change in the Abundances of Specific Bacterioplankton Groups Is Consistent across Different Nutrient-Enriched Habitats in Crete

    PubMed Central

    Fodelianakis, Stilianos; Papageorgiou, Nafsika; Pitta, Paraskevi; Kasapidis, Panagiotis; Karakassis, Ioannis

    2014-01-01

    A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies. PMID:24747897

  7. Effects of nutrient availability and other elevational changes on romeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico

    Treesearch

    BARBARA A. RICHARDSON; M. J. RICHARDSON; F. N. SCATENA; W. H. MCDOWELL

    2000-01-01

    Nutrient inputs into tank bromeliads were studied in relation to growth and productivity, and the abundance, diversity and biomass of their animal inhabitants, in three forest types along an elevational gradient. Concentrations of phosphorus, potassium and calcium in canopy-derived debris, and nitrogen and phosphorus in phytotelm water, declined with increasing...

  8. Changes in Organic Matter And Nutrients in Forest Floor After Applying Several Reproductive Cutting Methods in Shortleaf Pine-Hardwood Stands

    Treesearch

    Hal O. Liechty; Michael G. Shelton

    2004-01-01

    Abstract - This study was initiated to determine the effects of various regeneration cutting methods on forest floor mass and nutrient content in shortleaf pine-hardwood communities in the Ouachita and Ozark National Forests. Clearcutting generally altered forest floor concentrations of N, P, and S as well as loss on ignition by increasing the amount...

  9. Highly variable nutrient concentrations in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cardona, Yuley; Bracco, Annalisa; Villareal, Tracy A.; Subramaniam, Ajit; Weber, Sarah C.; Montoya, Joseph P.

    2016-07-01

    The distribution of surface nutrients along the salinity gradient in the Mississippi-Atchafalaya River outflow region was examined during four cruises, including two simultaneous cruises, conducted in the northern Gulf during the summer of 2010 and 2011, and in late spring of 2012. The new, extensive data set covers the salinity gradient from 11 to 37 psu (practical salinity unit) in a year of extraordinarily high river discharge (2011), with few samples from a year of average (2010) and below average (2012) river outflow. The overall surface concentrations of nitrate+nitrite, orthophosphate and silicate are compared to those recorded in cruises spanning the 1985 - 2009 interval. Using Monte Carlo simulations to test the statistical significance, we found that surface orthophosphate and nitrate+nitrite concentrations are approximately three and two fold smaller, respectively, in the 2010-2012 period compared to the previous years. Changes in silicate concentrations were, in most cases, not significant, and their assessment complicated by different measurement techniques and potential preservation artifacts. The weighted river loading of these nutrients was, on the other hand, very high in the latest period when samples mostly covered 2011. The well-known negative correlation between nutrient concentrations and salinity at the ocean surface is confirmed in the most recent data. The area surrounding the Mississippi River mouth is characterized by inorganic N:P ratios greater than 30:1 that decrease to values typically less than 10:1 at about 100 km from of the mouth. Overall our analysis suggests that surface nutrient concentrations in the northern Gulf of Mexico cannot be described with any good accuracy by a linear model based on river discharge alone.

  10. Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland.

    PubMed

    Lizotte, Richard E; Shields, F Douglas; Murdock, Justin N; Kröger, Robert; Knight, Scott S

    2012-06-15

    We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers. Published by Elsevier B.V.

  11. Phytoplankton community response to carbon dioxide enrichment in winter incubation experiments

    EPA Science Inventory

    Coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increases in atmospheric CO2 concentration and the microbial degradation of surplus organic matter associated with nutrient enrichment. The effects of this change on plankton communities ...

  12. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  13. Oxygen and diverse nutrients influence the water kefir fermentation process.

    PubMed

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modeled long-term changes of DIN:DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Yan, Weijin; Chen, Nengwang; Li, Xinyan; Liu, Lusan

    2015-12-01

    In the past four decades (1970-2013), nitrogen and phosphorous inputs to the Changjiang River basin, mainly from human activities, have increased 3-fold and 306-fold, respectively. The riverine nutrient fluxes to the estuary have also grown exponentially. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) fluxes of the Changjiang River increased by 338% and 574% during 1970-2013 period, and red tides and benthic hypoxia have been observed in the outflow region of the Changjiang River in the East China Sea (ECS). We assumed that time series changes in the DIN:DIP ratio from the Changjiang River could have a significant impact on Chlorophyll-α (Chl-α) concentration in the surface sea water and dissolved oxygen (DO) concentration in the bottom sea water of the Changjiang estuary. Our study showed that the DIN:DIP ratio from the Changjiang River increased from 76 to 384 between 1970 and 1985, and decreased from 255 to 149 between 1986 and 2013. The observed Chl-α concentration increased by 146% from 1992 to 2010 in the Changjiang estuary, and was negatively related to the DIN:DIP ratio in 1992-2010. Bottom sea water DO concentration decreased by 24.6% during 1992-2010 and a "low oxygen zone" (122°∼123°E, 32°∼33°N) was observed during summer since 1999. The anthropogenically enhanced nutrient inputs dominated river DIN and DIP fluxes and influenced Chl-α concentrations as well as bottom DO concentrations in the estuary. Scenarios emphasizing global collaboration and proactive environmental problem-solving may result in reductions in the river nutrient exports and in Chl-α and DO concentration in the Changjiang estuary by 2050.

  15. Physiological Response of Plants Grown on Porous Ceramic Tubes

    NASA Technical Reports Server (NTRS)

    Tsao, David; Okos, Martin

    1997-01-01

    This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.

  16. Nutrient Removal Vis-à-Vis Change in Partial Pressure of CO2 During Post-Monsoon Season in a Tropical Lentic and Lotic Aquatic Body: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sourav; Chanda, Abhra; Das, Sourav; Akhand, Anirban; Pattanaik, Suchismita; Choudhury, S. B.; Dutta, Dibyendu; Hazra, Sugata

    2018-04-01

    The rate of nutrient removal and changes in pCO2 (water) were compared between a lentic aquaculture pond [East Kolkata Wetlands (EKW), India] and a lotic estuarine system [Diamond Harbor (DH) in Hugli Estuary, India] during the post-monsoon season (experiencing a similar tropical climate) by means of ex situ microcosm experiment. Though the DH waters were found to be substantial source of CO2 towards atmosphere and EKW waters to be sink for CO2 (according to the initial concentration of CO2), the eight consecutive days microcosm experiment revealed that the nutrient removal and pCO2 reduction efficiency were significantly higher in DH (ΔpCO2—90%) compared to EKW (ΔpCO2—78%). Among the five nutrients studied [dissolved nitrate-nitrogen (NO3-N), dissolved ammonium nitrogen (NH4-N), silicate, phosphate and iron], dissolved NO3-N followed by NH4-N was the most utilized in both EKW and DH. Except silicate, the other nutrients reduced to 78-91% in EKW and 84-99% in DH samples of their initial concentrations. Chlorophyll-a concentration steadily depleted in EKW ( 68-26 mg m-3) during the experiment indicating intense zooplankton grazing, whereas in DH it increased rapidly ( 3.4-23 mg m-3) with decreasing pCO2 (water). The present observations further indicated that regular flushing of EKW aquaculture ponds is required to avoid stagnation of water column which would enhance the zooplankton grazing and hamper the primary production of an otherwise sink of CO2. In DH, controlled freshwater discharge from Farakka and reduction of untreated organic waste might allow the existing phytoplankton community to enhance their photosynthetic activity.

  17. MEETING IN PHILADELPHIA: NUTRIENT CONCENTRATIONS IN FLOWING WATERS OF THE SOUTH FORK BROAD RIVER, GEORGIA WATERSHED

    EPA Science Inventory

    The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...

  18. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  19. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China.

    PubMed

    Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao

    2014-01-01

    Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.

  20. Extracellular enzymes in sensing environmental nutrients and ecosystem changes: Ligand mediation in organic phosphorus cycling

    USDA-ARS?s Scientific Manuscript database

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble P in the soil solution. Multiple competing reactions are operating to regulate the solution-phase concentration of P-containing organic substrates and the released phosphate...

  1. Seasonal Progression and Interannual Variability of Nutrient and Chlorophyll-a Distributions in the Northern Gulf of Alaska, 1998-2010

    NASA Astrophysics Data System (ADS)

    Trahanovsky, K.; Whitledge, T. E.

    2016-02-01

    We examined nutrient and chlorophyll-a (chl) concentrations from bottle samples collected from 0-50 m depth in the Northern Gulf of Alaska along the Seward Line transect on 56 cruises from 1998-2010. We computed monthly average concentrations of macronutrients (N, P, and Si) and chlorophyll-a by depth at four major stations along the transect to describe the regular seasonal progression of the nutricline and typical water column distributions of chlorophyll-a in this seasonally productive, downwelling coastal zone. The across-shelf transect displayed two different patterns of seasonal progression clearly associated with the Alaska Coastal Current (ACC) and Alaskan Stream (AS) current systems. The annual cycle of nutrient drawdown and replenishment is remarkably consistent from year to year within each system and is well correlated with chl measurements. The spring bloom begins earlier and nutrient depletion is sustained longer in the near-shore ACC then in the AS system centered over the shelf break. Chlorophyll-a concentrations frequently peak at 10-20m depth in both systems during July through October, as nutrients remain depleted in the top 10m. Subsurface nutrients (20 - 50 m depth) begin to recover between July and August and then experience a secondary drawdown between August and October, consistent with higher chl levels observed during the fall bloom. Interannual variability in the progression of the nutricline and the relative contribution of subsurface chl to total chl is presented. Physical data demonstrate increasing stratification in this region due to climate change; the implications for nutrient dynamics and primary production are discussed.

  2. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    USGS Publications Warehouse

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total phosphorus concentrations at most UMIS and USNK sites peaked in the spring during runoff and then decreased through the remainder of the sampling period. Total phosphorus and orthophosphate concentrations in OZRK streams peaked during summer indicating a runoff-based source of both nutrients. Orthophosphate concentrations may increase in streams in the late summer when surface runoff composes less of total streamflow, and when groundwater containing orthophosphate becomes a more dominant source in streams during lower flows. Seston chlorophyll a concentrations were greatest early in the growing season (spring), whereas the spring runoff events coincided with reductions in benthic algal chlorophyll a biomass likely because of scour of benthic algae from the channel bottom that are entrained in the water column during that period. Nitrate, ammonia, and orthophosphate concentrations also decreased during that same period, indicating dilution in the spring during runoff events. The data from this study indicate that the source of water (surface runoff or groundwater) to a stream and the intensity of major runoff events are important factors controlling instream concentrations. Biological processes appear to affect nutrient concentrations during more stable lower flow periods in later summer, fall, and winter when residence time of water in a channel is longer, which allows more time for biological uptake and transformations. Management of nutrient conditions in streams is challenging and requires an understanding of multiple factors that affect in-stream nutrient concentrations and biological uptake and growth.

  3. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    NASA Astrophysics Data System (ADS)

    Tanner, Edmund Vincent John; Sheldrake, Merlin W. A.; Turner, Benjamin L.

    2016-11-01

    Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm); Mehlich-III extractable phosphorus and total carbon (both to 20 cm); total nitrogen (to 15 cm); Mehlich-III calcium (to 10 cm); and Mehlich-III magnesium and lower bulk density (both to 5 cm). In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m-2 of mineral soil (approximately the upper 20 cm of the profile) about 0.5 kg C m-2 was "missing" from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m-2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  4. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    PubMed

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  5. The Nutrient Pool of Five Important Bottomland Hardwood Soils

    Treesearch

    John K. Francis

    1988-01-01

    Heretofore, with the exception of N, the concentration of total nutrients and the amount of variation in nutrient concentrations among and within soil series and depths within the rooting zone of forested alluvial soils of the South was unknown. Information about total nutrient concentrations is important in studying the danger of nutrient depletion posed by total tree...

  6. Ammonium and phosphate enrichment across the dry-wet transition and their ecological relevance in a subtropical reservoir, China.

    PubMed

    Mo, Qiongli; Chen, Nengwang; Zhou, Xingpeng; Chen, Jixin; Duan, Shuiwang

    2016-07-13

    Small river reservoirs are widespread and can be ecologically sensitive across the dry-wet transition under monsoon climate with respect to nutrient loading and phenology. Monthly sampling and high-frequency in situ measurements were conducted for a river reservoir (southeast China) in 2013-2014 to examine the seasonal pattern of nutrients and phytoplankton. We found that nutrient concentrations were runoff-mediated and determined by watershed inputs and, in some cases, by internal cycling depending on hydrology and temperature. Ammonium and phosphate were relatively enriched in February-March (a transitional period from dry/cold to wet/hot climate), which can be ascribed to initial flushing runoff from human/animal waste and spring fertilizer use. A phytoplankton bloom (mainly Chlorophyta) occurred during April after a surge of water temperature, probably due to the higher availability of inorganic nutrients and sunlight and suitable hydraulic residence time (medium flow) in the transitional period. The concentration of phytoplankton was low during May-June (wet-hot climate) when the concentrations of total suspended matter (TSM) were highest, likely owing to the "shading" effect of TSM and turbulence of high flow conditions. Nutrient-algae shifts across the dry-wet season and vertical profiles suggested that algal blooms seem to be fueled primarily by phosphate and ammonium rather than nitrate. Current findings of a strong temporal pattern and the relationship between physical parameters, nutrient and biota would improve our understanding of drivers of change in water quality and ecosystem functions with dam construction.

  7. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    PubMed

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  8. Relations of biological indicators to nutrient data for lakes and streams in Pennsylvania and West Virginia, 1990-98

    USGS Publications Warehouse

    Brightbill, Robin A.; Koerkle, Edward H.

    2003-01-01

    The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.

  9. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    PubMed

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (∼50,000mg/l), horticulture (∼3000mg/l), dryland cropping (∼2000mg/l), cotton (∼600mg/l) and grazing on native pastures (∼300mg/l). The highest median TN concentrations are from horticulture (∼32,000μg/l), cotton (∼6500μg/l), bananas (∼2700μg/l), grazing on modified pastures (∼2200μg/l) and sugar (∼1700μg/l). For TP it is forestry (∼5800μg/l), horticulture (∼1500μg/l), bananas (∼1400μg/l), dryland cropping (∼900mg/l) and grazing on modified pastures (∼400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Water quality in Indiana: trends in concentrations of selected nutrients, metals, and ions in streams, 2000-10

    USGS Publications Warehouse

    Risch, Martin R.; Bunch, Aubrey R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Baker, Nancy T.

    2014-01-01

    Statistically significant trends were identified that included 167 downward trends and 83 upward trends. The Kankakee River Basin had the most significant upward trends while the most significant downward trends were in the Whitewater River Basin, the Lake Michigan Basin, and the Patoka River Basin. For most constituents, a majority of sites had significant downward trends. Two streams in the Lake Michigan Basin have shown substantial decreases in most constituents. The West Fork White River near Indianapolis, Indiana, showed increases in nitrate and phosphorus and the Kankakee River Basin showed increases in copper, zinc, chloride, sulfate, and hardness. Upward trends in nutrients were identified at a few sites, but most nutrient trends were downward. Upward trends in metals corresponded with relatively small concentration increases while downward trends involved considerably larger concentration changes. Downward trends in chloride, sulfate, and suspended solids were observed statewide, but upward trends in hardness were observed in the northern half of Indiana.

  11. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal

    PubMed Central

    Yao, Lili; Shi, Jianye; Miao, Xiaoling

    2015-01-01

    Biomass, nutrient removal capacity, lipid productivity and morphological changes of Chlorella sorokiniana and Desmodesmus communis were investigated in mixed wastewaters with different CO2 concentrations. Under optimal condition, which was 1:3 ratio of swine wastewater to second treated municipal wastewater with 5% CO2, the maximum biomass concentrations were 1.22 g L-1 and 0.84 g L-1 for C. sorokiniana and D. communis, respectively. Almost all of the ammonia and phosphorus were removed, the removal rates of total nitrogen were 88.05% for C. sorokiniana and 83.18% for D. communis. Lipid content reached 17.04% for C. sorokiniana and 20.37% for D. communis after 10 days culture. CO2 aeration increased intracellular particle numbers of both microalgae and made D. communis tend to be solitary. The research suggested the aeration of CO2 improve the tolerance of microalgae to high concentration of NH4-N, and nutrient excess stress could induce lipid accumulation of microalgae. PMID:26418261

  12. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their relative abundances were generally unaffected because they only prosper in nutrient-rich regions, such as the high latitudes and upwelling regions, which showed the fewest effects from the changes in radiative simulations. The results showed that including directional and spectral irradiance when simulating the ocean light field can be important for ocean biology, but the magnitude varies with variables and regions. The quantitative results are intended to assist ocean modelers when considering improved irradiance representations relative to other processes or variables associated with the issues of interest.

  13. Maximizing the accuracy of field-derived numeric nutrient criteria in water quality regulations.

    PubMed

    McLaughlin, Douglas B

    2014-01-01

    High levels of the nutrients nitrogen and phosphorus can cause unhealthy biological or ecological conditions in surface waters and prevent the attainment of their designated uses. Regulatory agencies are developing numeric criteria for these nutrients in an effort to ensure that the surface waters in their jurisdictions remain healthy and productive, and that water quality standards are met. These criteria are often derived using field measurements that relate nutrient concentrations and other water quality conditions to expected biological responses such as undesirable growth or changes in aquatic plant and animal communities. Ideally, these numeric criteria can be used to accurately "diagnose" ecosystem health and guide management decisions. However, the degree to which numeric nutrient criteria are useful for decision making depends on how accurately they reflect the status or risk of nutrient-related biological impairments. Numeric criteria that have little predictive value are not likely to be useful for managing nutrient concerns. This paper presents information on the role of numeric nutrient criteria as biological health indicators, and the potential benefits of sufficiently accurate criteria for nutrient management. In addition, it describes approaches being proposed or adopted in states such as Florida and Maine to improve the accuracy of numeric criteria and criteria-based decisions. This includes a preference for developing site-specific criteria in cases where sufficient data are available, and the use of nutrient concentration and biological response criteria together in a framework to support designated use attainment decisions. Together with systematic planning during criteria development, the accuracy of field-derived numeric nutrient criteria can be assessed and maximized as a part of an overall effort to manage nutrient water quality concerns. © 2013 SETAC.

  14. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea.

    PubMed

    Zhou, Yuping; Zhang, Yanmin; Li, Fangfang; Tan, Liju; Wang, Jiangtao

    2017-01-01

    Nutrients variations caused by anthropogenic activities alter phytoplankton community interactions, especially competition and succession between two algal species. East China Sea experiences annual successions of Skeletonema costatum and Prorocentrum donghaiense and large-scale blooms of P. donghaiense. In this study, the growth and competition responses of S. costatum and P. donghaiense to different inorganic nutrients structure were evaluated through field and indoors experiments to further understand the nutrients mechanism of these events. Results showed that low Si/N ratio (Si/N<1) and high N/P (>50) possibly accelerated P. donghaiense outbreak and decreased Si/N caused by low Si concentration could speed up S. costatum decay. Excessive DIN also accelerated blooms dominated by P. donghaiense (D t up to -3) when S. costatum perished. Increased DIN loads from anthropogenic activities were possibly responsible for the changes in phytoplankton communities and dinoflagellate outbreak when Si concentration decreased as a result of governmental control efforts. With effective management practices for Si and P reductions worldwide, managers should be aware of the negative implications of unsuccessful management of system N loading because N may significantly alter the composition and ecosystem of phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modelling potential production of macroalgae farms in UK and Dutch coastal waters

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Ruardij, Piet; Mooney, Karen; Kerrison, Philip; O'Connor, Nessa E.; Gorman, Emma; Timmermans, Klaas; Wright, Serena; Kelly, Maeve; Hughes, Adam D.; Capuzzo, Elisa

    2018-02-01

    There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction for biofuel production. This study uses a 3-D numerical model of hydrodynamics and biogeochemistry to investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (north-west Scotland) and in the Rhine plume (the Netherlands), as well as a hypothetical large-scale farm off the UK north Norfolk coast. The model could not detect significant changes in biogeochemistry and plankton dynamics at any of the farm sites averaged over the farming season. The results showed a range of macroalgae growth behaviours in response to simulated environmental conditions. These were then compared with in situ observations where available, showing good correspondence for some farms and less good correspondence for others. At the most basic level, macroalgae production depended on prevailing nutrient concentrations and light conditions, with higher levels of both resulting in higher macroalgae production. It is shown that under non-elevated and interannually varying winter nutrient conditions, farming success was modulated by the timings of the onset of increasing nutrient concentrations in autumn and nutrient drawdown in spring. Macroalgae carbohydrate content also depended on nutrient concentrations, with higher nutrient concentrations leading to lower carbohydrate content at harvest. This will reduce the energy density of the crop and thus affect its suitability for conversion into biofuel. For the hypothetical large-scale macroalgae farm off the UK north Norfolk coast, the model suggested high, stable farm yields of macroalgae from year to year with substantial carbohydrate content and limited environmental effects.

  16. Changes in distributional patterns of plaice Pleuronectes platessa in the central and eastern North Sea; do declining nutrient loadings play a role?

    NASA Astrophysics Data System (ADS)

    Støttrup, Josianne G.; Munk, Peter; Kodama, Masashi; Stedmon, Colin

    2017-09-01

    Since the beginning of the 1990s, there has been a change in the relative distribution of smaller age-classes of plaice Pleuronectes platessa (age 1-3) in the North Sea. The abundances have increased in deeper, more offshore areas, while coastal abundances have been stagnant or declining. For the same time period available time series data on nutrient conditions in the coastal North Sea area show that the freshwater nitrogen loading has decreased by about 50%. While nutrient concentrations in the ambient environment have been shown to influence growth in juvenile plaice through influence on their prey, we here inspect the potential linkage between distributional changes in plaice and the decline in nutrient loading. We compare plaice observations in coastal areas in the eastern North Sea, which have experienced large changes in eutrophication, with observations for the Dogger Bank, a large sandbank in a shallow offshore area of the North Sea. The Dogger Bank, was used as a reference location assuming this area has been less influenced from coastal eutrophication but similar regional climate conditions, and here we found no changes in the abundances of juvenile plaice. The increase in the use of offshore habitats as nursery areas by juvenile plaice in the North Sea appears not related to water depth per se but driven by specific processes dominating in near-shore areas and may be related to changes in nutrient loadings. This point to the importance of separating more general depth-related factors from conditions specific for near-shore areas, such as nutrient loadings in coastal waters and export offshore. The concurrent changes in environment and in distribution of juvenile plaice may have implications for environmental and fisheries management.

  17. Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading.

    PubMed

    Zhang, Jingping; Huang, Xiaoping; Jiang, Zhijian

    2014-06-30

    To select appropriate bioindicators for the evaluation of the influence of nutrients from human activities in a Thalassia hemprichii meadow, environmental variables and plant performance parameters were measured in Xincun Bay, Hainan Island, South China. Nutrient concentrations in the bay decreased along a gradient from west to southeast. Moreover, the nutrients decreased with an increase in the distance from the shore on the southern side of the bay. Among the candidate indicators, the P content of the tissues closely mirrored the two nutrient loading gradients. The epiphytic algae biomass and the N content in the tissues mirrored one of the two nutrient loading trends. The leaf length, however, exhibited a significant negative correlation with the nutrient gradients. We propose that changes in the P content of T. hemprichii, followed by epiphytic algae biomass and N content of the tissues, may be the useful indicators of nutrient loading to coastal ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    NASA Astrophysics Data System (ADS)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  19. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    PubMed

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  20. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  1. New roughage source of Pennisetum purpureum cv. Mahasarakham utilization for ruminants feeding under global climate change.

    PubMed

    Wanapat, Metha; Mapato, Chaowarit

    2018-05-31

    As the climate changes, it influences ruminant's feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a 4 x 4 Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0 % BW of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were Sweet grass (SG), fed on ad libitum with 1.0 and 0.5 %BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). The results revealed that roughage and total feed intake were increased with SG when compared to RS (P<0.01) while TSG was similar to RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total VFAs, rumen microorganisms were the highest and CH4 was the lowest in the heifers received SG/1.0C (P<0.01). Total DM feed intake, digestibility and intake of nutrients, total VFAs, NH3-N, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased NH3-N, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (P<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (P>0.05). As the results, Sweet grass could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change.

  2. [Effects of sediment dredging on benthos community structure and water quality in Zhushan Bay].

    PubMed

    Liu, Guo-Feng; Zhang, Zhi-Yong; Liu, Hai-Qin; Zhong, Ji-Cheng; Yan, Shao-Hua; Fan, Cheng-Xin

    2010-11-01

    We surveyed the changes of macro-benthos community composition and nutrients concentration in water in Zhushan Bay after it had been dredged 6 months, which aimed to remove the polluted surface sediments. The results showed that the main benthos in the dredged and un-dredged sediments were Limodrilus hoffmeisteri, Pelopia and Bellamya aeruginosa; compared to the un-dredged sediments, the bio-diversity of dredged areas became lower. However, its biomass became higher than that in un-dredged areas. Concentration range changes of TN and TP in overlying water was 1.64-4.45 mg/L and 0.133-0.258 mg/L, respectively. The post-dredged sediments were still in a higher state of nutrients for the higher concentration nutrients in overlying water, macro-benthos were the species that lived in a serious polluted water environment. Using Shannon-Weaver, Simpson, and Goodnight benthic index to evaluate the results show that the dredged area is in the moderately polluted level, but un-dredged area is in the middle-heavily polluted level. According to the benthos fauna surveys and water quality monitoring results, the effective of sediment dredging could play its role only the strict control on the external pollution resources have been made and reduces the effects of polluted water on the sediments.

  3. Identifying nutrient reference sites in nutrient-enriched regions-Using algal, invertebrate, and fish-community measures to identify stressor-breakpoint thresholds in Indiana rivers and streams, 2005-9

    USGS Publications Warehouse

    Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.

    2013-01-01

    Excess nutrients in aquatic ecosystems can lead to shifts in species composition, reduced dissolved oxygen concentrations, fish kills, and toxic algal blooms. In this study, nutrients, periphyton chlorophyll a (CHLa), and invertebrate- and fishcommunity data collected during 2005-9 were analyzed from 318 sites on Indiana rivers and streams. The objective of this study was to determine which invertebrate and fish-taxa attributes best reflect the conditions of streams in Indiana along a gradient of nutrient concentrations by (1) determining statistically and ecologically significant relations among the stressor (total nitrogen, total phosphorus, and periphyton CHLa) and response (invertebrate and fish community) variables; and (2) determining the levels at which invertebrate- and fish-community measures change in response to nutrients or periphyton CHLa. For water samples at the headwater sites, total nitrogen (TN) concentrations ranged from 0.343 to 21.6 milligrams per liter (mg/L) (median 2.12 mg/L), total phosphorus (TP) concentrations ranged from 0.050 to 1.44 mg/L (median 0.093 mg/L), and periphyton CHLa ranged from 0.947 to 629 mg/L (median 69.7 mg/L). At the wadable sites, TN concentrations ranged from 0.340 to 10.0 mg/L (median 2.31 mg/L), TP concentrations ranged from 0.050 to 1.24 mg/L (median 0.110 mg/L), and periphyton CHLa ranged from 0.383 to 719 mg/L (median 44.7 mg/L). Recursive partitioning identified statistically significant low and high breakpoint thresholds on invertebrate and fish measures, which demonstrated the ecological response in enriched conditions. The combined community (invertebrate and fish) mean low and high TN breakpoint thresholds were 1.03 and 2.61 mg/L, respectively. The mean low and high breakpoint thresholds for TP were 0.083 and 0.144 mg/L, respectively. The mean low and high breakpoint thresholds for periphyton CHLa were 20.9 and 98.6 milligrams per square meter (mg/m2), respectively. Additive quantile regression analysis found similar thresholds (TN of 0.656 mg/L, mean TP of 0.118 mg/L, and periphyton CHLa of 27.2 mg/m2) for some stressor variables as determined by the breakpoint analysis. The TN and TP concentrations in this study showed a nutrient gradient that spanned three orders of magnitude. Sites were divided into Low, Medium, and High nutrient groups based on the 10th and 75th percentiles. The invertebrate and fish communities were similar along the nutrient gradient, using an analysis of similarity, demonstrating there was not a species trophic gradient. Within all nutrient groups, invertebrate and fish communities were dominated by nutrient tolerant taxa (algivores, herbivores, and omnivores) that included invertebrates, such as Cheumatopsyche sp., Physella sp., and fish such as Stonerollers (Campostoma spp.) and Bluntnose Minnow (Pimephales notatus). To determine if low nutrient concentrations at some sites were caused by algal uptake and not oligotrophic conditions, sites with low nutrient concentrations (less than 10th percentile for TN or TP) were examined based on the Low (less than or equal to the 10th percentile) and High (greater than the 75th percentile) periphyton CHLa concentrations. Within low nutrient sites, the invertebrate and fish communities were statistically different between Low and High periphyton CHLa categories. The majority of variance between the Low and High periphyton CHLa categories was caused by Cheumatopsyche sp. (caddisfly), Physella sp. (pulmonate snail), and Caenis latipennis (a mayfly) in the invertebrate community; and caused by Stonerollers, Western Blacknose Dace (Rhinichthys atratulus meleagris), and Creek Chub (Semotilus atromaculatus) in the fish community. The dominance of tolerant herbivore and omnivore taxa in the High periphyton CHLa group indicates that low nutrient concentrations are a result of nutrient uptake and increased algal growth. This study highlights the importance of assessing multiple lines of evidence when attempting to identify the trophic condition of a site.

  4. PCO2 effects on species composition and growth of an estuarine phytoplankton community

    EPA Science Inventory

    Ocean and coastal waters are undergoing changes in carbonate chemistry, including pH, in response to increasing atmospheric CO2 concentration and the microbial degradation of organic matter associated with nutrient enrichment. The effects of this change on plankton communities ha...

  5. Stream microbial diversity in response to environmental changes: review and synthesis of existing research

    PubMed Central

    Zeglin, Lydia H.

    2015-01-01

    The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102

  6. Effects of nutrients and zooplankton on the phytoplankton community structure in Marudu Bay

    NASA Astrophysics Data System (ADS)

    Tan, Kar Soon; Ransangan, Julian

    2017-07-01

    Current study was carried out to provide a better understanding on spatial and temporal variations in the phytoplankton community structure in Marudu Bay, an important nursery ground for fishery resources within the Tun Mustapha Marine Park and Coral Triangle Initiative, and their relationship with environmental variables. Samplings were conducted monthly from April 2014 to April 2015 in Marudu Bay, Malaysia. Water samples were collected for nutrients analysis, zooplankton and phytoplankton counting. Moreover, the in situ environmental parameters were also examined. The field study showed a total of forty seven phytoplankton genera, representative of 33 families were identified. The nutrient concentrations in Marudu Bay was low (mesotrophic) throughout the year, where the phytoplankton community was often dominated by Chaetoceros spp. and Bacteriastrum spp. In general, increase in nitrate concentration triggered the bloom of centric diatom, Chaetoceros spp. and Bacteriastrum spp. in Marudu Bay. However, the bloom of these phytoplankton taxa did not occur in the presence of high ammonia concentration. In addition, high abundance of zooplankton also a limiting factor of the phytoplankton blooms particularly at end of southwest monsoon. High silica concentration promoted the growth of pennate diatoms, Proboscia spp. and Thallassionema spp., but the depletion of silica quickly terminated the bloom. Interestingly, our study showed that Chaetoceros spp., tolerated silica depletion condition, but the average cell size of this taxon reduced significantly. In summary, the phytoplankton community structure in mesotrophic environment is more sensitive to the changes in zooplankton abundance, nutrient concentration and its ratio than that in nutrient rich environments. This study also recommends that bivalve farming at industrial scale is not recommended in Marudu Bay because it potentially depletes the primary productivity hence jeopardizing the availability of live food for larvae of many natural fishery resources in the bay.

  7. Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms.

    PubMed

    Aristi, I; Casellas, M; Elosegi, A; Insa, S; Petrovic, M; Sabater, S; Acuña, V

    2016-05-01

    Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3-4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Using Water Quality Models in Management - A Multiple Model Assessment, Analysis of Confidence, and Evaluation of Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Irby, Isaac David

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea-level, and changes in precipitation, have elevated the conversation surrounding the future of water quality in the Bay. The overall goal of this dissertation project is to use a combination of models and data to better understand and quantify the impact of changes in nutrient loads and climate on water quality in the Chesapeake Bay. This research achieves that goal in three parts. First, a set of eight water quality models is used to establish a model mean and assess model skill. All models were found to exhibit similar skill in resolving dissolved oxygen concentrations as well as a number of dissolved oxygen-influencing variables (temperature, salinity, stratification, chlorophyll and nitrate) and the model mean exhibited the highest individual skill. The location of stratification within the water column was found to be a limiting factor in the models' ability to adequately simulate habitat compression resulting from low-oxygen conditions. Second, two of the previous models underwent the regulatory Chesapeake Bay pollution diet mandated by the Environmental Protection Agency. Both models exhibited a similar relative improvement in dissolved oxygen concentrations as a result of the reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed to identify the locations of the Bay where the models are in agreement and disagreement regarding the impacts of the pollution diet. The models were least certain in the deep part of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-processing methodology. Finally, by projecting the impacts of climate change in 2050 on the Bay, the potential success of the pollution diet in light of future projections for air temperature, sea level, and precipitation was examined. While a changing climate will reduce the ability of the nutrient reduction to improve oxygen concentrations, that effect is trumped by the improvements in dissolved oxygen stemming from the pollution diet itself. However, climate change still has the potential to cause the current level of nutrient reduction to be inadequate. This is primarily due to the fact that low-oxygen conditions are predicted to start one week earlier, on average, in the future, with the primary changes resulting from the increase in temperature. Overall, this research lends an increased degree of confidence in the water quality modeling of the potential impact of the Chesapeake Bay pollution diet. This research also establishes the efficacy of utilizing a multiple model approach to examining projected changes in water quality while establishing that the pollution diet trumps the impact from climate change. This work will lead directly to advances in scientific understanding of the response of water quality, ecosystem health, and ecological resilience to the impacts of nutrient reduction and climate change.

  9. Water-quality characteristics, trends, and nutrient and sediment loads of streams in the Treyburn development area, North Carolina, 1988–2009

    USGS Publications Warehouse

    Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.

    2013-01-01

    Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low, however, compared to regional and national averages.

  10. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  11. Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91

    USGS Publications Warehouse

    Ham, L.K.; Hatzell, H.H.

    1996-01-01

    During the early phase of the Georgia-Florida National Water Quality Assessment study, existing information on nutrients was compiled and analyzed in order to evaluate the nutrient concentrations within the 61,545 square mile study unit. Evaluation of the nutrient concentrations collected at surface- water sites between October 1, 1970, and September 30,1991, utilized the environmental characteristics of land resource provinces, land use, and nonpoint and point-source discharges within the study unit. Long-term trends were investigated to determine the temporal distribution of nutrient concentrations. In order to determine a level of concern for nutrient concentrations, the U.S. Environmental Protection Agency (USEPA) guidelines were used-(1) for nitrate concentrations, the maximum contaminant level in public-drinking water supplies (10 mg/L); (2) for ammonia concentrations, the chronic exposure of aquatic organisms to un-ionized ammonia (2.1 mg/L); (3) for total-phosphorus concentrations, the recommended concentration in flowing water to discourage excessive growth of aquatic plants (0.1 mg/L); and (4) for kjeldahl concentrations, however, no guidelines were available. For sites within the 10 major river basins, median nutrient concentrations were generally below USEPA guidelines, except for total-phosphorus concentrations where 45 percent of the medians exceeded the guideline. The only median ammonia concentration that exceeded the guideline occurred at the Swift Creek site (3.4 mg/L), in the Suwannee River basin, perhaps due to wastewater discharges. For all sites within the Withlacoochee, Aucilla, and St. Marys River basins, median concentrations of nitrate, ammonia, and total phosphorus were below the USEPA guidelines. Nutrient data at each monitoring site within each major basin were aggregated for comparisons of median nutrient concentrations among major basins. The Ochlockonee and Hillsborough River basins had the highest median nutrient concentrations, the Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with

  12. Spatial-temporal distribution of phytoplankton pigments in relation to nutrient status in Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Yu, Zhigang; Deng, Chunmei; Liu, Shuxia; Zhen, Yu

    2010-10-01

    We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial-temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L -1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L -1. The highest concentrations of chlorophyll a (15.299 μg L -1) and fucoxanthin (9.417 μg L -1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis.

  13. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response. Ultimately, improved understanding of post-fire response and related drivers will advance potential mitigation and treatment strategies as well as aid in the parametrization of post-fire models of water quality.

  14. Spatiotemporal variability of inorganic nutrients during wastewater effluent dominated streamflow conditions in Indian Creek, Johnson County, Kansas, 2012–15

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.; Williams, Thomas J.; King, Lindsey R.

    2016-10-31

    Nutrients, particularly nitrogen and phosphorus, are a leading cause of water-quality impairment in Kansas and the Nation. Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereinafter Middle Basin) wastewater treatment facility (WWTF) is the largest point-source discharge on Indian Creek. A second facility, the Tomahawk Creek WWTF, discharges into Indian Creek approximately 11.6 kilometers downstream from the Middle Basin WWTF. To better characterize the spatiotemporal variability of nutrients in Indian Creek, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment and Johnson County Wastewater, collected high-resolution spatial and temporal (a large number of samples collected over the entire reach or at single locations over a long period of time) inorganic nutrient (nitrate plus nitrite and orthophosphorus) data using a combination of discrete samples and sensor-measured data during 2012 through 2015.Nutrient patterns observed in Indian Creek along the upstream-downstream gradient during wastewater effluent dominated streamflow conditions were largely affected by the WWTFs and by travel time of the parcels of water. Nitrate plus nitrite concentrations in the Middle Basin WWTF effluent and at downstream sites varied by as much as 6 milligrams per liter over a 24-hour period. The cyclical variability in the Middle Basin WWTF effluent generated a nitrate plus nitrite pulse that could be tracked for approximately 11.5 kilometers downstream in Indian Creek, until the effect was masked by the Tomahawk Creek WWTF effluent discharge. All longitudinal surveys showed the same general patterns along the upstream-downstream gradient, though streamflows, wastewater effluent contributions to streamflow, and nutrient concentrations spanned a wide range. Differences in orthophosphorus and nitrate plus nitrite patterns were clear along the upstream-downstream gradient in Indian Creek, and orthophosphorus concentrations were not as variable as nitrate plus nitrite concentrations. In general, nitrate plus nitrite concentrations decreased downstream from the Middle Basin WWTF to minima near the confluence with Tomahawk Creek, increased downstream from the Tomahawk Creek WWTF, and then varied little within the study reach. Orthophosphorus concentrations generally decreased downstream from the Middle Basin WWTF.Despite the marked variability in nitrate plus nitrite concentrations caused by the Middle Basin WWTF effluent discharges, decreases in nitrate plus nitrite concentrations were discernable along the study reach between the two WWTFs. Decreases in nitrate plus nitrite concentrations along study reach were less variable than the cyclical variability typically measured, reiterating the effect of the Middle Basin WWTF effluent discharges on the spatiotemporal variability of nitrate plus nitrite in Indian Creek. Although decreases and rates of change in nitrate plus nitrite concentration were similar between the upper and lower reaches of Indian Creek, relations with initial nitrate plus nitrite concentrations and seasonal patterns were different between the upper (from College to the Marty study sites) and lower reaches (from Marty to the Mission Farms study sites) and did not reflect patterns observed for the overall reach. Quantifying the decreases in nitrate plus nitrite concentration caused by dilution and other in-stream processes were beyond the scope of this study, and were limited by available data. The data that are available suggest that dilution and other in-stream processes play a role in decreasing nitrate plus nitrite concentrations downstream from the Middle Basin WWTF in Indian Creek.Analysis of the spatiotemporal variability of nutrients focused on below-normal and normal streamflow conditions, when streamflow and nutrient conditions in Indian Creek were largely controlled by WWTF effluent flows and nutrient removal processes. Spatial and temporal data indicate there are decreases in nutrient concentrations along the upstream-downstream gradient in Indian Creek, but quantifying decreases is complicated by the variability in nutrient concentrations caused by the WWTFs. During below-normal and normal streamflow conditions, Indian Creek nutrient concentrations downstream from the Middle Basin WWTF primarily reflect effluent concentrations in the hours or days before depending on relative distance downstream.

  15. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America

    NASA Astrophysics Data System (ADS)

    Faith, J. Tyler

    2011-06-01

    This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore-plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes are determined largely by plant nitrogen content. Plant nitrogen content is known to be influenced by atmospheric CO 2 concentrations, temperature, and precipitation. It is argued that Lateglacial climate change, particularly increases in atmospheric CO 2, shifted herbivore-ecosystem dynamics from a nutrient accelerating mode to a nutrient decelerating mode at the end of the Pleistocene, leading to reduced megafaunal population densities. An examination of Sporormiella records - a proxy for megaherbivore biomass - indicates that megafaunal populations collapsed first in the east and later in the west, possibly reflecting regional differences in precipitation or vegetation structure. The fortuitous intersection of the climatically driven nitrogen sink, followed by any one or combination of subsequent anthropogenic, environmental, or extra-terrestrial mechanisms could explain why extinctions took place at the end of the Pleistocene rather than during previous glacial-interglacial cycles.

  16. Renal formulas pretreated with medications alters the nutrient profile

    PubMed Central

    Oladitan, Leah; Carlson, Susan; Hamilton-Reeves, Jill M.

    2015-01-01

    Background Pretreating renal formulas with medications to lower the potassium and phosphorus content is common in clinical practice; however, the effect of this treatment on other nutrients is relatively unstudied. We examine whether nutrient composition is affected by pretreating renal formulas with sodium polystyrene sulfonate (SPS) suspension and sevelamer carbonate. Methods Fixed medication doses and treatment times were utilized to determine changes in the nutrient composition of Suplena® and Similac® PM 60/40. The effect of simultaneously adding both medications (co-administration) to the formula on the nutrient composition of Suplena® was also evaluated. Results Pretreatment of Suplena® with SPS reduced the concentrations of calcium (11–38 %), copper (3–11 %), manganese (3–16 %), phosphorus (0–7 %), potassium (6–34 %), and zinc (5–20 %) and increased those of iron (9–34 %), sodium (89–260 %), and sulfur (19–45 %) and the pH (0.20–0.50 units). Pretreatment of Similac® PM 60/40 with SPS reduced the concentrations of calcium (8–29 %), copper (5–19 %), magnesium (3–26 %), and potassium (33–63 %) and increased those of iron (13–87 %) and sodium (86–247 %) and the pH (0.40–0.81 units). Pretreatment of both formulas with the SPS suspension led to significant increases in the aluminum concentration in both formulas (507–3957 %). No differences in potassium concentration were observed between treatment times. Unexpectedly, the levels of neither phosphorus nor potassium were effectively reduced in Suplena® pretreated with sevelamer carbonate alone or when co-administered with SPS. Conclusions Pretreating formula with medications alters nutrients other than the intended target(s). Future studies should be aimed at predicting the loss of these nutrients or identifying alternative methods for managing serum potassium and phosphorus levels in formula-fed infants. The safety of pretreating formula with SPS suspension should also be examined. PMID:25930981

  17. The Impact of Climate Change on Photosynthesis: Modeling the Role of Water Use Efficiency and Nitrogen Use Efficiency in Alpine Tundra Plant Communities

    NASA Astrophysics Data System (ADS)

    Wentz, K. F.; Neff, J. C.; Fan, Z.

    2016-12-01

    In the coming years, climate change will affect spatio-temporal patterns of water and nutrient availability in soils. Plant communities and their ability to optimize these limiting resources will analogously shift, causing changes in net photosynthesis. In order to assess this transition, we have developed a quantitative model that incorporates the effects of both water and nutrient limitations on the photosynthetic capacity of plants. In the model, plants increase their water use efficiency (WUE) if soil moisture is most limiting to plant growth and increase their nutrient use efficiency (NUE) if soil nutrients are most limiting to plant growth. Furthermore, WUE and NUE are inversely related. The model predicts that as WUE increases and NUE decreases, photosynthesis increases until reaching a maximum value. Furthermore, more drastic changes in photosynthesis are observed when WUE is perturbed at lower values as compared to higher values. The model will be validated and if necessary, reparametrized using data collected from plant communities at the Niwot Ridge Long Term Ecological Research site. The dominant plants that we are measuring at this site are located in the dry, moist, and wet alpine meadows where soils have different concentrations of water and nutrients. We are measuring photosynthesis rates, transpiration rates, and leaf nitrogen (N) and phosphorus (P) of four different plant species: 1 dry meadow species, 1 moist meadow species, 1 wet meadow species, and a control species that occurs in all of the meadows. This data will in turn be used to calculate WUE and NUE for each plant species to allow for a comparison with model predictions. In order to assess the difference in net photosynthetic capacity between plants that have greater WUE versus plants that have greater NUE, we will generate A/ci curves for each species, where ci is the concentration of carbon dioxide in the chloroplast and A is the maximum photosynthesis. The validated photosynthesis model will be linked to a biogeochemical model that models the effect of climate change on soil water and nutrients. The ultimate goal is to use the two combined models to understand how climate change will affect patterns of photosynthesis.

  18. Effects of elevated turbidity and nutrients on the net production of a tropical seagrass community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, J.W.

    1985-01-01

    Dredging effects on seagrass communities in the Florida Keys were examined by (1) comparing impacts on net production resulting from dredging and natural weather events, (2) determining changes in community photosynthetic efficiency, (3) evaluating shading and nutrient effects on net production, and (4) developing a systems dynamics model. Net community production was estimated during numerous meteorological and dredging events using the Odum-Hoskins oxygen technique in flow-through field microcosms. In other experiments, shading and nutrients (phosphorus, nitrate, and ammonia) were manipulated to simulate dredge plume conditions. The greatest depression in net community production resulted from severe thunderstorms and dredging events, respectively.more » In field microcosm experiments, significant interaction occurred between shading and nutrient concentration. The model of seagrass production was most sensitive to changes in nutrient-seagrass relationships, seagrass production estimates, and seagrass-light interactions. Recovery of seagrass biomass following numerous dredging events (3.5 years) was longer than that from the estimated total annual thunderstorms encountered (1 year) but shorter than recovery from hurricane events (4.1 years).« less

  19. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    NASA Astrophysics Data System (ADS)

    Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi

    2013-03-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.

  20. Sources and transport of algae and nutrients in a Californian river in a semi-arid climate

    USGS Publications Warehouse

    Ohte, N.; Dahlgren, R.A.; Silva, S.R.; Kendall, C.; Kratzer, C.R.; Doctor, D.H.

    2007-01-01

    1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll-a (chl-a) concentration and loads indicated that most algal biomass was generated by in-stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl-a load), even though high concentrations of chl-a were measured in some source waters. 3. Nitrate and soluble-reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy. ?? 2007 Blackwell Publishing Ltd.

  1. Effect of multi-nutrient insufficiency on markers of one carbon metabolism in young women: response to a methionine load.

    PubMed

    Katre, P; Joshi, S; Bhat, D S; Deshmukh, M; Gurav, N; Pandit, S; Lubree, H; Marczewski, S; Bennett, C; Gruca, L; Kalyanaraman, K; Naik, S S; Yajnik, C S; Kalhan, S C

    2016-06-01

    Multi-nutrient insufficiencies as a consequence of nutritional and economic factors are common in India and other developing countries. We have examined the impact of multi-nutrient insufficiency on markers of one carbon (1C) metabolism in the blood, and response to a methionine load in clinically healthy young women. Young women from Pune, India (n=10) and Cleveland, USA (n=13) were studied. Blood samples were obtained in the basal state and following an oral methionine load (50 mg/kg of body weight in orange juice). Plasma concentrations of vitamin B12, folate and B6 were measured in the basal state. The effect of methionine load on the levels of methionine, total homocysteine, cysteine, glutathione and amino acids was examined. Indian women were significantly shorter and lighter compared with the American women and had lower plasma concentration of vitamins B12, folate and B6, essential amino acids and glutathione, but higher concentration of total homocysteine. The homocysteine response to methionine load was higher in Indian women. The plasma concentrations of glycine and serine increased in the Indian women after methionine (in juice) load. A significant negative correlation between plasma B6 and homocysteine (r= -0.70), and plasma folate and glycine and serine levels were observed in the Indian group (P<0.05) but not in the American group. Multi-nutrient insufficiency in the Indian women caused unique changes in markers of whole body protein and 1C metabolism. These data would be useful in developing nutrient intervention strategies.

  2. The distribution of iodine in the Croatian marine lake, Mir - The missing iodate

    NASA Astrophysics Data System (ADS)

    Žic, Vesna; Truesdale, Victor W.; Garnier, Cédric; Cukrov, Neven

    2012-12-01

    The marine chemistry of iodine has been studied in the marine lake, Mir, regarded as a natural reactor situated in the karstificated carbonate rocks of the Croatian Adriatic coast. The investigation covered the major variables: salinity, temperature, dissolved oxygen, pH and alkalinity, some nutrients, organic carbon, and iodide, iodate and organic-I. Lake Mir was found to be meso-trophic, with dynamic nutrient cycling of a magnitude usually associated with the temperate zone but within a Mediterranean clime. An essentially U-shaped pattern exists in the plot of nutrient concentration versus time for the June-November period studied. Together, the major variables and the nutrient chemistry confirm that Lake Mir is essentially isolated from the nearby (90 m) Adriatic seawater, and this also may explain the meso-trophic nature of the lake, with dry and wet deposition as the source of the extra nutrient. It is of note that iodate was essentially absent from Mir during the sampling period. This appears to be consistent with iodine's behaviour in the oceans in general, where iodate is reduced generally as a result of the presence of the biota. The chemistry of iodine in Lake Mir is consequently dominated by changes in iodide and organic-I concentrations, with the latter at higher concentrations than those found in seawater. Even so, the total iodine concentration in Mir is only about one-quarter of that in the adjacent Adriatic seawater, and again it is argued that this is probably a function of Lake Mir's isolation.

  3. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  4. Multi-trophic resilience of boreal lake ecosystems to forest fires

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.

    2014-01-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  5. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    PubMed

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  6. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  7. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations

    USGS Publications Warehouse

    Lewis, Tyler; Lindberg, Mark S.; Heglund, Patricia J.; Schmutz, Joel A.; Schmidt, Joshua H.; Dubour, Adam J.; Rover, Jennifer R.; Bertram, Mark R.

    2016-01-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  8. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    NASA Astrophysics Data System (ADS)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  9. Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    NASA Technical Reports Server (NTRS)

    Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.; hide

    2013-01-01

    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.

  10. Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization

    NASA Astrophysics Data System (ADS)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-08-01

    Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  11. High nutrient pulses, tidal mixing and biological response in a small California estuary: Variability in nutrient concentrations from decadal to hourly time scales

    USGS Publications Warehouse

    Caffrey, J.M.; Chapin, T.P.; Jannasch, H.W.; Haskins, J.C.

    2007-01-01

    Elkhorn Slough is a small estuary in Central California, where nutrient inputs are dominated by runoff from agricultural row crops, a golf course, and residential development. We examined the variability in nutrient concentrations from decadal to hourly time scales in Elkhorn Slough to compare forcing by physical and biological factors. Hourly data were collected using in situ nitrate analyzers and water quality data sondes, and two decades of monthly monitoring data were analyzed. Nutrient concentrations increased from the mid 1970s to 1990s as pastures and woodlands were converted to row crops and population increased in the watershed. Climatic variability was also a significant factor controlling interannual nutrient variability, with higher nutrient concentrations during wet than drought years. Elkhorn Slough has a Mediterranean climate with dry and rainy seasons. Dissolved inorganic nitrogen (DIN) concentrations were relatively low (10-70 ??mol L-1) during the dry season and high (20-160 ??mol L-1) during the rainy season. Dissolved inorganic phosphorus (DIP) concentrations showed the inverse pattern, with higher concentrations during the dry season. Pulsed runoff events were a consistent feature controlling nitrate concentrations during the rainy season. Peak nitrate concentrations lagged runoff events by 1 to 6 days. Tidal exchange with Monterey Bay was also an important process controlling nutrient concentrations, particularly near the mouth of the Slough. Biological processes had the greatest effect on nitrate concentrations during the dry season and were less important during the rainy season. While primary production was enhanced by nutrient pulses, chlorophyll a concentrations were not. We believe that the generally weak biological response compared to the strong physical forcing in Elkhorn Slough occurred because the short residence time and tidal mixing rapidly diluted nutrient pulses. ?? 2006 Elsevier Ltd. All rights reserved.

  12. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment illustrated that wet deposition (9.9 kg C ha-1 yr-1) and dry deposition (6.9 kg C ha-1 yr-1) were a combined input of approximately 17 kg C ha-1 yr-1, which could be as high as 24 kg C ha-1 yr-1 in high dust years. This atmospheric C input approached the C input from microbial autotrophic production in barren soils. Atmospheric wet and dry deposition also contributed 4.3 kg N ha-1 yr-1, 0.15 kg P ha-1 yr-1, and 2.7 kg Ca2+ ha-1 yr-1 to this alpine catchment.

  13. Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development.

    PubMed

    Smaldone, Gregory T; Jin, Yujie; Whitfield, Damion L; Mu, Andrew Y; Wong, Edward C; Wuertz, Stefan; Singer, Mitchell

    2014-04-01

    Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.

  14. Nutrient effects of broodstocks on the larvae in Patinopecten yessoensis

    NASA Astrophysics Data System (ADS)

    Bai, Yucen; Zhang, Tao; Qiu, Tianlong; Gao, Yan; Zhang, Xiaofang

    2015-07-01

    Patinopecten yessoensis is a commercial valuable species. This study deals with the effect of nutrient effects of the broodstock (mainly ovaries) on the larvae. Concentrations of total carbohydrate, total protein and total lipid in the gonads of P. yessoensis from three Hatcheries (Hatchery 1, Hatchery 2, and Hatchery 3) were determined before and after spawning. The relationship between the nutrient concentration in ovaries before spawning (BC) and that of larvae (LC) was assessed as well as the change in nutrient levels in ovaries after spawning (DC). Results indicate that the BC of total carbohydrate (7.66%) and total lipid (14.48%) in ovaries were significantly higher than in testes (5.20%, 5.20% respectively), whereas the BC of total protein in the ovaries was lower (61.76%) than in the testes (81.67%). The different gonadal composition suggests the different nutrient demands between male and female broodstocks in breeding season. Patinopecten yessoensis gonads contained a higher proportion of lipids, in comparison to other bivalves, which might be a response to the low ambient water temperatures. Further analysis of fatty acids showed that the concentrations of n-3PUFA, EPA and DHA in larvae (LC) were positively correlated with BC and DC, indicating the significant nutrient influence of broodstocks on the larvae. As these fatty acids are important in metabolism, and have been demonstrated to be influential to the viability of the larvae, larval growth and the settlement, spat growth, and juvenile survival in many bivalves, they could possibly be used as indexes to evaluate, and predict condition of broodstocks and larvae.

  15. User-inspired Research Quantifies How Floodplain Restoration Paired With Cover Crops Reduces Nutrient Export From an Agricultural Catchment Translating to Conservation Success in the Midwestern Cornbelt.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Mahl, U. H.; Royer, T. V.

    2017-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter agricultural streams, which degrades both local and downstream water quality. We are quantifying the nutrient reduction benefits of two conservation practices implemented at the catchment scale. In partnership with The Nature Conservancy, in a small Indiana catchment, we have quantified how 600m of floodplain restoration (i.e., a two-stage ditch) increased nitrate-N removal via denitrification and reduced sediment export, but impacts on stream nutrient concentrations were negligible due to very high catchment loading relative to the short implementation reach. Requests from state and federal partners led to development and parameterization of a new two-stage ditch module in the SWAT model to determine the potential catchment-scale benefits when implementation lengths were extended. More recently, in partnership with state SWCD managers, we have added a landscape practice to quantify how winter cover crops reduce nutrient loss from fields, sampling year-round nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel. Nitrate-N and dissolved P fluxes were significantly lower in tiles draining fields with cover crops compared to those without. At the urging of farmers and federal NRCS partners, we also linked tile drain nutrient reductions to changes in soil chemistry. Both soil nitrate-N and dissolved P were lower in cover cropped fields, and we found significant correlations between soil and tile drain nutrients, which may encourage future adoption of the conservation practice as soil health benefits appeal to farmers. As biogeochemists, this research has provided valuable insights on how floodplains and land cover change can alter patterns of catchment-scale nutrient export. The translation of successful soil and water quality outcomes through this significant regional demonstration project make it a potentially powerful agent of change for advancing conservation success.

  16. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.

  17. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.

    PubMed

    Zhou, Xiaohong; Feng, Deyou; Wen, Chunzi; Liu, Dan

    2018-03-29

    In freshwater ecosystems, aquatic macrophytes play significant roles in nutrient cycling. One problem in this process is nutrient loss in the tissues of untimely harvested plants. In this study, we used two aquatic species, Nelumbo nucifera and Trapa bispinosa Roxb., to investigate the decomposition dynamics and nutrient release from detritus. Litter bags containing 10 g of stems (plus petioles) and leaves for each species detritus were incubated in the pond from November 2016 to May 2017. Nine times litterbags were retrieved on days 6, 14, 25, 45, 65, 90, 125, 145, and 165 after the decomposition experiment for the monitoring of biomass loss and nutrient release. The results suggested that the dry masses of N. nucifera and T. bispinosa decomposed by 49.35-69.40 and 82.65-91.65%, respectively. The order of decomposition rate constants (k) is as follows: leaves of T. bispinosa (0.0122 day -1 ) > stems (plus petioles) of T. bispinosa (0.0090 day -1 ) > leaves of N. nucifera (0.0060 day -1 ) > stems (plus petioles) of N. nucifera (0.0030 day -1 ). Additionally, the orders of time for 50% dry mass decay, time for 95% dry mass decay, and turnover rate are as follows: leaves < stems (plus petioles) and T. bispinosa < N. nucifera, respectively. This result indicated that the dry mass loss, k values, and other parameters related to k values are significantly different in species- and tissue-specific. The C, N, and P concentration and the C/N, C/P, and N/P ratios presented the irregular temporal changes trends during the whole decay period. In addition, nutrient accumulation index (AI) was significantly changed depending on the dry mass remaining and C, N, and P concentration in detritus at different decomposition times. The nutrient AIs were 36.72, 8.08, 6.35, and 2.56% for N; 31.25, 9.85, 4.00, and 1.63% for P; 25.15, 16.96, 7.36, and 6.16% for C in the stems (plus petioles) of N. nucifera, leaves of N. nucifera, stems (plus petioles) of T. bispinosa, and leaves of T. bispinosa, respectively, at the day 165. These results indicated that 63.28-97.44% of N, 68.75-98.37% of P, and 74.85-93.84% of C were released from the plant detritus to the water at the day 165 of the decomposition period. The initial detritus chemistry, particularly the P-related parameters (P concentration and C/P and N/P ratios), strongly affected dry mass loss, decomposition rates, and nutrient released from detritus into water. Two-way ANOVA results also confirm that the effects on the species were significant for decomposition dynamics (dry mass loss), nutrient release (nutrient concentration, their ratios, and nutrient AI) (P < 0.01), and expected N concentration (P > 0.05). In addition, the decomposition time had also significant effects on the detritus decomposition dynamic and nutrient release. However, the contributors of species and decomposition time on detritus decomposition were significantly different on the basis of their F values of two-way ANOVA results. This study can provide scientific bases for the aquatic plant scientific management in freshwater ecosystems of the East region of China.

  18. Effects of warming and nutrients on the microbial food web in shallow lake mesocosms.

    PubMed

    Zingel, Priit; Cremona, Fabien; Nõges, Tiina; Cao, Yu; Neif, Érika M; Coppens, Jan; Işkın, Uğur; Lauridsen, Torben L; Davidson, Thomas A; Søndergaard, Martin; Beklioglu, Meryem; Jeppesen, Erik

    2018-06-01

    We analysed changes in the abundance, biomass and cell size of the microbial food web community (bacteria, heterotrophic nanoflagellates, ciliates) at contrasting nutrient concentrations and temperatures during a simulated heat wave. We used 24 mesocosms mimicking shallow lakes in which two nutrient levels (unenriched and enriched by adding nitrogen and phosphorus) and three different temperature scenarios (ambient, IPCC A2 scenario and A2+%50) are simulated (4 replicates of each). Experiments using the mesocosms have been running un-interrupted since 2003. A 1-month heat wave was imitated by an extra 5 °C increase in the previously heated mesocosms (from 1st July to 1st August 2014). Changes in water temperature induced within a few days a strong effect on the microbial food web functioning, demonstrating a quick response of microbial communities to the changes in environment, due to their short generation times. Warming and nutrients showed synergistic effects. Microbial assemblages of heterotrophic nanoflagellates and ciliates responded positively to the heating, the increase being largest in the enriched mesocosms. The results indicate that warming and nutrients in combination can set off complex interactions in the microbial food web functioning. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an average input of approximately 13 kg C ha-1 yr-1 that could be as high as 24 kg C ha-1 yr-1 in high dust years and approaches that of autotrophic C fixation in barren soils.

  20. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  1. Optimal Environmental Conditions and Anomalous Ecosystem Responses: Constraining Bottom-up Controls of Phytoplankton Biomass in the California Current System

    PubMed Central

    Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.

    2016-01-01

    In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260

  2. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872

  3. Watershed-Scale Cover Crops Reduce Nutrient Export From Agricultural Landscapes.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Trentman, M. T.; Royer, T. V.; Prior, K.

    2016-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter Midwestern agricultural streams, which degrades both local and downstream water quality, resulting in algal blooms and subsequent hypoxic "dead zones" far from the nutrient source. We are quantifying the benefits of watershed-scale conservation practices that may reduce nutrient runoff from adjacent farm fields. Specifically, research is lacking on whether the planting of winter cover crops in watersheds currently dominated by row-crop agriculture can significantly reduce nutrient inputs to adjacent streams. Since 2013, farmers have planted cover crops on 70% of croppable acres in the Shatto Ditch Watershed (IN), and "saturation level" implementation of this conservation practice has been sustained for 3 years. Every 14 days, we have quantified nutrient loss from fields by sampling nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel throughout the watershed. Cover crops improved stream water quality by reducing dissolved inorganic nutrients exported downstream; nitrate-N and DRP concentrations and fluxes were significantly lower in tiles draining fields with cover crops compared to those without. Annual watershed nutrient export also decreased, and reductions in N and P loss ( 30-40%) exceeded what we expected based on only a 6-10% reduction in runoff due to increased watershed water holding capacity. We are also exploring the processes responsible for increased nutrient retention, where they are occurring (terrestrial vs. aquatic) and when (baseflow vs. storms). For example, whole-stream metabolism also responded to cover crop planting, showing reduced variation in primary production and respiration in years after watershed-scale planting of cover crops. In summary, widespread land cover change, through cover crop planting, can significantly reduce annual watershed-scale nutrient export. Moreover, successful outcomes highlighted through demonstration projects may facilitate widespread adoption, making them powerful agents of change for advancing conservation success.

  4. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiela, I.; Foreman, K.; LaMontagne, M.

    1992-12-01

    Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds alter structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, a series of subwatersheds of Waquoit Bay differing in degree of urbanization and with widely different nutrient loading rates was studied. The subwatersheds differ in septic tanks numbers and forest acreage. Ground water is the major mechanism that transports nutrients to coastal waters. Some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, but significant increases in the nutrient content ofmore » groundwater arriving at the shore's edge are in urbanized areas. The groundwater flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroalgal biomass and growth. The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The importance of bottom-up control in shallow coastal food webs is evident. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps, making it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Appropriate models may provide a way to deal with the complexities of the coupling. 22 refs., 14 figs., 5 tabs.« less

  5. Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.

    PubMed

    Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H

    2012-11-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Growth and chemical responses to CO{sub 2} enrichment - Virginia pine (Pinus virginiana Mill.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Norby, R.J.; Neill, E.G.O.

    1985-03-01

    Global atmospheric CO{sub 2} concentrations have been increasing over the past several decades and are projected to continue increasing for several more decades. Because of the fundamental role of CO{sub 2} in the physiology of all green plants, changes in plant growth and productivity are expected. There is ample experimental evidence illustrating an increase in photosynthesis and growth with increasing CO{sub 2} concentrations. However, much of this evidence is based on short term results and optimal growth and nutrient conditions. Kramer raised the question of whether plants growing in natural environments, which are probably more often limited by water ormore » nutrient (especially nitrogen) deficiencies than by low CO{sub 2}, will respond to rising atmospheric CO{sub 2} concentrations. This package covers one segment of the research performed to determine whether the proposed mechanism occurs with elevated CO{sub 2} concentrations.« less

  7. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    PubMed

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia.

    PubMed

    Faust, Derek R; Kröger, Robert; Moore, Matthew T; Rush, Scott A

    2018-01-01

    Agricultural non-point sources of nutrients and sediments have caused eutrophication and other water quality issues in aquatic and marine ecosystems, such as the annual occurrence of hypoxia in the Gulf of Mexico. Management practices have been implemented adjacent to and in agricultural drainage ditches to promote their wetland characteristics and functions, including reduction of nitrogen, phosphorus, and sediment losses downstream. This review: (1) summarized studies examining changes in nutrient and total suspended solid concentrations and loads associated with management practices in drainage ditches (i.e., riser and slotted pipes, two-stage ditches, vegetated ditches, low-grade weirs, and organic carbon amendments) with emphasis on the Lower Mississippi Alluvial Valley, (2) quantified management system effects on nutrient and total suspended solid concentrations and loads and, (3) identified information gaps regarding water quality associated with these management practices and research needs in this area. In general, management practices used in drainage ditches at times reduced losses of total suspended solids, N, and P. However, management practices were often ineffective during storm events that were uncommon and intense in duration and volume, although these types of events could increase in frequency and intensity with climate change. Studies on combined effects of management practices on drainage ditch water quality, along with research towards improved nutrient and sediment reduction efficiency during intense storm events are urgently needed.

  9. Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850

    NASA Astrophysics Data System (ADS)

    Meier, H. E. M.; Eilola, K.; Almroth-Rosell, E.; Schimanke, S.; Kniebusch, M.; Höglund, A.; Pemberton, P.; Liu, Y.; Väli, G.; Saraiva, S.

    2018-06-01

    In the Baltic Sea hypoxia has been increased considerably since the first oxygen measurements became available in 1898. In 2016 the annual maximum extent of hypoxia covered an area of the sea bottom of about 70,000 km2, comparable with the size of Ireland, whereas 150 years ago hypoxia was presumably not existent or at least very small. The general view is that the increase in hypoxia was caused by eutrophication due to anthropogenic riverborne nutrient loads. However, the role of changing climate, e.g. warming, is less clear. In this study, different causes of expanding hypoxia were investigated. A reconstruction of the changing Baltic Sea ecosystem during the period 1850-2008 was performed using a coupled physical-biogeochemical ocean circulation model. To disentangle the drivers of eutrophication and hypoxia a series of sensitivity experiments was carried out. We found that the decadal to centennial changes in eutrophication and hypoxia were mainly caused by changing riverborne nutrient loads and atmospheric deposition. The impacts of other drivers like observed warming and eustatic sea level rise were comparatively smaller but still important depending on the selected ecosystem indicator. Further, (1) fictively combined changes in air temperature, cloudiness and mixed layer depth chosen from 1904, (2) exaggerated increases in nutrient concentrations in the North Sea and (3) high-end scenarios of future sea level rise may have an important impact. However, during the past 150 years hypoxia would not have been developed if nutrient conditions had remained at pristine levels.

  10. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less

  11. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE PAGES

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-16

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less

  12. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  13. Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gallego, Lorena; Achkar, Marcel; Defeo, Omar; Vidal, Leticia; Meerhoff, Erika; Conde, Daniel

    2017-03-01

    Five catchment areas in Uruguay were selected to conduct a nutrient exportation analysis and to evaluate the effects of current land use on the eutrophication of coastal lagoons. Satellite images and national agriculture censuses were used for a quantitative analysis of land use changes from 1974 to 2005, and a nutrient export coefficient approximation was used to determine long-term changes in annual loads. Several eutrophication indicators (water, sediment and autotrophic communities) were assessed seasonally in the lagoon basins during 2005 and 2006. The areal annual load of nutrients exported to the lagoons increased over time. Population and extensive livestock ranching were the most important nutrient sources, while agriculture is increasing in importance. Buffer effects of riparian forests on eutrophication indicators were observed in contrast to the wetlands surrounding the lagoons, which seem to be acting as a source of nutrients. Catchment size was inversely related to most eutrophication indicators. Afforestation and agriculture were found not to directly impact eutrophication indicators, however, catchments with larger agricultural areas showed higher concentrations of suspended solids, which may indicate the export of particulate nutrients. Salinity was inversely related to most eutrophication indicators, suggesting that the manipulation of the sand bar of the lagoons is a critical management issue. Sediment-related eutrophication indicators were more sensitive to changes in land uses and covers, in contrast with the more variable water column indicators, suggesting their potential use as enduring indicators. This research provides a rapid and integral assessment for qualitatively linking catchment changes with eutrophication indicators in coastal environments, which can easily be replicated to track pollutants in locations that lack standardized monitoring programs needed for more complex catchment modeling approaches.

  14. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    NASA Astrophysics Data System (ADS)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P. The current increasing reactive N deposition will increase N export from the root zone, while it will only accelerate TOC and DON turnover if P availability is simultaneously increased. The Saharan dust-related Ca deposition has no impact on TOC and DON turnover.

  15. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    USGS Publications Warehouse

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per liter. Based on nitrogen to phosphorus ratios calculated for Cross Lake, median values for all water-quality sites were within the nitrogen-limited range (less than or equal to 5). Historical Trophic State Indexes for Cross Lake classified the lake as eutrophic. Recent (1998-99) Trophic State Indexes classify Cross Lake as mesotrophic-eutrophic, which might indicate a recution in eutrophication. Sedimentation traps indicate that Cross Lake is filling at an average rate of 0.41 inches per year. Concentrations of fecal-coliform and streptococci bacteria generally were low. Fecal coliform was detected in higher concentrations than fecal streptococci. High bacterial concentrations were measured shortly after rainfall-runoff events, possibly washing bacteria from surrounding areas into the lake.

  16. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.

  17. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Treesearch

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  18. Seasonal and long-term changes in elemental concentrations and ratios of marine particulate organic matter

    NASA Astrophysics Data System (ADS)

    Talarmin, Agathe; Lomas, Michael W.; Bozec, Yann; Savoye, Nicolas; Frigstad, Helene; Karl, David M.; Martiny, Adam C.

    2016-11-01

    What is the temporal variability of the elemental stoichiometry of marine microbial communities across ocean regions? To answer this question, we present an analysis of environmental conditions, particulate organic carbon, nitrogen, and phosphorus concentrations and their ratios across 20 time series (3-25 years duration) representing estuarine, coastal, and open ocean environments. The majority of stations showed significant seasonal oscillations in particulate organic elemental concentrations and ratios. However, shorter-term changes contributed most to overall variance in particulate organic matter concentrations and ratios. We found a correlation between the seasonal oscillations of environmental conditions and elemental ratios at many coastal but not open ocean and estuarine stations. C:N peaked near the seasonal temperature minimum and nutrient maximum, but some stations showed other seasonal links. C:N ratios declined with time over the respective observation periods at all open ocean and estuarine stations as well as at five coastal station but increased at the nine other coastal stations. C:P (but not N:P) declined slightly at Bermuda Atlantic Time-series Study but showed large significant increases at Hawaii Ocean Time-series and Arendal stations. The relationships between long-term changes in environmental conditions and particulate organic matter concentrations or ratios were ambiguous, but interactions between changes in temperature and nutrient availability were important. Overall, our analysis demonstrates significant changes in elemental ratios at long-term and seasonal time scales across regions, but the underlying mechanisms are currently unclear. Thus, we need to better understand the detailed mechanisms driving the elemental composition of marine microbial ecosystems in order to predict how oceans will respond to environmental changes.

  19. Headwater Nutrient Concentration Patterns in Response to Storm Events Across Land Use Types using In Situ Sensors

    NASA Astrophysics Data System (ADS)

    Price, A.; Wollheim, W. M.; Mulukutla, G. K.; Carey, R. O.; McDowell, W. H.

    2012-12-01

    Understanding the aquatic biogeochemical impacts of land use change and climate variability will require improved understanding of nutrient variability over temporal scales ranging from storms to seasons. New in situ sensor technology offers the prospect of efficient nutrient measurements over multiple time scales. We quantified nutrient flux patterns in response to storm events across seasons using in situ nutrient sensors deployed in headwater streams draining three land use types (forest, suburban, and agriculture) within the Lamprey River watershed, New Hampshire, between April-December 2012. We utilized two sensor suites, each consisting of a Satlantic Submersible Ultraviolet Nitrate Analyzer (NO3-N), Turner Designs C6 Multi-Sensor Platform (CDOM, Turbidity, Chl), Hydrolab MS5 (Dissolved Oxygen, pH), WET Labs Cycle P (PO4-P), and Hobo Water Level & Conductivity meters. Preliminary spring/summer comparisons at the suburban site suggest increased baseflow nitrate concentrations and decreased diurnal nitrate variability (~0.05 vs. 0.035 mg/L daily fluctuation) following leaf emergence in spring. Nitrate concentrations were diluted during storms. Hysteresis was evident, suggesting groundwater nitrate sources attributable to septic systems were diluted by surface runoff during spring storms. The agricultural stream showed similar but more extreme patterns of increasing baseflow nitrate during the summer (~2.4 to 4.1 mg/L) and dilution during storms. The compilation of a high-frequency dataset for headwater streams across seasons and land-use types will provide valuable insight into complex land use/water quality relationships in urbanizing watersheds.

  20. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    NASA Astrophysics Data System (ADS)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  1. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    PubMed

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  2. Calcium, potassium, and sodium content of forest floor arthropods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichle, D.E.; Shanks, M.H.; Crossley, D.A. Jr.

    1969-01-01

    Whole-body nutrient composition of calcium, potassium, and sodium is documented for 37 species of forest floor arthropods. Sodium concentrations averaging 4.6 mg Na/g ash-free dry weight, and potassium concentrations averaging 6.2 mg K/g ash-free dry weight were relatively consistent within and among major taxonomic categories. Calcium content varied from 0.3 to 509.8 mg Ca/g ash-free dry weight, with highest values associated with Diplopoda and related species possessing highly calcified exoskeletons. Within-species variation in chemical composition often exceeded seasonal fluctuations, although several species exhibited significant temporal changes in whole-body nutrient composition of calcium, potassium, and sodium. 9 references, 3 tables.

  3. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions derived from the DSM2-HYDRO hydrologic model demonstrate that mixing between San Joaquin and Sacramento River water can occur as far as 30 miles upstream of the confluence within the San Joaquin channel, and that San Joaquin-derived nitrate only reaches the western Delta during periods of high flow.

  4. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae

    PubMed Central

    Harke, Matthew J.; Juhl, Andrew R.; Haley, Sheean T.; Alexander, Harriet; Dyhrman, Sonya T.

    2017-01-01

    The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations. PMID:28769884

  5. Site-specific early performance and nutrition of two Salix species in SRIC in southern Quebec (Canada)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labrecque, M.; Teodorescu, T.I.; Daigle, S.

    1996-12-31

    Salix discolor WU and Salix viminalis L. were planted under short-rotation intensive culture (SRIC) in three unirrigated and unfertilized abandoned farmland sites (S1, S2, S3) showing different soil textures: sandy loam, clay silt and clay loam. The aims of the experiment were to: (i) investigate first year response to site nutrient condition and (ii) diagnose factors limiting performance. Over the first season, stem biomass productivity was superior on the sandy site (S1) for S. discolor and did not vary between species on clay sites (S2, S3). The inferior performance of plants on clay sites was related to difficulty implanting unrootedmore » cuttings in compacted soil during an exceptionally dry period (May and June). The change in nutrient status was unapparent solely from comparison of critical levels or optimum ratios because leaf nutrient concentration was less affected by site. Diagnostic techniques based on vector analysis of leaf nutrient concentration, content, and dry mass allowed simultaneous comparison of the nutrient status of two species planted on three sites. The relative deficiency of all nutrients, based on vector magnitude and direction, on the two other clay sites (S2, S3) supports the hypothesis that specific edaphic conditions and dryness induced nutrient disorders in willows. Successful establishment of willows in SRIC depends strongly on the characteristics of the plantation site and on precipitation during the establishment phase in the first year of growth.« less

  6. Mechanisms of nutrient retention and its relation to flow connectivity in river-floodplain corridors

    USGS Publications Warehouse

    Larsen, Laurel; Harvey, Judson; Maglio, Morgan M.

    2015-01-01

    Understanding heterogeneity or patchiness in the distribution of vegetation and retention of C and nutrients in river corridors is critical for setting priorities for river management and restoration. Several mechanisms of spatial differentiation in nutrient retention in river and floodplain corridors have been recognized, but few studies have distinguished their relative importance or established their role in long-term geomorphic change, nutrient retention, and connectivity with downstream systems. We evaluated the ability of 3 mechanisms (evapotranspiration focusing [EF], differential hydrologic exchange [DHE], and particulate nutrient redistribution [PNR]) to explain spatial patterns of P retention and function in the Everglades (Florida, USA). We used field measurements in sloughs and on slightly higher, more densely vegetated ridges to quantify P fluxes attributable to the 3 mechanisms. EF does not explain Everglades nutrient retention or P concentrations on ridges and in sloughs. However, DHE resulting from different periods of groundwater–surface-water connectivity across topographic elements is the primary cause of elevated P concentrations on ridges and completely explains interpatch differences in long-term P accumulation rates. With historical flow velocities, which were an order of magnitude higher than at present, PNR would have further increased the interpatch difference in long-term P retention rates nearly 2-fold. In conclusion, DHE and PNR are the dominant drivers of nutrient patchiness in the Everglades and are hypothesized to be important in P-limited river and floodplain corridors globally.

  7. Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents.

    PubMed

    David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette

    2013-03-01

    This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.

  8. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  9. Antarctic Ocean Nutrient Conditions During the Last Two Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Studer, A.; Sigman, D. M.; Martinez-Garcia, A.; Benz, V.; Winckler, G.; Kuhn, G.; Esper, O.; Lamy, F.; Jaccard, S.; Wacker, L.; Oleynik, S.; Gersonde, R.; Haug, G. H.

    2014-12-01

    The high concentration of the major nutrients nitrate and phosphate in the Antarctic Zone of the Southern Ocean dictates the nature of Southern Ocean ecosystems and permits these nutrients to be carried from the deep ocean into the nutrient-limited low latitudes. Incomplete nutrient consumption in the Antarctic also allows the leakage of deeply sequestered carbon dioxide (CO2) back to the atmosphere, and changes in this leakage may have driven glacial/interglacial cycles in atmospheric CO2. In a sediment core from the Pacific sector of the Antarctic Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two assemblages of diatom species. These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Measurements in the same sediment core indicate that export production was reduced during ice ages, pointing to an ice age reduction in the supply of deep ocean-sourced nitrate to the Antarctic Ocean surface. The reduced export production of peak ice ages also implies a weaker winter-to-summer decline (i.e. reduced seasonality) in mixed layer nitrate concentration, providing a plausible explanation for an observed reduction in the inter-assemblage δ15Ndb difference during these coldest times. Despite the weak summertime productivity, the reduction in wintertime nitrate supply from deep waters left the Antarctic mixed layer with a low nitrate concentration, and this wintertime change also would have reduced the outgassing of CO2. Relief of light limitation fails to explain the intermediate degree of nitrate consumption that characterizes early glacial conditions, as improved light limitation coincident with reduced nitrate supply would drive nitrate consumption to completion. Thus, the data favor iron availability as the dominant control on annual Antarctic Ocean export production over glacial cycles.

  10. A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin.

    PubMed

    Alameddine, Ibrahim; Qian, Song S; Reckhow, Kenneth H

    2011-01-01

    In-stream nutrient concentrations are well known to exhibit a strong relationship with river flow. The use of flow measurements to predict nutrient concentrations and subsequently nutrient loads is common in water quality modeling. Nevertheless, most adopted models assume that the relationship between flow and concentration is fixed across time as well as across different flow regimes. In this study, we developed a Bayesian changepoint-threshold model that relaxes these constraints and allows for the identification and quantification of any changes in the underlying flow-concentration relationship across time. The results from our study support the occurrence of a changepoint in time around the year 1999, which coincided with the period of implementing nitrogen control measures as part of the TMDL program developed for the Neuse Estuary in North Carolina. The occurrence of the changepoint challenges the underlying assumption of temporal invariance in the flow-concentrations relationship. The model results also point towards a transition in the river nitrogen delivery system from a point source dominated loading system towards a more complicated nonlinear system, where non-point source nutrient delivery plays a major role. Moreover, we use the developed model to assess the effectiveness of the nitrogen reduction measures in achieving a 30% drop in loading. The results indicate that while there is a strong evidence of a load reduction, there still remains a high level of uncertainty associated with the mean nitrogen load reduction. We show that the level of uncertainty around the estimated load reduction is not random but is flow related. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dissecting nutrient-related co-expression networks in phosphate starved poplars.

    PubMed

    Kavka, Mareike; Polle, Andrea

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.

  12. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    PubMed

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  13. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    PubMed Central

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  14. Rain Gardens: Stormwater Infiltrating Systems

    EPA Science Inventory

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  15. Effects of long-term elevated CO2 treatment on the inner and outer bark chemistry of sweetgum (Liquidambar styraciflua L.) trees

    Treesearch

    Thomas L. Eberhardt; Nicole Labbé; Chi-Leung So; Keonhee Kim; Karen G. Reed; Daniel J. Leduc; Jeffrey M. Warren

    2015-01-01

    Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO2) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevatedCO2 concentrations on tree foliar chemistry are well...

  16. Release and retention patterns of organic compounds and nutrients after the cold period in foliar litterfall of pure European larch, common beech and red oak plantations in Lithuania

    NASA Astrophysics Data System (ADS)

    Čiuldienė, D.; Aleinikovienė, J.; Muraškienė, M.; Marozas, V.; Armolaitis, K.

    2017-01-01

    This study was carried out in alien warmth-tolerant forest plantations of red oak ( Quercus rubra), common beech ( Fagus sylvatica) and European larch ( Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.

  17. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds

    USGS Publications Warehouse

    Tesoriero, A.J.; Duff, J.H.; Wolock, D.M.; Spahr, N.E.; Almendinger, J.E.

    2009-01-01

    Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds having a range of base flow index (BFI) values across the continental United States to determine the dominant pathways for water and nutrient inputs to streams. Estimates of the proportion of stream nitrate that was derived from groundwater increased as BFI increased. Nitrate concentration gradients between groundwater and surface water further supported the groundwater source of nitrate in these high BFI streams. However, nitrate concentrations in stream-bed pore water in all settings were typically lower than stream or upland groundwater concentrations, suggesting that nitrate discharge to streams was not uniform through the bed. Rather, preferential pathways (e.g., springs, seeps) may allow high nitrate groundwater to bypass sites of high biogeochemical transformation. Rapid pathway compartments (e.g., overland flow, tile drains) had OP concentrations that were typically higher than in streams and were important OP conveyers in most of these watersheds. In contrast to nitrate, the proportion of stream OP that is derived from ground water did not systematically increase as BFI increased. While typically not the dominant source of OP, groundwater discharge was an important pathway of OP transport to streams when BFI values were very high and when geochemical conditions favored OP mobility in groundwater. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Groundwater nutrient concentrations near an incised midwestern stream: Effects of floodplain lithology and land management

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2008-01-01

    It has been recognized that subsurface lithology plays an important role in controlling nutrient cycling and transport in riparian zones. In Iowa and adjacent states, the majority of alluvium preserved in small and moderate sized valleys consists of Holocene-age organic-rich, and fine-grained loam. In this paper, we describe and evaluate spatial and temporal patterns of lithology and groundwater nutrient concentrations at a riparian well transect across Walnut Creek at the Neal Smith National Wildlife Refuge in Jasper County, Iowa. Land treatment on one side of the stream reduced the grass cover to bare ground and allowed assessment of the effects of land management on nutrient concentrations. Results indicated that groundwater in Holocene alluvium is very nutrient rich with background concentrations of nitrogen, phosphorus and dissolved organic carbon that exceed many environmentally sensitive criteria. Average concentrations of ammonium exceeded 1 mg/l in several wells under grass cover whereas nitrate concentrations exceeded 20 mg/l in wells under bare ground. Phosphate concentrations ranged from 0.1 to 1.3 mg/l and DOC concentrations exceeded 5 mg/l in many wells. Denitrification, channel incision, land management and geologic age of alluvium were found to contribute to variable nutrient loading patterns at the site. Study results indicated that riparian zones of incised streams downcutting through nutrient-rich Holocene alluvium can potentially be a significant source of nutrient loadings to streams. ?? 2008 Springer Science+Business Media B.V.

  19. Gastropod growth and survival as bioindicators of stress associated with high nutrients in the intertidal of a shallow temperate estuary

    NASA Astrophysics Data System (ADS)

    Marsden, Islay D.; Baharuddin, Nursalwa

    2015-04-01

    The effects of multiple stressors on estuarine organisms are not well understood. Using cage experiments we measured the survival and growth of the pulmonate gastropod Amphibola crenata at five locations which differed contaminant levels. Water nutrients came from a nearby sewage treatment works and the sediment contained low levels of trace metals. Over 6 weeks of exposure, sediment surface chlorophyll levels varied amongst locations. The Chl a values were positively correlated with sediment N and P and trace metals As, Cd, Cu, Pb and Zn. Pulmonate survival depended on location, highest mortality was from a site close to the treatment plant and mortality rate of large individuals decreased significantly with distance away from it. For four locations, medium A. crenata had higher survival than small (juveniles) or adults. Growth rates of small individuals exceeded those for medium and large A. crenata. The mean length increment/week for medium gastropods ranged between 0.49 and 1.11 mm and was negatively correlated with the amount of Chl a in the surface sediment, suggesting the negative effects of eutrophication on gastropod growth. Growth rate of the pulmonate was not correlated with nutrient concentration or trace metal concentrations in the sediment. The dry weight condition index (CI) did not correlate with the growth rate, and for medium individuals, was unaffected by any of the environmental variables. The CI of small individuals was negatively affected by increasing water nutrient levels and the CI of large individuals negatively affected by increasing sediment nutrients and trace metal concentrations. The results from this study suggest that gastropod growth and survival could be used as tools to monitor the effects of changing nutrient levels and recovery from eutrophication within temperate estuaries.

  20. The effects of temporal variability of mixed layer depth on primary productivity around Bermuda

    NASA Technical Reports Server (NTRS)

    Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.

    1994-01-01

    Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.

  1. Effects of nitrate and phosphate supply on chromophoric and fluorescent dissolved organic matter in the Eastern Tropical North Atlantic: a mesocosm study

    NASA Astrophysics Data System (ADS)

    Loginova, A. N.; Borchard, C.; Meyer, J.; Hauss, H.; Kiko, R.; Engel, A.

    2015-12-01

    In open-ocean regions, as is the Eastern Tropical North Atlantic (ETNA), pelagic production is the main source of dissolved organic matter (DOM) and is affected by dissolved inorganic nitrogen (DIN) and phosphorus (DIP) concentrations. Changes in pelagic production under nutrient amendments were shown to also modify DOM quantity and quality. However, little information is available about the effects of nutrient variability on chromophoric (CDOM) and fluorescent (FDOM) DOM dynamics. Here we present results from two mesocosm experiments ("Varied P" and "Varied N") conducted with a natural plankton community from the ETNA, where the effects of DIP and DIN supply on DOM optical properties were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. Spectral slope (S) decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was produced by bacteria proportionally to DIN supply. The protein-like FDOM component (Comp.2) was released irrespectively to phytoplankton or bacterial biomass, but depended on DIP and DIN concentrations. Under high DIN supply, Comp.2 was removed by bacterial reworking, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation of Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and quality of optically active DOM and, therefore, might bias results of the applied in situ optical techniques for an estimation of DOC concentrations in open-ocean regions.

  2. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate

    PubMed Central

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10–20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution. PMID:28678884

  3. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.

  4. Plant–Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior

    PubMed Central

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325

  5. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.

    PubMed

    Rosic, Nedeljka; Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Ling, Edmund Yew Siang; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2014-12-02

    Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 μM). The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect oxidative stress and apoptotic changes on a molecular level and provide a list of prospective stress biomarkers for both partners in symbiosis. Consequently, our findings are important for understanding and anticipating impacts of anthropogenic global climate change on coral reefs.

  6. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

    PubMed Central

    Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.

    2016-01-01

    Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR. PMID:27135946

  7. Achieving global perfect homeostasis through transporter regulation

    PubMed Central

    Springer, Michael

    2017-01-01

    Nutrient homeostasis—the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments—is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis—a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems. PMID:28414718

  8. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.

    PubMed

    van Katwijk, M M; van der Welle, M E W; Lucassen, E C H E T; Vonk, J A; Christianen, M J A; Kiswara, W; al Hakim, I Inayat; Arifin, A; Bouma, T J; Roelofs, J G M; Lamers, L P M

    2011-07-01

    In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  10. Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Shatova, O. A.; Wing, S. R.; Hoffmann, L. J.; Wing, L. C.; Gault-Ringold, M.

    2017-05-01

    Phytoplankton biomass, productivity and community structure are strongly influenced by differences in nutrient concentrations among oceanographic water masses. Changes in community composition, particularly in the distribution of cell sizes, can result in dramatic changes in the energetics of pelagic food webs and ecosystem function in terms of biogeochemical cycling and carbon sequestration. Here we examine responses of natural phytoplankton communities from four major water masses in the Southern Ocean to enrichment from seabird guano, a concentrated source of bioactive metals (Mn, Fe, Co, Ni, Cu, Zn) and macronutrients (N, P), in a series of incubation experiments. Phytoplankton communities from sub-tropical water, modified sub-tropical water from the Snares Island wake, sub-Antarctic water and Antarctic water from the Ross Sea, each showed dramatic changes in community structure following additions of seabird guano. We observed particularly high growth of prymnesiophytes in response to the guano-derived nutrients within sub-Antarctic and sub-tropical frontal zones, resulting in communities dominated by larger cell sizes than in control incubations. Community changes within treatments enriched with guano were distinct, and in most cases more extensive, than those observed for treatments with additions of macronutrients (N, P) or iron (Fe) alone. These results provide the first empirical evidence that seabird guano enrichment can drive significant changes in the structure and composition of natural phytoplankton communities. Our findings have important implications for understanding the consequences of accumulation of bioactive metals and macronutrients within food webs and the role of seabirds as nutrient vectors within the Southern Ocean ecosystem.

  11. "Land-Cover Conversion in Amazonia, The Role of ENV" Ironment and Substrate composition in Modifying SOI

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.

    2003-01-01

    LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.

  12. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    PubMed

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity. © 2017 by the Ecological Society of America.

  13. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales

    USGS Publications Warehouse

    Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.

    2017-01-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.

  14. The role of shoreland development and commercial cranberry farming in a lake in Wisconsin, USA

    USGS Publications Warehouse

    Garrison, P.J.; Fitzgerald, S.A.

    2005-01-01

    Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the significant increase in residential housing.

  15. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  16. Plant response to nutrient availability across variable bedrock geologies

    USGS Publications Warehouse

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  17. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    PubMed

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High latitude control on tropical North Pacific thermocline oxygen via deep ocean circulation: implications for atmospheric CO2 and N2O concentrations over TERM1.

    NASA Astrophysics Data System (ADS)

    Jaccard, S. L.; Eric, G. D.; Haug, G. H.; Sigman, D. M.; Francois, R.; Dulski, P.

    2006-12-01

    Low-latitude Pacific Ocean records of past changes in productivity and denitrification have often been ascribed to local processes, including changes in local wind forcing, with some recent hypothesis calling on remote control by thermocline ventilation processes. Here we show that deep thermohaline circulation, a fundamentally high-latitude process, is also linked to the low-latitude thermocline biogeochemistry through its impact on nutrient and dissolved oxygen distributions. We present new, multi-proxy evidence from sediment records from the abyssal subarctic North Pacific, including sedimentary redox-sensitive trace metal distribution, Th-normalized biogenic barium, calcium carbonate, and opal mass accumulation rates, and bulk sedimentary 15N measurements. These proxies show that the abyss was significantly depleted in oxygen, and low 13C, all consistent with high DIC concentrations. Meanwhile, above a deep chemical divide, the overlying waters were relatively well-oxygenated and nutrient-poor. At the mid-point of the deglaciation, the glacial deep water mass dissipated upwards in the water column, releasing deeply-sequestered CO2 to the atmosphere and shifting nutrients into the thermocline. The flux of regenerated nutrients to the sunlit surface ocean associated with this breakdown of the deep water mass enhanced primary productivity throughout the subarctic Pacific, while records from lower latitudes of the North Pacific show a parallel boom in export production. The accelerated flux of organic matter from the surface contributed towards an intensification of the thermocline oxygen minimum zone, accelerating denitrification in the Eastern (sub)tropical North Pacific and the production of nitrous oxide. These observations, taken together with our evidence for changes in the deep North Pacific, suggest that the flux of nutrients from the deep North Pacific into the upper water column increased at the end of the ice age. This release may have occurred via the polar oceans, which today feed nutrients into the lower latitude thermocline. Alternatively, it may have occurred directly, by vertical mixing in the ocean interior. Regardless of the mechanism, this transition led to the modern configuration of a relatively well-ventilated deep sea, overlain by an oxygen minimum.

  19. Limnology of Blue Mesa, Morrow Point, and Crystal Reservoirs, Curecanti National Recreation area, during 1999, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir, Colorado

    USGS Publications Warehouse

    Bauch, Nancy J.; Malick, Matt

    2003-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher in Blue Mesa Reservoir than Morrow Point or Crystal Reservoirs. Blue Mesa Reservoir was mesotrophic in upstream areas and oligotrophic downstream. Both Morrow Point and Crystal Reservoirs were oligotrophic. Trophic-state index values were determined for total phosphorus, chlorophyll-a, and Secchi depth for each reservoir by the Carlson method; all values ranged between 29 and 55. Only the upstream areas in Blue Mesa Reservoir had total phosphorus and chlorophyll-a indices above 50, reflecting mesotrophic conditions. Nutrient inflows to Blue Mesa Reservoir, which were derived primarily from the Gunnison River, varied on a seasonal basis, whereas nutrient inflows to Morrow Point and Crystal Reservoirs, which were derived primarily from deep water releases from the respective upstream reservoir, were steady throughout the sampling period. Total phosphorus concentrations were elevated in many stream inflows. A comparison of current (as of 1999) and historical nutrient, chlorophyll-a, and trophic conditions in Blue Mesa Reservoir and its tributaries indicated that the trophic status in Blue Mesa Reservoir has not changed over the last 25 years, and more recent nutrient enrichment has not occurred.

  20. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  1. Estimation of postfire nutrient loss in the Florida everglades.

    PubMed

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Postfire nutrient release into ecosystem via plant ash is critical to the understanding of fire impacts on the environment. Factors determining a postfire nutrient budget are prefire nutrient content in the combustible biomass, burn temperature, and the amount of combustible biomass. Our objective was to quantitatively describe the relationships between nutrient losses (or concentrations in ash) and burning temperature in laboratory controlled combustion and to further predict nutrient losses in field fire by applying predictive models established based on laboratory data. The percentage losses of total nitrogen (TN), total carbon (TC), and material mass showed a significant linear correlation with a slope close to 1, indicating that TN or TC loss occurred predominantly through volatilization during combustion. Data obtained in laboratory experiments suggest that the losses of TN, TC, as well as the ratio of ash total phosphorus (TP) concentration to leaf TP concentration have strong relationships with burning temperature and these relationships can be quantitatively described by nonlinear equations. The potential use of these nonlinear models relating nutrient loss (or concentration) to temperature in predicting nutrient concentrations in field ash appear to be promising. During a prescribed fire in the northern Everglades, 73.1% of TP was estimated to be retained in ash while 26.9% was lost to the atmosphere, agreeing well with the distribution of TP during previously reported wild fires. The use of predictive models would greatly reduce the cost associated with measuring field ash nutrient concentrations.

  2. Sodium Content of Foods Contributing to Sodium Intake: Comparison between Selected Foods from the CDC Packaged Food Database and the USDA National Nutrient Database for Standard Reference

    PubMed Central

    Maalouf, Joyce; Cogswell, Mary E.; Yuan, Keming; Martin, Carrie; Gillespie, Cathleen; Ahuja, Jaspreet KC; Pehrsson, Pamela; Merritt, Robert

    2015-01-01

    The sodium concentration (mg/100g) for 23 of 125 Sentinel Foods (e.g. white bread) were identified in the 2009 CDC Packaged Food Database (PFD) and compared with data in the USDA’s 2013 National Nutrient Database for Standard Reference(SR 26). Sentinel Foods are foods identified by USDA to be monitored as primary indicators to assess the changes in the sodium content of commercially processed foods from stores and restaurants. Overall, 937 products were evaluated in the CDC PFD, and between 3 (one brand of ready-to-eat cereal) and 126 products (white bread) were evaluated per selected food. The mean sodium concentrations of 17 of the 23 (74%) selected foods in the CDC PFD were 90%–110% of the mean sodium concentrations in SR 26 and differences in sodium concentration were statistically significant for 6 Sentinel Foods. The sodium concentration of most of the Sentinel Foods, as selected in the PFD, appeared to represent the sodium concentrations of the corresponding food category. The results of our study help improve the understanding of how nutrition information compares between national analytic values and the label and whether the selected Sentinel Foods represent their corresponding food category as indicators for assessment of change of the sodium content in the food supply. PMID:26484010

  3. Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by low molecular weight nutrients

    PubMed Central

    Holley, Robert W.; Armour, Rosemary; Baldwin, Julia H.

    1978-01-01

    BSC-1 cells, epithelial cells of African green monkey kidney origin, show pronounced density-dependent regulation of growth in cell culture. Growth of the cells is rapid to a density of approximately 1.5 × 105 cells/per cm2 in Dulbecco-modified Eagle's medium supplemented with 10% calf serum. Above this “saturation density,” growth is much slower. It has been found that the glucose concentration in the culture medium is important in determining the “saturation density.” If the glucose concentration is increased 4-fold, the “saturation density” increases approximately 50%. Reduction of the “saturation density” of BSC-1 cells is also possible by decreasing the concentrations of low molecular weight nutrients in the culture medium. In medium supplemented with 0.1% calf serum, decreasing the concentrations of all of the organic constituents of the medium, from the high levels present in Dulbecco-modified Eagle's medium to concentrations near physiological levels, decreases the “saturation density” by approximately half. The decreased “saturation density” is not the result of lowering the concentration of any single nutrient but rather results from reduction of the concentrations of several nutrients. When the growth of BSC-1 cells is limited by low concentrations of all of the nutrients, some stimulation of growth results from increasing, separately, the concentrations of individual groups of nutrients, but the best growth stimulation is obtained by increasing the concentrations of all of the nutrients. The “wound healing” phenomenon, one manifestation of density-dependent regulation of growth in cell culture, is abolished by lowering the concentration of glutamine in the medium. Density-dependent regulation of growth of BSC-1 cells in cell culture thus appears to be a complex phenomenon that involves an interaction of nutrient concentrations with other regulatory factors. PMID:272650

  4. Analyzing B-vitamins in Human Milk: Methodological Approaches.

    PubMed

    Hampel, Daniela; Allen, Lindsay H

    2016-01-01

    According to the World Health Organization (WHO), infants should be exclusively breastfed for the first six months of life. However, there is insufficient information about the concentration of nutrients in human milk. For some nutrients, including B-vitamins, maternal intake affects their concentration in human milk but the extent to which inadequate maternal diets affect milk B-vitamin content is poorly documented. Little is known about infant requirements for B-vitamins; recommendations are generally set as Adequate Intakes (AI) calculated on the basis of the mean volume of milk (0.78 L/day) consumed by infants exclusively fed with human milk from well-nourished mothers during the first six months, and the concentration of each vitamin in milk based on reported values. Methods used for analyzing B-vitamins, commonly microbiological, radioisotope dilution or more recently chromatographic, coupled with UV, fluorometric and MS detection, have rarely been validated for the complex human milk matrix. Thus the validity, accuracy, and sensitivity of analytical methods is important for understanding infant requirements for these nutrients, the maternal intakes needed to support adequate concentrations in breast milk. This review summarizes current knowledge on methods used for analyzing the B-vitamins thiamin, riboflavin, niacin, vitamin B-6 and pantothenic acid, vitamin B-12, folate, biotin, and choline in human milk, their chemical and physical properties, the different forms and changes in concentration during lactation, and the effects of deficiency on the infant.

  5. The Effects of Inorganic Nitrogen form and CO2 Concentration on Wheat Yield and Nutrient Accumulation and Distribution

    PubMed Central

    Carlisle, Eli; Myers, Samuel; Raboy, Victor; Bloom, Arnold

    2012-01-01

    Inorganic N is available to plants from the soil as ammonium (NH4+) and nitrate (NO3-). We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3−) and CO2 concentration (“subambient,” “ambient,” and “elevated”) in terms of biomass, yield, and nutrient accumulation and partitioning. Wheat supplied with NH4+ as a sole N source had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+-supplied plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3--supplied plants had higher concentrations of Mg, B, Mn, and NO3- - N. NH4+-supplied plants contained amounts of phytate similar to NO3−-supplied plants but had higher bioavailable Zn, which could have consequences for human health. NH4+-supplied plants allocated more nutrients and biomass to aboveground tissues whereas NO3+-supplied plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration. PMID:22969784

  6. On-line process analysis innovation: DiComp (tm) shunting dielectric sensor technology

    NASA Technical Reports Server (NTRS)

    Davis, Craig R.; Waldman, Frank A.

    1993-01-01

    The DiComp Shunting Dielectric Sensor (SDS) is a new patent-pending technology developed under the Small Business Innovation Research Program (SBIR) for NASA's Kennedy Space Center. The incorporation of a shunt electrode into a conventional fringing field dielectric sensor makes the SDS uniquely sensitive to changes in material dielectric properties in the KHz to MHz range which were previously detectable only at GHz measurement frequencies. The initial NASA application of the SDS for Nutrient Delivery Control has demonstrated SDS capabilities for thickness and concentration measurement of Hoagland nutrient solutions. The commercial introduction of DiComp SDS technology for concentration and percent solids measurements in dispersions, emulsions and solutions represents a new technology for process measurements for liquids in a variety of industries.

  7. Temporal and spatial changes in nutrients and chlorophyll-a in a shallow lake, Lake Chaohu, China: an 11-year investigation.

    PubMed

    Yang, Libiao; Lei, Kun; Meng, Wei; Fu, Guo; Yan, Weijin

    2013-06-01

    Temporal and spatial changes of total nitrogen (TN), total phosphorus (TP) and chlorophyll-a (Chl-a) in a shallow lake, Lake Chaohu, China, were investigated using monthly monitoring data from 2001 through 2011. The results showed that the annual mean concentration ranges of TN, TP, and Chl-a were 0.08-14.60 mg/L, 0.02-1.08 mg/L, and 0.10-465.90 microg/L, respectively. Our data showed that Lake Chaohu was highly eutrophic and that water quality showed no substantial improvement during 2001 through 2011. The mean concentrations of TP, TN and Chl-a in the western lake were significantly higher than in the eastern lake, which indicates a spatial distribution of the three water parameters. The annual mean ratio of TN:TP by weight ranged from 10 to 20, indicating that phosphorus was the limiting nutrient in this lake. A similar seasonality variation for TP and Chl-a was observed. Riverine TP and NH4+ loading from eight major tributaries were in the range of 1.56 x 10(4)-5.47 x 10(4) and 0.19 x 10(4)-0.51 x 10(4) tons/yr over 2002-2011, respectively, and exceeded the water environmental capability of the two nutrients in the lake by a factor of 3-6. Thus reduction of nutrient loading in the sub-watershed and tributaries would be essential for the restoration of Lake Chaohu.

  8. Cycling of nutrient elements in the North Sea

    NASA Astrophysics Data System (ADS)

    Brockmann, U. H.; Laane, R. W. P. M.; Postma, J.

    The cycling of elements of inorganic and organic nutrients (carbon, nitrogen, phosphorus and silicate) in the North Sea is described. The regional effects on nutrient cycling such as thermal and haline stratification, coastal interaction, river discharges, upwelling and frontal zones are discussed. The horizontal and vertical distribution of the inorganic nutrients (nitrate, phosphate, ammonia and silicate) at the surface is given for the whole North Sea during two situations: spring (1986) and winter (1987). In winter, highest nutrient concentrations were found at the northern boundary in the Atlantic inflow, and in the continental coastal waters. During the winter cruise, nutrient minima were detected in the Dogger Bank area. This is an indication that primary production continues during winter. Generally, the surface concentrations during winter were similar to the bottom concentrations. Except for phosphate, highest concentrations were measured just above the bottom. During late spring 1986 the concentrations of nutrients at the surface and below the densicline were generally significantly lower than during winter. Only at the Atlantic boundary in the north and near the estuaries higher concentrations were detected. In stratified parts of the North Sea, the decomposition of sedimented biomass caused the ammonia concentrations in the bottom layer to be significantly higher in spring than in winter. Incidents of frontal upwelling in the central North Sea introduce nutrient-rich bottom water into the euphotic zone, enhancing phytoplankton growth in the central North Sea during summer. The ratios of nitrogen nutrients to phosphate show that in the central North Sea nitrogen is a limiting factor rather than phosphorus, whereas in the continental coastal water and off England the opposite is true. Riverine input and trapping mechanisms in the estuaries and tidal flats cause the concentrations of organic matter (dissolved and particulate) to be highest in the coastal zones and to decrease seaward. During summer the concentration of dissolved organic carbon increases throughout the North Sea. It is calculated that about 60% of the biomass formed by primary production is converted into dissolved organic carbon, 40% directly goes into the foodweb. The biological impact of the plankton is readily apparent from increased surface concentrations of different dissolved organic substances during spring blooms. Examples of eutrophication and effects of nutrient limitation are given, together with other biological repercussions such as coupling of phytoplankton and nutrient succession. Budget calculations for the different nutrient elements show that in the North Sea the biological turnover greatly exceeds the estimated annual inflow and outflow of nutrient elements. Finally, recommendations are given for future research. They include analysing dissolved organic compounds and micronutrients and following multidisciplinary measurements strategies at one location in order to obtain more information for balancing budgets and for the detailed analysis of nutrient cycling in the North Sea.

  9. Internal loading of phosphorus in a sedimentation pond of a treatment wetland: effect of a phytoplankton crash.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J

    2011-05-01

    Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    NASA Astrophysics Data System (ADS)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  11. The interacting effects of nutrient enrichment and ocean acidification on the growth and physiology of the macroalgae Ulva sp.

    NASA Astrophysics Data System (ADS)

    Reidenbach, L. B.; Hurd, C. L.; Kubler, J.; Fernandez, P. A.; Leal, P. P.; Noisette, F.; Revill, A. T.; McGraw, C. M.

    2016-02-01

    Ocean acidification, caused by the increased absorption of carbon dioxide in the ocean, changes the carbon chemistry in the seawater, decreases pH, and alters the chemical speciation of some nitrogenous compounds, such as ammonium. The green macroalgae Ulva spp. are intertidal species that occur worldwide. Ocean acidification may alter the growth response of Ulva sp. to increased nutrients by altering the photosynthetic and nutrient physiology of the algae as well as the bioavailability of nutrients. To determine if there is an interactive effect between ocean acidification and nutrient enrichment Ulva sp. were grown in the lab in a cross of three pCO2 levels under ambient and enriched ammonium concentrations. We predicted that the growth rates of Ulva sp. in ammonium enriched treatments would be enhanced by increased pCO2 relative to those in ambient ammonium concentrations. While growth rate, relative electron transport rates, and chlorophyll content were enhanced by enriched ammonium, there was no interactive effect of high pCO2 and ammonium enrichment. Ammonium uptake rates and ammonium pools were not affected by the pH and ammonium interaction, but nitrate reductase activity increased in the high pCO2, high ammonium treatments. Increased pCO2 has been found to increase Ulva sp. growth rates under some conditions, but this was not the case in this set of experiments. To make realistic predictions of Ulva sp. abundances into the future, based on better understanding of their physiology, ocean acidification experiments should include additional environmental variables such as light intensity and macronutrient supplies that may simultaneously be affected by climate change.

  12. Soil Biogeochemistry in a Changing Climate: Effect of Snow Removal

    NASA Astrophysics Data System (ADS)

    Patel, K.; Tatariw, C.; Fernandez, I. J.; Macrae, J. D.; Ohno, T.

    2016-12-01

    Winter snowpack plays an important role in ecosystem functioning, thermally insulating the subnivean soil from freezing temperatures. Wintertime microbial mineralization of organic material results in accumulation of nutrients under the snowpack, which are available post-melt for plant root uptake. The northeastern United States has experienced declining snow accumulation, and climate models project this trend will continue in the future. Intermittent and reduced snow cover increases soil freezing and frost damage, which can have implications on spring nutrient availability and forest productivity. We conducted a 2-year snow removal experiment in the Dwight B. DeMeritt Forest at the University of Maine to study subnivean winter processes, and to examine the effect of a decreased snowpack on soil winter and spring biogeochemistry. Surface organic soils were collected during winter and spring of 2015 and 2016, years with sharply contrasting snow accumulation, to track temporal changes in nutrient dynamics as the system evolved from under the snowpack. Laboratory extractions and incubations were performed to quantify the inorganic available nitrogen, dissolved organic carbon (DOC), and potential net N-mineralization (PNNM) in field moist soils. Snow removal resulted in decreased winter soil temperatures (2-8°C colder than the reference plots). There was an increased incidence of rain-on-soil events in the winter, forming concrete frost. Freeze-thaw cycles in the treatment plots resulted in higher NH4-N and DOC concentrations, but lower PNNM, compared to the reference plots. Treatment effects on DOC and NH4-N concentrations were not seen in the spring, although the effects on PNNM persisted. Our findings demonstrated that freeze-thaw cycles play an important role in the timing and magnitude of soil nutrient availability during the vernal transition. Understanding these processes becomes increasingly important when defining forest ecosystem response to a changing climate.

  13. Relative importance of P and N in macrophyte and epilithic algae biomass in a wastewater-impacted oligotrophic river.

    PubMed

    Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina

    2016-08-01

    The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.

  14. Temperature and Nutrient Effects on Periphyton Associated Bacterial Communities in Continuous Flow-Through Estuarine Mesocosms

    NASA Astrophysics Data System (ADS)

    Houghton, K.; James, J. B.; Devereux, R.; Friedman, S. D.

    2016-02-01

    Nutrient pollution is a leading cause of water quality impairments and degraded aquatic ecosystem condition. Reliable and reproducible indicators of ecosystem condition are needed to help manage nutrient pollution. The diatom component of periphyton has been used as a water quality indicator due to identifiable cell morphology and existence of relationships between nutrient concentration and diatom community composition. However, morphological identification of diatoms requires highly specialized personnel, is very time consuming, and can produce variable results, suggesting the need for alternative methods that are less expensive and more reproducible. DNA sequencing of the bacterial 16S rRNA gene is well documented and provides genus-level resolution of the community structure. The goal of this study was to evaluate the effects of nutrient loading and temperature on periphyton-associated bacterial communities using standard periphytometer techniques and next generation sequencing technologies. Continuous flow mesocosms were established in an eight tank system consisting of two temperature conditions (10°C and 20°C) and four nutrient conditions (1x to 6x ambient concentrations). Experimental conditions were replicated in July/August 2013 and September 2013. Replicate DNA samples were extracted and the 16S rRNA gene was sequenced using universal Bacterial primers. Initial analyses revealed strong differences in community structure based on temperature (p < 0.01, R = 0.997) and sampling month (p < 0.01, R = 0.993) while no significant differences were detected between nutrient treatments. These results suggest that the method can detect changes in periphyton associated bacterial communities based on temperature but a more refined approach, as might be based on functional genes instead of structural genes, may be needed to differentiate nutrient effects.

  15. Decadal biogeochemical history of the south east Levantine basin: Simulations of the river Nile regimes

    NASA Astrophysics Data System (ADS)

    Suari, Yair; Brenner, Steve

    2015-08-01

    The south eastern Mediterranean is characterized by antiestuarine circulation which leads to extreme oligotrophic conditions. The Nile river that used to transport fresh water and nutrients into the basin was dammed in 1964 which led to a drastic reduction of fresh water fluxes, and later, changes in Egyptian agriculture and diet led to increased nutrient fluxes. In this paper we present the results of simulations with a biogeochemical model of the south eastern Mediterranean. Four experiments were conducted: (1) present day without riverine inputs; (2) Nile before damming (pre-1964); (3) post-damming 1995 Nile; and (4) fresh water and nutrient discharges of Israeli coastal streams. The present day input simulation (control run) successfully reproduced measured nutrient concentrations, with the exception of simulated chlorophyll concentrations which were slightly higher than observed. The pre-1964 Nile simulation showed a salinity reduction of 2 psu near the Egyptian coast and 0.5 psu along the Israeli coast, as well as elevated chlorophyll a concentrations mostly east of the Nile delta and north to Cyprus. The spring bloom extended from its present peak during February-March to a peak during February-May. The 1995 Nile simulation showed increased chlorophyll a concentrations close to the Egyptian coast. The Israeli coastal stream simulation showed that the effect of the Israeli coastal stream winter flow on chlorophyll converged to control concentrations within about one month, demonstrating the stability and sensitivity of the model to external forcing. The results of this study demonstrate the significance of fresh water fluxes in maintaining marine productivity, which may have large scale effects on the marine ecosystem.

  16. Research Paper. Nutrient uptake and mineralization during leaf decay in streams-a model simulation.

    Treesearch

    J.R. Webster; J.D. Newbold; S.A. Thomas; H.M. Valett; P.J. Mulholland

    2009-01-01

    We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of...

  17. Modeling the Response of Nutrient Concentrations and Primary Productivity in Lake Michigan to Nutrient Loading Scenarios

    EPA Science Inventory

    A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...

  18. Impact of Water-Sediment Regulation Scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing

    2017-11-01

    Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting the balance of DIN/DIP in the estuary and Bohai Sea. High turbidity and freshwater flushing depressed the growth of phytoplankton during the WSRS. The growth of phytoplankton was nutrient limited in June (DIP) when the WSRS started and in September after DIP and Si(OH)4 had been consumed by phytoplankton.

  19. CART DIAGNOSIS OF WATERSHED IMPAIRMENT IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    Many factors ( stressors ) can lead to increased concentrations of nutrients and sediments, and these factors change across watersheds. Classification and Regression Tree (CART) is a statistical approach that can be used to "diagnose" which factors are important stressors on a pe...

  20. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.

    PubMed

    Gerber, Stefan; Brookshire, E N Jack

    2014-03-01

    Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.

  1. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  2. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records.

    PubMed

    Engstrom, Daniel R; Schottler, Shawn P; Leavitt, Peter R; Havens, Karl E

    2006-06-01

    Lake Okeechobee, the hydrological lynchpin of the Everglades ecosystem, is the subject of an ambitious, multiagency restoration effort aimed at reducing phosphorus inputs and resulting algal blooms and impaired water clarity. This restoration is predicated on returning the lake to something closer to its predisturbance condition, but that goal has been challenged on the premise that the lake has always been eutrophic. The resolution of this debate and the appropriateness of the nutrient reduction goals thus depend on obtaining a reliable sediment record of past limnological conditions--the aim of this study. Because of the potential for severe sediment mixing from tropical storms, this investigation used multiple dating tools to examine the integrity of the sediment record and then analyzed proxies for nutrient enrichment, phytoplankton composition, and paleoproductivity. Sediment profiles for atmospheric pollutants, fertilizer contaminants, and radiocesium from three widely spaced cores showed good preservation of stratigraphic detail and coherence with the 210Pb chronologies. These results demonstrated that sediment stratigraphy is largely intact and retains a reliable record of limnological change. Geochemical proxies provide strong evidence of increased nutrient loading beginning ca. 1950. Concentrations of sediment P double, and N:P and C:N ratios drop, while those for N isotopes (delta15N) increase. At the same time, tracers of phosphate fertilizers (uranium, vanadium, and arsenic) rise. These changes are synchronous among cores and constitute a robust, internally consistent record of increasing water-column P. Biotic responses are manifested in higher concentrations and in changing composition of fossil algal pigments, including (1) large increases in the concentrations of chemically robust carotenoids, (2) corresponding decreases in the ratios of pigments from diatoms to chlorophyte and cyanobacterial algae, and (3) increases in UVR-photo-protective compounds indicating greater prevalence of surface algal blooms. This study provides strong evidence that Lake Okeechobee has experienced accelerated eutrophication linked with post-1950s land use changes in its watershed, a conclusion consistent with the nutrient reduction goals of the Lake Okeechobee Protection Program. The results contradict recent claims that the lake's trophic state has not changed over time, as well as the assertion that sediments of large shallow lakes cannot support a reliable chronology of past events.

  3. Linking runoff and erosion dynamics to nutrient fluxes in a degrading dryland landscape

    NASA Astrophysics Data System (ADS)

    Michaelides, Katerina; Lister, Debbie; Wainwright, John; Parsons, Anthony J.

    2012-12-01

    Current theories of land degradation assume that shifts in vegetation communities result in changes to the rates and patterns of water and sediment movement, which are vectors of nutrient redistribution. This nutrient redistribution is hypothesized to reinforce, through positive feedbacks, progressive vegetation changes toward a more degraded ecosystem. A key component of this theory, which is currently poorly resolved, is the relative role of runoff and erosion in driving nutrient fluxes from different vegetation types. We address this gap through a series of field-based, rainfall-simulation experiments designed to explore plant-level dynamics of runoff- and erosion-driven nutrient fluxes of N, P and K species. Our results highlight important linkages between physical and biogeochemical processes that are controlled by plant structure. We found that: 1) the magnitude of sediment-bound nutrient export is determined by the grain-size distribution of the eroded sediment and the total sediment yield; 2) the partitioning of nutrients in dissolved and sediment-bound form is determined by the availability and concentration of different nutrient species in the soil or rainfall; 3) these processes varied according to vegetation type and resulted in stark differences between degrading and invading plant communities. Specifically, we observed that grassland areas consistently exported the highest yields of sediment-bound N, P and K despite producing similar erosion rates to shrub and intershrub areas. Our results have implications for better understanding how grassland areas are being replaced by shrubs and provide insights into the mechanisms of continuing land degradation in drylands.

  4. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  5. Erosion and Gully formation in the Ethiopian Highlands: physical observations and community perspectives

    NASA Astrophysics Data System (ADS)

    Guzman, C. D.; Admassu, S.; Derebe, A.; Yitaferu, B.; Steenhuis, T. S.

    2013-12-01

    The aims of this investigation are to analyze spatio-temporal variations in sediment transport to waterways in a small agricultural watershed by: (i) locating sediment sources using modeling and bio-physical scientific approaches, (ii) locating sediment sources and erosion processes through age- and gender-differentiated focus group discussions and transect walks, and (iii) linking sediment sources to changes in soil nutrient concentrations. The collected field measurements, modeling results, and community perceptions have been gathered on an area encompassing a previous study site (14 ha) on a currently larger scale (95 ha) in the Debre Mewi watershed to develop a fuller picture of the social and environmental conditions that are leading to induced or controlled erosion and gully formation. Farmers provided their perspectives on erosion processes and these were complemented by and compared to soil and water field measurements during the rainy season. Sixteen sites were selected for monitoring and measuring groundwater, soil nutrient changes, and soil depth change on the 95 ha study area, based on land use and slope angle -- half represent grazing or fallow land and half are located on cultivated land. A set of stable gullies and actively forming gullies were monitored and measured simultaneously along hillslope locations in the top, middle and bottom areas. In addition, sediment concentration samples were collected at 4 weir locations in the 95 ha watershed and also at the final outlet to this watershed. Modeling efforts emphasize steep cropland as most vulnerable, whereas community members pointed out waterlogged black soils and lower areas as vulnerable. The data demonstrate that saturated pathways in the landscape provide areas for the development and widening of gullies and that flat cropland areas experience deposition rather than erosion, while soil nutrient concentrations are decreasing upslope and increasing downslope.

  6. Erosion and Gully Formation in the Ethiopian Highlands: Physical Observations and Community Perspectives

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Dagnew, Dessalegn; Zegeye, Assefa; Tilahun, Seifu; Yitaferu, Birru; Stoof, Cathelijne; Steenhuis, Tammo

    2014-05-01

    The aims of this investigation are to analyze spatio-temporal variations in sediment transport to waterways in a small agricultural watershed by: (i) locating sediment sources using modeling and bio-physical scientific approaches, (ii) locating sediment sources and erosion processes through age- and gender-differentiated focus group discussions and transect walks, and (iii) linking sediment sources to changes in soil nutrient concentrations. The collected field measurements, modeling results, and community perceptions have been gathered on an area encompassing a previous study site (14 ha) on a currently larger scale (95 ha) in the Debre Mewi watershed to develop a fuller picture of the social and environmental conditions that are leading to induced or controlled erosion and gully formation. Farmers provided their perspectives on erosion processes and these were complemented by and compared to soil and water field measurements during the rainy season. Nine sites were selected for monitoring and measuring groundwater, soil nutrient changes, and soil depth change on the 95 ha study area, based on land use and slope angle -- half represent grazing or fallow land and half are located on cultivated land. A set of stable gullies and actively forming gullies were monitored and measured simultaneously along hillslope locations in the top, middle and bottom areas. In addition, sediment concentration samples were collected at 4 weir locations in the 95 ha watershed and also at the final outlet to this watershed. Modeling efforts emphasize steep cropland as most vulnerable, whereas community members pointed out waterlogged black soils and lower areas as vulnerable. The data demonstrate that saturated pathways in the landscape provide areas for the development and widening of gullies and that flat cropland areas experience deposition rather than erosion, while soil nutrient concentrations are decreasing upslope and increasing downslope.

  7. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    NASA Astrophysics Data System (ADS)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single predictor of leaf photosynthesis indicates that the importance of other factors such as secondary compounds, mesophyll conductance, Rubisco activation state, etc might be more influential than anticipated.

  8. Rainfall,bulk deposition of nutrients and their seasonal variation in two tropical lowland and montane forests in Borneo

    NASA Astrophysics Data System (ADS)

    Gomyo, M.; Kuraji, K.; Kitayama, K.; Suzuki, M.

    2008-12-01

    The Borneo Island, the third largest in the world, is experiencing rapid and extensive changes driven by population growth and economic expansion. This change has induced the tropical forest conversion to other land uses for subsistence cultivations, large-scale mono crop plantations and the irreversible loss of forest biodiversity. In this paper, we examine rainwater chemistry observed at two different national parks in Malaysian Borneo for 12 months. We present annual bulk nutrient input flux and its seasonality, and the results are compared with data obtained at a number of other locations in the tropics. The possible source of the atmospheric nutrients and factors determining the differences of the two sites in Borneo is discussed. Nutrient fluxes in rainfall were measured two times every week in natural tropical montane rain forest in Mount Kinabalu National Park (MK) and natural tropical lowland rain forest in Lambir Hills National Park (LH) in Malaysian Borneo. Annual rainfall in MK and LH were 3,232 and 2,978 mm yr-1 respectively. Three-month rainfall during the northeast monsoon season in LH was 1.6 times greater than that in MK, whereas the 3- month rainfall during the southwest monsoon season in MK was 2.8 times greater than that in LH. The difference of volume-weighed mean ion concentration of nutrients of rainwater between MK and LH is not significant except Mg and Ca. The correlation coefficient between Na and Cl concentration is greater in LH than in MK suggesting that the rainwater chemistry was affected by mainly marine origin in LH both marine and terrestrial origin in MK. From the comparison of annual flux of nutrients in MK and LH with the other sites in the other tropical sites, it was noted that the Na and Cl flux in LH, which is only 13.7 km from the coast, is relatively low compared with the other sites located less than 20 km from the coast. Classification of nutrients was done by cluster analysis of 3-month nutrient flux in MK and LH and the results support the hypothesis of the different origin of nutrients between MK an LH. The source of high Mg and SO4-S flux in LH might be the outcrops of bedrock along the roads which contains high Mg and SO4-S.

  9. Fruit and vegetable intakes in relation to plasma nutrient concentrations in women in Shanghai, China.

    PubMed

    Frankenfeld, Cara L; Lampe, Johanna W; Shannon, Jackilen; Gao, Dao L; Li, Wenjin; Ray, Roberta M; Chen, Chu; King, Irena B; Thomas, David B

    2012-01-01

    To evaluate the validity of fruit and vegetable intakes as it relates to plasma carotenoid and vitamin C concentrations in Chinese women, using three classification schemes. Intakes were calculated using an interviewer-administered FFQ. Fruits and vegetables, botanical groups and high-nutrient groups were evaluated. These three classification schemes were compared with plasma carotenoid and vitamin C concentrations from blood samples collected within 1 week of questionnaire completion. Shanghai, China. Participants (n 2031) comprised women who had participated in a case-control study of diet and breast-related diseases nested within a randomized trial of breast self-examination among textile workers (n 266 064) Fruit intake was significantly (P < 0·05) and positively associated with plasma concentrations of α-tocopherol, β-cryptoxanthin, lycopene, α-carotene, β-carotene, retinyl palmitate and vitamin C. Fruit intake was inversely associated with γ-tocopherol and lutein + zeaxanthin concentrations. Vegetable consumption was significantly and positively associated with γ-tocopherol and β-cryptoxanthin concentrations. Each botanical and high-nutrient group was also significantly associated with particular plasma nutrient concentrations. Fruit and vegetable intakes and most plasma nutrient concentrations were significantly associated with season of interview. These results suggest that the manner in which fruits and vegetables are grouped leads to different plasma nutrient exposure information, which may be an important consideration when testing and generating hypotheses regarding disease risk in relation to diet. Interview season should be considered when evaluating the associations of reported intake and plasma nutrients with disease outcomes.

  10. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan

    NASA Astrophysics Data System (ADS)

    Tokuchi, Naoko; Ohte, Nobuhito; Hobara, Satoru; Kim, Su-Jin; Masanori, Katsuyama

    2004-10-01

    Changes in nutrient budgets and hydrological processes due to the natural disturbance of pine wilt disease (PWD) were monitored in a small, forested watershed in Japan. The disturbance caused changes in soil nitrogen transformations. Pre-disturbance, mineralized nitrogen remained in the form of NH4+, whereas in disturbed areas most mineralized nitrogen was nitrified. Stream NO3- concentrations increased following PWD. There was a delay between time of disturbance and the increase of NO3- in ground and stream waters. Stream concentrations of NO3- and cations (Ca2+ + Mg2+) were significantly correlated from 1994 to 1996, whereas the correlation among NO3-, H+, and SO42- was significant only in 1995. Although both cation exchange and SO42- adsorption buffered protons, cation exchange was the dominant and continuous mechanism for acid buffering. SO42- adsorption was variable and highly pH dependent. The disturbance also resulted in slight delayed changes of input-output nutrient balances. The nitrogen contribution to PWD litter inputs was 7.39 kmol ha-1, and nitrogen loss from streamwater was less than 0.5 kmol ha-1 year-1 throughout the observation period. This large discrepancy suggested substantial nitrogen immobilization.

  11. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California

    USGS Publications Warehouse

    Sickman, James O.; Melack, John M.; Clow, David W.

    2003-01-01

    Long-term measurements (1983-2001) of nutrients and seston in Emerald Lake (Sierra Nevada, California) have revealed ecologically significant patterns. Nitrate, both during spring runoff and during growing seasons, declined from 1983 through 1995. Declining snowmelt nitrate was caused primarily by changes in snow regime induced by the 1987-1992 drought: years with shallow, early melting snowpacks had lower snowmelt nitrate concentrations owing to less labile N production in catchment soils and longer plant growing seasons. However, nitrate declines during growing seasons carried through the wetter years of 1993-2000 and are likely the result of increased P loading to the lake and the release of phytoplankton from P limitation. Contemporaneous with these changes was an increase in algal biomass and a shift from P limitation toward more frequent N limitation of phytoplankton abundance. Particulate carbon concentrations in the late 1990s were two- to threefold greater than in the early 1980s. These trends were reflected in a larger set of Sierra Nevada lakes sampled as part of synoptic surveys (n = 28). Between 1985 and 1999, nitrate decreased and total P increased in >70% of the lakes sampled. Our data suggest that lakes throughout the Sierra Nevada are experiencing measurable eutrophication in response to the atmospheric deposition of nutrients.

  13. Local and Long-Distance Effects of Land Use Change on Nutrient Levels in Streams and Rivers of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2003-12-01

    Determining the effects of land use change (e.g. urbanization, deforestation) on water quality at large spatial scales has been difficult because water quality measurements in large rivers with heterogeneous basins show the integrated effects of multiple factors. Moreover, the observed effects of land use changes on water quality in small homogeneous stream basins may not be indicative of downstream effects (including effects on such ecologically relevant characteristics as nutrient levels and elemental ratios) because of loss processes occurring during downstream transport in river channels. In this study we used the USGS SPARROW (Spatially-Referenced Regression on Watersheds) models of total nitrogen (TN) and total phosphorus (TP) in streams and rivers of the conterminous US to examine the effects of various aspects of land use change on nutrient concentrations and flux from the pre-development era to the present. The models were calibrated with data from 370 long-term monitoring stations representing a wide range of basin sizes, land use/cover classes, climates, and physiographies. The non-linear formulation for each model includes 20+ statistically estimated parameters relating to land use/cover characteristics and other environmental variables such as temperature, soil conditions, hill slope, and the hydraulic characteristics of 2200 large lakes and reservoirs. Model predictions are available for 62,000 river/stream channel nodes. Model predictions of pre-development water quality compare favorably with nutrient data from 63 undeveloped (reference) sites. Error statistics are available for predictions at all nodes. Model simulations were chosen to compare the effects of selected aspects of land use change on nutrient levels at large and small basin scales, lacustrine and coastal receiving waters, and among the major US geographic regions.

  14. [Nutrient distribution and its relationship with occurrence of red tide in coastal area of East China Sea].

    PubMed

    Han, Xiurong; Wang, Xiulin; Sun, Xia; Shi, Xiaoyong; Zhu, Chenjian; Zhang, Chuansong; Lu, Rong

    2003-07-01

    Nutrient (NO3(-)-N, PO4(3-)-P, Sio3(2-)-Si, NH4(+)-N, etc.) concentrations in coastal area of East China Sea were measured during April 25 to May 2, 2002, and the relationship between the spatial distribution of the nutrients and the red tide occurrence in the studied area was analyzed. The results showed that compared to the 1st class seawater quality of the national standard, the concentrations of dissolved inorganic nitrogen (DIN) and PO4(-)-P were 46% and 60% higher, respectively, showing that the studied area, especially the Changjiang River estuary and the Hangzhou Bay, was at a disadvantage of eutrophication. Furthermore, the nutrient concentrations inshore were much higher than those offshore, and the isolines nearly paralleled with the coastline, meaning that the nutrient distributions were mainly influenced by terrestrial discharges. It also showed that the relatively high concentrations of nutrients, especially DIN and PO4(3-)-P, might result in the red-tide occurrence. However, the red tide did not occur in the area with the highest concentrations of the nutrients, further demonstrating that the eutrophication was not the unique environmental factor inducing red-tide occurrence.

  15. Pathogen and nutrient pulsing and attenuation in "accidental" urban wetland networks along the Salt River in Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Palta, M. M.; Grimm, N. B.

    2013-12-01

    Increases in available nutrients and bacteria in urban streams are at the forefront of research concerns within the ecological and medical communities, and both pollutants are expected to become more problematic under projected changes in climate. Season, discharge, instream conditions (oxygen, water velocity), and weather conditions (antecedent moisture) all may influence loading rates to and the retention capabilities of wetlands fed by urban runoff and storm flow. The aim of this research was to examine the effect of these variables on nutrient (nitrogen, phosphorus) and Escherichia coli (E. coli) loading and attenuation along flow paths in urban wetland networks along the Salt River in Phoenix, AZ. Samples were collected for one year along flowpaths through wetlands that formed below six perennially flowing outfalls. Collection took place monthly during baseflow (dry season) conditions, and before and immediately following storm events, in the summer monsoon and winter rainy seasons. Water quality was assessed at the following points: immediately downstream of the outfall, mid-wetland, and downstream of the wetland. For determination of E. coli counts, samples were plated on coliform-selective media (Chromocult) and incubated for 24 hours. Plates were then used to enumerate E. coli. For determination of nutrient concentrations, samples were filtered and frozen until they could be analyzed by ion chromatography and automated wet chemistry. During both summer and winter, total discharge into the wetlands increased during storm events. Concentrations of PO43+, NH4+, and E. coli were significantly higher following storm events than during baseflow conditions, and post-storm peaks in concentration ('pulses') were higher during the summer monsoon than in winter storms. Pulses of pollutants during storms were highest when preceded by hot, dry conditions. NO3- was high in both base and stormflow. E. coli counts and nutrient concentrations dropped along flowpaths through the wetlands, indicating high attenuation capability even during storms. Attenuation of nutrients during baseflow appeared to be a function of microbial processing, while during stormflow, when water retention time in the wetlands was reduced, attenuation was likely explained by other factors, such as sediment adsorption. Potential tradeoffs emerged between removal of NO3- (highest under low dissolved oxygen) and E. coli (highest under high dissolved oxygen) during baseflow. Climate change models project increases in severe droughts and extreme precipitation events for the southwestern United States, which can lead to more sewage leakages and increases in contaminated runoff from impervious surfaces in urban areas. Wetlands are constructed or restored to mitigate microbial contamination of wastewater. Our research indicates that even "accidental" urban wetlands can serve to reduce downstream transport of nutrients and pathogens in storm and wastewater. However, wetland restoration or design targeting increased water retention time may increase the capability of accidental wetlands in this urban desert river channel to remove nutrients and pathogens from stormwater.

  16. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  17. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication

    PubMed Central

    Zhang, Jining; Lü, Fan; Zhang, Hua; Shao, Liming; Chen, Dezhen; He, Pinjing

    2015-01-01

    Sewage sludge biochars were obtained at different pyrolysis temperatures from 300°C to 900°C and their macro- and microscale properties were analyzed. The biochar's plant-available nutrients and humus-like substances in the water-extractable phase and fixed nutrients in the solid fraction were evaluated for their potential agronomic implications. FT-IR, Raman, XRD, XPS, and SEM techniques were used to investigate the chemical structure, functional groups, and microcrystal structure on the surface of the biochar. The results revealed minor chemical changes and dramatic mass loss in the biochar obtained at 300–500°C, whereas significant chemical changes in the biochar were obtained at 600–900°C. The concentrations of plant-available nutrients as well as fulvic- and humic-acid-like materials decreased in the biochar samples obtained at higher temperatures. These results implied that the biochar samples pyrolyzed at 300–500°C could be a direct nutrient source and used to neutralize alkaline soil. The surface area and porosity of the biochar samples increased with temperature, which increased their adsorption capacity. Rearrangement occurred at higher temperature 600–900°C, resulting in the biochar becoming increasingly polyaromatic and its graphite-like carbon becoming organized. PMID:25802185

  18. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000-2040

    NASA Astrophysics Data System (ADS)

    Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith

    2016-11-01

    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.

  19. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    EPA Science Inventory

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  20. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability.

    PubMed

    Migliavacca, Mirco; Perez-Priego, Oscar; Rossini, Micol; El-Madany, Tarek S; Moreno, Gerardo; van der Tol, Christiaan; Rascher, Uwe; Berninger, Anna; Bessenbacher, Verena; Burkart, Andreas; Carrara, Arnaud; Fava, Francesco; Guan, Jin-Hong; Hammer, Tiana W; Henkel, Kathrin; Juarez-Alcalde, Enrique; Julitta, Tommaso; Kolle, Olaf; Martín, M Pilar; Musavi, Talie; Pacheco-Labrador, Javier; Pérez-Burgueño, Andrea; Wutzler, Thomas; Zaehle, Sönke; Reichstein, Markus

    2017-05-01

    Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F 760 ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (V cmax )) affected the observed linear relationship between F 760 and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F 760 . Changes in canopy structure mainly control the GPP-F 760 relationship, with a secondary effect of Cab and V cmax . In order to exploit F 760 data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Stream nitrate responses to hydrological forcing and climate change in northern forests of the USA (Invited)

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Campbell, J. L.; Shanley, J. B.; Pourmokhtarian, A.; Driscoll, C. T.; Boyer, E. W.

    2009-12-01

    There is a need to understand how climate variability and change affect nutrient delivery to surface waters. We analyzed long-term records of hydrochemical data to explore how the forms, concentrations, and loadings of nitrogen in forest streams throughout the northern USA vary with catchment wetness. We considered projected changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nitrate loading responds to hydrological forcing under different climate change scenarios. At the Sleepers River Research Watershed in northeastern Vermont, model results suggest that stream nutrient loadings over the next century will respond to hydrological forcing during climate change that affects the amount of water that flows through the landscape. For example, growing season stream water yield (+20%) and nitrate loadings (+57%) increase in response to greater amounts of precipitation (+28%) during a warmer climate with a longer growing season (+43 days). We further explore these findings by presenting model results from a biogeochemical process model (PnET-BGC) to separate changes that are due to biogeochemical cycling and the effects of hydrological forcing. Our findings suggest that nitrogen cycling and transport will intensify during anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream nutrient loadings in northern forests of the USA.

  2. Nutrients and clam contamination by Escherichia coli in a meso-tidal coastal lagoon: Seasonal variation in counter cycle to external sources.

    PubMed

    Botelho, Maria João; Soares, Florbela; Matias, Domitília; Vale, Carlos

    2015-07-15

    The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services. Copyright © 2015. Published by Elsevier Ltd.

  3. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  4. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhu, Chaowei; Liao, Haiqing; Zhang, Jingtian; Yeager, Kevin M

    2012-03-01

    In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources. This journal is © The Royal Society of Chemistry 2012

  5. Influence of environmental factors on biotic responses to nutrient enrichment in agricultural streams

    USGS Publications Warehouse

    Maret, Terry R.; Konrad, Christopher P.; Tranmer, Andrew W.

    2010-01-01

    The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes.

  6. Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes.

    PubMed

    Lee, Kayla B; Wang, Jue; Palme, Julius; Escalante-Chong, Renan; Hua, Bo; Springer, Michael

    2017-05-01

    In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell's inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes' decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.

  7. Optimization of fertilization characteristics of urine by addition of Nitrosomonas europaea bio-seed.

    PubMed

    Hashemi, Shervin; Han, Mooyoung; Kim, Tschungil

    2016-10-01

    Because of the high concentration of nutrients in human urine, its utilization as an organic fertilizer has been notable throughout history. However, the nitrogen compounds in urine are not stable. Therefore, to convert urine into a suitable fertilizer, it is important to stabilize and adjust unstable nitrogen compounds such as ammonia. Because nitrification can influence the nitrogen profile, the use of nitrifying microorganisms can be useful for stabilizing the nitrogen profile of urine. This study investigated the changes in nitrogen compounds in pure urine and examined the effect of adding Nitrosomonas europaea bio-seed solution on these changes. It was found that the addition of bio-seed could reduce nitrogen loss as well as the time required to stabilize the nitrogen profile. Furthermore, the optimum concentration of bio-seed (6 × 10(5) N. europaea cells L(-1) ) that not only leads to the least nutrient loss but also results in an adequate nitrate/ammonium ratio and regulates the amount of nitrate produced, thereby preventing over-fertilization, was determined. At this concentration, no dilution or dewatering is required, thus minimizing water and energy consumption. Usage of the optimum of concentration of bio-seed will also eliminate the need for inorganic chemical additives. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Status of Lake Erie phosphorus loads and concentrations

    EPA Science Inventory

    Under the Great Lakes Water Quality Protocol of 2012, nutrient loading and nutrient concentrations for open and nearshore waters must be re-evaluated for Substance Objectives that are consistent with overall Ecosystem Objectives. One of the primary driving nutrients of interest ...

  9. Nutrient fluxes at the landscape level and the R* rule

    USGS Publications Warehouse

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  10. Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea

    PubMed Central

    Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M.; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina

    2013-01-01

    In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide. PMID:23825619

  11. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves.

    PubMed

    Yan, Zhengbing; Li, Peng; Chen, Yahan; Han, Wenxuan; Fang, Jingyun

    2016-02-05

    Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.

  12. Nutrient enrichment and fish nutrient tolerance: Assessing biologically relevant nutrient criteria

    USGS Publications Warehouse

    Meador, Michael R.

    2013-01-01

    Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low-flow periods in 2003 and 2004 at stream sites along a nutrient-enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria.

  13. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily

    2017-04-12

    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).

  14. Nutrient Uptake and Cycles of Change: the Ventura River in Southern California

    NASA Astrophysics Data System (ADS)

    Leydecker, A.; Simpson, J.; Grabowski, L.

    2003-12-01

    Watersheds in Mediterranean climates are characterized by extreme seasonal and inter-annual rainfall variability. This variability engenders cycles of sediment deposition and removal, algal growth, and the advance and retreat of riparian and aquatic vegetation. In turn, these changes dramatically alter the appearance and biological functioning of rivers and streams, regulating the uptake of nutrients. The Ventura River drains 580 sq. km of mountainous coastal watershed 100 km northwest of Los Angles, Ca. More than 90 % of the average annual rainfall of 500 mm falls between December and March with most of the annual runoff occurring within a few days. Since 1930, annual runoff has varied from 0.01 to 70 cm/ha, with a mean of 12 and median of 4 cm. We have been measuring dissolved nutrient concentrations at four locations on the lower 9 kilometers of the river for the past 3 years (annual runoff of 19, 0.6 and 14 cm, respectively) and quantifying the relative abundance of plants and algae during 2003. A subsequent decrease in nutrient concentrations below a treated sewage outfall at km 8 provides estimates of nutrient uptake under changing conditions. Nitrate concentrations on the river peak in early winter, presumably from mineralization and mobilization after the advent of the rainy season, and decrease to a minimum by late summer. Phosphate, controlled by dry-season treatment plant outflows, has an opposite pattern. The seasonal variation in both is considerable (0 to 380 microM for nitrate, 0 to 35 microM for phosphate). Major winter storms, such as occur during severe El Nino years (peak flows > 1000 cms), begin a transformational cycle by completely scouring the channel of vegetation and fine sediment; this occurs, on average, once every 10 to 12 years (the interval has varied from 3 to 30 years). The scoured channel, with warmer water temperatures, the absence of shade and a nutrient rich environment, becomes dominated by filamentous algae (principally Cladophora, Rhizoclonium, Enteromorpha and Spirogyra spp.). In contrast, drought years occasion exuberant plant growth and the competitive replacement of algae by aquatic vegetation. Absent scouring winter flows, perennial aquatic plants become established, trapping fine sediment and narrowing the wetted channel; the rapid growth of riparian vegetation (Arundo donax and Salix spp.) provides increased shade to the narrowed waterway. These processes increasingly stabilize the channel and elevate the threshold flow of a scouring storm; the major storm of 2003, following the 2002 drought year (peak flow of 5 cms), produced appreciably less channel transformation than a similarly-sized storm in 2001 (peak flow of 500 cms). During the 2002 drought year, dry-season nitrate concentrations at the river mouth were reduced to near zero, likely due to reduced flows, extensive vascular plant growth supporting high rates of denitrification and vegetative uptake, and enhanced sediment processes from increased fine sediment entrapment. Higher nitrate concentrations at the same location in 2003 (circa 60 microM) exhibited a 3-fold increase compared with 2001, an algal dominated year with a similar flow regime, and N uptake below the treatment plant appears to be substantially decreased.

  15. Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs—Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest

    PubMed Central

    Homeier, Jürgen; Hertel, Dietrich; Camenzind, Tessa; Cumbicus, Nixon L.; Maraun, Mark; Martinson, Guntars O.; Poma, L. Nohemy; Rillig, Matthias C.; Sandmann, Dorothee; Scheu, Stefan; Veldkamp, Edzo; Wilcke, Wolfgang; Wullaert, Hans; Leuschner, Christoph

    2012-01-01

    Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha−1 yr−1) and P (10 kg ha−1 yr−1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes—notably aboveground productivity—are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs. PMID:23071734

  16. Characteristics of Nitrogen and Phosphorus Effluent Load from a Paddy-field District Implementing Crop Rotation

    NASA Astrophysics Data System (ADS)

    Hama, Takehide; Aoki, Takeru; Osuga, Katsuyuki; Nakamura, Kimihito; Sugiyama, Sho; Kawashima, Shigeto

    Implementation of collective crop rotation in a paddy-field district may increase nutrients effluent load. We have investigated a paddy-field district implementing collective crop rotation of wheat and soybeans, measured temporal variations in nutrients concentration of drainage water and the amount of discharged water for consecutive three years, and estimated nutrients effluent load from the district during the irrigation and non-irrigation periods. As a result, the highest concentration of nutrients was observed during the non-irrigation period in every investigation year. It was shown that high nutrients concentration of drainage water during the non-irrigation period was caused by runoff of fertilizer applied to wheat because the peaks of nutrients concentration of drainage water were seen in rainy days after fertilizer application in the crop-rotation field. The effluent load during the non-irrigation periods was 16.9-22.1 kgN ha-1 (nitrogen) and 0.84-1.42 kgP ha-1 (phosphorus), which respectively accounted for 46-66% and 27-54% of annual nutrients effluent load.

  17. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release.

    PubMed

    Joseph, Stephen; Kammann, Claudia I; Shepherd, Jessica G; Conte, Pellegrino; Schmidt, Hans-Peter; Hagemann, Nikolas; Rich, Anne M; Marjo, Christopher E; Allen, Jessica; Munroe, Paul; Mitchell, David R G; Donne, Scott; Spokas, Kurt; Graber, Ellen R

    2018-03-15

    Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake.

    PubMed

    Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai

    2017-01-20

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity-stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  19. Release of motilin by oral and intravenous nutrients in man.

    PubMed Central

    Christofides, N D; Bloom, S R; Besterman, H S; Adrian, T E; Ghatei, M A

    1979-01-01

    Motilin is a hormonal peptide found in the duodenum and jejunum which potently influences gastrointestinal tract motility. Its role in human physiology is not yet established. After a standard hospital lunch the plasma concentration of motilin showed a small, transient, but significant rise in 28 healthy subjects. Individual food components either stimulated (oral fat) or suppressed release (oral glucose). Plasma motilin levels were, in addition, altered to an equal extent by intravenous nutrients, with glucose and amino acids suppressing release, and intravenous fat causing a significant rise in plasma concentration. These results demonstrate a consistent response to food stimuli, whether oral or intravenous. The release mechanism appears to be complicated and after a balanced meal, containing food components which both stimulate and suppress release, there is only a small net change. PMID:428820

  20. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  1. Long-term trends of phosphorus concentrations in an artificial lake: Socio-economic and climate drivers.

    PubMed

    Vystavna, Yuliya; Hejzlar, Josef; Kopáček, Jiří

    2017-01-01

    European freshwater ecosystems have undergone significant human-induced and environmentally-driven variations in nutrient export from catchments throughout the past five decades, mainly in connection with changes in land-use, agricultural practice, waste water production and treatment, and climatic conditions. We analysed the relations among concentration of total phosphorus (TP) in the Slapy Reservoir (a middle reservoir of the Vltava River Cascade, Czechia), and socio-economic and climatic factors from 1963 to 2015. The study was based on a time series analysis, using conventional statistical tools, and the identification of breaking points, using a segmented regression. Results indicated clear long-term trends and seasonal patterns of TP, with annual average TP increasing up until 1991 and decreasing from 1992 to 2015. Trends in annual, winter and spring average TP concentrations reflected a shift in development of sewerage and sanitary infrastructure, agricultural application of fertilizers, and livestock production in the early 1990s that was associated with changes from the planned to the market economy. No trends were observed for average TP in autumn. The summer average TP has fluctuated with increased amplitude since 1991 in connection with recent climate warming, changes in thermal stratification stability, increased water flow irregularities, and short-circuiting of TP-rich inflow during high flow events. The climate-change-induced processes confound the generally declining trend in lake-water TP concentration and can result in eutrophication despite decreased phosphorus loads from the catchment. Our findings indicate the need of further reduction of phosphorus sources to meet ecological quality standards of the EU Water Framework Directive because the climate change may lead to a greater susceptibility of the aquatic ecosystem to the supply of nutrients.

  2. Flowering in grassland predicted by CO2 and resource effects on species aboveground biomass

    USDA-ARS?s Scientific Manuscript database

    Ongoing enrichment of atmospheric CO2 concentration may increase plant community productivity by changing plant community composition through direct and indirect effects on light, water, or nutrient availability. CO2 enrichment has been predicted to reduce plant reproductive allocation in herbaceou...

  3. Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment

    PubMed Central

    Bellworthy, Jessica; Esposito, Mario; Achterberg, Eric P.

    2017-01-01

    Concentrations of heme b were determined in a mesocosm experiment situated in Gullmar Fjord off Sweden. The mesocosm experiment lasted for ca. one hundred days and was characterised by the growth of a primary nutrient replete and a secondary nutrient deplete phytoplankton bloom. Heme b varied between 40 ± 10 pmol L-1 in the prebloom period up to a maximum of 700 ± 400 pmol L-1 just prior to the time of the primary chlorophyll a maximum. Thereafter, heme b concentrations decreased again to an average of 120 ± 60 pmol L-1. When normalised to total particulate carbon, heme b was most abundant during the initiation of the nutrient replete spring bloom, when ratios reached 52 ± 24 μmol mol-1; ten times higher than values observed both pre and post the primary bloom. Concentrations of heme b correlated with those of chlorophyll a. Nevertheless, differences were observed in the relative concentrations of the two parameters, with heme b concentrations increasing relative to chlorophyll a during the growth of the primary bloom, decreasing over the period of the secondary bloom and increasing again through the latter period of the experiment. Heme b abundance was therefore influenced by nutrient concentrations and also likely by changing community composition. In half of the mesocosms, pCO2 was elevated and maintained at ca.1000 μatm, however we observed no significant differences between heme b in plus or ambient pCO2 mesocosms, either in absolute terms, or relative to total particulate carbon and chlorophyll a. The results obtained in this study contribute to our understanding of the distribution of this significant component of the biogenic iron pool, and provide an iron replete coastal water end member that aids the interpretation of the distributions of heme b in more iron deplete open ocean waters. PMID:28426768

  4. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir.

    PubMed

    Bucak, Tuba; Trolle, Dennis; Tavşanoğlu, Ü Nihan; Çakıroğlu, A İdil; Özen, Arda; Jeppesen, Erik; Beklioğlu, Meryem

    2018-04-15

    Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. For this purpose, we linked catchment model outputs to the two different processed-based lake models: PCLake and GLM-AED, and tested the scenarios of five General Circulation Models, two Representation Concentration Pathways and three different land use scenarios, which enable us to consider the various sources of uncertainty. Climate change and land use scenarios generally predicted strong future decreases in hydraulic and nutrient loads from the catchment to the lake. These changes in loads translated into alterations in water level as well as minor changes in chlorophyll a (Chl-a) concentrations. We also observed an increased abundance of cyanobacteria in both lake models. Total phosphorus, temperature and hydraulic loading were found to be the most important variables determining cyanobacteria biomass. As the future scenarios revealed only minor changes in Chl-a due to the significant decrease in nutrient loads, our results highlight that reduced nutrient loading in a warming world may play a crucial role in offsetting the effects of temperature on phytoplankton growth. However, our results also showed increased abundance of cyanobacteria in the future may threaten ecosystem integrity and may limit drinking water ecosystem services. In addition, extended periods of decreased hydraulic loads from the catchment and increased evaporation may lead to water level reductions and may diminish the ecosystem services of the lake as a water supply for irrigation and drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Vegetation changes along gradients of long-term soil development in the Hawaiian montane rainforest zone11-219.

    Treesearch

    Kanehiro Kitayama; Dieter Mueller-Dombois

    1995-01-01

    The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (> 4000 mm)age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on...

  6. Influence of Environmental Factors on Biotic Responses to Nutrient Enrichment in Agricultural Streams1

    PubMed Central

    Maret, Terry R; Konrad, Christopher P; Tranmer, Andrew W

    2010-01-01

    The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (<0.004-0.361 mg/l), but biotic responses including periphytic and sestonic chlorophyll a (RCHL and SCHL, respectively), and percent of stream bed with aquatic macrophyte (AQM) growth were not strongly related to concentrations of TN or TP. Pearson’s coefficient of determination (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes. PMID:22457568

  7. Resiliency of the Chesapeake Bay to Pollution Levels Following Storms and Based on Land-Use

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Pavelsky, T.

    2015-12-01

    As pollution levels, transformations in land use, and ecological loss continue to increase in the Chesapeake Bay, questions arise as to whether this estuary, the largest in North America, will experience a change in the duration and levels of storm-related sediment and nutrient spikes. We use a combination of satellite data and previously-collected field measurements to study this question. We compare same-day and same-pixel NASA MODIS satellite data to in situ observations of sediment and nutrient concentrations over 20 years, and found that for at least 6 tributaries, the r2 value for a linear regression between the satellite reflectance and fieldwork measures of nitrogen, phosphorus, or suspended sediment concentrations exceeded 0.7, while for at least 12 tributaries, the r2 value exceeded 0.5. We took advantage of this relationship to estimate sediment and nutrient concentrations in the Chesapeake following major storm events, even in the absence of continuous in situ data. We studied sediment/nutrient levels daily following the storm, for every date on which a cloud-free MODIS image was available, for a month. The storms included 2003's Hurricane Isabel, 2011's Hurricane Irene, and 2012's Superstorm Sandy. The tributaries we focused on were the York and Piankatank Rivers of southern Virginia (heavily forested), the Potomac River (heavily urban), and the Nanticoke River of the Eastern Shore (heavily farmed). Results show that in the Potomac River, which over the last 15 years has experience a signifiant increase in urbanization, sediments and nutrients persist for longer periods and at higher levels compared to less urbanized rivers.

  8. Bedrock composition limits mountain ecosystem productivity and landscape evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Hahm, W.; Lukens, C.

    2013-12-01

    We used measurements of bedrock geochemistry, forest productivity and cosmogenic nuclides to explore connections among lithology, ecosystem productivity and landscape evolution across a lithosequence of 21 sites in the Sierra Nevada Batholith, California. Our sites span a narrow range in elevations and thus share similar climatic conditions. Meanwhile, underlying bedrock varies from granite to diorite and spans nearly the entire range of geochemical compositions observed in Cordilleran granitoids. Land cover varies markedly, from groves of Giant Sequoia, the largest trees on Earth, to pluton-spanning swaths of little or no soil and vegetative cover. This is closely reflected in measures of forest productivity, such as remotely sensed tree-canopy cover, which varies by more than an order of magnitude across our sites and often changes abruptly at mapped contacts between rock types. We find that tree-canopy cover is closely correlated with the concentrations in bedrock of major and minor elements, including several plant-essential nutrients. For example, tree-canopy cover is virtually zero where there is less than 0.3 mg/g phosphorus in bedrock. Erosion rates from these nearly vegetation-free, nutrient deserts are more than 2.5 times slower on average than they are from surrounding, relatively nutrient-rich, soil-mantled bedrock. Thus by influencing soil and forest cover, bedrock nutrient concentrations may provoke weathering-limited erosion and thus may strongly regulate landscape evolution. Our analysis suggests that variations in bedrock nutrient concentrations can also provoke an intrinsic limitation on primary productivity. These limitations appear to apply across all our sites. To the extent that they are broadly representative of conditions in granitic landscapes elsewhere around the world, our results are consistent with widespread, but previously undocumented lithologic control of the distribution and diversity of vegetation in mountainous terrain.

  9. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity.

    PubMed

    Souza, Vânia L; de Almeida, Alex-Alan F; Souza, Jadiel de S; Mangabeira, Pedro A O; de Jesus, Raildo M; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C; Loguercio, Leandro L

    2014-01-01

    Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.

  10. Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Beutel, Marc W.; Horne, Alexander J.

    2018-03-01

    A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.

  11. Combined effects of solar ultraviolet radiation and nutrients addition on growth, biomass and taxonomic composition of coastal marine phytoplankton communities of Patagonia.

    PubMed

    Marcoval, M Alejandra; Villafañe, Virginia E; Helbling, E Walter

    2008-05-29

    Experiments (6-8 days) were conducted during late summer, late fall and late winter, 2003 with waters collected off Bahía Nueva, Chubut, Argentina (42.7 degrees S, 65 degrees W) to determine the combined effects of solar ultraviolet radiation (UVR, 280-400 nm) and nutrient addition on phytoplankton communities. Samples were put in UVR-transparent containers and incubated under two radiation treatments: (a) Samples exposed to full solar radiation (PAB treatment, 280-400 nm) and (b) Samples exposed only to PAR (PAR treatment, 400-700 nm). At the beginning of the experiments, nutrients (i.e., NaPO(4)H(2) and NaNO(3)) were added to one set of samples from each radiation treatment (N cultures) whereas in the other set, nutrients remained at the concentration of the seawater. Chlorophyll a, biomass, UV-absorbing compounds and taxonomic composition were recorded throughout the experiments. N cultures always had significantly higher growth rates (P<0.05) than that in non-enriched cultures. At the beginning of experiments, phytoplankton communities were generally dominated by monads and flagellates but by the end, diatoms comprised the bulk of biomass, with only one to four taxa dominating, suggesting a selection towards more tolerant/less sensitive species. Over the experimental time frame, the observed taxonomic changes were mostly due to nutrient availability, and to a lesser extent to solar UVR exposure. Overall, the results indicate that environmental conditions (i.e., light history, nutrient concentration) together with the physiological status of the cells play a very important role at the time to assess the combined effect of nutrient addition and solar radiation on coastal phytoplankton assemblages from Patagonia.

  12. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science+Business Media, Inc.

  13. Effects of Atrazine, Metolachlor, Carbaryl and Chlorothalonil on Benthic Microbes and Their Nutrient Dynamics

    PubMed Central

    Elias, Daniel; Bernot, Melody J.

    2014-01-01

    Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369

  14. Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.

    2010-04-01

    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.

  15. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients.

    PubMed

    Li, Fei; Peng, Yunfeng; Natali, Susan M; Chen, Kelong; Han, Tianfeng; Yang, Guibiao; Ding, Jinzhi; Zhang, Dianye; Wang, Guanqin; Wang, Jun; Yu, Jianchun; Liu, Futing; Yang, Yuanhe

    2017-11-01

    Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO 2 ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem. Although experimental warming initially enhanced ecosystem CO 2 uptake, the increased rate disappeared after the period of peak plant growth during the early growing season, even though soil moisture was not a limiting factor in this swamp meadow ecosystem. We observed that warming did not significantly affect soil extractable N or P during the period of peak growth, but decreased both N and P concentrations in the leaves of dominant plant species, likely caused by accelerated plant senescence in the warmed plots. The attenuated warming effect on CO 2 assimilation during the late growing season was associated with lowered leaf N and P concentrations. These findings suggest that warming-mediated nutrient changes may not always benefit ecosystem C uptake in permafrost regions, making our ability to predict the C balance in these warming-sensitive ecosystems more challenging than previously thought. © 2017 by the Ecological Society of America.

  16. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions.

    PubMed

    McDowell, Stephen C; Akmakjian, Garo; Sladek, Chris; Mendoza-Cozatl, David; Morrissey, Joe B; Saini, Nick; Mittler, Ron; Baxter, Ivan; Salt, David E; Ward, John M; Schroeder, Julian I; Guerinot, Mary Lou; Harper, Jeffrey F

    2013-01-01

    The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.

  17. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  18. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    USDA-ARS?s Scientific Manuscript database

    Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...

  19. Variation in the composition of milk of Asian elephants (Elephas maximus) throughout lactation.

    PubMed

    Abbondanza, Frances N; Power, Michael L; Dickson, Melissa A; Brown, Janine; Oftedal, Olav T

    2013-01-01

    We investigated milk nutrient composition from three Asian elephant cows over the first 3 years of lactation, including two consecutive lactations in one cow. Body mass gain is presented for three calves during the first year. Milk samples (n = 74) were analyzed for dry matter (DM), fat, crude protein (CP), sugar, ash, calcium (Ca), phosphorus (P), and potassium (K); gross energy (GE) was calculated. Concentrations of most nutrients changed over lactation: DM, fat, CP, Ca, P, and GE were positively correlated to calf age; sugar was negatively correlated to calf age. GE doubled between birth (1 kcal/g) and 2 years of age (2 kcal/g). After accounting for calf age, GE, fat, Ca, and P concentrations differed among the cows. Milk composition also differed between two lactations from the same cow. When milk nutrients were expressed on a mg per kcal basis, the pattern changes: CP, Ca, and P remained relatively constant over lactation on a per energy basis. Calf mass quadrupled over the first year of life; mass gain was linear at 0.9 kg/day. Asian elephant milk composition is variable, both across lactations and between cows, complicating efforts to determine representative values for comparative studies and for the formulation of elephant milk formulas. The fact that CP, Ca, and P were all relatively constant when expressed on a per energy basis may be of biological significance. The increase in nutrient density over lactation undoubtedly limits maternal water loss, reducing the volume of milk necessary to support the calf. © 2012 Wiley Periodicals, Inc.

  20. In vitro fermentation characteristics, in vivo ileal and total tract nutrient digestibilities, and fecal microbiota responses of dogs to α-cyclodextrin.

    PubMed

    Guevara, M A; Bauer, L L; Garleb, K A; Fahey, G C; de Godoy, M R C

    2016-05-01

    The objectives were to examine in vitro fermentation characteristics, in vivo nutrient digestibility, fecal microbiota, and serum lipid profiles as affected by α-cyclodextrin (ACD) supplementation. Short-chain fatty acid (SCFA) production was measured after in vitro fermentation for 3, 6, 9, and 12 h of ACD, β-cyclodextrin, and γ-cyclodextrin. Five mixed-breed hounds were used in a Latin square design. Each experimental period comprised 14 d, including 10 d for diet adaptation and 4 d for fecal collection. Dogs were fed, twice a day, an extruded diet made with poultry byproduct meal and brewer's rice as the main ingredients. Dogs were supplemented with 0, 1, 2, 3, or 4 g of ACD diluted in 15 mL of water twice daily for a total of 0, 2, 4, 6, and 8 g ACD/d. Maximal in vitro production of total SCFA was lowest for ACD. However, the greatest maximal production of propionate was noted for ACD treatment. Total tract nutrient digestibility and fecal DM concentration linearly decreased ( < 0.05) for treatment groups receiving ACD; no changes were observed for ileal digestibility. Serum cholesterol and triglyceride concentrations were within normal ranges for dogs and were not different among treatments. Similarly, no changes in fecal microbiota were observed. Overall, ACD supplementation appears to have no effect on nutrient absorption in the small intestine but may alter fermentation in the large bowel, which could lead to a higher proportion of propionate production as observed in the in vitro experiment.

  1. The effect of sampling frequency on the accuracy of nitrogen load estimates from a drained loblolly pine plantation in eastern North Carolina

    Treesearch

    George M. Chescheir; François Birgand; Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya

    2010-01-01

    Nutrient loading in drainage outflow is estimated from measured flows and nutrient concentrations in the drainage water. The loading function is ideally continuous, representing the product of continuously measured outflows and nutrient concentrations in drainage water. However, loading is often estimated as the product of continuously measured outflow and nutrient...

  2. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  3. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies

    NASA Astrophysics Data System (ADS)

    Pacumbaba, R. O.; Beyl, C. A.

    2011-07-01

    The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland's nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.

  4. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes.

    PubMed

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric

    2012-09-01

    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses. © 2012 John Wiley & Sons A/S.

  5. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  6. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.

    PubMed

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-23

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  7. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  8. Use of Principal Components Analysis to Explain Controls on Nutrient Fluxes to the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Mills, A. L.

    2017-12-01

    The Chesapeake Bay watershed, on the east coast of the United States, encompasses about 166,000-square kilometers (km2) of diverse land use, which includes a mixture of forested, agricultural, and developed land. The watershed is now managed under a Total Daily Maximum Load (TMDL), which requires implementation of management actions by 2025 that are sufficient to reduce nitrogen, phosphorus, and suspended-sediment fluxes to the Chesapeake Bay and restore the bay's water quality. We analyzed nutrient and sediment data along with land-use and climatic variables in nine sub watersheds to better understand the drivers of flux within the watershed and to provide relevant management implications. The nine sub watersheds range in area from 300 to 30,000 km2, and the analysis period was 1985-2014. The 31 variables specific to each sub watershed were highly statistically significantly correlated, so Principal Components Analysis was used to reduce the dimensionality of the dataset. The analysis revealed that about 80% of the variability in the whole dataset can be explained by discharge, flux, and concentration of nutrients and sediment. The first two principal components (PCs) explained about 68% of the total variance. PC1 loaded strongly on discharge and flux, and PC2 loaded on concentration. The PC scores of both PC1 and PC2 varied by season. Subsequent analysis of PC1 scores versus PC2 scores, broken out by sub watershed, revealed management implications. Some of the largest sub watersheds are largely driven by discharge, and consequently large fluxes. In contrast, some of the smaller sub watersheds are more variable in nutrient concentrations than discharge and flux. Our results suggest that, given no change in discharge, a reduction in nutrient flux to the streams in the smaller watersheds could result in a proportionately larger decrease in fluxes of nutrients down the river to the bay, than in the larger watersheds.

  9. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  10. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  11. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    PubMed

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  12. Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary

    NASA Astrophysics Data System (ADS)

    Lukatelich, R. J.; Schofield, N. J.; McComb, A. J.

    1987-02-01

    Wilson Inlet is a 'bar-built' estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%). Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass. Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.

  13. Assessing possible visitor-use impacts on water quality in Yosemite National Park, California

    USGS Publications Warehouse

    Clow, David W.; Peavler, Rachael S.; Roche, Jim; Panorska, Anna K.; Thomas, James M.; Smith, Steve

    2011-01-01

    There is concern that visitor-use associated activities, such as bathing, dish washing, wastewater production, and stock animal use near lakes and streams, could cause degradation of water quality in Yosemite National Park. A study was conducted during 2004–2007 to assess patterns in nutrient and Escherichia coli (E. coli) concentrations in the Merced and Tuolumne Rivers and characterize natural background concentrations of nutrients in the park. Results indicated that nutrient and E. coli concentrations were low, even compared to other undeveloped sites in the United States. A multiple linear regression approach was used to model natural background concentrations of nutrients, with basin characteristics as explanatory variables. Modeled nitrogen concentrations increased with elevation, and modeled phosphorus concentrations increased with basin size. Observed concentrations (±uncertainty) were compared to modeled concentrations (±uncertainty) to identify sites that might be impacted by point sources of nutrients, as indicated by large model residuals. Statistically significant differences in observed and modeled concentrations were observed at only a few locations, indicating that most sites were representative of natural background conditions. The empirical modeling approach used in this study can be used to estimate natural background conditions at any point along a study reach in areas minimally impacted by development, and may be useful for setting water-quality standards in many national parks.

  14. Impact of seasonal changes in nutrient loading on distribution and activity of nitrifiers in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Vipindas, P. V.; Anas, Abdulaziz; Jayalakshmy, K. V.; Lallu, K. R.; Benny, P. Y.; Shanta, Nair

    2018-02-01

    Estuaries are ecologically important environments, which function as the reception point of nitrogenous inputs of terrestrial and anthropogenic origin. In the present study, we discuss the influence of nutrient characteristics on the distribution and activity of nitrifiers in the water column of Cochin Estuary (CE), a tropical estuary along the southeast Arabian Sea (SEAS). Nitrifying bacteria (i.e. Ammonia- (AOB) and nitrite- (NOB) -oxidizing bacteria), which were enumerated using fluorescent in situ hybridization (FISH), showed marked seasonality while maintaining the abundance within an order of 107 cells L-1. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of AOB exhibited spatio-temporal adaptability without much variation. Nitrification rate in the CE ranged from 2.25 to 426.17 nmol N L-1 h-1 and it was 10-40 fold higher during the pre-monsoon compared with the monsoon. We attributed this increase to high nutrient availability during pre-monsoon due to low flushing rate of the estuary. The study shows that the distribution and activities of nitrifiers in the CE are modulated by the changes in nutrient concentration imparted by the monsoon-driven seasonal variation in river-water discharge and flushing.

  15. Nitrogen source and concentration affect utilization of glucose by mixed ruminal microbes in vitro

    USDA-ARS?s Scientific Manuscript database

    Availability of ruminally degradable protein (RDP) changes the utilization of carbohydrates by ruminal microbes. However, the effects are not well described, though such information is needed to understand the potential impact on nutrient supplies for ruminants. The objective of this study was to co...

  16. Southern Nevada ecosystem stressors [Chapter 2

    Treesearch

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  17. Ecophysiology of horse chestnut (Aesculus Hippocastanum L.) in degraded and restored urban sites

    Treesearch

    Jacek Oleksyn; Brian D. Kloeppel; Szymon Lukasiewicz; Piotr Karolewski; Peter B. Reich

    2007-01-01

    We explored changes in growth, phenology, net CO2 assimilation rate, water use efficiency, secondary defense compounds, substrate and foliage nutrient concentration of a degraded urban horse chestnut (Aesculus hippocastanum L.) site restored for three years using mulching (tree branches including foliage) and fertilization (...

  18. Using High Frequency Monitoring of Environmental Factors to Predict Microcystin Concentrations in a Multi-use, Inland Reservoir

    EPA Science Inventory

    Cyanobacteria, known as blue-green algae, are photosynthetic bacteria found naturally in marine, freshwater, and estuarine ecosystems. An increase in nutrient input and changes in the climate have contributed to the proliferation of cyanobacteria, forming harmful algal blooms, or...

  19. Nutrient, trace-element, and ecological history of Musky Bay, Lac Courte Oreilles, Wisconsin, as inferred from sediment cores

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Garrison, Paul J.; Fitzgerald, Sharon A.; Elder, John F.

    2003-01-01

    Sediment cores were collected from Musky Bay, Lac Courte Oreilles, and from surrounding areas in 1999 and 2001 to determine whether the water quality of Musky Bay has declined during the last 100 years or more as a result of human activity, specifically cottage development and cranberry farming. Selected cores were analyzed for sedimentation rates, nutrients, minor and trace elements, biogenic silica, diatom assemblages, and pollen over the past several decades. Two cranberry bogs constructed along Musky Bay in 1939 and the early 1950s were substantially expanded between 1950?62 and between 1980?98. Cottage development on Musky Bay has occurred at a steady rate since about 1930, although currently housing density on Musky Bay is one-third to one-half the housing density surrounding three other Lac Courte Oreilles bays. Sedimentation rates were reconstructed for a core from Musky Bay by use of three lead radioisotope models and the cesium-137 profile. The historical average mass and linear sedimentation rates for Musky Bay are 0.023 grams per square centimeter per year and 0.84 centimeters per year, respectively, for the period of about 1936?90. There is also limited evidence that sedimentation rates may have increased after the mid-1990s. Historical changes in input of organic carbon, nitrogen, phosphorus, and sulfur to Musky Bay could not be directly identified from concentration profiles of these elements because of the potential for postdepositional migration and recycling. Minor- and trace-element profiles from the Musky Bay core possibly reflect historical changes in the input of clastic material over time, as well as potential changes in atmospheric deposition inputs. The input of clastic material to the bay increased slightly after European settlement and possibly in the 1930s through 1950s. Concentrations of copper in the Musky Bay core increased steadily through the early to mid-1900s until about 1980 and appear to reflect inputs from atmospheric deposition. Aluminum- normalized concentrations of calcium, copper, nickel, and zinc increased in the Musky Bay core in the mid-1990s. However, concentrations of these elements in surficial sediment from Musky Bay were similar to concentrations in other Lac Courte Oreilles bays, nearby lakes, and soils and were below probable effects concentrations for aquatic life. Biogenic-silica, diatom-community, and pollen profiles indicate that Musky Bay has become more eutrophic since about 1940 with the onset of cottage development and cranberry farming. The water quality of the bay has especially degraded during the last 25 years with increased growth of aquatic plants and the onset of a floating algal mat during the last decade. Biogenic silica data indicate that diatom production has consistently increased since the 1930s. Diatom assemblage profiles indicate a shift from low-nutrient species to higher-nutrient species during the 1940s and that aquatic plants reached their present density and/or composition during the 1970s. The diatom Fragilaria capucina (indicative of algal mat) greatly increased during the mid-1990s. Pollen data indicate that milfoil, which often becomes more common with elevated nutrients, became more widespread after 1920. The pollen data also indicate that wild rice was present in the eastern end of Musky Bay during the late 1800s and the early 1900s but disappeared after about 1920, probably because of water-level changes more so than eutrophication.

  20. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Jeppesen, Erik; Conley, Daniel J.; Søndergaard, Martin; Larsen, Søren E.; Ovesen, Niels B.; Carstensen, Jacob

    2005-03-01

    The Danish National Aquatic Monitoring and Assessment Programme (NOVA) was launched in 1988 following the adoption of the first Danish Action Plan on the Aquatic Environment in 1987 with the aim to reduce by 50% the nitrogen (N) loading and by 80% the phosphorus (P) loading to the aquatic environment. The 14 years of experience gathered from NOVA have shown that discharges of total N (TN) and P (TP) from point sources to the Danish Aquatic Environment have been reduced by 69% (N) and 82% (P) during the period 1989 2002. Consequently, the P concentration has decreased markedly in most Danish lakes and estuaries. Considerable changes in agricultural practice have resulted in a reduction of the net N-surplus from 136 to 88 kg N ha-1 yr-1 (41%) and the net P-surplus from 19 to 11 kg P ha-1 yr-1 (42%) during the period 1985 2002. Despite these efforts Danish agriculture is today the major source of both N (>80%) and P (>50%) in Danish streams, lakes and coastal waters. A non-parametric statistical trend analysis of TN concentrations in streams draining dominantly agricultural catchments has shown a significant (p<0.05) downward trend in 48 streams with the downward trend being stronger in loamy compared to sandy catchments, and more pronounced with increasing dominance of agricultural exploitation in the catchments. In contrast, a statistical trend analysis of TP concentrations in streams draining agricultural catchments did not reveal any significant trends. The large reduction in nutrient loading from point and non-point sources has in general improved the ecological conditions of Danish lakes in the form of increased summer Secchi depth, decreased chlorophyll a and reduced phytoplankton biomass. Major changes have also occurred in the fish communities in lakes, with positive cascading effects on water quality. In Danish estuaries and coastal waters only a few significant improvements in the ecological quality have been observed, although it is expected that the observed reduced nutrient concentrations are likely to improve the ecological quality of estuaries and coastal waters in Denmark in the long term.

  1. Examining the role of dissolved organic nitrogen in stream ecosystems across biomes and Critical Zone gradients

    NASA Astrophysics Data System (ADS)

    Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.

    2016-12-01

    Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.

  2. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Hartman, Susan E.; Kivimäe, Caroline; Salt, Lesley A.; Clargo, Nicola M.; Daniels, Chris J.; Bozec, Yann; Daniels, Lucie; Allen, Stephanie; Hemsley, Victoria S.; Moschonas, Grigorios; Davidson, Keith

    2017-12-01

    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43-, 34% of NO3- and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients.

  3. Environmental response of an Irish estuary to changing land management practices.

    PubMed

    Ní Longphuirt, Sorcha; O'Boyle, Shane; Stengel, Dagmar Brigitte

    2015-07-15

    Anthropogenic pressures have led to problems of nutrient over-enrichment and eutrophication in estuarine and coastal systems on a global scale. Recent improvements in farming practices, specifically a decrease in fertiliser application rates, have reduced nutrient loadings in Ireland. In line with national and European Directives, monitoring of Irish estuarine systems has been conducted for the last 30years, allowing a comparison of the effectiveness of measures undertaken to improve water quality and chemical and biological trends. The Blackwater Estuary, which drains a large agricultural catchment on the south coast of Ireland, has experienced a decrease in calculated nitrogen (N) (17%) and phosphorus (P) (20%) loads in the last decade. Monitored long-term river inputs reflect the reductions while estuarine P concentrations, chlorophyll and dissolved oxygen saturation show concurrent improvement. Consistently high N concentrations suggest a decoupling between N loads and estuarine responses. This highlights the complex interaction between N and P load reductions, and biochemical processes relating to remineralisation and primary production which can alter the effectiveness of the estuarine filter in reducing nutrient transport to the coastal zone. Effective management and reduction of both diffuse and point nutrient sources to surface waters require a consideration of the processes which may alter the effectiveness of measures in estuarine and coastal waters. Copyright © 2015. Published by Elsevier B.V.

  4. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    PubMed

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.

  5. Trophic conditions in Lake Winnisquam, New Hampshire

    USGS Publications Warehouse

    Frost, Leonard R.

    1977-01-01

    Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.

  6. Limitations to CO2-induced growth enhancement in pot studies.

    PubMed

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A

    1993-07-01

    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  7. Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory culture experiment.

    PubMed

    Song, Woojin; Kim, Mincheol; Tripathi, Binu M; Kim, Hyoki; Adams, Jonathan M

    2016-06-01

    It is difficult to understand the processes that structure immensely complex bacterial communities in the soil environment, necessitating a simplifying experimental approach. Here, we set up a microcosm culturing experiment with soil bacteria, at a range of nutrient concentrations, and compared these over time to understand the relationship between soil bacterial community structure and time/nutrient concentration. DNA from each replicate was analysed using HiSeq2000 Illumina sequencing of the 16S rRNA gene. We found that each nutrient treatment, and each time point during the experiment, produces characteristic bacterial communities that occur predictably between replicates. It is clear that within the context of this experiment, many soil bacteria have distinct niches from one another, in terms of both nutrient concentration, and successional time point since a resource first became available. This fine niche differentiation may in part help to explain the coexistence of a diversity of bacteria in soils. In this experiment, we show that the unimodal relationship between nutrient concentration/time and species diversity often reported in communities of larger organisms is also evident in microbial communities. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Variability of selected nutrients and contaminants monitored in rodent diets: A 6-year study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oller, W.L.; Kendall, D.C.; Greenman, D.L.

    1989-01-01

    The results are given from monitoring a commercial closed-formula cereal-based rodent diet (Purina 5010), two open-formula cereal-based diets (NIH-31 and NIH-07), and one purified diet (AIN-76) for selected nutrients and contaminants. The observed concentrations of nutrients (protein, fat, vitamin A, and thiamine) approximated the manufacturer specifications for closed-formula cereal diet, while the average concentrations of nutrients found in the open-formula cereal diets were well above the nominal concentrations. Nominal concentrations for these open-formula diets tended to be close to the minimum values that were observed. Except for protein levels, greater variation in nutrient concentrations was found in the purified dietmore » than in the cereal diets. Contaminants were generally much lower in the purified diet than in the cereal diets, but the variation of contaminants was about equal in the two types of diets. Open- and closed-formula cereal diets appear to be very similar to each other in the degree of variation of nutrients and contaminants. Cadmium, lead, and selenium are the constituents of greatest concern in assuring the quality of the rodent diets that were evaluated.« less

  9. Reality check of socio-hydrological interactions in water quality and ecosystem management

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-04-01

    Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.

  10. The differing biogeochemical and microbial signatures of glaciers and rock glaciers

    USGS Publications Warehouse

    Fegel, Timothy S.; Baron, Jill S.; Fountain, Andrew G.; Johnson, Gunnar F.; Hall, Edward K.

    2016-01-01

    Glaciers and rock glaciers supply water and bioavailable nutrients to headwater mountain lakes and streams across all regions of the American West. Here we present a comparative study of the metal, nutrient, and microbial characteristics of glacial and rock glacial influence on headwater ecosystems in three mountain ranges of the contiguous U.S.: The Cascade Mountains, Rocky Mountains, and Sierra Nevada. Several meltwater characteristics (water temperature, conductivity, pH, heavy metals, nutrients, complexity of dissolved organic matter (DOM), and bacterial richness and diversity) differed significantly between glacier and rock glacier meltwaters, while other characteristics (Ca2+, Fe3+, SiO2 concentrations, reactive nitrogen, and microbial processing of DOM) showed distinct trends between mountain ranges regardless of meltwater source. Some characteristics were affected both by glacier type and mountain range (e.g. temperature, ammonium (NH4+) and nitrate (NO3- ) concentrations, bacterial diversity). Due to the ubiquity of rock glaciers and the accelerating loss of the low latitude glaciers our results point to the important and changing influence that these frozen features place on headwater ecosystems.

  11. Performance traits and metabolic responses in goats (Capra hircus) supplemented with inorganic trivalent chromium.

    PubMed

    Haldar, Sudipto; Mondal, Souvik; Samanta, Saikat; Ghosh, Tapan Kumar

    2009-11-01

    The effects of supplemental chromium (Cr) as chromic chloride hexahydrate in incremental dose levels (0, 0.5, 1.0, and 1.5 mg/day for 240 days) on metabolism of nutrients and trace elements were determined in dwarf Bengal goats (Capra hircus, castrated males, average age 3 months, n = 24, initial mean body weight 6.4 +/- 0.22 kg). Live weight increased linearly (p < 0.05) with the level of supplemental Cr. Organic matter and crude protein digestibility, intake of total digestible nutrients, and retention of N (g/g N intake) increased (p < 0.05) in a dose-dependent linear manner. Serum cholesterol and tryacylglycerol concentrations changed inversely with the dose of supplemental Cr (p < 0.01). Supplemental Cr positively influenced retention of copper and iron (p < 0.05) causing linear increase (p < 0.01) in their serum concentrations. It was concluded that Cr supplementation may improve utilization of nutrients including the trace elements and may also elicit a hypolidemic effect in goats. However, further study with regards to optimization of dose is warranted.

  12. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China.

    PubMed

    Zhang, You; Cheng, Long; Tolonen, Katri E; Yin, Hongbin; Gao, Junfeng; Zhang, Zhiming; Li, Kuanyi; Cai, Yongjiu

    2018-06-15

    Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China

    PubMed Central

    Shao, Jinchao; Han, Guoqi; Yang, Dezhou

    2015-01-01

    Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324

  14. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    PubMed

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  15. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize ( Zea mays) and implications for nanoagriculture

    NASA Astrophysics Data System (ADS)

    Tiwari, D. K.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L. M.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. E.

    2014-06-01

    The application of nano-biotechnology to crop-science/agriculture (`nanoagriculture') is a recent development. While carbon nanotubes (CNTs) have been shown to dramatically improve germination of some comestible plants, deficiencies in consistency of behavior and reproducibility arise, partially from the variability of the CNTs used. In this work, factory-synthesized multi-walled-CNTs (MWCNTs) of quality-controlled specifications were seen to enhance the germinative growth of maize seedlings at low concentrations but depress it at higher concentrations. Growth enhancement principally arose through improved water delivery by the MWCNT. Polarized EDXRF spectrometry showed that MWCNTs affect mineral nutrient supply to the seedling through the action of the mutually opposing forces of inflow with water and retention in the medium by the ion-CNT transient-dipole interaction. The effect varied with ion type and MWCNT concentration. The differences of the Fe tissue concentrations when relatively high equimolar Fe2+ or Fe3+ was introduced, implied that the ion-CNT interaction might induce redox changes to the ion. The tissue Ca2+ concentration manifested as the antipode of the Fe2+ concentration indicating a possible cationic exchange in the cell wall matrix. SEM images showed that MWCNTs perforated the black-layer seed-coat that could explain the enhanced water delivery. The absence of perforations with the introduction of FeCl2/FeCl3 reinforces the idea of the modification of MWCNT functionality by the ion-CNT interaction. Overall, in normal media, low dose MWCNTs were seen to be beneficial, improving water absorption, plant biomass and the concentrations of the essential Ca, Fe nutrients, opening a potential for possible future commercial agricultural applications.

  16. Productivity and river flux variability in response to the PETM on Atlantic margin at Bass River, NJ.

    NASA Astrophysics Data System (ADS)

    Stoll, H.; Shimizu, N.; Savain, R.; Zachos, J.; Ziveri, P.

    2009-04-01

    While the dramatic climate warming of the Paleocene-Eocene Thermal Maximum has been well characterized, changes in the hydrological cycle and the broader biogeochemical feedbacks (weathering, nutrients, productivity) are less well constrained. Here we describe new geochemical results from a coastal section on the midlatitude Atlantic margin of the U.S. at Bass River, NJ. We measured the elemental geochemistry of coccoliths to probe the productivity of these algae in response to the changing nutrient dynamics on the shelf in the time interval preceding and during the PETM. Coccoliths extracted from the siliclastic coastal section at Bass River NJ exhibit exceptionally good preservation and negligible overgrowth compared to typical ocean carbonate-rich sediments. Analysis of individual coccoliths using secondary ion mass spectrometry (SIMS) facilitates reliable trace element measurements in this low-carbonate section. Published sequence stratigraphy and microfossil analysis have revealed several third order sea level cycles in the late Paleocene including a highstand during the PETM. Consequently we extend our paleoproductivity records far below the PETM to characterize this background variability. We recognize a pattern of generally maximum productivity during lowstands and minimal productivity during highstands. Because nutrient concentrations decrease significantly with distance from the coast, highstands reduce productivity by shifting the highest nutrient levels landward, away from the site. This is likely due to greater distance from river sources as well as reduced wave turbulence which mixes nutrients into the photic zone. This general pattern is broken during the PETM, which features high productivity despite a sea level highstand. This anomalous high productivity may reflect enhanced riverine nutrient delivery, and potentially changes in wind strength and mixing intensity. Riverine nutrient delivery could increase with higher precipitation or precipitation seasonality, and/or higher weathering intensity. In support of enhanced riverine flow, seawater d18O ratios, calculated from coccolith d18O and TEX86 temperatures, indicate a strong decrease characteristic of freshening during the PETM. The excellent preservation of coccoliths also enables us to examine interspecific vital effects on coccolith stable isotopes, with minimal diagenetic homogenization. In Bass River coccolith size fractions separated and measured from the same sediments, the vital effects among different size fractions are <0.5 permil in carbon and oxygen isotope ratios, with little change over the PETM, consistent with our earlier results from ODP 690. This contrasts with the large range of stable isotope vital effects in modern cultures and sediment traps, which correlate with cell size and carbonate ion. These results support our hypothesis that the range of interspecific vital effects may have been reduced in the high-CO2 Paleocene ocean when the modern diversity of carbon concentrating mechanisms was not required.

  17. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from Northwestern semi-arid Mexico.

    PubMed

    Sánchez-Carrillo, Salvador; Alatorre, Luis C; Sánchez-Andrés, Raquel; Garatuza-Payán, Jaime

    2007-09-01

    Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during--not only--scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 +/- 0.70 and 0.14 +/- 0.12 mg P l(-1)), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment-water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m(-2) year(-1) with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 +/- 0.40 cm year(-1)) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km(-2) year(-1)) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.

  18. Seasonal and spatial variability of nutrients and pesticides in streams of the Willamette Basin, Oregon, 1993-95

    USGS Publications Warehouse

    Rinella, F.A.; Janet, M.L.

    1998-01-01

    From April 1993 to September 1995, the U.S. Geological Survey conducted a study of the occurrence and distribution of nutrients and pesticides in surface water of the Willamette and Sandy River Basins, Oregon, as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. About 260 samples were collected at 51 sites during the study; of these, more than 60 percent of the pesticide samples and more than 70 percent of the nutrient samples were collected at 7 sites in a fixed-station network (primary sites) to characterize seasonal water-quality variability related to a variety of land-use activities. Samples collected at the remain ing 44 sites were used primarily to characterize spatial water- quality variability in agricultural river subbasins located throughout the study area.This report describes concentrations of 4 nutrient species (total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus) and 86 pesticides and pesticide degradation products in streams, during high- and low-flow conditions, receiving runoff from urban, agricultural, forested, and mixed-use lands. Although most nutrient and pesticide concentrations were relatively low, some concentrations exceeded maximum contaminant levels for drinking water and water-quality criteria for chronic toxicity established for the protection of freshwater aquatic life. The largest number of exceedances generally occurred at sites receiving predominantly agricultural inputs. Total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus concentrations were detected in 89 to 98 percent of the samples; atrazine, simazine, metolachlor, and desethylatrazine were detected in 72 to 94 percent of the samples. Fifty different pesticides and degradation products was detected during the 2-1/2 year study.Seasonally, peak nutrient and pesticide concentrations at the seven primary sites were observed during winter and spring rains. With the exception of soluble reactive phosphorus, peak nutrient concentrations were recorded at agricultural sites during winter rains, whereas peak pesticide concentrations occurred at agricultural sites during spring rains.Spatially, although nutrients were detected slightly more often in samples from the northern Willamette Basin relative to the southern Willamette Basin, concentration distributions in the two areas were similar. About 75 percent more pesticides were detected in the northern basin; however, two-thirds of the pesticide detections in the southern basin were larger in concentration than for the same pesticides detected in the northern basin.Nutrient and pesticide concentrations were associated with percent of upstream drainage area in forest, urbanization, and agriculture. Nutrient concentrations at forested sites were among the smallest observed at any of the sites sampled. In addition, only one pesticide and one pesticide degradation product were detected at forested sites, at concentrations near the method detection limits. The highest nutrient concentrations were observed at agricultural sites. Further, the largest numbers of different pesticides detected were at agricultural sites, at concentrations generally larger than at most other land-use sites. Three pesticides--dichlobenil, prometon, and tebuthiuron--were detected more frequently at a site receiving predominantly urban inputs.

  19. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  20. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  1. Effects of Nutrient Dynamics, Light and Temperature on the Patchiness of Phytoplankton and Primary Production in the Estuarine and Coastal Zones of Liaodong Bay, China: A Typical Case Study

    NASA Astrophysics Data System (ADS)

    Pei, S.; Laws, E. A.; Ye, S.

    2017-12-01

    Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by phytoplankton under replete nutrient levels and favorable temperatures. Comparatively, the low Popt values and high ratios of light absorbed to photosynthesis at estuarine stations suggest rather extreme light limitation and lowly efficient usage of absorbed light in photosynthesis in the Liaohe River estuary.

  2. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  3. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.

  4. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.

  5. Hot topic: apparent total-tract nutrient digestibilities measured commercially using 120-hour in vitro indigestible neutral detergent fiber as a marker are related to commercial dairy cattle performance.

    PubMed

    Schalla, A; Meyer, L; Meyer, Z; Onetti, S; Schultz, A; Goeser, J

    2012-09-01

    Measuring individual feed nutrient concentration is common practice for field dairy nutritionists. However, accurately measuring nutrient digestibility and using digestion values in total digestible nutrients models is more challenging. Our objective was to determine if in vivo apparent total-tract nutrient digestibility measured with a practical approach was related to commercial milk production parameters. Total mixed ration and fecal samples were collected from high-producing cows in pens on 39 commercial dairies and analyzed at a commercial feed and forage testing laboratory for nutrient concentration and 120-h indigestible NDF (iNDF) content using the Combs-Goeser in vitro digestion technique. The 120-h iNDF was used as an internal marker to calculate in vivo apparent nutrient digestibilities. Two samples were taken from each dairy and were separated in time by at least 3 wk. Samples were targeted to be taken within 7d of Dairy Herd Improvement (DHI) herd testing. Approved DHI testers measured individual cow milk weights as well as fat and protein concentrations. Individual cow records were averaged by pen corresponding to the total mixed ration and fecal samples. Formulated diet and dry matter intake (DMI) records for each respective pen were also collected. Mixed model regression analysis with dairy specified as a random effect was used to relate explanatory variables (diet nutrient concentrations, formulated DMI, in vivo apparent nutrient digestibilities, and fecal nutrient concentrations) to milk production measures. Dry matter intake, organic matter (OM) digestibility, fecal crude protein (CP) concentration, and fecal ether extract concentration were related to milk, energy-corrected milk, and fat yields. Milk protein concentration was related to CP digestibility, and milk protein yield was related to DMI, OM digestibility, CP digestibility, and ether extract digestibility. Although many studies have related DMI and OM digestibility to milk production under controlled experimental settings, very few have related practical in vivo measures to milk production. By documenting the practical OM digestibility relationship with milk production, nutritionists and scientists may have confidence in this approach for measuring diet performance and collecting nutritional data for commercial dairies. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Moving on from rigid plant stoichiometry: Optimal canopy nitrogen allocation within a novel land surface model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.

    2016-12-01

    Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.

  7. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc

  8. Glacial runoff strongly influences food webs in Gulf of Alaska fjords

    NASA Astrophysics Data System (ADS)

    Arimitsu, M.; Piatt, J. F.; Mueter, F. J.

    2015-12-01

    Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.

  9. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  10. Explanatory characteristics for nutrient concentrations and loads in the Sava River Catchment and cross-regionally

    NASA Astrophysics Data System (ADS)

    Levi, L.; Cvetkovic, V.; Destouni, G.

    2015-12-01

    This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.

  11. Siletz River nutrients: Effects of biosolids application

    EPA Science Inventory

    Stream water nutrients were measured in the Siletz River, Oregon, with the goal of comparing dissolved nutrient concentrations, primarily the nitrogenous nutrients nitrate and ammonium, with previously collected data for the Yaquina and Alsea Rivers for the nutrient criteria prog...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrey, M S

    The report is a synoptic review of data collected over the past twenty years on the chemistry of Lake Michigan. Changes in water quality and sediment chemistry, attributable to cultural and natural influences, are considered in relation to interacting processes and factors controlling the distribution and concentration of chemical substances within the Lake. Temperature, light, and mixing processes are among the important natural influences that affect nutrient cycling, dispersal of pollutants, and fate of materials entering the Lake. Characterization of inshore-offshore and longitudinal differences in chemical concentrations and sediment chemistry for the main body of the Lake is supplemented bymore » discussion of specific areas such as Green Bay and Grand Traverse Bay. Residues, specific conductance, dissolved oxygen, major and trace nutrients, and contaminants are described in the following context: biological essentiality and/or toxicity, sources to the Lake, concentrations in the water column and sediments, chemical forms, seasonal variations and variation with depth. A summary of existing water quality standards, statutes, and criteria applicable to Lake Michigan is appended.« less

  13. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    PubMed Central

    Tian, Wang; Zhang, Huayong; Zhao, Lei; Zhang, Feifan; Huang, Hai

    2017-01-01

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems. PMID:28117684

  14. Stoichiometry and climatic stress drive respiration and nutrient dynamics of beech litter decomposition

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Hämmerle, Ieda; Zechmeister-Boltenstern, Sophie

    2010-05-01

    Little is known about how the variance in resources in terms of carbon (C), nitrogen (N), phosphorus (P) ratios affects respiration and nutrient dynamics. To elucidate how resource quantity and stoichiometry affect the decomposition process of beech (Fagus sylvatica) litter a terrestrial microcosm experiment was conducted. Our aim was to follow changes of beech litter stoichiometry and biogeochemical processes, and to quantify element losses as affected by temperature and moisture extremes. In addition to gaseous element losses (CO2) we examined the release of nutrients prone to leaching and the importance of environmental controls. We addressed mechanisms and pathways of carbon, nitrogen and phosphorus losses. In our experiment sterilised dried leaves were inoculated with a litter-soil suspension from a beech forest in order to ensure similar starting conditions. Beech litter from different Austrian sites covering C:N ratios from 45 to 66 and C:P ratios from 652 to 1467 were incubated at 15°C for six months. The water content was adjusted to 60% at regular intervals to keep the moisture constant. To monitor transient and persistent influences of environmental stress, the microcosms were subject to extreme changes in temperature (+30°C and -20°C) and moisture (draught) after an incubation time of three months. Litter stoichiometries (C:N, C:P) turned out to be strong predictors for respiration, and nitrogen, and phosphorous losses. (i) Litter with narrow litter C:nutrient ratios decomposed faster than litter with wider litter C:nutrient ratios; and therefore showed higher respiration rates. (ii) Increased nutrient losses as leachates were observed for high quality leaf litter i.e. inorganic nitrogen losses for sites with narrow litter C:N ratios and phosphate was released more quickly in sites with narrow C:P ratios. There was a strong functional response of the microbial community to environmental extremes. Respiration increased upon temperature extremes, especially in the litter with highest C:P ratio. A persistent effect of temperature extremes on NH4 and NO3 concentrations was observed for three months after stress application. However, the effect on PO4 concentrations was only transient. Environmental conditions had a strong affect on nutrient losses but only a minor affect on microbial carbon Cmic and microbial nitrogen Nmic. The impact of environmental stress (heat or freezing) on microbes in terms of Cmic, Nmic and C:Nmic was strongest in sites with narrow litter C:N ratios. Our results indicate a similar stoichiometric demand of microbes, with temporal changes which results in differences in nutrient cycling on substrates with different C:N:P ratios.

  15. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID:20202969

  16. Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Heglund, Patricia J.; Rover, Jennifer R.; Koch, Joshua C.; Bertram, Mark R.

    2015-01-01

    Losses in lake area have been observed for several Arctic and Subarctic regions in recent decades, with unknown consequences for lake ecosystems. These reductions are primarily attributed to two climate-sensitive mechanisms, both of which may also cause changes in water chemistry: (i) increased imbalance of evaporation relative to inflow, whereby increased evaporation and decreased inflow act to concentrate solutes into smaller volumes; and (ii) accelerated permafrost degradation, which enhances sublacustrine drainage while simultaneously leaching previously frozen solutes into lakes. We documented changes in nutrients [total nitrogen (TN), total phosphorus (TP)] and ions (calcium, chloride, magnesium, sodium) over a 25 year interval in shrinking, stable, and expanding Subarctic lakes of the Yukon Flats, Alaska. Concentrations of all six solutes increased in shrinking lakes from 1985–1989 to 2010–2012, while simultaneously undergoing little change in stable or expanding lakes. This created a present-day pattern, much weaker or absent in the 1980s, in which shrinking lakes had higher solute concentrations than their stable or expanding counterparts. An imbalanced evaporation-to-inflow ratio (E/I) was the most likely mechanism behind such changes; all four ions, which behave semiconservatively and are prone to evapoconcentration, increased in shrinking lakes and, along with TN and TP, were positively related to isotopically derived E/I estimates. Moreover, the most conservative ion, chloride, increased >500% in shrinking lakes. Conversely, only TP concentration was related to probability of permafrost presence, being highest at intermediate probabilities. Overall, the substantial increases of nutrients (TN >200%, TP >100%) and ions (>100%) may shift shrinking lakes towards overly eutrophic or saline states, with potentially severe consequences for ecosystems of northern lakes.

  17. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  18. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

    PubMed Central

    Khateri, N.; Azizi, O.; Jahani-Azizabadi, H.

    2017-01-01

    Objective An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites. PMID:28249376

  19. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro

    PubMed Central

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.; de Armas, D.; González, A. G.; Domínguez-Yanes, J. F.; Escánez, J.

    2013-01-01

    The shallow submarine eruption which took place in October 10th 2011, 1.8 km south of the island of El Hierro (Canary Islands) allowed the study of the abrupt changes in the physical-chemical properties of seawater caused by volcanic discharges. In order to monitor the evolution of these changes, seven oceanographic surveys were carried out over six months (November 2011-April 2012) from the beginning of the eruptive stage to the post-eruptive phase. Here, we present dramatic changes in the water column chemistry including large decreases in pH, striking effects on the carbonate system, decreases in the oxygen concentrations and enrichment of Fe(II) and nutrients. Our findings highlight that the same volcano which was responsible for the creation of a highly corrosive environment, affecting marine biota, has also provided the nutrients required for the rapid recuperation of the marine ecosystem. PMID:23355953

  20. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows.

    PubMed

    Weiss, W P; St-Pierre, N R; Willett, L B

    2009-11-01

    The effects of forage source, concentration of metabolizable protein (MP), type of carbohydrate, and their interactions on nutrient digestibility and production were evaluated using a central composite treatment design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Rumen-degradable protein comprised 10.7% of the dry matter (DM) in all diets, but undegradable protein ranged from 4.1 to 7.1%, resulting in dietary MP concentrations of 8.8 to 12.0% of the DM. Dietary starch ranged from 22 to 30% of the DM with a concomitant decrease in neutral detergent fiber concentrations. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block consisted of three 21-d periods, and each cow was assigned a unique sequence of 3 diets, resulting in 108 observations. Milk production and composition, feed intake, and digestibility of major nutrients (via total collection of feces and urine) were measured. Few significant interactions between main effects were observed. Starch concentration had only minor effects on digestibility and production. Replacing corn silage with alfalfa decreased digestibility of N but increased digestibility of neutral detergent fiber. Increasing the concentration of MP increased N digestibility. The concentration (Mcal/kg) of dietary digestible energy (DE) increased linearly as starch concentration increased (very small effect) and was affected by a forage by MP interaction. At low MP, high alfalfa reduced DE concentration, but at high MP, increasing alfalfa increased DE concentration. Increasing alfalfa increased DM and DE intakes, which increased yields of energy-corrected milk, protein, and fat. Increasing MP increased yields of energy-corrected milk and protein. The response in milk protein to changes in MP was much less than predicted using the National Research Council (2001) model.

  1. Ecosystem attributes related to tidal wetland effects on water quality.

    PubMed

    Findlay, S; Fischer, D

    2013-01-01

    Biogeochemical functioning of ecosystems is central to nutrient cycling, carbon balance, and several ecosystem services, yet it is not always clear why levels of function might vary among systems. Wetlands are widely recognized for their ability to alter concentrations of solutes and particles as water moves through them, but we have only general expectations for what attributes of wetlands are linked to variability in these processes. We examined changes in several water quality variables (dissolved oxygen, dissolved organic carbon, nutrients, and suspended particles) to ascertain which constituents are influenced during tidal exchange with a range of 17 tidal freshwater wetlands along the Hudson River, New York, USA. Many of the constituents showed significant differences among wetlands or between flooding and ebbing tidal concentrations, indicating wetland-mediated effects. For dissolved oxygen, the presence of even small proportional cover by submerged aquatic vegetation increased the concentration of dissolved oxygen in water returned to the main channel following a daytime tidal exchange. Nitrate concentrations showed consistent declines during ebbing tides, but the magnitude of decline varied greatly among sites. The proportional cover by graminoid-dominated high intertidal vegetation accounted for over 40% of the variation in nitrate decline. Knowing which water-quality alterations are associated with which attributes helps suggest underlying mechanisms and identifies what functions might be susceptible to change as sea level rise or salinity intrusion drives shifts in wetland vegetation cover.

  2. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  3. Soil quality succession of mudflat in coastal area of China under different types of man-made land uses

    NASA Astrophysics Data System (ADS)

    Lu, Haiying; Shao, Hongbo; Xu, Zhaolong; Peng, Cheng

    2017-04-01

    Marshy reclamation in coastal area is becoming an important strategy for food safety security and economic development in China. After the reclamation of mudflat, the nutrient concentration in soil is one of the dominated factors restricting the development of marshy agriculture. However, little information is available for soil nutrient dynamics and its driving mechanisms under different types of man-made land uses. In this review, we summarized the soil nutrient dynamics under different types of man-made land uses (bare mudflat soil, rice-wheat rotation soil, aquaculture soil, and forest soil), including the change of physical and chemical features of the reclaimed soil; ii) the dynamics of soil organic matters and its driving mechanism in marshy land; iii) the migration of N, P, and K in marshy soil; and iv) the oriented cultivation and improvement for soil nutrient in marshy soil. This study contributes not only to understanding the soil nutrient cycling in marshy land, but also to providing valuable information for the sustainable development of salt-soil agriculture in marshy land along seaside cities of China.

  4. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C.

    2004-01-01

    1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2-5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C:N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

  5. Calculating the refractive index for pediatric parenteral nutrient solutions.

    PubMed

    Nelson, Scott; Barrows, Jason; Haftmann, Richard; Helm, Michael; MacKay, Mark

    2013-02-15

    The utility of refractometric analysis for calculating the refractive index (RI) of compounded parenteral nutrient solutions for pediatric patients was examined. An equation for calculating the RI of parenteral nutrient solutions was developed by chemical and linear regression analysis of 154 pediatric parenteral nutrient solutions. This equation was then validated by analyzing 1057 pediatric parenteral nutrition samples. The RI for the parenteral nutrient solutions could be calculated by summing the RI contribution for each ingredient and then adding the RI of water. The RI contribution for each ingredient was determined by multiplying the RI of the manufacturer's concentrate by the volume of the manufacturer's concentrate mixed into the parenteral nutrient solution divided by the total volume of the parenteral nutrient solution. The calculated RI was highly correlated with the measured RI (R(2) = 0.94, p < 0.0001). Using a range of two standard deviations (±0.0045), 99.8% of the samples fell into the comparative range. RIs of electrolytes, vitamins, and trace elements in the concentrations used did not affect the RI, similar to the findings of other studies. There was no statistical difference between the calculated RI and the measured RI in the final product of a pediatric parenteral nutrient solution. This method of quality control can be used by personnel compounding parenteral nutrient solutions to confirm the compounding accuracy of dextrose and amino acid concentrations in the final product, and a sample can be sent to the hospital laboratory for electrolyte verification.

  6. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  7. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Cox, Peter; Sitch, Stephen; Jones, Chris; Liddicoat, spencer

    2013-04-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares alternative models of plant N uptake as found in different terrestrial biogeochemical models against field measurements, and introduces a new N-uptake model to the Joint UK Land Environment Simulator (JULES).. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  8. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.)

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Oremland, R.S.

    1983-01-01

    Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4+, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4+, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing. ?? 1983 Dr W. Junk Publishers.

  9. Applying complex models to poultry production in the future--economics and biology.

    PubMed

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.

  10. Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer

    NASA Astrophysics Data System (ADS)

    Snyder, L. E.; Herstand, M. R.; Bowden, W. B.

    2011-12-01

    Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.

  11. Yields and trends of nutrients and total suspended solids in nontidal areas of the Chesapeake Bay basin, 1985-96

    USGS Publications Warehouse

    Langland, Michael J.

    1998-01-01

    Excessive concentrations of nutrients and suspended solids in water adversely affect water quality in the Chesapeake Bay. High levels of nutrients in the Bay result in algal blooms and suspended solids reduce water clarity, both of which decrease the amount of light reaching submerged aquatic vegetation (SAV). The die off and decomposition of algae and SAV deplete oxygen supplies in the water. Low dissolved oxygen (DO) levels (less than 5.0 milligrams per liter for aquatic life, U.S. Environmental Protection Agency, 1986) can lead to fish kills and stress other living resources in the Bay. In 1987, the Chesapeake Bay Agreement called for a 40-percent reduction in the amount of controllable nutrients reaching the Chesapeake Bay by the year 2000. This goal was based on results of computer simulations that predicted that periods of low DO would be reduced or eliminated if nutrient inputs to the Bay were reduced by that amount. In an effort to achieve that goal, nutrient-reduction strategies, including banning phosphate detergents, upgrading sewagetreatment plants, controlling runoff from agricultural and urban areas, and preserving forest and wetland areas (Zynjuk, 1995), were implemented in many areas of the basin to help reduce nutrient inputs to the Bay. In 1997, a basinwide reevaluation of the 40-percent reduction goal was initiated to determine if that goal is achievable and to identify and document any changes in water quality and living resources in response to nutrient-reduction strategies. In support of this reevaluation, the U.S. Geological Survey (USGS) designed a database and retrieved water-quality data from approximately 1,300 nontidal stream sites in the Chesapeake Bay Basin (Langland and others, 1995). At 84 of the 1,300 sites, where sufficient data were available, trends, yields, and annual loads of nutrients and suspended solids were estimated for 1985 through 1996. This report presents: (1) spatial distribution of available nutrient and suspended-solids data for the 84 sites, (2) yields of nutrients and total suspended solids, and (3) trends in concentrations of nutrients and total suspended solids. Results presented here are limited to analyses for total nitrogen (TN), nitrate nitrogen (NO3), total phosphorus (TP), and total suspended solids (TSS).

  12. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu

    2009-04-01

    The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.

  13. Notable increases in nutrient concentrations in a shallow lake during seasonal ice growth.

    PubMed

    Fang, Yang; Changyou, Li; Leppäranta, Matti; Xiaonghong, Shi; Shengnan, Zhao; Chengfu, Zhang

    2016-12-01

    Nutrients may be eliminated from ice when liquid water is freezing, resulting in enhanced concentrations in the unfrozen water. The nutrients diluted from the ice may contribute to accumulated concentrations in sediment during winter and an increased risk of algae blooms during the following spring and summer. The objective of this study was to evaluate the influence of ice cover on nitrogen (N) and phosphorus (P) concentrations in the water and sediment of a shallow lake, through an examination of Ulansuhai Lake, northern China, from the period of open water to ice season in 2011-2013. The N and P concentrations were between two and five times higher, and between two and eight times higher, than in unfrozen lakes, respectively. As the ice thickness grew, contents of total N and total P showed C-shaped profiles in the ice, and were lower in the middle layer and higher in the bottom and surface layers. Most of the nutrients were released from the ice to liquid water. The results confirm that ice can cause the nutrient concentrations in water and sediment during winter to increase dramatically, thereby significantly impacting on processes in the water environment of shallow lakes.

  14. Continuous Water Quality Monitoring in the Sacramento-San Joaquin Delta to support Ecosystem Science

    NASA Astrophysics Data System (ADS)

    Downing, B. D.; Bergamaschi, B. A.; Pellerin, B. A.; Saraceno, J.; Sauer, M.; Kraus, T. E.; Burau, J. R.; Fujii, R.

    2013-12-01

    Characterizing habitat quality and nutrient availability to food webs is an essential step for understanding and predicting the success of pelagic organisms in the Sacramento-San Joaquin Delta (Delta). The difficulty is that water quality and nutrient supply changes continuously as tidal and wind-driven currents move new water parcels to and from comparatively static geomorphic settings. Understanding interactions between nutrient cycling, suspended sediment, and plankton dynamics with flow and tidal range relative to position in the estuary is critical to predicting and managing bottom up effects on aquatic habitat in the Delta. Historically, quantifying concentrations and loads in the Delta has relied on water quality data collected at monthly intervals. Current in situ optical sensors for nutrients, dissolved organic matter (DOM) and algal pigments (chlorophyll-A, phycocyanin) allow for real-time, high-frequency measurements on time scales of seconds, and extending up to years. Such data is essential for characterizing changes in water quality over short and long term temporal scales as well as over broader spatial scales. High frequency water quality data have been collected at key stations in the Delta since 2012. Sensors that continuously measure nitrate, DOM, algal pigments and turbidity have been co-located at pre-existing Delta flow monitoring stations. Data from the stations are telemetered to USGS data servers and are designed to run autonomously with a monthly service interval, where sensors are cleaned and checked against calibration standards. The autonomous system is verified against discrete samples taken monthly and intensively over periodic ebb to flood tidal cycles. Here we present examples of how coupled optical and acoustic data from the sensor network to improve our understanding of nutrient and DOM dynamics and fluxes. The data offer robust quantitative estimates of concentrations and constituent fluxes needed to investigate biogeochemical processes in tidal reaches of the Delta. The data is available in real time on the web and has proven invaluable for anticipating interactions between nutrient supply and the Delta landscape, and is useful for continued research in aspects of pelagic habitat quality, algal productivity, and food web dynamics.

  15. Diagnose Nutricional de Cultivares de Milho (Zea mays L.) de Diferentes Níveis Tecnológicos

    USDA-ARS?s Scientific Manuscript database

    The introduction of hybrids has contributed to increases in grain production. However, there is little work examining the relationship of genetic improvement to nutrient use efficiency, concentration, and export. The objective of this study was to evaluate changes in nutritional status of five maize...

  16. Forage nutritive quality in the Serengeti ecosystem: The roles of fire and herbivory

    USGS Publications Warehouse

    Anderson, T.M.; Ritchie, M.E.; Mayemba, E.; Eby, S.; Grace, J.B.; McNaughton, S.J.

    2007-01-01

    Fire and herbivory are important determinants of nutrient availability in savanna ecosystems. Fire and herbivory effects on the nutritive quality of savanna vegetation can occur directly, independent of changes in the plant community, or indirectly, via effects on the plant community. Indirect effects can be further subdivided into those occurring because of changes in plant species composition or plant abundance (i.e., quality versus quantity). We studied relationships between fire, herbivory, rainfall, soil fertility, and leaf nitrogen (N), phosphorus (P), and sodium (Na) at 30 sites inside and outside of Serengeti National Park. Using structural equation modeling, we asked whether fire and herbivory influences were largely direct or indirect and how their signs and strengths differed within the context of natural savanna processes. Herbivory was associated with enhanced leaf N and P through changes in plant biomass and community composition. Fire was associated with reduced leaf nutrient concentrations through changes in plant community composition. Additionally, fire had direct positive effects on Na and nonlinear direct effects on P that partially mitigated the indirect negative effects. Key mechanisms by which fire reduced plant nutritive quality were through reductions of Na-rich grasses and increased abundance of Themeda triandra, which had below-average leaf nutrients. ?? 2007 by The University of Chicago. All rights reserved.

  17. Nutrient and Suspended-Sediment Transport and Trends in the Columbia River and Puget Sound Basins, 1993-2003

    USGS Publications Warehouse

    Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven

    2007-01-01

    This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.

  18. Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations

    NASA Astrophysics Data System (ADS)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2017-04-01

    Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.

  19. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    NASA Astrophysics Data System (ADS)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.

  20. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    PubMed

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  1. Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorus concentration.

    PubMed

    Sanchis-Perucho, P; Duran, F; Barat, R; Pachés, M; Aguado, D

    2018-06-01

    The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 μmol s -1 m -2 ) and phosphorus concentrations (around 6 and 15 mgP L -1 ). Four green algae - Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas- and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L -1 , a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 ± 15.8% and 96.1 ± 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 μmol s -1 m -2 of light intensity and 6.02 mgP L -1 of phosphorus concentration, reaching about 674 ± 86 mg L -1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.

  2. Elemental Concentrations in the Seed of Mutants and Natural Variants of Arabidopsis thaliana Grown under Varying Soil Conditions

    PubMed Central

    McDowell, Stephen C.; Akmakjian, Garo; Sladek, Chris; Mendoza-Cozatl, David; Morrissey, Joe B.; Saini, Nick; Mittler, Ron; Baxter, Ivan; Salt, David E.; Ward, John M.; Schroeder, Julian I.; Guerinot, Mary Lou; Harper, Jeffrey F.

    2013-01-01

    The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport. PMID:23671651

  3. Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3-6 h) incorporation by an inshore macroalga

    NASA Astrophysics Data System (ADS)

    Ladah, Lydia B.; Filonov, Anatoliy; Lavín, Miguel F.; Leichter, James J.; Zertuche-González, José A.; Pérez-Mayorga, Diana M.

    2012-07-01

    During summer in shallow waters off Baja California, Mexico, the internal tide is a dominant thermal feature of the water column. However, its importance for sub-thermocline nutrient provision to benthic macroalgae is unknown. In order to determine if internal motions provide nutrients to macroalgae in summer, Ulva lactuca was outplanted at inshore stations for short (3 and 6 h) intervals, at the surface, 5 and 10 m depth, and tissue nitrogen content was measured before and after each deployment. Concurrently temperature, currents, and nutrients were measured using moored thermistors, current profilers, CTDs, Niskin bottles, and an in-situ UV absorbance nitrate sensor (ISUS). Discrete pulses of cool, nutrient-rich water were horizontally displaced at least 4 km on the shelf and shoaled more than 20 m depth at the semidiurnal frequency, resulting in more than a 10-fold change in the concentration of nitrate. Inshore, tissue nitrogen of Ulva outplants increased significantly during longer exposures to this cool water. At this site, the semidiurnal signal dominates water column temperature fluctuations from April to November, with summer showing the greatest cooling (up to 5 °C) in a one-hour period. We estimated that 11% of the days of a year show internal waves that would cause a significant change in nutrient availability to macroalgae at 5 m depth. This study supports the hypothesis that nitrate can reach and be rapidly incorporated by inshore macroalgae such as Ulva through transport forced by the internal tide, and that even very short (<1 h) nutrient pulses in nature are reflected in macroalgal tissue. We propose that at this site, the internal tide provides a significant, yet understudied, high frequency nutrient source to inshore primary producers, particularly in summer.

  4. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  5. Bark analysis as a guide to cassava nutrition in Sierra Leone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey-Sam-Aggrey, W.; Garber, M.J.

    1979-01-01

    Cassava main stem barks from two experiments in which similar fertilizers were applied directly in a 2/sup 5/ confounded factorial design were analyzed and the bark nutrients used as a guide to cassava nutrition. The application of multiple regression analysis to the respective root yields and bark nutrient concentrations enable nutrient levels and optimum adjusted root yields to be derived. Differences in bark nutrient concentrations reflected soil fertility levels. Bark analysis and the application of multiple regression analysis to root yields and bark nutrients appear to be useful tools for predicting fertilizer recommendations for cassava production.

  6. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Treesearch

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  7. Nutrients in the Nation?s streams and groundwater: National Findings and Implications

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Hamilton, Pixie A.

    2010-01-01

    A comprehensive national analysis of the distribution and trends of nutrient concentrations in streams and groundwater from 1992 through 2004 is provided by the National Water-Quality Assessment (NAWQA) Program of the United States Geological Survey (USGS). Findings describe the distribution and causes of varying nutrient concentrations in streams and groundwater throughout the Nation and examine the primary sources that contribute to elevated concentrations. Results show that excessive nutrient enrichment is a widespread cause of ecological degradation in streams and that nitrate contamination of groundwater used for drinking water, particularly shallow domestic wells in agricultural areas, is a continuing human-health concern. Finally, despite major Federal, State and local nonpoint-source nutrient control efforts for streams and watersheds across the Nation, USGS trend analyses for 1993?2003 suggest limited national progress to reduce the impacts of nonpoint sources of nutrients during this period. Instead, concentrations have remained the same or increased in many streams and aquifers across the Nation, and continue to pose risks to aquatic life and human health. This Fact Sheet highlights selected national findings and their implications, and serves as a companion product to the complete analysis reported in the USGS Circular titled ?The Quality of Our Nation?s Waters?Nutrients in the Nation?s Streams and Groundwater, 1992?2004.?

  8. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    USGS Publications Warehouse

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated that the residence time of water in the coastal ocean at the study sites was less than 1.6 days. We calculated water and nutrient fluxes into the coastal ocean at each study site. This study provides a baseline description of submarine ground-water discharge in Kaloko-Honokohau National Historical Park and its effect on the park's aquatic resources. We hope that it will allow park managers to better assess potential future changes in ground-water quality and quantity and conserve the park's valuable resources.

  9. Nutrient limitations to aquatic production along an alluvial groundwater connectivity gradient in semi-arid northwest Australia

    NASA Astrophysics Data System (ADS)

    Iles, Jordan; Pettit, Neil; Grierson, Pauline

    2017-04-01

    Primary production of intermittent streams in hot arid regions, such as the geologically ancient Pilbara region of northwest Australia, is strongly limited by both water and nutrient availability. Pulses of allochthonous materials can be significant source of nutrients and carbon during short periods of connected flow. However, during interflow periods, which may last months to years, surface water retracts to a series of surface disconnected pools, where hydrological processes including hyporheic exchange and evapo-concentration of ions are of increasing importance in maintaining bioavailable nutrients for primary production. In the Pilbara, the persistence of individual pools during interflow periods is strongly linked to local topography and connectivity to alluvial groundwater. We might thus expect that autochthonous production is greater in pools that become disconnected from groundwater due to increased concentration of nutrients. We thus investigated the importance of nitrogen (N) and phosphorus (P) limitations on aquatic production along an alluvial groundwater connectivity gradient. First, we used in-situ bottle incubations and a 13C-enriched NaHCO3 isotopic tracer to measure rates of charophyte and phytoplankton production in response to nutrient amendments. Second, we paired a nutrient diffusing substrata limitation experiment with high performance liquid chromatography to i) identify which nutrient(s) limit periphyton production, and ii) how the periphyton community structure changes within pools along the alluvial gradient. Charophyte production was 2 mg C g-1 DW h-1 while phytoplankton production was orders of magnitude less (˜0.01 mg C g-1 DW h-1). Although charophytes showed no clear respiration response to short-term nutrient addition, productivity was positively correlated to both charophyte N and P content (R2 = 0.65, p < 0.001 and R2 = 0.41, p < 0.001 respectively). This relationship was stronger in pools which were disconnected from alluvial groundwater (N: R2 = 0.92, p < 0.001 and P: R2 = 0.77, p < 0.001). Short-term phytoplankton production was N limited in some pools (F > 7.6, p < 0.009) but this was not directly linked to alluvial connectivity. The chemotaxonomic response of periphyton algae to experimental increases of biologically available N and P showed clear shifts in production and community composition, with nitrogen additions aiding in production, whilst P additions alone did not increase production and in some instances inhibited growth of some taxa. Unique photosynthetic pigment peaks were identified in each sample and matched with published values. Clearly both N and P, along with alluvial groundwater connectivity, have significant and complex roles in regulating production in these pools. Altered hydrology due to changing climate or water abstraction may thus have significant but as yet poorly understood impacts on the ecological functioning of intermittent streams.

  10. Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons.

    PubMed

    Laque, Thaís; Farjalla, Vinicius F; Rosado, Alexandre S; Esteves, Francisco A

    2010-05-01

    Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO (3) (-) , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.

  11. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concern with rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. To explore the conditions that promote high microcystin concentrations, we analyzed the US EPA National Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA dataset is reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations. Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. The exchangeability assumption ensures that both the common patterns and eco-region specific features will be reflected in the model. Furthermore, the method incorporates appropriate estimates of uncertainty. Our preliminary results show associations between microcystin and turbidity, total nutrients, and N:P ratios. Upon release of a comparable 2012 NLA dataset, we will apply Bayesian updating. The results will help develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  12. Nutrient stoichiometry of temperate trees and effects on the coupled cycles of carbon, nitrogen, and cations in soil

    NASA Astrophysics Data System (ADS)

    Mueller, K. E.; Oleksyn, J.; Hobbie, S. E.; Reich, P.; Chorover, J. D.; Freeman, K. H.; Eissenstat, D.

    2009-12-01

    Nutrient stoichiometry of leaf litter (LL) is a potentially important driver of plant effects on soil biogeochemistry; it is also responsive to environmental perturbations and differs among plant functional groups that may have predictable responses to the environment. Thus variation in LL nutrient stoichiometry may provide a predictive framework for the influence of global change on soil. However, this approach depends on several key, but poorly tested assumptions, including: 1) other plant organs follow similar patterns and have similar effects on soil biogeochemistry, and 2) patterns in leaf traits, functional group dominance, and soil properties across large-spatial scales are predictive at smaller scales. To address these assumptions and test the utility of nutrient stoichiometry as a predictive framework for soil change, we synthesize data on tree stoichiometry and soil biogeochemistry from a long-term (> 30 yr) common garden experiment containing replicated, monoculture plots of 14 temperate tree species. LL nutrient stoichiometry alone is insufficient to explain differences in biogeochemical cycling among tree species, in part due to the dissimilarity of leaf and root traits within species. Notably, different elements and plant organs have independent impacts on soil biogeochemistry. LL nitrogen (N) concentration and lignin:N ratios have small or negligible effects on soil carbon (C), N, and cation cycling, while LL-calcium (Ca) drives differences in litter decomposition and soil pH among species in a manner consistent with nutrient requirements of anecic earthworms. However, LL-Ca effects on C and N cycles in soil appear minor compared to the influences of root N and, unexpectedly, green leaf N, which combine to drive differences in soil N dynamics via unique mechanisms consistent with nutrient requirements of soil microbes and the trees. In turn, soil N dynamics are strongly correlated with soil acidity and C stabilization. By taking into account the stoichiometry of each plant organ, of soil microbes and fauna, and the interactions among C, N, and cation cycles, the predictive capacity of tree nutrient stoichiometry for understanding soil change is apparent, albeit complex.

  13. The relationship between Gross Primary Productivity and Sun-Induced Fluorescence in a nutrient manipulated Mediterranean grassland is controlled primarily by canopy structure

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induces variation in structural and functional changes of vegetation under different nutrient availability. Among those, sun-induced fluorescence in the far-red region provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and photosynthetic carbon dioxide uptake (Gross Primary Production, GPP). However, the mechanistic link between GPP and sun-induced fluorescence under different environmental conditions is not completely understood. In this contribution we investigated the structural and functional factors controlling the emission of SIF at 760 nm in a Mediterranean grassland with different levels of nutrient availability (Nitrogen (N), Phosphorous (P), and Nitrogen and Phosphorous (NP)). We showed how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. nitrogen content per dry mass of leaves, N%, Chlorophyll ab concentration - Cab, and maximum carboxylation capacity, Vcmax) affected the observed relationship between SIF and GPP. Simultaneous measurements of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and narrow-band spectrometers, respectively. To disentangle the main drivers of the GPP-SIF relationship we performed a factorial modeling exercise with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy. This lead to changes in canopy structure (leaf area index, leaf inclinaton distribution function LIDF parameters) and functional traits (N%, P%, Cab and Vcmax) that eventually controlled the spatial patterns of SIF. Changes in LIDF mainly control the GPP-SIF relationship, with a secondary control of Cab and Vcmax. In order to exploit SIF data to model GPP at global/regional scale canopy structural variability, plant community, and plant functional traits are important confounding factors that have to be considered to correct the plant-functional type specific relationship between sun-induced fluorescence and GPP.

  14. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.

    PubMed

    Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H

    2009-11-01

    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.

  15. Nutrient and mineral composition during shoot growth in seven species of Phyllostachys and Pseudosasa bamboo consumed by giant panda.

    PubMed

    Christian, A L; Knott, K K; Vance, C K; Falcone, J F; Bauer, L L; Fahey, G C; Willard, S; Kouba, A J

    2015-12-01

    During the annual period of bamboo shoot growth in spring, free-ranging giant pandas feed almost exclusively on the shoots while ignoring the leaves and full- height culm. Little is known about the nutritional changes that occur during bamboo shoot growth, if nutritional changes differ among species, or how these changes might influence forage selection. Our objective was to examine the nutrient and mineral composition during three phases of shoot growth (<60, 90-150 and >180 cm) for seven species of bamboo (Phyllostachys (P.) aurea, P. aureosulcata, P. bissetii, P. glauca, P. nuda, P. rubromarginata, Pseudosasa japonica) fed to captive giant pandas at the Memphis Zoo. Total dietary fiber content of bamboo shoots increased (p < 0.0001) from an overall species average of 61% dry matter (DM) at < 60 cm to 75% DM at shoot heights > 180 cm, while crude protein, fat and ash exhibited significant declines (p < 0.05). Phyllostachys nuda had the overall greatest (p = 0.007) crude protein (21% DM) and fat (4% DM) content, and lowest overall total fibre (61% DM) content compared to the other species examined. In contrast, Pseudosasa japonica had the overall lowest crude protein and fat, and relatively higher fibre content (9%, 3% and 74% respectively). Concentrations of Zn and Fe were highest in shoots <60 cm (10-50 μg/g DM) and decreased (p < 0.05) during growth in all species examined. Concentrations of Ca, Cu, Mn, Na and K varied among species and were largely unaffected by growth stage. Due to their higher concentrations of nutrients and lower fibre content in comparison to culm and leaf, bamboo shoots should be a major component of captive giant panda diets when available. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  16. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

    NASA Astrophysics Data System (ADS)

    Yuan, Z. Y.; Chen, Han Y. H.

    2015-05-01

    Living organisms maintain a balance of chemical elements for optimal growth and reproduction, which plays an important role in global biogeochemical cycles. Human domination of Earth's ecosystems has led to drastic global changes, but it is unclear how these affect the stoichiometric coupling of nutrients in terrestrial plants, the most important food source on Earth. Here we use meta-analyses of 1,418 published studies to show that the ratio of terrestrial plant nitrogen (N) to phosphorus (P) decreases with elevated concentrations of CO2, increasing rainfall, and P fertilization, but increases with warming, drought, and N fertilization. Our analyses also reveal that multiple global change treatments generally result in overall additive effects of single-factor treatments and that the responses of plant nutrients and their stoichiometry are similar in direction, but often greater in controlled than in natural environments. Our results suggest a decoupling of the P biogeochemical cycle from N in terrestrial plants under global changes, which in turn may diminish the provision of ecosystem services.

  17. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.

    PubMed

    Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S

    1997-10-01

    Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.

  18. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    NASA Astrophysics Data System (ADS)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu; Nguyen, Lam Ngoc; Nguyen-Thi, Anh Mai; Voss, Maren; Dippner, Joachim W.

    2017-04-01

    Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam to show how climatological-driven changes can have a significant influence on the distribution of microplankton communities and their biomass via its impact on nutrient concentrations in the water column. The first summer in July 2003 followed a weak El-Nino Southern Oscillation (ENSO) event and was characterized by weak coastal upwelling, in the second summer during July 2004, upwelling was normal. Very low silicate (SiO4) concentrations and SiO4:DIN ratios characterized the source water mass for upwelling in July 2004, and dynamic SiO4 to dissolved inorganic nitrogen ratios (SiO4:DIN) mainly below the Redfield-Brzezinski ratio and DIN to phosphate ratios (DIN:PO43-) below the Redfield ratio were a common feature off Viet Nam. Much higher particle concentrations and PSi/PC ratios during normal upwelling revealed major changes in the microplankton community structure among summers. Small dinoflagellates (10-20 μm) prevailed ubiquitously during reduced upwelling. During normal upwelling, the diatom Rhizosolenia sp. dominated the cell-carbon biomass in the silicate poor upwelling waters. Trichodesmium erythraeum dominated in the Mekong-influenced and nutrient depleted offshore waters, where it co-occurred with Rhizosolenia sp. Both species were directly associated with the much higher primary production (PP) and N2 fixation rates that were quantified in earlier studies, as well as with much higher diversities at these offshore sites. Along the coast, the correlation between Rhizosolenia sp. and PP rates was less clear and the factors regulating the biomass of Rhizosolenia sp. in the upwelling waters are discussed. The very low silicate concentrations in the source water mass for upwelling and the offshore deflection of the Mekong river plume likely triggered the observed ecological differences in the microplankton communities off Viet Nam in the normal upwelling season compared to the post ENSO conditions.

  19. Nutrient acquisition across a dietary shift: fruit feeding butterflies crave amino acids, nectivores seek salt.

    PubMed

    Ravenscraft, Alison; Boggs, Carol L

    2016-05-01

    Evolutionary dietary shifts have major ecological consequences. One likely consequence is a change in nutrient limitation-some nutrients become more abundant in the diet, others become more scarce. Individuals' behavior should change accordingly to match this new limitation regime: they should seek out nutrients that are deficient in the new diet. We investigated the relationship between diet and responses to nutrients using adult Costa Rican butterflies with contrasting feeding habits, testing the hypothesis that animals will respond more positively to nutrients that are scarcer in their diets. Via literature searches and our own data, we showed that nitrogen and sodium are both at lower concentration in nectar than in fruit. We therefore assessed butterflies' acceptance of sodium and four nitrogenous compounds that ranged in complexity from inorganic nitrogen (ammonium chloride) to protein (albumin). We captured wild butterflies, offered them aqueous solutions of each substance, and recorded whether they accepted (drank) or rejected each substance. Support for our hypothesis was mixed. Across the sexes, frugivores were four times more likely to accept amino acids (hydrolyzed casein) than nectivores, in opposition to expectation. In males, nectivores accepted sodium almost three times more frequently than frugivores, supporting expectations. Together, these results suggest that in butterflies, becoming frugivorous is associated with an increased receptivity to amino acids and decreased receptivity to sodium. Nectivory and frugivory are widespread feeding strategies in organisms as diverse as insects, birds, and bats; our results suggest that these feeding strategies may put different pressures on how animals fulfill their nutritional requirements.

  20. Hydro-climatic Changes: Potential Non-linear Responses of Phosphorus Dynamic in Aquatic/Semi-aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2007-12-01

    Depending on resilience, threshold and lag times, hydro-climatic changes can cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in aquatic/semi-aquatic systems. Thus, studying direct/indirect effects of expected global climate change on bioavailability of organic P in aquatic systems are in critical need, to help manage or increase the resilience of the ecosystem. The central hypothesis of this study is that P dynamic in aquatic, especially freshwater, ecosystem is likely to behave nonlinearly due to expected changes in sediment and water acidity, redox status, etc., because of potential hydro-climatic changes in the decades to come, thus, could face irreversible adverse changes. Devising possible biological and chemical treatments for the removal of P from eutrophic lakes, estuaries, etc, as well as helping in predicting the movement and fate of P under changing hydro-climatic conditions would be crucial to manage aquatic ecosystem in the near future. The critical question is not how much P is stored in any given aquatic/semi-aquatic system, but how the resilience and nonlinearity relate to the stability of stored P are affected due to the levels of environmental stressors, which are expected to fluctuate due to global change in the decades to come. Studies related to 31P Nuclear Magnetic Resonance Spectroscopy analysis, and multiple hydraulic retention cycles showed that, in general, frequent drying and reflooding of a semi-aquatic system such as wetland could significantly increase the bioavailability of P due to degradation of relatively less stable organic P, e.g., glycerophosphate and nucleoside monophosphate. Moreover, nutrients flux from sediments to the water column depended on the concentration gradients of the sediment-water interface and redox status. Shift in equilibrium P concentration of the water column as the water level rises, may cause release of adsorbed P from the sediments. Restoration of a eutrophic system may involve stepwise efforts including control of catchment nutrient inputs, internal nutrient loading, and biomanipulation, however, flooding, previously non-flooded areas, could export massive amount of P to nearby aquatic bodies, in turn, may cause collapse of the ecosystem.

Top