Sample records for changing precipitation patterns

  1. Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.

    2017-08-01

    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.

  2. Global Terrestrial Patterns of Precipitation Change under a Warming Climate

    NASA Astrophysics Data System (ADS)

    Guo, R.

    2017-12-01

    Terrestrial global warming has occurred over the last century, especially since the 1950s. This study analyzes changes in global terrestrial precipitation patterns in period of 1950-2010 in an attempt to identify the influence of climate change on precipitation. The results indicate that there is no significant change globally or across latitude bands; nevertheless significant regional differences in precipitation changes are identified. The lack of a change in precipitation levels, or precipitation balance, at both the global and latitudinal band scales is a result of offsetting by opposing precipitation changes at the regional scales. Clear opposing precipitation change patterns appeared in the Northern Hemisphere mid-latitude band (NHM). Significant increases in precipitation were distributed throughout the western extent of NHM, including the North America, Europe and west of Central Asia, while decreases were observed over the eastern extent, namely, East Asia. A dynamical adjustment methodology was applied to precipitation data, which could identify the roles of atmospheric circulation (dynamic) and the residual (thermodynamic) forcing played in generating the opposing regional precipitation changes in the NHM. Distinct different changes of dynamic and thermodynamic precipitation were found in different regions. Increased precipitation in North America and southern Europe were caused by thermodynamic precipitation, while the dynamic precipitation presented decreased trend due to the positive sea level pressure trend. However, in northern Europe and west of Central Asia, dynamic and thermodynamic precipitation both contributed to the increased precipitation, but thermodynamic precipitation had larger amplitude. In East Asia, the decreased precipitation was a result of simultaneous decrease in dynamic and thermodynamic precipitation.

  3. Seasonally varying footprint of climate change on precipitation in the Middle East.

    PubMed

    Tabari, Hossein; Willems, Patrick

    2018-03-13

    Climate change is expected to alter precipitation patterns; however, the amplitude of the change may broadly differ across seasons. Combining different seasons may mask contrasting climate change signals in individual seasons, leading to weakened signals and misleading impact results. A realistic assessment of future climate change is of great importance for arid regions, which are more vulnerable to any change in extreme events as their infrastructure is less experienced or not well adapted for extreme conditions. Our results show that climate change signals and associated uncertainties over the Middle East region remarkably vary with seasons. The region is identified as a climate change hotspot where rare extreme precipitation events are expected to intensify for all seasons, with a "highest increase in autumn, lowest increase in spring" pattern which switches to the "increase in autumn, decrease in spring" pattern for less extreme precipitation. This pattern is also held for mean precipitation, violating the "wet gets wetter, dry gets drier" paradigm.

  4. Assessing and quantifying changes in precipitation patterns using event-driven analysis

    USDA-ARS?s Scientific Manuscript database

    Studies have claimed that climate change may adversely affect precipitation patterns by increasing the occurrence of extreme events. The effects of climate change on precipitation is expected to take place over a long period of time and will require long-term data to demonstrate. Frequency analysis ...

  5. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Yann; Joussaume, Sylvie; Bony, Sandrine; Braconnot, Pascale

    2016-08-01

    Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30-40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.

  6. Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection

    NASA Astrophysics Data System (ADS)

    Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun

    2018-02-01

    Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments demonstrated that the change in spring basic state before and after 1998 played a relatively minor role in exciting such a teleconnection pattern, when compared with the tropical precipitation anomaly pattern change.

  7. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  8. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  9. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  10. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  11. Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models

    DOE PAGES

    Kravitz, Ben; Lynch, Cary; Hartin, Corinne; ...

    2017-05-12

    Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is better in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decomposemore » the precipitation response in the RCP8.5 scenario into a CO 2 portion and a non-CO 2 portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO 2-/non-CO 2-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.« less

  12. A Data Centred Method to Estimate and Map Changes in the Full Distribution of Daily Precipitation and Its Exceedances

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.

    2014-12-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles or thresholds in distributions of variables such as daily temperature or precipitation. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by 'heavy tailed' distributed variables such as daily precipitation. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those extreme precipitation days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results identify regionally consistent patterns which, dependent on location, show systematic increase in precipitation on the wettest days, shifts in precipitation patterns to less moderate days and more heavy days, and drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013 Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, S. C. Chapman, N. W. Watkins, 2013 Environ. Res. Lett. 8, 034031 [2] Haylock et al. 2008 J. Geophys. Res (Atmospheres), 113, D20119

  13. Interdecadal Change in the Tropical Pacific Precipitation Anomaly Pattern around the Late 1990s during Boreal Spring

    NASA Astrophysics Data System (ADS)

    Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang

    2017-04-01

    The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.

  14. Changing patterns of daily precipitation totals at the Coweeta Hydrologic Laboratory, North Carolina, USA

    Treesearch

    T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank

    2017-01-01

    A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...

  15. A data centred method to estimate and map how the local distribution of daily precipitation is changing

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nick

    2014-05-01

    Estimates of how our climate is changing are needed locally in order to inform adaptation planning decisions. This requires quantifying the geographical patterns in changes at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on a method to transform daily observations of precipitation into patterns of local climate change. We develop a method[1] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes, to specifically address the challenges presented by daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the relative amount of precipitation in those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves both determining which quantiles and geographical locations show the greatest change but also, those at which any change is highly uncertain. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily precipitation from specific locations across Europe over the last 60 years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the pattern of change at a given threshold of precipitation and with geographical location. This is model- independent, thus providing data of direct value in model calibration and assessment. Our results show regionally consistent patterns of systematic increase in precipitation on the wettest days, and of drying across all days which is of potential value in adaptation planning. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013, S. C. Chapman, N. W. Watkins, Mapping climate change in European temperature distributions, Environ. Res. Lett. 8, 034031 [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119

  16. Rainfall pattern variability as climate change impact in The Wallacea Region

    NASA Astrophysics Data System (ADS)

    Pujiastuti, I.; Nurjani, E.

    2018-04-01

    The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.

  17. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  18. Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; Dong, Buwen; Robson, Jon; Sutton, Rowan

    2018-02-01

    Since the mid-1990s precipitation trends over eastern China display a dipole pattern, characterized by positive anomalies in the south and negative anomalies in the north, named as the Southern-Flood-Northern-Drought (SFND) pattern. This work investigates the drivers of decadal changes of the East Asian summer monsoon (EASM), and the dynamical mechanisms involved, by using a coupled climate model (specifically an atmospheric general circulation model coupled to an ocean mixed layer model) forced by changes in (1) anthropogenic greenhouse gases (GHG), (2) anthropogenic aerosol (AA) and (3) the combined effects of both GHG and AA (All Forcing) between two periods across the mid-1990s. The model experiment forced by changes in All Forcing shows a dipole pattern of response in precipitation over China that is similar to the observed SFND pattern across the mid-1990s, which suggests that anthropogenic forcing changes played an important role in the observed decadal changes. Furthermore, the experiments with separate forcings indicate that GHG and AA forcing dominate different parts of the SFND pattern. In particular, changes in GHG increase precipitation over southern China, whilst changes in AA dominate in the drought conditions over northern China. Increases in GHG cause increased moisture transport convergence over eastern China, which leads to increased precipitation. The AA forcing changes weaken the EASM, which lead to divergent wind anomalies over northern China and reduced precipitation.

  19. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu

    2017-09-01

    Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.

  20. The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

    PubMed Central

    Thompson, David W. J.; van den Broeke, Michiel R.

    2017-01-01

    Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735

  1. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    PubMed

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  2. Precipitation Based Malaria Patterns in the Amazon -- Will Deforestation Alter Risk?

    NASA Astrophysics Data System (ADS)

    Olson, S. H.; Durieux, L.; Elguero, E.; Foley, J.; Gagnon, R.; Guegan, J.; Patz, J.

    2007-12-01

    The World Health Organization, estimates that forty-two percent of malaria cases are "associated with policies and practices regarding land use, deforestation, water resource management, settlement siting and modified house design". This estimate was drawn from expert opinion and studies performed at local scales, but little research has investigated the cumulative impacts of land use and land cover changes occurring in the Amazon Basin on malaria. Much less is understood about the impact of changing land use and subsequent precipitation regimes on malaria risk. To understand how land use practices may alter malaria patterns in the Basin we present an analysis of municipio (n=755) malaria case data and monthly precipitation patterns between 1996 and 1999. Climate data originated from the CRU TS 2.1 half-degree grid resolution climate data set. We present a hierarchical (random coefficients) log-linear Poisson model relating malaria incidence to precipitation for both municipos and states. At the Basin scale precipitation and cases show strong relationships. Precipitation and cases are asynchronous across the period of observation, but detailed inspection of states and individual municipios reveal geographic dependencies of precipitation and malaria incidence. Future research will link the patterns of precipitation and malaria to anticipated changes in climate from deforestation in the Basin.

  3. Observational changes to the natural flow regime in Lee Creek in relation to altered precipitation patterns and its implication for fishes

    USGS Publications Warehouse

    Gatlin, Michael R.; Long, James M.; Turton, Donald J.

    2015-01-01

    The natural flow regime is important for structuring streams and their resident ichthyofauna and alterations to this regime can have cascading consequences. We sought to determine if changes in hydrology could be attributed to changes in precipitation in a minimally altered watershed (Lee Creek). The stream flow regime was analyzed using Indicators of Hydrologic Alteration (IHA) software, and data from a nearby climate station were used to summarize concurrent precipitation patterns. We discovered that Lee Creek hydrology had become flashier (i.e., increased frequency of extreme events of shorter duration) since 1992 coincident with changes in precipitation patterns. Specifically, our results show fewer but more intense rain events within the Lee Creek watershed. Our research provides evidence that climate-induced changes to the natural flow regime are currently underway and additional research on its effects on the fish community is warranted.

  4. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  5. Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.

    2011-12-01

    In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.

  6. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  7. Increases in tropical rainfall driven by changes in frequency of organized deep convection.

    PubMed

    Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George

    2015-03-26

    Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.

  8. Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa

    NASA Astrophysics Data System (ADS)

    Shiferaw, A. S.; Tadesse, T.; Oglesby, R. J.; Rowe, C. M.

    2017-12-01

    The precipitation extremes were generated over the Greater Horn of Africa (GHA) using the Regional Climate Models (RCMs) simulations from the Coordinated Regional Downscaling Experiment (CORDEX). To assess how well the RCM simulations are capturing the historical observed precipitation extremes, they were compared with the precipitation extremes derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2). The result shows that RCM simulations have reasonably captured observed patterns of the precipitation extremes (i.e., the pattern correlation is greater than 0.5). However, significant overestimations or underestimations were observed over some localized areas in the region. The study then assessed the projected changes in these precipitation extremes during 2069-2098 and compared to the 1976-2005 period that were both derived from the RCM simulations. Projected changes in total annual precipitation (PRCPTOT), annual number of heavy (>10mm) and very heavy (>20mm) precipitation days by 2069-2098 show a general north-south pattern with a decrease over southern-half and increase over the northern-half of GHA. These changes are often greatest over parts of Somalia, Eritrea, Ethiopian highlands and southern Tanzania. Maximum 1 and 5-day total precipitation in a year and "Simple Daily Precipitation Intensity Index" (ratio of PRCPTOT to rainy days) are projected to increase over majority of GHA, including areas where PRCPTOT is projected to decrease, suggesting fewer but heavier rainy days in the future. Changes in annual sum of daily precipitation above 95th and 99th percentile are not statistically significant except Eritrea and northwestern Sudan/Somalia. Projected changes in consecutive dry days (CDD) suggest longer periods of dryness over majority of GHA. Among these areas, a substantial increases in CDD are located over southern Tanzania and Ethiopian highlands.

  9. A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Gimeno-Sotelo, Luis; Nieto, Raquel; Vázquez, Marta; Gimeno, Luis

    2018-05-01

    In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.

  10. Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    NASA Technical Reports Server (NTRS)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison

    2016-01-01

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.

  11. Evaluation of NASA’s MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    DOE PAGES

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; ...

    2016-02-03

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC)U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scalemore » patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1)MERRAshows a spurious negative trend in Nebraska andKansas, which ismost likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. The increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.« less

  12. The spatiotemporal changes in precipitation extremes over Canada and their connections to large-scale climate patterns

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Gan, T. Y.; Tan, X.

    2017-12-01

    In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.

  13. Links between North Atlantic atmospheric blocking and recent trends in European winter precipitation

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; Seo, Hyodae; Kwon, Young-Oh; Joyce, Terrence

    2015-04-01

    European precipitation has sustained robust trends during wintertime (January - March) over recent decades. Central, western, and northern Europe have become wetter by an average 0.1-0.3% per annum for the period 1901-2010, while southern Europe, including the Iberian Peninsula, much of Italy and the Balkan States, has sustained drying of -0.2% per annum or more over the same period. The overall pattern is consistent across different observational precipitation products, while the magnitude of the precipitation trends varies amongst data sets. Using cluster analysis, which identifies recurrent states (or regimes) of European winter precipitation by grouping them according to an objective similarity criterion, changes in the frequency of dominant winter precipitation patterns over the past century are evaluated. Considerable multi-decadal variability exists in the frequency of dominant winter precipitation patterns: more recent decades are characterised by significantly fewer winters with anomalous wet conditions over southern, western, and central Europe. In contrast, winters with dry conditions in western and southern Europe, but above-average rainfall in western Scandinavia and the northern British Isles, have been more common recently. We evaluate the associated multi-decadal large-scale circulation changes across the broader extratropical North Atlantic region, which accompany the observed wintertime precipitation variability using the 20th Century reanalysis product. Some influence of the North Atlantic Oscillation (NAO) is apparent in modulating the frequency of dominant precipitation patterns. However, recent trends in the characteristics of atmospheric blocking across the North Atlantic sector indicate a change in the dominant blocking centres (near Greenland, the British Isles, and west of the Iberian Peninsula). Associated changes in sea level pressure, storm track position and strength, and oceanic heat fluxes across the North Atlantic region are also addressed.

  14. Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong

    2016-11-01

    The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model's precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.

  15. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  16. Seasonal climate change patterns due to cumulative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  17. Observed variability of summer precipitation pattern and extreme events in East China associated with variations of the East Asian summer monsoon: VARIABILITY OF SUMMER PRECIPITATION AND EXTREME EVENT IN EAST CHINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Qian, Yun; Zhang, Yaocun

    This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less

  18. Multidecadal changes in winter circulation-climate relationship in Europe: frequency variations, within-type modifications, and long-term trends

    NASA Astrophysics Data System (ADS)

    Küttel, Marcel; Luterbacher, Jürg; Wanner, Heinz

    2011-03-01

    Using pressure fields classified by the SANDRA algorithm, this study investigates the changes in the relationship between North Atlantic/European sea level pressure (SLP) and gridded European winter (DJF) temperature and precipitation back to 1750. Important changes in the frequency of the SLP clusters are found, though none of them indicating significant long-term trends. However, for the majority of the SLP clusters a tendency toward overall warmer and partly wetter winter conditions is found, most pronounced over the last decades. This suggests important within-type variations, i.e. the temperature and precipitation fields related to a particular SLP pattern change their characteristics over time. Using a decomposition scheme we find for temperature and precipitation that within-type-related variations dominate over those due to changed frequencies of the SLP clusters: Approximately 70% (60%) of European winter temperature (precipitation) variations can be explained by within-type changes, most strongly expressed over Eastern Europe and Scandinavia. This indicates that the current European winter warming cannot be explained by changed frequencies of the SLP patterns alone, but to a larger degree by changed characteristics of the patterns themselves. Potential sources of within-type variations are discussed.

  19. Analysis of Changes in the Lorenz Energy Budget of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.

    2009-12-01

    Several recent papers have addressed the topic of changes in global precipitation rates related to changes in Earth's global energy balance. Less studied are the processes that may be governing the large-scale regional distribution of precipitation around the globe. This study uses the energy budget partition paradigm first put forth by Lorenz (1955) and follows the methodology of Arpé et al. (1986) and Oriol (1982) to identify latitude bands where the partition of energy amongst zonal and eddy kinetic and potential energy bins may account for the spatial patterns of precipitation change predicted by many IPCC AR4 models. In doing so, this study may help to identify whether or not the climate change predicted by these models is indeed creating enhanced baroclinic storms in the mid-latitudes or if there are other mechanisms at work producing the patterns of precipitation change.

  20. Younger Dryas equilibrium line altitudes and precipitation patterns in the Alps

    NASA Astrophysics Data System (ADS)

    Kerschner, Hanns; Moran, Andrew; Ivy-Ochs, Susan

    2016-04-01

    Moraine systems of the "Egesen Stadial" are widespread and easily identifiable features in the Alps. Absolute dating with terrestrial cosmogenic radionuclides shows that the maximum extent was reached during the early Younger Dryas (YD), probably as a reaction to the intense climatic downturn subsequent to Lateglacial Interstadial. In recent years, several new studies and the availability of high-quality laser-scan hillshades and orthophotos allowed a significant extension of the database of YD glaciers as "palaeoprecipitation gauges" to large hitherto unmapped regions in the Austrian and Swiss Alps. The equilibrium line altitude (ELA) of the glaciers and its lowering relative to the Little Ice Age ELA (dELA) shows a distinct and systematic spatial pattern. Along the northern slope of the Alps, dELAs are usually large (around 400 m and perhaps even more), while dELAs range around 200 m in the well sheltered areas of the central Alps, e.g. in the Engadine and in western Tyrol. Both stochastic glacier-climate models (e.g. Ohmura et al. 1992) and the heat- and mass balance equation (Kuhn 1981) allow the reconstruction of precipitation change under the assumption of a spatially constant summer temperature depression, which in turn can be estimated from biological proxies. This allows to draw the spatial pattern of precipitation change with considerable detail. Precipitation change is clearly controlled by the local relief like high mountain chains, deeply incised and long valleys and mountain passes. Generally the contrast between the northern fringe of the Alps and the interior was more pronounced than today. Climate in the Northern and and Northwestern Alps was rather wet with precipitation totals eventually exceeding modern annual sums. The central Alps received 20 - 30% less precipitation than today, mainly due to reduced winter precipitation. In the southern Alps, still scarce spatial information points to precipitation sums which were approximately similar to modern values. As winter precipitation was probably much smaller than today, seasonal contrasts were more pronounced. In total, the pattern of YD precipitation change is remarkably similar to precipitation patterns caused by westerly and northwesterly cyclonic airflow during the present-day hydrologic winter (October - March). Kerschner, H., G. Kaser, R. Sailer (2000): Alpine Younger Dryas glaciers as paleo-precipitation gauges. Annals of Glaciology 31, 80-84. Kerschner, H. and S. Ivy-Ochs (2007): Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60, 58-71.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC)U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scalemore » patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1)MERRAshows a spurious negative trend in Nebraska andKansas, which ismost likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. The increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.« less

  2. Altered precipitation patterns with a shift from snow to rain in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Pavelsky, T. M.; Sobolowski, S.; Kapnick, S. B.; Barnes, J. B.

    2011-12-01

    Precipitation patterns in mountain environments affect global water resources and major hazards such as floods and landslides. In mid-latitude mountain ranges such as the Sierra Nevada Mountains of California, much of the precipitation falls as snow, which accumulates and acts as a natural reservoir. As in many snowfall-dependent regions, California water infrastructure has been designed to capture warm season snowmelt runoff and transport it to otherwise dry areas where it is needed. Recent studies suggest that anthropogenic climate change is likely to result in a substantial shift from snow to rain in the Sierra Nevada during the 21st century. One mechanism for changing spatial patterns in precipitation that has not received substantial attention arises directly from a phase change associated with winter temperatures rising above freezing with greater frequency. Because the fall speed of rain is greater than snow, it is not advected as far as snow by the prevailing winds. We hypothesize that an extreme change from snow to rain will result in a substantial westward shift in annual precipitation under a warming climate. To test this hypothesis, we conducted two climate simulations over the central Sierra Nevada using the WRF regional climate model version 3.1.1 for the period October 2001 to September 2002. Both simulations used nested domains with grid spacings of 27 km, 9 km, and 3 km. The first simulation is a control run, while the second run is an idealized simulation in which fall speeds for snow and graupel are set to be identical to those of raindrops. Comparison of the two runs suggests that a change from snow to rain would yield substantial changes in the spatial patterns of precipitation. However, these patterns are fully realized only in the 3 km domain. In the 9 km and especially the 27 km domain these patterns are substantially attenuated, likely due to less detailed orographic forcing. In the 3 km domain, precipitation increases substantially on windward slopes west of the principal drainage divide, in some areas by more than 1400 mm (115%). Conversely, the eastern slope of the Sierra Nevada becomes substantially drier, with decreases of as much as 886 mm (67%) in some areas. Overall, in a rain-only environment precipitation increases by an average of 135 mm (12%) on the west side of the divide and decreases by 174 mm (45%) on the east side compared to present-day conditions. While these results represent an idealized, extreme case in which all snow falls at the speed of rain from the same hydrometeor formation locations, they suggest that changes in spatial precipitation patterns associated with altered precipitation phase may have substantial effects on water resources, particularly the distribution of total precipitation across water basins, partition of water supply across collocated aqueducts, ecology, natural hazards such as floods and landslides, and other components of natural and human systems in the Sierra Nevada and the state of California more generally.

  3. The response of the East Asia summer precipitation to greenhouse gases and anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Tian, Fangxing; Dong, Buwen; Robson, Jon; Sutton, Rowan

    2017-04-01

    The changes of precipitation over China since the mid-20th century display a dipole trend pattern over eastern China, which is known as Southern-Flood-Northern-Drought (SFND) pattern. The trends have been attributed to different factors, such as the changes of aerosol and greenhouse gas emissions. However much less is known about the different effects of these factors on generating the SFND pattern. This work investigated the drivers and dynamical mechanisms by using a atmosphere-ocean-mixed-layer model forced by anthropogenic greenhouse gase (GHG), anthropogenic aerosol (AA) and the combined effects. The model experiments with different forcings indicates that the GHG forcing dominates the precipitation increase, which is stronger over south China than over north China. On the other hand, the drought over north China is dominated by the AA forcing. Analysis of physical processes indicates that the GHG forcing increases the moisture and leads to strong convergence over east China, and then more precipitation. The AA forcing leads to north wind anomalies and generates divergent anomalies over north China, which reduces the precipitation. Further analysis indicates that the changes of the circulation which related to the SFND pattern are forced by the enhancement of the Western North Pacific Subtropical High (WNPSH). Both GHG and AA forcing can enhance the WNPSH by changing the local Hadley cell.

  4. Simulating Future Changes in Spatio-temporal Precipitation by Identifying and Characterizing Individual Rainstorm Events

    NASA Astrophysics Data System (ADS)

    Chang, W.; Stein, M.; Wang, J.; Kotamarthi, V. R.; Moyer, E. J.

    2015-12-01

    A growing body of literature suggests that human-induced climate change may cause significant changes in precipitation patterns, which could in turn influence future flood levels and frequencies and water supply and management practices. Although climate models produce full three-dimensional simulations of precipitation, analyses of model precipitation have focused either on time-averaged distributions or on individual timeseries with no spatial information. We describe here a new approach based on identifying and characterizing individual rainstorms in either data or model output. Our approach enables us to readily characterize important spatio-temporal aspects of rainstorms including initiation location, intensity (mean and patterns), spatial extent, duration, and trajectory. We apply this technique to high-resolution precipitation over the continental U.S. both from radar-based observations (NCEP Stage IV QPE product, 1-hourly, 4 km spatial resolution) and from model runs with dynamical downscaling (WRF regional climate model, 3-hourly, 12 km spatial resolution). In the model studies we investigate the changes in storm characteristics under a business-as-usual warming scenario to 2100 (RCP 8.5). We find that in these model runs, rainstorm intensity increases as expected with rising temperatures (approximately 7%/K, following increased atmospheric moisture content), while total precipitation increases by a lesser amount (3%/K), consistent with other studies. We identify for the first time the necessary compensating mechanism: in these model runs, individual precipitation events become smaller. Other aspects are approximately unchanged in the warmer climate. Because these spatio-temporal changes in rainfall patterns would impact regional hydrology, it is important that they be accurately incorporated into any impacts assessment. For this purpose we have developed a methodology for producing scenarios of future precipitation that combine observational data and model-projected changes. We statistically describe the future changes in rainstorm characteristics suggested by the WRF model and apply those changes to observational data. The resulting high spatial and temporal resolution scenarios have immediate applications for impacts assessment and adaptation studies.

  5. Applying complex networks to evaluate precipitation patterns over South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja

    2016-04-01

    The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)

  6. Seasonal climate change patterns due to cumulative CO 2 emissions

    DOE PAGES

    Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon

    2017-06-28

    Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less

  7. Seasonal climate change patterns due to cumulative CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon

    Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less

  8. Are weather models better than gridded observations for precipitation in the mountains? (Invited)

    NASA Astrophysics Data System (ADS)

    Gutmann, E. D.; Rasmussen, R.; Liu, C.; Ikeda, K.; Clark, M. P.; Brekke, L. D.; Arnold, J.; Raff, D. A.

    2013-12-01

    Mountain snowpack is a critical storage component in the water cycle, and it provides drinking water for tens of millions of people in the Western US alone. This water store is susceptible to climate change both because warming temperatures are likely to lead to earlier melt and a temporal shift of the hydrograph, and because changing atmospheric conditions are likely to change the precipitation patterns that produce the snowpack. Current measurements of snowfall in complex terrain are limited in number due in part to the logistics of installing equipment in complex terrain. We show that this limitation leads to statistical artifacts in gridded observations of current climate including errors in precipitation season totals of a factor of two or more, increases in wet day fraction, and decreases in storm intensity. In contrast, a high-resolution numerical weather model (WRF) is able to reproduce observed precipitation patterns, leading to confidence in its predictions for areas without measurements and new observations support this. Running WRF for a future climate scenario shows substantial changes in the spatial patterns of precipitation in the mountains related to the physics of hydrometeor production and detrainment that are not captured by statistical downscaling products. The stationarity in statistical downscaling products is likely to lead to important errors in our estimation of future precipitation in complex terrain.

  9. Reorganization of river networks under changing spatiotemporal precipitation patterns: An optimal channel network approach

    NASA Astrophysics Data System (ADS)

    Abed-Elmdoust, Armaghan; Miri, Mohammad-Ali; Singh, Arvind

    2016-11-01

    We investigate the impact of changing nonuniform spatial and temporal precipitation patterns on the evolution of river networks. To achieve this, we develop a two-dimensional optimal channel network (OCN) model with a controllable rainfall distribution to simulate the evolution of river networks, governed by the principle of minimum energy expenditure, inside a prescribed boundary. We show that under nonuniform precipitation conditions, river networks reorganize significantly toward new patterns with different geomorphic and hydrologic signatures. This reorganization is mainly observed in the form of migration of channels of different orders, widening or elongation of basins as well as formation and extinction of channels and basins. In particular, when the precipitation gradient is locally increased, the higher-order channels, including the mainstream river, migrate toward regions with higher precipitation intensity. Through pertinent examples, the reorganization of the drainage network is quantified via stream parameters such as Horton-Strahler and Tokunaga measures, order-based channel total length and river long profiles obtained via simulation of three-dimensional basin topography, while the hydrologic response of the evolved network is investigated using metrics such as hydrograph and power spectral density of simulated streamflows at the outlet of the network. In addition, using OCNs, we investigate the effect of orographic precipitation patterns on multicatchment landscapes composed of several interacting basins. Our results show that network-inspired methods can be utilized as insightful and versatile models for directly exploring the effects of climate change on the evolution of river drainage systems.

  10. Future changes of interannual variation of the Asian summer monsoon precipitation using the CMIP5

    NASA Astrophysics Data System (ADS)

    Kamizawa, Nozomi; Takahashi, Hiroshi G.

    2015-04-01

    The Asian summer monsoon (ASM) region is one of the most populated areas in the world. Since the life of people who live in the region and the industry are strongly dependent on the ASM precipitation, it is interested that how it would change under the circumstance of global warming. Many studies have reported that the mean ASM precipitation would increase by comparing the CMIP models' climatology. Although the changes in mean climate are important, the long-term changes of interannual variability in precipitation are also significant. This study investigated the long-term trend of interannual precipitation variation over the ASM region by using 22 CMIP5 models. The RCP4.5 scenario was used. To investigate the long-term trend of the interannual variation of the ASM precipitation, each model data was recreated to 2.5 degree resolution and a running standard deviation for 21 years of June-July-August (JJA) precipitation were calculated. Next, we created the coefficient variation (CV) by dividing the running standard deviation by the mean JJA precipitation. Then we run a Mann-Kendall test for the CV at each grid. There were more areas which were indicated a statistically significant increasing trend than a decreasing trend in the ASM region. 40.6% of the region indicated an increasing trend in the future. On the other hand, 16.8% of the area was indicated to have a decreasing trend. It was also common in the global scale that the there were more areas that indicated an increasing trend than a decreasing trend. We also divided the area into three groups: land, shore and open ocean. In the ASM region, the shore areas particularly had an increasing CV trend. To investigate the long-term changes of the interannual variability of the precipitation and the atmospheric circulation over the ASM region, we conducted a composite analysis for the five wettest and driest years for two periods: the early 21st century (2007-2031) and the late 21st century (2076-2100). The special patterns of the interannual variation of the precipitation and the atmospheric circulation between the two periods had differed only slightly. A positive deviation precipitation band with a cyclonic circulation was recognized from across the Bay of Bengal to the equatorial Northwest Pacific. The none-big-difference of the patterns may suggest that interannual variation in the ASM region would increase not because the pattern changes, but because the pattern's strength gets stronger or its frequency gets higher.

  11. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of an integrated climate adaptation strategy.

  12. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y. Y.; Chen, Y. D.

    2017-12-01

    Dominant synoptic moisture pathway patterns of vertically integrated water vapor transport (IVT) in winter and spring over Canada West and East were identified using the self-organizing map method. Large-scale meteorological patterns (LSMPs) were related to the variability in seasonal precipitation totals and occurrences of precipitation extremes. Changes in both occurrences of LSMPs and seasonal precipitation occurred under those LSMPs were evaluated to attribute observed changes in seasonal precipitation totals and occurrences of precipitation extremes. Effects of large-scale climate anomalies on occurrences of LSMPs were also examined. Results show that synoptic moisture pathways and LSMPs exhibit the propagation of jet streams as the location and direction of ridges and troughs, and the strength and center of pressure lows and highs varied considerably between LSMPs. Significant decreases in occurrences of synoptic moisture pathway patterns that are favorable with positive precipitation anomalies and more precipitation extremes in winter over Canada West resulted in decreases in seasonal precipitation and occurrences of precipitation extremes. LSMPs resulting in a hot and dry climate and less (more) frequent precipitation extremes over the Canadian Prairies in winter and northwestern Canada in spring are more likely to occur in years with a negative phase of PNA. Occurrences of LSMPs for a wet climate and frequent occurrences of extreme precipitation events over southeastern Canada are associated with a positive phase of NAO. In El Niño years or negative PDO years, LSMPs associated with a dry climate and less frequent precipitation extremes over western Canada tend to occur.

  13. Transient bedrock channel evolution across a precipitation gradient: A case study from Kohala, Hawaii.

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.

    2011-12-01

    This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is integrative, relatively extreme precipitation gradients are required to produce anomalous channel profile forms.

  14. Applying an orographic precipitation model to improve mass balance modeling of the Juneau Icefield, AK

    NASA Astrophysics Data System (ADS)

    Roth, A. C.; Hock, R.; Schuler, T.; Bieniek, P.; Aschwanden, A.

    2017-12-01

    Mass loss from glaciers in Southeast Alaska is expected to alter downstream ecological systems as runoff patterns change. To investigate these potential changes under future climate scenarios, distributed glacier mass balance modeling is required. However, the spatial resolution gap between global or regional climate models and the requirements for glacier mass balance modeling studies must be addressed first. We have used a linear theory of orographic precipitation model to downscale precipitation from both the Weather Research and Forecasting (WRF) model and ERA-Interim to the Juneau Icefield region over the period 1979-2013. This implementation of the LT model is a unique parameterization that relies on the specification of snow fall speed and rain fall speed as tuning parameters to calculate the cloud time delay, τ. We assessed the LT model results by considering winter precipitation so the effect of melt was minimized. The downscaled precipitation pattern produced by the LT model captures the orographic precipitation pattern absent from the coarse resolution WRF and ERA-Interim precipitation fields. Observational data constraints limited our ability to determine a unique parameter combination and calibrate the LT model to glaciological observations. We established a reference run of parameter values based on literature and performed a sensitivity analysis of the LT model parameters, horizontal resolution, and climate input data on the average winter precipitation. The results of the reference run showed reasonable agreement with the available glaciological measurements. The precipitation pattern produced by the LT model was consistent regardless of parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. Due to the consistency of the winter precipitation pattern and the uncertainty in precipitation amount, we suggest a precipitation index map approach to be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. The LT model has potential to be used in other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling.

  15. Rain use efficiency across a precipitation gradient on the Tibetan Plateau

    USDA-ARS?s Scientific Manuscript database

    Rain use efficiency (RUE), commonly described as the ratio of aboveground net primary production (ANPP) to mean annual precipitation (MAP), is a critical indicator for predicting potential responses of grassland ecosystems to changing precipitation regimes. However, current understanding on patterns...

  16. Precipitation thresholds and drought-induced tree die-off: insights from patterns of Pinus edulis mortality along an environmental stress gradient.

    PubMed

    Clifford, Michael J; Royer, Patrick D; Cobb, Neil S; Breshears, David D; Ford, Paulette L

    2013-10-01

    Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented. © 2013 No claim to US Government works. New Phytologist © 2013 New Phytologist Trust.

  17. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  18. Will climate change affect weather types associated with flooding in the Elbe river basin?

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin M.; Pardowitz, Tobias; Ulbrich, Uwe; Nied, Manuela

    2013-04-01

    This study investigates the effects of anthropogenic climate change on weather types associated with flooding in the Elbe river basin. The study is based on an ensemble of 3 simulations with the ECHAM5 MPIOM coupled model forced with historical and SRES A1B greenhouse gas concentrations. Relevant weather types, occuring in association with recent flood events, are identified in the ERA40 reanalysis data set. The weather types are classified with the SANDRA cluster algorithm. Distributions of tropospheric humidity content, 500 hPa geopotential height and 500 hPa temperature over Europe are taken as input parameters. 8 (out of 40) weather types are found to be associated with flooding events in the Elbe river basin. The majority of these (6) typically occur during winter, while 2 are warm season patterns. Downscaling reveals characteristic precipitation anomalies associated with the individual patterns. The 8 flood relevant weather types are then identified in the ECHAM5 simulations. The effect of climate change on these patterns is investigated by comparing the last 30 years of the previous century to the last 30 years of the 21st century. According to the model the frequency of most patterns will not change. 5 patterns may experience a statistically significant increase in the mean precipitation over the catchment area and 4 patterns an increase in extreme precipitation. Persistence may slightly decrease for 2 patterns and remain unchanged for the others. Overall, this indicates a moderate increase in the risk for Elbe river flooding, related to changes in the weather patterns, in the coming decades.

  19. Modeling the potential effects of climate change on high elevation vegetation in the Olympic Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolbrod, A.N.; Peterson, D.L.

    1995-06-01

    Subalpine and alpine vegetation may be particularly sensitive to climatic change, such as expected temperature increases and altered precipitation patterns with global warming. The gap replacement model ZELIG was modified and used to examine transient and steady-state changes in altitudinal treeline, tree species distribution, and forest structure and composition along elevation gradients in the Olympic Mountains, Washington, under a range of temperature and precipitation changes. Changes in vegetation pattern were examined for north vs. south aspects, and wet (southwest) vs. dry (northeast) regions of the mountains. The seedling establishment subroutine in ZELIG was improved to specifically model the complexities ofmore » tree invasion in subalpine meadows and include empirical data. A function allowing for stand replacement fire was also added in order to examine the role of altered disturbance regimes on vegetation change. Results indicate that distribution of tree species will change under various climate change scenarios, but future elevation of treeline depends greatly on precipitation levels, disturbance frequency, and aspect.« less

  20. Response of Spartina Alterniflora to Sea Level Rise, Changing Precipitation Patterns, and Eutrophication

    EPA Science Inventory

    Sea level rise, precipitation, and eutrophication (3 X 3 X 2 factorial design) were simulated in tidal mesocosms in the US EPA Narragansett greenhouse. Each precipitation treatment (storm, drought, ambient rain) was represented in one of two tanks (control, fertilized). The contr...

  1. Decadal variability of precipitation over Western North America

    USGS Publications Warehouse

    Cayan, D.R.; Dettinger, M.D.; Diaz, Henry F.; Graham, N.E.

    1998-01-01

    Decadal (>7- yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation 'modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate proceses. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.Decadal (>7-yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation `modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.

  2. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-02-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  3. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-06-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease in evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  4. Identifying external influences on global precipitation

    PubMed Central

    Marvel, Kate; Bonfils, Céline

    2013-01-01

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities. PMID:24218561

  5. Identifying external influences on global precipitation.

    PubMed

    Marvel, Kate; Bonfils, Céline

    2013-11-26

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle ("thermodynamic" changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt ("dynamic" changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

  6. Effects of altered seasonality of precipitation on grass production and grasshopper performance in a northern mixed prairie

    USDA-ARS?s Scientific Manuscript database

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of...

  7. Facilitation drives 65 years of vegetation change in the Sonoran Desert

    USGS Publications Warehouse

    Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.

    2010-01-01

    Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.

  8. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California.

    PubMed

    Swain, Daniel L; Horton, Daniel E; Singh, Deepti; Diffenbaugh, Noah S

    2016-04-01

    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.

  9. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California

    PubMed Central

    Swain, Daniel L.; Horton, Daniel E.; Singh, Deepti; Diffenbaugh, Noah S.

    2016-01-01

    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949–2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949–2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012–2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California’s most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years. PMID:27051876

  10. The impacts of changing transport and precipitation on pollutant distributions in a future climate

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram

    2011-09-01

    Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change little as climate warms. Our findings support the need for tighter emission regulations, for both soluble and insoluble pollutants, to obtain a desired level of air quality as climate warms.

  11. A new precipitation and drought climatology based on weather patterns.

    PubMed

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  12. Timing of floods in southeastern China: Seasonal properties and potential causes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  13. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble

    PubMed Central

    Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork

    2016-01-01

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950–2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment. PMID:27425819

  14. Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.

    PubMed

    Jiang, Mingkai; Felzer, Benjamin S; Sahagian, Dork

    2016-07-18

    Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less

  16. Effects of drought on forest soil structure and hydrological soil functions

    NASA Astrophysics Data System (ADS)

    Gimbel, K.; Puhlmann, H.; Weiler, M.

    2012-04-01

    Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.

  17. The hydroclimatological response to global warming based on the dynamically downscaled climate change scenario

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Felippo

    2010-05-01

    Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and increase in the low and high rainfall extremes can severely influence the water balance of river basin, with serious consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, in particular for water resources. As an attempt accurately assess the impact of climate change over Korea, we performed a downscaling of the ECAHM5-MPI/OM global projection under the A1B emission scenario for the period 1971-2100 using the RegCM3 one-way double-nested system. Physically based long-term (130 years) fine-scale (20 km) climate information is appropriate for analyzing the detailed structure of the hydroclimatological response to climate change. Changes in temperature and precipitation are translated to the hydrological condition in a direct or indirect way. The change in precipitation shows a distinct seasonal variations and a complicated spatial pattern. While changes in total precipitation do not show any relevant trend, the change patterns in daily precipitation clearly show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the future climate. Precipitation, snow, and runoff changes show the relevant topographical modulation under global warming. This study clearly demonstrates the importance of a refined topography for improving the accuracy of the local climatology. Improved accuracy of regional climate projection could lead to an enhanced reliability of the interpretation of the warming effect, especially when viewed in the linkage climate change information and impact assessment studies.

  18. Identifying Patterns in Extreme Precipitation Risk and the Related Impacts

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Tye, M. R.

    2017-12-01

    Extreme precipitation can harm human life and assets through flooding, hail, landslides, or debris flows. Flood risk assessments typically concentrate on river or mountain torrent channels, using water depth, flow velocity, and/or sediment deposition to quantify the risk. In addition, extreme events with high recurrence intervals are often the main focus. However, damages from short-term and localized convective showers often occur away from watercourses. Also, damages from more frequent small scale extremes, although usually less disastrous, can accumulate to considerable financial burdens. Extreme convective precipitation is expected to intensify in a warmer climate, and vulnerability patterns might change in tandem with changes in the character of precipitation and flood types. This has consequences for adaptation planners who want to establish effective protection measures and reduce the cost from natural hazards. Here we merge hydrological and exposure data to identify patterns of risk under varying synoptic conditions. Exposure is calculated from a database of 76k damage claims reported to the national disaster fund in 480 municipalities in south eastern Austria from 1990-2015. Hydrological data comprise sub-daily precipitation (59 gauges) and streamflow (62 gauges) observations. We use synoptic circulation types to identify typical precipitation patterns. They indicate the character of precipitation even if a gauge is not in close proximity, facilitating potential future research with regional climate model data. Results show that more claims are reported under synoptic conditions favouring convective precipitation (on average 1.5-3 times more than on other days). For agrarian municipalities, convective precipitation damages are among the costliest after long low-intensity precipitation events. In contrast, Alpine communities are particularly vulnerable to convective high-intensity rainfall. In addition to possible observational error, uncertainty is present in damage reporting errors, claims from private insurers and adaptation effects after damaging events. As for the latter, preliminary results indicate that investments regularly occur after big events, which may skew subsequent damage claims. Their effectiveness, though, needs to be analyzed in future research.

  19. Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change

    NASA Astrophysics Data System (ADS)

    Hou, Pei; Wu, Shiliang; McCarty, Jessica L.; Gao, Yang

    2018-06-01

    Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our sensitivity model simulations, through some simplified perturbations to precipitation in the GEOS-Chem model, show that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosol lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequencies in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the changes of precipitation intensity and frequency over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.

  20. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    USDA-ARS?s Scientific Manuscript database

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  1. Projections of East Asian summer monsoon change at global warming of 1.5 and 2 °C

    NASA Astrophysics Data System (ADS)

    Liu, Jiawei; Xu, Haiming; Deng, Jiechun

    2018-04-01

    Much research is needed regarding the two long-term warming targets of the 2015 Paris Agreement, i.e., 1.5 and 2 °C above pre-industrial levels, especially from a regional perspective. The East Asian summer monsoon (EASM) intensity change and associated precipitation change under both warming targets are explored in this study. The multimodel ensemble mean projections by 19 CMIP5 models show small increases in EASM intensity and general increases in summer precipitation at 1.5 and 2 °C warming, but with large multimodel standard deviations. Thus, a novel multimodel ensemble pattern regression (EPR) method is applied to give more reliable projections based on the concept of emergent constraints, which is effective at tightening the range of multimodel diversity and harmonize the changes of different variables over the EASM region. Future changes projected by using the EPR method suggest decreased precipitation over the Meiyu belt and increased precipitation over the high latitudes of East Asia and Central China, together with a considerable weakening of EASM intensity. Furthermore, reduced precipitation appears over 30-40° N of East Asia in June and over the Meiyu belt in July, with enhanced precipitation at their north and south sides. These changes in early summer are attributed to a southeastward retreat of the western North Pacific subtropical high (WNPSH) and a southward shift of the East Asian subtropical jet (EASJ), which weaken the moisture transport via southerly wind at low levels and alter vertical motions over the EASM region. In August, precipitation would increase over the high latitudes of East Asia with more moisture from the wetter area over the ocean in the east and decrease over Japan with westward extension of WNPSH. These monthly precipitation changes would finally contribute to a tripolar pattern of EASM precipitation change at 1.5 and 2 °C warming. Corrected EASM intensity exhibits a slight difference between 1.5 and 2 °C, but a pronounced moisture increase during extra 0.5 °C leads to enhanced EASM precipitation over large areas in East Asia at 2 °C warming.

  2. Effects of soil dry-wet cycles and nitrogen fertilization on soil nitrous oxide emission: Simulation using the DNDC model

    NASA Astrophysics Data System (ADS)

    Hui, D.; Chen, H.; Deng, Q.; Wang, G.; Schadt, C. W.

    2017-12-01

    The major source of atmospheric nitrous oxide (N2O) is from croplands. A rapid pulse response of soil N2O emission to precipitation (PPT) is often reported, especially after a drought period. However, how precipitation pattern (i.e. frequency) and intensity, and nitrogen (N) fertilization would interactively influence soil N2O emission has not been well investigated. In this modeling study, we took advantage of a validated biogeochemical model (DNDC) in a cornfield and simulated soil N2O emission under manipulated precipitation treatments and three levels (Low, medium and high) of N application rate. The PPT treatments included precipitation pattern (from very frequent, to medium, and rare dry-wet cycles without changes in total annual precipitation) and intensity (from ambient, to -50%, +50%, and +100% ambient precipitation without changes in precipitation pattern). Results showed that both precipitation pattern and intensity, as well as nitrogen application rate had significant influences on the pulse responses and annual soil N2O emission. Very frequent dry-wet cycles tended to increase soil N2O emission while long drought-wet cycles had lower soil N2O emission, but the timing of N fertilization and precipitation also played an important role in the magnitude of pulse response and annual budget of N2O emission. As expected, soil N2O emission was higher under the high N application and lower under the low N application rate. Double precipitation (+100%) had the highest soil N2O emission, but showed no significant differences with +50% and ambient precipitation. The drought (-50%) treatment significantly reduced soil N2O emission. Annual soil N2O emission could be described as N2O=-6.7436+0.1098N+0.0049PPT, R2=0.86. Our results demonstrate that not only the intensity and pattern of precipitation greatly influence soil N2O emission, but also the timing of rainfall and N fertilization may play an important role in soil N2O pulse responses and annual N2O emission in cornfields. These modeling approaches inform our future work to deploy automated gas flux systems to validate and monitor these rapid N2O responses in the field.

  3. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    PubMed

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes. © 2017 John Wiley & Sons Ltd.

  4. Precipitation thresholds and drought-induced tree die-off: Insights from patterns of Pinus edulis mortality along an environmental stress gradient

    Treesearch

    Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford

    2013-01-01

    Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....

  5. Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; McKinney, D. C.

    2016-12-01

    The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.

  6. Climate Change in Nicaragua: a dynamical downscaling of precipitation and temperature.

    NASA Astrophysics Data System (ADS)

    Porras, Ignasi; Domingo-Dalmau, Anna; Sole, Josep Maria; Arasa, Raul; Picanyol, Miquel; Ángeles Gonzalez-Serrano, M.°; Masdeu, Marta

    2016-04-01

    Climate Change affects weather patterns and modifies meteorological extreme events like tropical cyclones, heavy rainfalls, dry events, extreme temperatures, etc. The aim of this study is to show the Climate Change projections over Nicaragua for the period 2010-2040 focused on precipitation and temperature. In order to obtain the climate change signal, the results obtained by modelling a past period (1980-2009) were compared with the ones obtained by modelling a future period (2010-2040). The modelling method was based on a dynamical downscaling, coupling global and regional models. The MPI-ESM-MR global climate model was selected due to the better performance over Nicaragua. Moreover, a detailed sensitivity analysis for different parameterizations and schemes of the Weather Research and Forecast (WRF-ARW) model was made to minimize the model uncertainty. To evaluate and validate the methodology, a comparison between model outputs and satellite measurements data was realized. The results show an expected increment of the temperature and an increment of the number of days per year with temperatures higher than 35°C. Monthly precipitation patterns will change although annual total precipitation will be similar. In addition, number of dry days are expected to increase.

  7. Spatiotemporal changes in precipitation extremes over Yangtze River basin, China, considering the rainfall shift in the late 1970s

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Xie, Lian

    2016-12-01

    Precipitation extremes are the dominated causes for the formation of severe flood disasters at regional and local scales under the background of global climate change. In the present study, five annual extreme precipitation events, including 1, 7 and 30 day annual maximum rainfall and 95th and 97.5th percentile threshold levels, are analyzed relating to the reference period 1960-2011 from 140 meteorological stations over Yangtze River basin (YRB). A generalized extreme value (GEV) distribution is applied to fit annual and percentile extreme precipitation events at each station with return periods up to 200 years. The entire time period is divided into preclimatic (preceding climatic) period 1960-1980 and aftclimatic (after climatic) period 1981-2011 by considering distinctly abrupt shift of precipitation regime in the late 1970s across YRB. And the Mann-Kendall trend test is adopted to conduct trend analysis during pre- and aftclimatic periods, respectively, for the purpose of exploring possible increasing/decreasing patterns in precipitation extremes. The results indicate that the increasing trends for return values during aftclimatic period change significantly in time and space in terms of different magnitudes of extreme precipitation, while the stations with significantly positive trends are mainly distributed in the vicinity of the mainstream and major tributaries as well as large lakes, this would result in more tremendous flood disasters in the mid-lower reaches of YRB, especially in southeast coastal regions. The increasing/decreasing linear trends based on annual maximum precipitation are also investigated in pre- and aftclimatic periods, respectively, whereas those changes are not significantly similar to the variations of return values during both subperiods. Moreover, spatiotemporal patterns of precipitation extremes become more uneven and unstable in the second half period over YRB.

  8. Impact of internal variability on projections of Sahel precipitation change

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen

    2017-11-01

    The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.

  9. Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites

    USDA-ARS?s Scientific Manuscript database

    Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...

  10. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    DOE PAGES

    Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.; ...

    2017-04-02

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less

  11. Forest insect and fungal pathogen responses to drought [Chapter 6

    Treesearch

    Thomas E. Kolb; Christopher J. Fettig; Barbara J. Bentz; Jane E. Stewart; Aaron S. Weed; Jeffrey A. Hicke; Matthew P. Ayres

    2016-01-01

    Recent changes in precipitation patterns and in the occurrence of extreme temperature and precipitation events have been documented in many forested regions of the United States (Ryan and Vose 2012). Changes in drought intensity and frequency have the potential to alter populations and impacts of tree-damaging forest insects and pathogens (Ayers and Lombardero...

  12. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management

    USGS Publications Warehouse

    Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.

    2015-01-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1

  13. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    PubMed

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.

  14. Detecting potential anomalies in projections of rainfall trends and patterns using human observations

    NASA Astrophysics Data System (ADS)

    Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.

    2016-12-01

    Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.

  15. Hydrologic factors affecting lake-level fluctuations in the Big Marine Lake, Washington County, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1985-01-01

    Long-term trends in cumulative departure from mean annual precipitation suggest that recharge to the drift aquifer in the area has been increasing since the 1940's. The increase in precipitation and recharge corresponds to the observed rise in lake level since 1965 when regular lake-level measurements began. Fluctuations in lake level in the future will depend on changes in recharge to the drift and bedrock aquifers, which is directly related to changes in long-term precipitation patterns.

  16. Long-Term Precipitation Isotope Ratios (δ18O, δ2H, d-excess) in the Northeast US Reflect Atlantic Ocean Warming and Shifts in Moisture Sources

    NASA Astrophysics Data System (ADS)

    Puntsag, T.; Welker, J. M.; Mitchell, M. J.; Klein, E. S.; Campbell, J. L.; Likens, G.

    2014-12-01

    The global water cycle is exhibiting dramatic changes as global temperatures increase resulting in increases in: drought extremes, flooding, alterations in storm track patterns with protracted winter storms, and greater precipitation variability. The mechanisms driving these changes can be difficult to assess, but the spatial and temporal patterns of precipitation water isotopes (δ18O, δ2H, d-excess) provide a means to help understand these water cycle changes. However, extended temporal records of isotope ratios in precipitation are infrequent, especially in the US. In our study we analyzed precipitation isotope ratio data from the Hubbard Brook Experimental Forest in New Hampshire that has the longest US precipitation isotope record, to determine: 1) the monthly composited averages and trends from 1967 to 2012 (45 years); ; 2) the relationships between abiotic properties such as local temperatures, precipitation type, storm tracks and isotope ratio changes; and 3) the influence of regional shifts in moisture sources and/or changes in N Atlantic Ocean water conditions on isotope values. The seasonal variability of Hubbard Brook precipitation isotope ratios is consistent with other studies, as average δ18O values are ~ -15‰ in January and ~ -5 ‰ in July. However, over the 45 year record there is a depletion trend in the δ 18O values (becoming isotopically lighter with a greater proportion of 16O), which coupled with less change in δ 2H leads to increases in d-excess values from ~ -10‰ around 1970 to greater than 10‰ in 2009. These changes occurred during a period of warming as opposed to cooling local temperatures indicating other processes besides temperature are controlling long-term water isotope traits in this region. We have evidence that these changes in precipitation isotope traits are controlled in large part by an increases in moisture being sourced from a warming N Atlantic Ocean that is providing evaporated, isotopically-depleted precipitation to the region. Thus, the warming of the N Atlantic Ocean appears to influence the climate and the precipitation isotopes of Northeastern coastal regions and could be a larger water source to watersheds in this North American region.

  17. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    NASA Astrophysics Data System (ADS)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  18. Quantifying how the full local distribution of daily precipitation is changing and its uncertainties

    NASA Astrophysics Data System (ADS)

    Stainforth, David; Chapman, Sandra; Watkins, Nicholas

    2016-04-01

    The study of the consequences of global warming would benefit from quantification of geographical patterns of change at specific thresholds or quantiles, and better understandings of the intrinsic uncertainties in such quantities. For precipitation a range of indices have been developed which focus on high percentiles (e.g. rainfall falling on days above the 99th percentile) and on absolute extremes (e.g. maximum annual one day precipitation) but scientific assessments are best undertaken in the context of changes in the whole climatic distribution. Furthermore, the relevant thresholds for climate-vulnerable policy decisions, adaptation planning and impact assessments, vary according to the specific sector and location of interest. We present a methodology which maintains the flexibility to provide information at different thresholds for different downstream users, both scientists and decision makers. We develop a method[1,2] for analysing local climatic timeseries to assess which quantiles of the local climatic distribution show the greatest and most robust changes in daily precipitation data. We extract from the data quantities that characterize the changes in time of the likelihood of daily precipitation above a threshold and of the amount of precipitation on those days. Our method is a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of how fast different quantiles of precipitation distributions are changing. This involves not only determining which quantiles and geographical locations show the greatest and smallest changes, but also those at which uncertainty undermines the ability to make confident statements about any change there may be. We demonstrate this approach using E-OBS gridded data[3] which are timeseries of local daily precipitation across Europe over the last 60+ years. We treat geographical location and precipitation as independent variables and thus obtain as outputs the geographical pattern of change at given thresholds of precipitation. This information is model- independent, thus providing data of direct value in model calibration and assessment. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, 371 20120287; D. A. Stainforth, 2013 [2] S C Chapman, D A Stainforth, N W Watkins, 2015 Limits to the quantification of local climate change, ERL,10, 094018 (2015), ERL,10, 094018 [3] M R Haylock et al . 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119

  19. Future Precipitation Extremes in China Under Climate Change and Their Possible Mechanisms by Regional Climate Model and Earth System Model Simulations

    NASA Astrophysics Data System (ADS)

    Qin, P.; Xie, Z.

    2017-12-01

    Future precipitation extremes in China for the mid and end of 21st century were detected with six simulations using the regional climate model RegCM4 (RCM) and 17 global climate models (GCM) participated in the coupled Model Intercomparison Project Phase 5 (CMIP5). Prior to understanding the future changes in precipitation extremes, we overviewed the performance of precipitation extremes simulated by the CMIP5s and RCMs, and found both CMIP5s and RCMs could capture the temporal and spatial pattern of the historical precipitation extremes in China. In the mid-future period 2039-2058 (MF) and far-future 2079-2098 (FF), more wet precipitation extremes will occur in most area of China relative to the present period 1982-2001 (RF). We quantified the rates of the changes in precipitation extremes in China with the changes in air surface temperature (T2M) for the MF and FF period. Changes in precipitation extremes R95p were found around 5% K-1 for the MF period and 10% K-1 for the FF period, and changes in maximum 5 day precipitation (Rx5day) were detected around 4% K-1 for the MF period and 7% K-1 for the FF period, respectively. Finally, the possible physical mechanisms behind the changes in precipitation extremes in China were also discussed through the changes in specific humidity and vertical wind.

  20. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    PubMed

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  1. A new precipitation and drought climatology based on weather patterns

    PubMed Central

    Fowler, Hayley J.; Kilsby, Christopher G.; Neal, Robert

    2017-01-01

    ABSTRACT Weather‐pattern, or weather‐type, classifications are a valuable tool in many applications as they characterize the broad‐scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather‐pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI‐based drought months. The new weather‐pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation‐based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra‐pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification‐based analyses in the UK. PMID:29456290

  2. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    NASA Astrophysics Data System (ADS)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  3. Anthropogenic aerosols and the distribution of past large-scale precipitation change

    DOE PAGES

    Wang, Chien

    2015-12-28

    In this paper, the climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol-induced cooling has offset some of the warming caused by the greenhouse gases from the tropics tomore » the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol-cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data.« less

  4. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe

    PubMed Central

    Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2016-01-01

    As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios. PMID:27074973

  5. Mid-Holocene climates of the Americas: A dynamical response to changed seasonality

    USGS Publications Warehouse

    Harrison, S.P.; Kutzbach, J.-E.; Liu, Z.; Bartlein, P.J.; Otto-Bliesner, B.; Muhs, D.; Prentice, I.C.; Thompson, R.S.

    2003-01-01

    Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean-atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northern-most South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas.

  6. Influence of orographic precipitation on the incision within a mountain-piedmont system

    NASA Astrophysics Data System (ADS)

    Zavala, Valeria; Carretier, Sébastien; Bonnet, Stephane

    2017-04-01

    The geomorphological evolution of a mountain-piedmont system depends both on tectonics and climate, as well as on couplings between the mountain and its piedmont. Although the interactions between climate and tectonics are a fundamental point for understanding the landscape evolution, the erosion of a mountain range and the sediment deposition at the mountain front, or piedmont, have been poorly studied as a coupled system. Here we focus on the conditions driving an incision within such a system. Classically, it is thought that incision results from a change in climate or uplift rates. However, it is not clear which are the specific conditions that favor the occurrence of river incision in the piedmont. In particular, studies have shown that the presence of a piedmont can modify the incision patterns, and even drive autogenic incision, without any change in external forcings. This is a crucial issue in order to interpret natural incisions in terms of uplift or climatic modifications. Such a problem is further complicated by the modification of local precipitations and temperatures during uplift, because the progressive effect of climate change may superimpose to uplift. In this work we explore the hypothesis that a mountain-piedmont coupled system may develop incision in its piedmont as a result of enhanced orographic precipitations during surface uplift. We use a landscape evolution model, Cidre, in order to explore the response of a mountain-piemont system in which the mountain is continuously uplifted but in which precipitation rates depend on elevations. Thus precipitation amounts change during the mountain uplift. We test different peaks and amplitudes of the orographic precipitation pattern, maintaining the other conditions constant. Preliminary results show that elevation-dependent precipitations drive temporary but pronounced incisions of the main rivers within the piedmont, contrary to experiments without orographic precipitations.

  7. Impact of climate variability on runoff in the north-central United States

    USGS Publications Warehouse

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  8. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  9. Dynamically-downscaled temperature and precipitation changes over Saskatchewan using the PRECIS model

    NASA Astrophysics Data System (ADS)

    Zhou, Xiong; Huang, Guohe; Wang, Xiuquan; Cheng, Guanhui

    2018-02-01

    In this study, dynamically-downscaled temperature and precipitation changes over Saskatchewan are developed through the Providing Regional Climates for Impacts Studies (PRECIS) model. It can resolve detailed features within GCM grids such as topography, clouds, and land use in Saskatchewan. The PRECIS model is employed to carry out ensemble simulations for projections of temperature and precipitation changes over Saskatchewan. Temperature and precipitation variables at 14 weather stations for the baseline period are first extracted from each model run. Ranges of simulated temperature and precipitation variables are then obtained through combination of maximum and minimum values calculated from the five ensemble runs. The performance of PRECIS ensemble simulations can be evaluated through checking if observations of current temperature at each weather station are within the simulated range. Future climate projections are analyzed over three time slices (i.e., the 2030s, 2050s, and 2080s) to help understand the plausible changes in temperature and precipitation over Saskatchewan in response to global warming. The evaluation results show that the PRECIS ensemble simulations perform very well in terms of capturing the spatial patterns of temperature and precipitation variables. The results of future climate projections over three time slices indicate that there will be an obvious warming trend from the 2030s, to the 2050s, and the 2080s over Saskatchewan. The projected changes of mean temperature over the whole Saskatchewan area is [0, 2] °C in the 2030s at 10th percentile, [2, 5.5] °C in the 2050s at 50th percentile, and [3, 10] °C in the 2090s at 90th percentile. There are no significant changes in the spatial patterns of the projected total precipitation from the 2030s to the end of this century. The minimum change of the projected total precipitation over the whole Province of Saskatchewan is most likely to be -1.3% in the 2030s, and -0.2% in the 2050s, while the minimum value would be -2.1% to the end of this century at 50th percentile.

  10. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  11. Assessment of atmospheric moisture transport patterns through the northeastern US, 1900-2016

    NASA Astrophysics Data System (ADS)

    Teale, N. G.; Robinson, D. A.

    2017-12-01

    Atmospheric moisture dictates precipitation on the ground; therefore, changes in precipitation such as those observed in the northeastern US must be linked to changes in atmospheric moisture. However, little attention has been paid to the changes in the atmospheric moisture in this region. This research fills this gap by identifying pathways of atmospheric moisture transport in and through the northeastern US and assessing how those patterns have changed throughout the twentieth century. Moisture transport patterns are identified using integrated vapor transport (IVT) calculated from daily eastward and northward vertically integrated vapor fluxes for 1986—2016 at a spatial resolution of 0.75° × 0.75° from ERA-Interim Reanalysis. The study region is bounded by 36°N—51°N and 85°W—60°W. A self-organizing map (SOM) methodology is employed with the daily IVT data to produce a set of IVT maps identifying recurrent moisture transport patterns intersecting the northeastern US. IVT then is calculated identically from ERA-20C for 1900-2010. These daily data are sorted into the IVT pattern maps identified in the previous step, thus extending the dataset of northeastern moisture transport pathways through the 20th century. The overlap period of 6 years provides training and validation for the classification procedure; duplicates are removed. Trends in the frequency and characteristics of these patterns are analyzed through 116 year study period. Results from this study have indicated that atmospheric rivers play a non-negligible role in the supply of water vapor in the northeastern US. Additionally, the identification of distinct moisture transport pathways provides a baseline for identifying changes moisture transport in climate model projections, which may provide additional insight into the future precipitation regime of the northeastern US.

  12. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    NASA Astrophysics Data System (ADS)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970-1980 and after 1992.

  13. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    USGS Publications Warehouse

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  14. Connection between ENSO and Asian Summer Monsoon Precipitation Oxygen Isotope

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Tian, L.

    2016-12-01

    In an effort to understand the connection between El Niño Southern Oscillation (ENSO) and Asian Summer Monsoon (ASM) precipitation oxygen isotope, this study investigates the spatial and interannual patterns in summer (JJAS) monsoon precipitation δ18O and satellite water vapor isotope retrievals, especially those patterns associated with convection and vapor transport. Both precipitation and vapor isotope values exhibit a "V" shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along vapor transport routes. In order to understand interannual variations, an ASM precipitation δ18O index (ASMOI) is introduced to measure the temporal variations in regional precipitation δ18O; and these variations are consistent with central Indo-Pacific convection and cloud-top height. The counter variations in the ASMOI in El Niño and La Niña years confirm the existence of a positive isotope- ENSO response (e.g., high values corresponding to warm phases) over the eastern Indian Ocean and southeastern Asia (80°E-120°E/10°S-30°N) as a response to changes in convection. However, JJAS vapor δD over the western Pacific (roughly east of 120oE) varies in opposition, due to the influence of water vapor transport. This opposite variation does not support the interpretation of precipitation isotope-ENSO relationship as changing proportion of vapor transported from different regions, but rather condensation processes associated with convection. These findings are important for studying past ASM and ENSO activity from various isotopic archives and have implications for the study of the atmospheric water cycle.

  15. Precipitation variation over eastern China and arid central Asia during the past millennium and its possible mechanism: Perspectives from PMIP3 experiments

    NASA Astrophysics Data System (ADS)

    Shi, Jian; Yan, Qing; Jiang, Dabang; Min, Jinzhong; Jiang, Ying

    2016-10-01

    Multiproxies suggest a tripole humidity pattern in Asia in the Medieval Climate Anomaly (MCA, 950-1250 A.D.) and Little Ice Age (LIA, 1500-1800 A.D.), with drier (wetter) conditions in arid central Asia (ACA), wetter (drier) conditions in North China, and drier (wetter) conditions in South China. However, the mechanisms behind this reconstructed humidity variation remain unclear. In this study, we investigate Asian humidity changes by using the last millennium simulations of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). The results indicate that only one out of nine PMIP3 models (Meteorological Research Institute Coupled ocean-atmosphere General Circulation Model version 3) can well reproduce the reconstructed humidity pattern. This model indicates that the tripole humidity pattern is mainly caused by precipitation changes in spring and summer and is prominent in the past millennium on a multidecadal time scale. In spring, the reduction (increase) of precipitation in ACA and South China is attributed to the northward (southward) shift of the westerlies and a weakened (strengthened) western Pacific subtropical high in the MCA (LIA). In summer, precipitation over ACA decreases (increases) due to a local descending (ascending) motion, while abundant (deficient) precipitation over eastern China results from the enhanced (depressed) summer monsoon. Moreover, we suggest that a La Niña (El Niño)-like condition may be the primary reason the tripole precipitation pattern was maintained in the MCA (LIA), although a warmer (colder) North Pacific and North Atlantic also play a role. The mechanisms must be further validated since most simulations fail to reproduce the reconstructed humidity condition in the MCA/LIA, making model-model comparisons difficult.

  16. Quantifying the scale- and process- dependent reorganization of landscape under climatic change: inferences from an experimental landscape

    NASA Astrophysics Data System (ADS)

    Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.

    2016-12-01

    Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.

  17. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    NASA Astrophysics Data System (ADS)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  18. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  19. Spatiotemporal Patterns of Precipitation-Modulated Landslide Deformation From Independent Component Analysis of InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A.

    2018-02-01

    Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009-2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting.

  20. Linked hydrologic and climate variations in British Columbia and Yukon.

    PubMed

    Whitfield, P H

    2001-01-01

    Climatic and hydrologic variations between the decades 1976-1985 and 1986-1995 are examined at 34 climate stations and 275 hydrology stations. The variations in climate are distributed across a broad spatial area. Temperatures were generally warmer in the most recent decade, with many stations showing significant increases during the spring and fall. No significant decreases in temperature were found. Significant increases in temperature were more frequent in the south than in the northern portions of the region. Significant changes in precipitation were also more prevalent in the south. In coastal areas, there were significant decreases in precipitation during the dry season, and significant increases during the wet season. In the BC interior, significant precipitation decreases occurred during the fall, with significant increases during the winter and spring. In the north there were few changes in precipitation. The hydrologic responses to these variations in climate follow six distinctive patterns. The spatial distribution of these patterns suggests that in different ecozones, small variations in climate, particularly temperature, elicit different hydrologic responses.

  1. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.

  2. Role of resolution in regional climate change projections over China

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).

  3. Landscape-scale processes influence riparian plant composition along a regulated river

    USGS Publications Warehouse

    Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.

    2018-01-01

    Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.

  4. Linkage between global sea surface temperature and hydroclimatology of a major river basin of India before and after 1980

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sonali; Nanjundiah, Ravi S.; Nagesh Kumar, D.

    2017-12-01

    The frequent occurrence of flood and drought worldwide has drawn attention to assessing whether the hydroclimatology of major river basins has changed. The Mahanadi river basin (MRB) is the major source of fresh water for both Chattisgarh and Odisha states (71 million people approximately) in India. The MRB (141 600 km2 area) is one of the most vulnerable to climate change and variations in temperature and precipitation. In recent years, it has repeatedly faced adverse hydrometeorological conditions. Large-scale ocean-atmospheric phenomena have a substantial influence on river hydroclimatology. Hence global sea surface temperature (SST) linkage with the precipitation and surface temperature of the MRB was analyzed over the period 1950-2012. Significant changes in seasonal correlation patterns were witnessed from 1950-1980 (PR-80) to 1981-2012 (PO-80). The correlation was higher during PR-80 compared to PO-80 between the El Niño region SST versus the maximum temperature (T max) in all seasons except the pre-monsoon season and the minimum temperature (T min) in all seasons except the monsoon season. However, precipitation correlation changes are not prominent. Like the SST, the correlation patterns of sea level pressure with precipitation, T max and T min shifted conspicuously from PR-80 to PO-80. These shifts could be related to change in Pacific decadal SST patterns and anthropogenic effects. Fingerprint-based detection and attribution analysis revealed that the observed changes in T min (pre-monsoon and monsoon season) during the second half of the 20th century cannot be explained solely by natural variability and can be attributed to an anthropogenic effect.

  5. Classifying Multi-Model Wheat Yield Impact Response Surfaces Showing Sensitivity to Temperature and Precipitation Change

    NASA Technical Reports Server (NTRS)

    Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; hide

    2017-01-01

    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (minus 2 to plus 9 degrees Centigrade) and precipitation (minus 50 to plus 50 percent). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

  6. Reconstruction of pre-instrumental storm track trajectories across the U.S. Pacific Northwest using circulation-based field sampling of Pinus Ponderosa

    NASA Astrophysics Data System (ADS)

    Wise, E.; Dannenberg, M. P.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean is a key influence on drought and flood regimes in western North America. Flow is typically from the west in a zonal pattern, but decadal shifts between zonal and meridional flow have been identified as key features in hydroclimatic variability over the instrumental period. In Washington and most of the Pacific Northwest, there tend to be lower-latitude storm systems that result in decreased precipitation in El Niño years. However, the Columbia Basin in central Washington behaves in opposition to the surrounding region and typically has average to above-average precipitation in El Niño years due to changing storm-track trajectories and a decreasing rain shadow effect on the leeward side of the Cascades. This direct connection between storm-track position and precipitation patterns in Washington provided an exceptional opportunity for circulation-based field sampling and chronology development. New Pinus ponderosa (Ponderosa pine) tree-ring chronologies were developed from eight sites around the Columbia Basin in Washington and used to examine year-to-year changes in moisture regimes. Results show that these sites are representative of the two distinct climate response areas. The divergence points between these two site responses allowed us to reconstruct changing precipitation patterns since the late-17th century, and to link these patterns to previously reconstructed atmospheric pressure and El Niño indices. This study highlights the potential for using synoptic climatology to inform field-based proxy collection.

  7. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  8. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  9. The spatial variable glacier mass loss over the southeast Tibet Plateau and the climate cause analyses

    NASA Astrophysics Data System (ADS)

    Ke, L.; Ding, X.; Song, C.; Sheng, Y.

    2016-12-01

    Temperate glaciers can be highly sensitive to global climate change due to relatively humid and warm local climate. Numerous temperate glaciers are distributed in the southeastern Tibet Plateau (SETP) and their changes are still poorly represented. Based on a latest glacier inventory and ICESat altimetry measurements, we examine the spatial heterogeneity of glacier change in the SETP (including the central and eastern Nyainqêntanglha ranges) and further analyze its relation with climate change by using station-based and gridded meteorological data. Our results show that SETP glaciers experienced drastic surface lowering at about -0.84±0.26 m a-1 on average over 2003-2008. Debris-covered ice thinned at an average rate of -1.13±0.32 m a-1, in comparison with -0.92±0.17 m a-1 over the debris-free ice areas. The thinning rate is the strongest in the southeastern sub-region (up to -1.24 m a-1 ) and moderate ( -0.45 m a-1 ) in the central and northwestern parts, which is in general agreement with the pattern of surface mass changes based on the GRACE gravimetry observation. Long-term climate data at weather stations show that, in comparison with the period of 1992-2002, mean temperature increased by 0.46 °C - 0.59 °C in the recent decade (2003-2013); while the change of summer precipitation exhibited remarkably spatial variability, following a southeast-northwest contrasting pattern (decreasing by over 10% in the southeast, to stable level in the central region, and increment up to 10% in the northwest). This spatially variable precipitation change is consistent with results from CN05 grid data and ERA re-analysis data, and agrees well with the spatial pattern of glacier surface elevation changes. The results suggest that overall negative glacier mass balances in SETP are governed by temperature rising, while the different precipitation change could contribute to inconsistent glacier thinning rates. The spatial pattern of precipitation decrease and mass loss might be tele-connected with the dynamics of the Indian summer monsoon.

  10. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.

  11. The Relative Importance of Convective and Trade-wind Orographic Precipitation to Streamflow in the Luquillo Mountains, Eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.

    2012-12-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long-term average streamflow isotopic composition indicates a disproportionately large contribution of this trade-wind precipitation to streamflow, highlighting the importance of this climate pattern to the hydrology of the watersheds. Isotopic composition of groundwater suggests a slightly higher proportion of convective precipitation, but still smaller than in total rainfall. Hydrograph separation experiments yielded information on stormflow characteristics, with quantification of contributing sources determined from water isotopes and solute chemistry. The evidence that intense convective rain events run off and light trade-wind showers appear to contribute much of the baseflow indicates that the area may undergo a change in water supply if the trade-wind orographic precipitation dynamics in the Caribbean are affected by future climate change.

  12. Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM)

    NASA Astrophysics Data System (ADS)

    Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda

    2018-05-01

    Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual precipitation is expected to decrease in southeastern China. Therefore, flood risk in northern China and drought risk in southern China should draw more attention for a global air temperature increase from 1.5 °C to 2.0 °C.

  13. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    USGS Publications Warehouse

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  14. Detectability of change in winter precipitation within mountain landscapes: Spatial patterns and uncertainty

    NASA Astrophysics Data System (ADS)

    Silverman, N. L.; Maneta, M. P.

    2016-06-01

    Detecting long-term change in seasonal precipitation using ground observations is dependent on the representativity of the point measurement to the surrounding landscape. In mountainous regions, representativity can be poor and lead to large uncertainties in precipitation estimates at high elevations or in areas where observations are sparse. If the uncertainty in the estimate is large compared to the long-term shifts in precipitation, then the change will likely go undetected. In this analysis, we examine the minimum detectable change across mountainous terrain in western Montana, USA. We ask the question: What is the minimum amount of change that is necessary to be detected using our best estimates of precipitation in complex terrain? We evaluate the spatial uncertainty in the precipitation estimates by conditioning historic regional climate model simulations to ground observations using Bayesian inference. By using this uncertainty as a null hypothesis, we test for detectability across the study region. To provide context for the detectability calculations, we look at a range of future scenarios from the Coupled Model Intercomparison Project 5 (CMIP5) multimodel ensemble downscaled to 4 km resolution using the MACAv2-METDATA data set. When using the ensemble averages we find that approximately 65% of the significant increases in winter precipitation go undetected at midelevations. At high elevation, approximately 75% of significant increases in winter precipitation are undetectable. Areas where change can be detected are largely controlled by topographic features. Elevation and aspect are key characteristics that determine whether or not changes in winter precipitation can be detected. Furthermore, we find that undetected increases in winter precipitation at high elevation will likely remain as snow under climate change scenarios. Therefore, there is potential for these areas to offset snowpack loss at lower elevations and confound the effects of climate change on water resources.

  15. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    PubMed Central

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  16. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  17. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  18. Alpha, Beta and Gamma Diversity Differ in Response to Precipitation in the Inner Mongolia Grassland

    PubMed Central

    Zhang, Qing; Hou, Xiangyang; Li, Frank Yonghong; Niu, Jianming; Zhou, Yanlin; Ding, Yong; Zhao, Liqing; Li, Xin; Ma, Wenjing; Kang, Sarula

    2014-01-01

    Understanding the distribution pattern and maintenance mechanism of species diversity along environmental gradients is essential for developing biodiversity conservation strategies under environmental change. We have surveyed the species diversity at 192 vegetation sites across different steppe zones in Inner Mongolia, China. We analysed the total species diversity (γ diversity) and its composition (α diversity and β diversity) of different steppe types, and their changes along a precipitation gradient. Our results showed that (i) β diversity contributed more than α diversity to the total (γ) diversity in the Inner Mongolia grassland; the contribution of β diversity increased with precipitation, thus the species-rich (meadow steppe) grassland had greater contribution of β diversity than species-poor (desert steppe) grassland. (ii) All α, β and γ species diversity increased significantly (P<0.05) with precipitation, but their sensitivity to precipitation (diversity change per mm precipitation increase) was different between the steppe types. The sensitivity of α diversity of different steppe community types was negatively (P<0.05) correlated with mean annual precipitation, whereas the sensitivity of β and γ diversity showed no trend along the precipitation gradient (P>0.10). (iii) The α diversity increased logarithmically, while β diversity increased exponentially, with γ diversity. Our results suggest that for local species diversity patterns, the site species pool is more important in lower precipitation areas, while local ecological processes are more important in high precipitation areas. In addition, for β diversity maintenance niche processes and diffusion processes are more important in low and high precipitation areas, respectively. Our results imply that a policy of “multiple small reserves” is better than one of a “single large reserve” for conserving species diversity of a steppe ecosystem, and indicate an urgent need to develop management strategies for climate-sensitive desert steppe ecosystem. PMID:24675900

  19. 21st Century Changes in Precipitation Extremes Based on Resolved Atmospheric Patterns

    NASA Astrophysics Data System (ADS)

    Gao, X.; Schlosser, C. A.; O'Gorman, P. A.; Monier, E.

    2014-12-01

    Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency distribution of precipitation, especially at the regional scale. In this study, a validated analogue method is employed to diagnose the potential future shifts in the probability of extreme precipitation over the United States under global warming. The method is based on the use of the resolved large-scale meteorological conditions (i.e. flow features, moisture supply) to detect the occurrence of extreme precipitation. The CMIP5 multi-model projections have been compiled for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The application of such analogue method to detect other types of hazard events, i.e. landslides is also explored. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.

  20. Precipitation variability in the Four Corners region USA from 2002 to 2015

    NASA Astrophysics Data System (ADS)

    Tulley-Cordova, C. L.; Bowen, G. J.; Brady, I.; Bekis, J.

    2016-12-01

    Due to the arid climate, the Navajo Nation situated in the southwestern United States (US) is sensitive to small changes in precipitation. The Navajo Nation is the largest land based tribe in the US; Navajo residents, wildlife, livestock, and vegetation are highly dependent on water resources including precipitation, surface, ground, and spring waters for vitality. Changes in precipitation directly impacts the Navajo Nation's ecosystem including a variety of interconnected effects such as ground water recharge, frequency of dust migration and strength of winds, flow in ephemeral and perennial streams, plant and animal populations, wildfires, change in vegetative cover and possible alterations in species composition. This study examines hydroclimatic changes during months, seasons, and water years across the Navajo Nation from 2002 to 2015 and how Four Corners USA precipitation variability and trends compares to large-scale atmospheric circulation patterns. Examination of spatial and temporal trends of precipitation variability during this time period can be used to assist an area with limited water management infrastructure with future water planning and help understand a region that has been poorly studied in the past.

  1. Understanding relationships among abundance, extirpation, and climate at ecoregional scales.

    PubMed

    Beever, Erik A; Dobrowski, S Z; Long, J; Mynsberge, A R; Piekielek, N B

    2013-07-01

    Recent research on mountain-dwelling species has illustrated changes in species distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994-1999 and 2003-2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.

  2. Understanding relationships among abundance, extirpation,and climate at ecoregional scales

    USGS Publications Warehouse

    Beever, Erik A.; Solomon Dubrowski,; ,; ,; J. Long,; ,; A. Mysnberge,; Piekielek, N. B.

    2014-01-01

    Recent research on mountain-dwelling species has illustrated changes in species’ distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994–1999 and 2003–2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.

  3. Spatial patterns of wet season precipitation vertical gradients on the Tibetan Plateau and the surroundings.

    PubMed

    Cuo, Lan; Zhang, Yongxin

    2017-07-11

    The Tibetan Plateau and the surrounding (TPS) with its vast land mass and high elevation affects regional climate and weather. The TPS is also the headwater of 9 major Asian rivers that provide fresh water for 1.65 billion people and many ecosystems, with wet season (May-September) precipitation being the critical component of the fresh water. Using station observations, ERA-Interim and MERRA2 reanalysis, we find that wet season precipitation displays vertical gradients (i.e., changes with elevation) that vary within the region on the TPS. The decrease of precipitation with elevation occurs in the interior TPS with elevation larger than 4000 m, little or no change over the southeastern TPS, and increase elsewhere. The increase of precipitation with elevation is caused by increasing convective available potential energy (CAPE) and decreasing lifting condensation level (LCL) with elevation overwhelming the effects of decreasing total column water vapor (TCWV) with elevation. The decreasing precipitation with elevation is due to the combined effects of increasing LCL and decreasing TCWV. LCL and CAPE play a more important role than TCWV in determining the spatial patterns. These findings are important for hydrology study in observation scarce mountainous areas, water resources and ecosystem managements in the region.

  4. Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.

    NASA Astrophysics Data System (ADS)

    Mock, Cary Jeffrey

    This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.

  5. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  6. Characterization of extreme precipitation within atmospheric river events over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, S.; Prabhat,; Byna, S.

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  7. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  8. Areal and Temporal Analysis of Precipitation Patterns In Slovakia Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Pishvaei, M. R.

    Harmonic analysis as an objective method of precipitation seasonality studying is ap- plied to the 1901-2000 monthly precipitation averages at five stations in the low-land part of Slovakia with elevation less than 800 m a.s.l. The significant harmonics of long-term precipitation series have been separately computed for eight 30-year peri- ods, which cover the 20th century and some properties and the variations are com- pared to 100-year monthly precipitation averages. The selected results show that the first and the second harmonics pre-dominantly influence on the annual distribution and climatic seasonal regimes of pre-cipitation that contribute to the precipitation am- plitude/pattern with about 20% and 10%, respectively. These indicate annual and half year variations. The rest harmon-ics often have each less than 5% contribution on the Fourier interpolation course. Maximum in yearly precipitation course, which oc- curs approximately at the begin-ning of July, because of phase changing shifts then to the middle of June. Some probable reasons regarding to Fourier components are discussed. In addition, a tem-poral analysis over precipitation time series belonging to the Hurbanovo Observa-tory as the longest observational series on the territory of Slovakia (with 130-year precipitation records) has been individually performed and possible meteorological factors responsible for the observed patterns are suggested. A comparison of annual precipitation course obtained from daily precipitation totals analysis and polynomial trends with Fourier interpolation has been done too. Daily precipitation data in the latest period are compared for some stations in Slovakia as well. Only selected results are pre-sented in the poster.

  9. A Northern Hemisphere perspective on Holocene hydroclimate trends in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Polissar, P. J.; Abbott, M. B.

    2016-12-01

    Reconstructions of tropical precipitation are important for determining the sensitivity of rainfall patterns in the tropics to climate variability and improving the accuracy of projected hydrologic changes in a warming world. In tropical South America, precipitation is dominantly controlled by the South American Monsoon system (SAM), which operates in conjunction with the position of the Intertropical Convergence Zone (ITCZ) and the El Niño Southern Oscillation (ENSO) to deliver water resources to hundreds of millions of people. The classic model of South American hydroclimate evolution during the Holocene (past 11 ka) invokes an anti-phased pattern of precipitation between hemispheres, whereby orbital forcing drove a gradual displacement of the ITCZ, causing a southerly shift in seasonal convection and precipitation, and strengthening the SAM as Southern Hemisphere summer insolation increased. Indeed, paleoclimate records derived from multiple geologic archives support this pattern. However, the vast majority of existing records come from the southern tropics and emerging terrestrial datasets from the northern tropics appear contrary to the paradigm. Here, we present lake sediment evidence for coupled hydroclimate and environmental changes from the Venezuelan Andes, a key region for investigating interhemispheric linkages and drivers of tropical hydroclimate variability. Compound specific hydrogen isotope ratios from terrestrial plant waxes and algal lipids, together with supporting sedimentary indicators of runoff and aridity, provide a comprehensive reconstruction of Northern Hemisphere tropical precipitation at local and regional scales. Our results are consistent in sign and magnitude to precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability and calling into question the synchronicity and phasing of hydroclimate trends in South America.

  10. Indices of climate change based on patterns from CMIP5 models, and the range of projections

    NASA Astrophysics Data System (ADS)

    Watterson, I. G.

    2018-05-01

    Changes in temperature, precipitation, and other variables simulated by 40 current climate models for the 21st century are approximated as the product of the global mean warming and a spatial pattern of scaled changes. These fields of standardized change contain consistent features of simulated change, such as larger warming over land and increased high-latitude precipitation. However, they also differ across the ensemble, with standard deviations exceeding 0.2 for temperature over most continents, and 6% per degree for tropical precipitation. These variations are found to correlate, often strongly, with indices based on those of modes of interannual variability. Annular mode indices correlate, across the 40 models, with regional pressure changes and seasonal rainfall changes, particularly in South America and Europe. Equatorial ocean warming rates link to widespread anomalies, similarly to ENSO. A Pacific-Indian Dipole (PID) index representing the gradient in warming across the maritime continent is correlated with Australian rainfall with coefficient r of - 0.8. The component of equatorial warming orthogonal to this index, denoted EQN, has strong links to temperature and rainfall in Africa and the Americas. It is proposed that these indices and their associated patterns might be termed "modes of climate change". This is supported by an analysis of empirical orthogonal functions for the ensemble of standardized fields. Can such indices be used to help constrain projections? The relative similarity of the PID and EQN values of change, from models that have more skilful simulation of the present climate tropical pressure fields, provides a basis for this.

  11. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    PubMed

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  12. Multi Proxy Observations of Changes in the Late Holocene Paleoenvironment of a South East Texas Reverse Estuary

    NASA Astrophysics Data System (ADS)

    Mckay, M.

    2016-12-01

    Baffin Bay is a Reverse estuary located in the semi-arid south Texas coastal plain. It receives on average 60-80 cm of precipitation per year with evaporation exceeding precipitation by 60 cm/year. It has experienced a variety of paleoenvironmental influences since its formation as sea levels rose during the Holocene period. Many of these environmental influences include some terrestrial deposits from creeks, and changes in precipitation patterns. One of the most significant influences on the bay was when it was separated from the Gulf of Mexico by the formation of a large Barrier Island (Padre Island) 5,500 years ago. In recent times, Baffin Bay has experienced decreases in water quality. While it is evident that current anthropological inputs (increased nutrient loading, etc.) are contributory, natural factors that include long-term changes in precipitation patterns, and fresh water flows, along with changes in the bays circulation patterns may also influence the functioning of the bay. In this study, short sediment cores ( 1.3-1.7 m) were taken from twelve locations around the main basin and tributaries of the bay. All cores were sampled at either one or five centimetre intervals depending on the technique employed, using several non-destructive and destructive proxy techniques. Chronological control was provided by Cs-137/Pb-210 analyses. Proxy analysis has corresponded well with both with known events and with the assistance of Cs-137/Pb-210 analyses, are able help discern environmental inputs that are of anthropological origin as opposed to those that of a natural origin or cycle.

  13. Climate change patterns in Amazonia and biodiversity.

    PubMed

    Cheng, Hai; Sinha, Ashish; Cruz, Francisco W; Wang, Xianfeng; Edwards, R Lawrence; d'Horta, Fernando M; Ribas, Camila C; Vuille, Mathias; Stott, Lowell D; Auler, Augusto S

    2013-01-01

    Precise characterization of hydroclimate variability in Amazonia on various timescales is critical to understanding the link between climate change and biodiversity. Here we present absolute-dated speleothem oxygen isotope records that characterize hydroclimate variation in western and eastern Amazonia over the past 250 and 20 ka, respectively. Although our records demonstrate the coherent millennial-scale precipitation variability across tropical-subtropical South America, the orbital-scale precipitation variability between western and eastern Amazonia exhibits a quasi-dipole pattern. During the last glacial period, our records imply a modest increase in precipitation amount in western Amazonia but a significant drying in eastern Amazonia, suggesting that higher biodiversity in western Amazonia, contrary to 'Refugia Hypothesis', is maintained under relatively stable climatic conditions. In contrast, the glacial-interglacial climatic perturbations might have been instances of loss rather than gain in biodiversity in eastern Amazonia, where forests may have been more susceptible to fragmentation in response to larger swings in hydroclimate.

  14. Prediction technologies for assessment of climate change impacts

    USDA-ARS?s Scientific Manuscript database

    Temperatures, precipitation, and weather patterns are changing, in response to increasing carbon dioxide in the atmosphere. With these relatively rapid changes, existing soil erosion prediction technologies that rely upon climate stationarity are potentially becoming less reliable. This is especiall...

  15. Assessment of the impact of climate shifts on malaria transmission in the Sahel.

    PubMed

    Bomblies, Arne; Eltahir, Elfatih A B

    2009-09-01

    Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.

  16. How to introduce climate change into extreme precipitation predetermination? First attempts to tamper with the MEWP method.

    NASA Astrophysics Data System (ADS)

    Gérardin, Maxime; Brigode, Pierre; Bernardara, Pietro; Gailhard, Joël; Garçon, Rémy; Paquet, Emmanuel; Ribstein, Pierre

    2013-04-01

    The MEWP (Multi-Exponential Weather Pattern, Garavaglia et al. 2010) distribution is part of the operational method in use at EDF (Electricité de France) for computing dam spillways design floods, i.e. the magnitude of the flood that occurs at a given return period. The return periods of interest lie in the 100 - 10,000 years range. Relying on a purposely-designed classification of atmospheric circulations into weather patterns, and assigning a catchment-specific asymptotical coefficient to each of these patterns, the MEWP distribution provides the daily areal rainfall as a function of the return period. In its current state, the method relies on the implicit assumption of climate stationnarity. In this work we seek to introduce climate change into the MEWP framework. Since the MEWP distribution basically contains two sorts of parameters, namely frequencies of the weather patterns, and magnitudes of the events occurring within each of these patterns, we examine the plausible evolution of these two sets of parameters under climate change, and the sensitivity of the final result to these two sorts of changes. On the one hand, the future frequencies are assessed thanks to GCM outputs from CMIP5, and significant, albeit not greater than the internal variability, changes are observed. On the other hand, the future magnitudes can be suspected to follow the Clausius-Clapeyron relationship (e.g. Pall et al., 2007, and Lenderink et van Meijgaard, 2008). We assess the validity of this hypothesis on the observed daily areal precipitation series for more than a hundred catchments in France. The sensitivity analysis shows that, for the return periods at stake, the impact of frequency changes is small relative to that of magnitude changes, while this would not be true for smaller return periods. Therefore, we propose to incorporate climate change into the MEWP distribution in a simple but realistic way, by taking account of the magnitude change only. We conclude with some insights into the next steps that will allow a more sophisticated representation of climate change in the MEWP distribution. References: Garavaglia, F., J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. 2010. "Introducing a Rainfall Compound Distribution Model Based on Weather Patterns Sub-sampling." Hydrology and Earth System Sciences 14 (6): 951-964. doi:10.5194/hess-14-951-2010. Lenderink, Geert, and Erik van Meijgaard. 2008. "Increase in Hourly Precipitation Extremes Beyond Expectations from Temperature Changes." Nature Geoscience 1 (8) (July 20): 511-514. doi:10.1038/ngeo262. Pall, P., MR Allen, and DA Stone. 2007. "Testing the Clausius-Clapeyron Constraint on Changes in Extreme Precipitation Under CO 2 Warming." Climate Dynamics 28 (4): 351-363.

  17. Characterizing hydroclimatic variability in tributaries of the Upper Colorado River Basin—WY1911-2001

    NASA Astrophysics Data System (ADS)

    Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian

    2010-01-01

    SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type, and are specific to each river basin. Thus, while most of the water supply in the Upper CRB originates from winter snowpack, statistically significant indictors of relative magnitude of upcoming precipitation and runoff are evident in the fall, well before appreciable snow accumulation. Results of this study suggest strategies that may integrated into existing forecast methods to potentially improve forecast accuracy and advance lead time by as much as six months (i.e., from April 1 to October 1 of the previous year). These techniques also have applications in downscaling climate models and in river restoration and management.

  18. Relations between productivity, climate, and normalized difference vegetation index in the central Great Plains

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.

  19. Assessing the impact of climate variability on cropping patterns in Kenya

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  20. The Evolution of Tropical Precipitation Patterns During ENSO Events Using 21+ Years of GPCP Merged Data

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert

    2000-01-01

    The ENSO phenomenon is characterized by fluctuations in the climate system of the tropical Pacific. Quantifying changes in the precipitation component of this system is important in understanding the distribution of heating in the atmosphere which drives the large-scale circulation and affects the weather patterns in the mid-latitudes. Monitoring precipitation anomalies in the Pacific is also an important component for tracking the evolution of ENSO. The most timely and complete observations of the earth come from satellite instruments. In this study, the state of the art satellite-gauge merged monthly precipitation data set from the Global Precipitation Climatology Project (GPCP) is used to depict tropical rainfall patterns during ENSO events over the past two decades and quantify these patterns using indices. This analysis will be complemented by daily precipitation data which can resolve the Madden-Julian Oscillation and westerly wind burst events. The 1997-98 El Nino and 1998-2000 La Nina were the best observed ENSO cycle in the historic record. Prior to the El Nino (in terms of anomalous warming of the east Pacific) dry anomalies over the Maritime Continent were observed in February 1997 as a westerly wind burst advected convection to the east. The largest SST anomalies occurred around November-December 1997, which were followed by the largest precipitation anomalies in the beginning of 1998. The largest precipitation departures from normal were not colocated with the SST anomalies, but were further west, In the spring of 1998 negative precipitation anomalies to the north of the equator intensified, signaling the mature phase of the El Nino. A rapid increase in the precipitation-based La Nina index from December-January 1998 to March-April 1998 signaled the coming La Nina. The 1982-1983 El Nino was comparable in strength (according to several indices) and the precipitation patterns evolved in a similar fashion. For the 1998-2000 La Nina, the coldest anomalies, were confined to the central equatorial Pacific, while the driest anomalies were found in the west Pacific,

  1. Long Term Ground Based Precipitation Data Analysis in California's 7 Climate Divisions: Spatial and Temporal Variability

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; El-Askary, H. M.; Rakovski, C.; Allai, M.

    2015-12-01

    California is an area of diverse topography and has what many scientists call a Mediterranean climate. Various precipitation patterns exist due to El Niño Southern Oscillation (ENSO) which can cause abnormal precipitation or droughts. As temperature increases mainly due to the increase of CO2 in the atmosphere, it is rapidly changing the climate of not only California but the world. An increase in temperature is leading to droughts in certain areas as other areas are experiencing heavy rainfall/flooding. Droughts in return are providing a foundation for fires harming the ecosystem and nearby population. Various natural hazards can be induced due to the coupling effects from inconsistent precipitation patterns and vice versa. Using wavelets and ARIMA modeling, we were able to identify anomalies of high precipitation and droughts within California's 7 climate divisions using NOAA's hourly precipitation data from rain gauges and compared the results with modeled data, SOI, PDO, and AMO. The identification of anomalies can be used to compare and correct remote sensing measurements of precipitation and droughts.

  2. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices

    NASA Astrophysics Data System (ADS)

    Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei

    2017-08-01

    Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.

  3. EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan

    EPA Science Inventory

    Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...

  4. The implications of climate change on pavement performance and design.

    DOT National Transportation Integrated Search

    2011-09-25

    Pavements are designed based on historic climatic patterns, reflecting local climate and : incorporating assumptions about a reasonable range of temperatures and precipitation levels. : Given anticipated climate changes and the inherent uncertainty a...

  5. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  6. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  7. Impact of deforestation on local precipitation patterns over the Da River basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Spartà, Daniele; Castelletti, Andrea; Boschetti, Mirco

    2014-05-01

    Change in land cover, e.g. from forest to bare soil, might severely impact the hydrological cycle at the river basin scale by altering the balance between rainfall and evaporation, ultimately affecting streamflow dynamics. These changes generally occur over decades, but they might be much more rapid in developing countries, where economic growth and growing population may cause abrupt changes in landscape and ecosystem. Detecting, analysing and modelling these changes is an essential step to design mitigation strategies and adaptation plans, balancing economic development and ecosystem protection. In this work we investigate the impact of land cover changes on the water cycle in the Da River basin, Vietnam. More precisely, the objective is to evaluate the interlink between deforestation and precipitation. The case study is particularly interesting because Vietnam is one of the world fastest growing economies and natural resources have been considerably exploited to support after-war development. Vietnam has the second highest rate of deforestation of primary forests in the world, second to only Nigeria (FAO 2005), with associated problems like abrupt change in run-off, erosion, sediment transport and flash floods. We performed land cover evaluation by combining literature information and Remote Sensing techniques, using Landsat images. We then analysed time series of precipitation observed on the period 1960-2011 in several stations located in the catchment area. We used multiple trend detection techniques, both state-of-the-art (e.g., Linear regression and Mann-Kendall) and novel trend detection techniques (Moving Average on Shifting Horizon), to investigate trends in seasonal pattern of precipitation. Results suggest that deforestation may induce a negative trend in the precipitation volume. The effect is mainly recognizable at the beginning and at the end of the monsoon season, when the local mechanisms of precipitation formation prevail over the large scale ones.

  8. The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event

    NASA Astrophysics Data System (ADS)

    Kawecki, Stacey; Steiner, Allison L.

    2018-01-01

    We examine how aerosol composition affects precipitation intensity using the Weather and Research Forecasting Model with Chemistry (version 3.6). By changing the prescribed default hygroscopicity values to updated values from laboratory studies, we test model assumptions about individual component hygroscopicity values of ammonium, sulfate, nitrate, and organic species. We compare a baseline simulation (BASE, using default hygroscopicity values) with four sensitivity simulations (SULF, increasing the sulfate hygroscopicity; ORG, decreasing organic hygroscopicity; SWITCH, using a concentration-dependent hygroscopicity value for ammonium; and ALL, including all three changes) to understand the role of aerosol composition on precipitation during a mesoscale convective system (MCS). Overall, the hygroscopicity changes influence the spatial patterns of precipitation and the intensity. Focusing on the maximum precipitation in the model domain downwind of an urban area, we find that changing the individual component hygroscopicities leads to bulk hygroscopicity changes, especially in the ORG simulation. Reducing bulk hygroscopicity (e.g., ORG simulation) initially causes fewer activated drops, weakened updrafts in the midtroposphere, and increased precipitation from larger hydrometeors. Increasing bulk hygroscopicity (e.g., SULF simulation) simulates more numerous and smaller cloud drops and increases precipitation. In the ALL simulation, a stronger cold pool and downdrafts lead to precipitation suppression later in the MCS evolution. In this downwind region, the combined changes in hygroscopicity (ALL) reduces the overprediction of intense events (>70 mm d-1) and better captures the range of moderate intensity (30-60 mm d-1) events. The results of this single MCS analysis suggest that aerosol composition can play an important role in simulating high-intensity precipitation events.

  9. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.

    PubMed

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  10. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region

    NASA Astrophysics Data System (ADS)

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  11. On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Wang, Binbin; Zou, Chris B.; Hu, Bill X.; Liu, Youcun; Hao, Yonghong

    2017-11-01

    The Tianshan Mountains are known as the "water tower" in the arid region of Central Asia. Change in precipitation amount and pattern can have a profound impact on regional civilization and life supporting ecosystems. For this study, a systematic analysis of long-term precipitation data for the eastern Tianshan Mountains was conducted to investigate the influence of climate teleconnections on annual and intra-annual precipitation using data collected between 1951 and 2014 from 39 meteorological stations. Annual precipitation has increased during the past six decades at an average rate of 6.7 mm/10 years largely due to the increase in precipitation during the intra-annual wet period (May-October). The annual precipitation and its rate of increase were higher in the northwestern region. Annual precipitation was found to be most strongly correlated with index of Indian Summer Monsoon (ISM), and partially correlated with indices of Pacific Decadal Oscillation (PDO), Pacific North American Teleconnection Pattern (PNA), Arctic Oscillation (AO), El Nino-Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO). ISM was positively correlated with the precipitation in almost the entire region during the intra-annual wet period, while it showed positive correlations in the northern slope and the alpine region, and negative correlations in the southern slope during the intra-annual dry period (November to April). PDO had much weaker influence both in spatial scale and strength and primarily affected low elevations on the southern slopes of the middle and western regions. The impacts of PNA and AO on precipitation were weak and localized. ENSO and NAO indices were almost not correlated with annual precipitation observation in the eastern Tianshan Mountains.

  12. Under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear?

    PubMed

    Ye, Jian-Sheng; Pei, Jiu-Ying; Fang, Chao

    2018-03-01

    Understanding under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear is useful for accurately predicting the response of ecosystem function to global environmental change. Using long-term (2000-2016) net primary productivity (NPP)-precipitation datasets derived from satellite observations, we identify >5600pixels in the North Hemisphere landmass that fit either linear or nonlinear temporal NPP-precipitation relationships. Differences in climate (precipitation, radiation, ratio of actual to potential evapotranspiration, temperature) and soil factors (nitrogen, phosphorous, organic carbon, field capacity) between the linear and nonlinear types are evaluated. Our analysis shows that both linear and nonlinear types exhibit similar interannual precipitation variabilities and occurrences of extreme precipitation. Permutational multivariate analysis of variance suggests that linear and nonlinear types differ significantly regarding to radiation, ratio of actual to potential evapotranspiration, and soil factors. The nonlinear type possesses lower radiation and/or less soil nutrients than the linear type, thereby suggesting that nonlinear type features higher degree of limitation from resources other than precipitation. This study suggests several factors limiting the responses of plant productivity to changes in precipitation, thus causing nonlinear NPP-precipitation pattern. Precipitation manipulation and modeling experiments should combine with changes in other climate and soil factors to better predict the response of plant productivity under future climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Contrasting response of coexisting plant's water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China.

    PubMed

    Wu, Huawu; Li, Jing; Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng

    2018-01-01

    Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake.

  14. Contrasting response of coexisting plant’s water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China

    PubMed Central

    Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng

    2018-01-01

    Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0–10cm) when it was available but shifted to absorbing deep soil water (30–60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake. PMID:29677195

  15. Patterns of Late Quaternary hydrologic variability and atmospheric change inferred from a Northern California speleothem

    NASA Astrophysics Data System (ADS)

    Oster, J. L.; Weisman, I. E.; Sharp, W. D.; Ibarra, D. E.

    2017-12-01

    The synthesis of hydrologically sensitive proxy records across western North America reveals spatial patterns of variability that persist, with some variation, over multiple temporal scales. For example, tree ring records from the last century highlight a distinct north-south dipole pattern in the response of regional precipitation anomalies to ENSO and the PDO, while a similar dipole pattern of wet and dry precipitation anomalies developed across the region in response to climate forcing at the Last Glacial Maximum (LGM). Hydrologically sensitive proxy records from the intervening transition zone can shed light on the stationarity and spatial scale of this pattern over time. Here we present records of δ18O and δ13C from a Lake Shasta Caverns stalagmite (LSC3) from Northern California that grew from 36 to 14 ka. This cave, located at 40.8°N, is situated within the transition zone and is well-positioned to enhance our understanding of regional precipitation patterns and moisture transport variability during the last glacial period and deglaciation. Six years of weekly rain isotope data indicate that varying atmospheric temperatures and moisture sources are primary controls on δ18O in Northern California precipitation. Increased δ18O and δ13C in LSC3 and slower stalagmite growth rates during MIS 2 suggest increased subtropical moisture but also dry conditions in Northern California. The δ13C record displays distinct millennial-scale oscillations during MIS 3, suggesting drier conditions also occurred during interstadials associated with Dansgaard-Oeschger cycles. The LSC3 δ18O record documents changes synchronous with δ18O in the Fort Stanton stalagmite in New Mexico, though sometimes in phase (e.g. during Heinrich Stadial 1; HS1) and sometimes anti-phased (e.g. during the Bölling-Alleröd). Likewise, the LSC3 δ13C record suggests a transition from wet to drier conditions during HS1 in marked contrast to many more southerly records that indicate wetter conditions later in HS1. These comparisons show that changes in Northern California climate were both in and out of phase with hydroclimate variations occurring to the south and southeast. Thus, the LSC3 record refines our understanding of spatial patterns of hydroclimatic change in western North America.

  16. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  17. The exceptionally wet year of 2014 over Greece: a statistical and synoptical-atmospheric analysis over the region of Thessaloniki

    NASA Astrophysics Data System (ADS)

    Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina

    2018-05-01

    The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.

  18. Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis

    NASA Astrophysics Data System (ADS)

    Jung, Chun-Yong; Shin, Ho-Jeong; Jang, Chan Joo; Kim, Hyung-Jin

    2015-02-01

    The summer monsoon considerably affects water resource and natural hazards including flood and drought in East Asia, one of the world's most densely populated area. In this study, we investigate future changes in summer precipitation over East Asia induced by global warming through dynamical downscaling with the Weather Research and Forecast model. We have selected a global model from the Coupled Model Intercomparison Project Phase 5 based on an objective evaluation for East Asian summer monsoon and applied its climate change under Representative Concentration Pathway 4.5 scenario to a pseudo global warming method. Unlike the previous studies that focused on a qualitative description of projected precipitation changes over East Asia, this study tried to identify the physical causes of the precipitation changes by analyzing a local moisture budget. Projected changes in precipitation over the eastern foothills area of Tibetan Plateau including Sichuan Basin and Yangtze River displayed a contrasting pattern: a decrease in its northern area and an increase in its southern area. A local moisture budget analysis indicated the precipitation increase over the southern area can be mainly attributed to an increase in horizontal wind convergence and surface evaporation. On the other hand, the precipitation decrease over the northern area can be largely explained by horizontal advection of dry air from the northern continent and by divergent wind flow. Regional changes in future precipitation in East Asia are likely to be attributed to different mechanisms which can be better resolved by regional dynamical downscaling.

  19. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    NASA Technical Reports Server (NTRS)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  20. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation

    NASA Astrophysics Data System (ADS)

    Baker, P. A.; Fritz, S. C.; Garland, J.; Ekdahl, E.

    2005-10-01

    A growing number of sites in the Northern Hemisphere show centennial- to millennial-scale climate variation that has been correlated with change in solar variability or with change in North Atlantic circulation. However, it is unclear how (or whether) these oscillations in the climate system are manifest in the Southern Hemisphere because of a lack of sites with suitably high sampling resolution. In this paper, we reconstruct the lake-level history of Lake Titicaca, using the carbon isotopic content of sedimentary organic matter, to evaluate centennial- to millennial-scale precipitation variation and its phasing relative to sites in the Northern Hemisphere. The pattern and timing of lake-level change in Lake Titicaca is similar to the ice-rafted debris record of Holocene Bond events, demonstrating a possible coupling between precipitation variation on the Altiplano and North Atlantic sea-surface temperatures (SSTs). The cold periods of the Holocene Bond events correspond with periods of increased precipitation on the Altiplano. Holocene precipitation variability on the Altiplano is anti-phased with respect to precipitation in the Northern Hemisphere monsoon region. More generally, the tropical Andes underwent large changes in precipitation on centennial-to-millennial timescales during the Holocene.

  1. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.

  2. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  3. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    NASA Technical Reports Server (NTRS)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  4. Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and Precipitation Observations

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.

    2016-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.

  5. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  6. Precipitation response to the current ENSO variability in a warming world

    NASA Astrophysics Data System (ADS)

    Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.

    2013-12-01

    The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and is supported, among others, by C.B. Early Career Research Program award.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chien

    In this paper, the climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol-induced cooling has offset some of the warming caused by the greenhouse gases from the tropics tomore » the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol-cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data.« less

  8. Evaluating the potential for justice in urban climate change adaptation in the U.S.: The role of institutions

    EPA Science Inventory

    Global climate change requires that cities adapt to new conditions such as changing precipitation patterns, temperature extremes, and frequency of natural disasters. Adapting cities to climate change will have consequences for urban populations as it requires a reconfiguration of...

  9. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  10. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE PAGES

    Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...

    2018-04-16

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  11. Refugia Research Coalition: A regional-scale approach for connecting refugia science to natural and cultural resource management

    EPA Science Inventory

    Background / question / methods Warmer air and water temperatures, changing precipitation patterns, and altered fire regimes associated with climate change threaten many important natural and cultural resources. Climate change refugia are areas relatively buffered from contempora...

  12. Regional variability of the frequency distribution of daily precipitation and the synoptic characteristics of heavy precipitation events in present and future climate simulations

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.

    Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.

  13. Analysis of watershed topography effects on summer precipitation variability in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, Dagbegnon C.; Singh, Vijay P.; Frauenfeld, Oliver W.

    2014-04-01

    With climate change, precipitation variability is projected to increase. The present study investigates the potential interactions between watershed characteristics and precipitation variability. The watershed is considered as a functional unit that may impact seasonal precipitation. The study uses historical precipitation data from 370 meteorological stations over the last five decades, and digital elevation data from regional watersheds in the southwestern United States. This domain is part of the North American Monsoon region, and the summer period (June-July-August, JJA) was considered. Based on an initial analysis for 1895-2011, the JJA precipitation accounts, on average, for 22-43% of the total annual precipitation, with higher percentages in the arid part of the region. The unique contribution of this research is that entropy theory is used to address precipitation variability in time and space. An entropy-based disorder index was computed for each station's precipitation record. The JJA total precipitation and number of precipitation events were considered in the analysis. The precipitation variability potentially induced by watershed topography was investigated using spatial regionalization combining principal component and cluster analysis. It was found that the disorder in precipitation total and number of events tended to be higher in arid regions. The spatial pattern showed that the entropy-based variability in precipitation amount and number of events gradually increased from east to west in the southwestern United States. Regarding the watershed topography influence on summer precipitation patterns, hilly relief has a stabilizing effect on seasonal precipitation variability in time and space. The results show the necessity to include watershed topography in global and regional climate model parameterizations.

  14. Remote Sensing the Patterns of Vector-borne Disease in El Nino and non-El Nino Years

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Chang, J.; Lobitz, B.; Beck, L.; DAntoni, Hector (Technical Monitor)

    1997-01-01

    The relationship between El Nino and non-El Nino and the patterns of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are long term predictions of changing precipitation and temperature patterns at continental and global scales. At the opposite extreme are the local or site specific ecological changes associated with the long term events. In order to understand and address the human health consequences of El Nino events, especially the patterns of vector-borne diseases, it is necessary to combine both scales of observation. At a local or regional scale the patterns of vector-borne diseases are determined by temperature, precipitation, and habitat availability. These factors, as well as disease incidence can be altered by El Nino events. Remote sensing data such as that acquired by the NOAA AVHRR and Landsat TM sensors can be used to characterize and monitor changing ecological conditions and therefore predict vector-borne disease patterns. The authors present the results of preliminary work on the analysis of historical AVHRR and TM data acquired during El Nino and nonfatal Nino years to characterize ecological conditions in Peru on a monthly basis. This information will then be combined with disease data to determine the relationship between changes in ecological conditions and disease incidence. Our goal is to produce a sequence of remotely sensed images which can be used to show the ecological and disease patterns associated with long term El Nino events and predictions.

  15. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

    PubMed

    Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua

    2017-11-13

    As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

  16. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  17. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  18. Climate change over Leh (Ladakh), India

    NASA Astrophysics Data System (ADS)

    Chevuturi, A.; Dimri, A. P.; Thayyen, R. J.

    2018-01-01

    Mountains over the world are considered as the indicators of climate change. The Himalayas are comprised of five ranges, viz., Pir Panjal, Great Himalayas, Zanskar, Ladhak, and Karakorum. The Ladakh region lies in the northernmost state of India, Jammu and Kashmir, in the Ladhak range. It has a unique cold-arid climate and lies immediately south of the Karakorum range. With scarce water resources, such regions show high sensitivity and vulnerability to the change in climate and need urgent attention. The objective of this study is to understand the climate of the Ladakh region and to characterize its changing climate. Using different temperature and precipitation datasets over Leh and surrounding regions, we statistically analyze the current trends of climatic patterns over the region. The study shows that the climate over Leh shows a warming trend with reduced precipitation in the current decade. The reduced average seasonal precipitation might also be associated with some indications of reducing number of days with higher precipitation amounts over the region.

  19. Trend analysis of precipitation in Jharkhand State, India. Investigating precipitation variability in Jharkhand State

    NASA Astrophysics Data System (ADS)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2017-10-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  20. Characterization of increased persistence and intensity of precipitation in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Guilbert, Justin; Betts, Alan K.; Rizzo, Donna M.; Beckage, Brian; Bomblies, Arne

    2015-03-01

    We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.

  1. Changing Precipitation Patterns or Waning Glaciers? Identifying Water Supply Vulnerabilities to Climate Change in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Guido, Z. S.; McIntosh, J. C.; Papuga, S. A.

    2010-12-01

    The Bolivian Andes have become an iconic example for the impacts of climate change. Glaciers are rapidly melting and some have already completely disappeared. More than 75 percent of the water consumed by 2 million people living on the flanks of the Bolivian Andes comes from mountains and it is often cited that the dwindling ice threatens the water supply of the expanding and destitute population living in the twin cities of La Paz and El Alto. However, the wet and the warm seasons and the cold and dry seasons coincide, causing high precipitation and ice melt—and therefore high streamflows—to occur only in the austral summer (October-March); during the austral winter, cold conditions limit glacier melt. This suggests that reductions in the water supply could be influenced more by changing precipitation amounts than continued glacial mass-wasting. We hypothesize that precipitation is the principal component of groundwater recharge for the aquifers at the base of the central Cordillera Real. Oxygen and hydrogen isotopes from rivers partially fed by glaciers, groundwater, and glacial melt water can help determine the relative contribution of precipitation and glacial melt to important water supplies. During the dry season in August 2010, we sampled 23 sites that follow the flow path of water in the Condiriri watershed, beginning in the glacial headwaters and ending several kilometers upriver from Lake Titicaca. We collected five samples at the toe of the Pequeño Alpamayo glacier and four samples from three tributary rivers that drain glaciated headwaters, which include meltwater from the Pequeño Alpamayo glacier. W also collected 14 water samples from shallow and deep wells in rural communities within 40 kilometers of the glaciers. If the isotopic values of groundwater are similar to rain values, as we suspect, precipitation is likely the largest contributor to groundwater resources in the region and will suggest that changing precipitation patterns present the greatest climate change risk to water supply. Identifying the key climate vulnerability will inform effective adaptation and water management policies, which may include increasing the watersheds capacity to capture and divert wet season precipitation. It will also inform future research, which may involve age dating water, developing local adaptation plans, and improving climate and streamflow monitoring.

  2. Nonlinear growth responses of Douglas-fir in the Pacific Northwest to summer temperatures in the past decade

    EPA Science Inventory

    Altered seasonal climate patterns resulting from global climate change could affect the productivity of coniferous forests in the Pacific Northwest region of North America. This study examined seasonal patterns of temperature, precipitation, relative humidity and plant available...

  3. Aerosol loading impact on Asian monsoon precipitation patterns

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco

    2017-04-01

    Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and found typical patterns characterizing different Indian regions in late summer. Analyzing the AERONET data we have also separated the black carbon and dust contribution to the total aerosol loading based on aerosol spectral optical properties for investigating the link between different aerosol types and precipitation patterns.

  4. Eliciting climate experts' knowledge to address model uncertainties in regional climate projections: a case study of Guanacaste, Northwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Grossmann, I.; Steyn, D. G.

    2014-12-01

    Global general circulation models typically cannot provide the detailed and accurate regional climate information required by stakeholders for climate adaptation efforts, given their limited capacity to resolve the regional topography and changes in local sea surface temperature, wind and circulation patterns. The study region in Northwest Costa Rica has a tropical wet-dry climate with a double-peak wet season. During the dry season the central Costa Rican mountains prevent tropical Atlantic moisture from reaching the region. Most of the annual precipitation is received following the northward migration of the ITCZ in May that allows the region to benefit from moist southwesterly flow from the tropical Pacific. The wet season begins with a short period of "early rains" and is interrupted by the mid-summer drought associated with the intensification and westward expansion of the North Atlantic subtropical high in late June. Model projections for the 21st century indicate a lengthening and intensification of the mid-summer drought and a weakening of the early rains on which current crop cultivation practices rely. We developed an expert elicitation to systematically address uncertainties in the available model projections of changes in the seasonal precipitation pattern. Our approach extends an elicitation approach developed previously at Carnegie Mellon University. Experts in the climate of the study region or Central American climate were asked to assess the mechanisms driving precipitation during each part of the season, uncertainties regarding these mechanisms, expected changes in each mechanism in a warming climate, and the capacity of current models to reproduce these processes. To avoid overconfidence bias, a step-by-step procedure was followed to estimate changes in the timing and intensity of precipitation during each part of the season. The questions drew upon interviews conducted with the regions stakeholders to assess their climate information needs. This study is part of the FuturAgua project funded by the Belmont Freshwater Security call. The expert opinions on expected changes in the seasonal precipitation pattern are being used to inform regional efforts to build drought resilience and to create and compare alternative water management strategies with the region's stakeholders.

  5. Isolating the Effects of the Warming Trend from the General Climate Change in Water Resources: California Case

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Chung, F.

    2008-12-01

    While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.

  6. Climate-Soil-Vegetation Interactions: A Case-Study from the Forest Fire Phenomenon in Southern Switzerland

    NASA Astrophysics Data System (ADS)

    Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.

    2003-04-01

    In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.

  7. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    PubMed Central

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID:24023925

  8. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    PubMed

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  9. Climate change and hydrology in the Blue Mountains [Chapter 3

    Treesearch

    Caty F. Clifton; Kate T. Day; Kathie Dello; Gordon E. Grant; Jessica E. Halofsky; Daniel J. Isaak; Charles H. Luce; Mohammad Safeeq; Brian P. Staab; John Stevenson

    2017-01-01

    The dominant influences on climatic patterns in the Pacific Northwest are the Pacific Ocean and the Cascade Range. The diurnal temperature range is higher east of the Cascade crest, further inland from the Pacific Ocean. More precipitation falls west of the Cascade Mountains crest, and a strong rain shadow greatly reduces precipitation east of the crest. The southern...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Won; Stein, Michael L.; Wang, Jiali

    Climate models robustly imply that some significant change in precipitation patterns will occur. Models consistently project that the intensity of individual precipitation events increases by approximately 6-7%/K, following the increase in atmospheric water content, but that total precipitation increases by a lesser amount (2-3%/K in the global average). Some other aspect of precipitation events must then change to compensate for this difference. We develop here a new methodology for identifying individual rainstorms and studying their physical characteristics - including starting location, intensity, spatial extent, duration, and trajectory - that allows identifying that compensating mechanism. We apply this technique to precipitationmore » over the contiguous U.S. from both radar-based data products and high-resolution model runs simulating 100 years of business-as-usual warming. In model studies, we find that the dominant compensating mechanism is a reduction of storm size. In summer, rainstorms become more intense but smaller; in winter, rainstorm shrinkage still dominates, but storms also become less numerous and shorter duration. These results imply that flood impacts from climate change will be less severe than would be expected from changes in precipitation intensity alone. We show also that projected changes are smaller than model-observation biases, implying that the best means of incorporating them into impact assessments is via "data-driven simulations" that apply model-projected changes to observational data. We therefore develop a simulation algorithm that statistically describes model changes in precipitation characteristics and adjusts data accordingly, and show that, especially for summertime precipitation, it outperforms simulation approaches that do not include spatial information.« less

  11. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  12. Mechanisms and Attribution of Changes in Austral Summer Precipitation Related to the South Atlantic Convergence Zone

    NASA Astrophysics Data System (ADS)

    Zilli, Marcia Terezinha

    Austral summer (DJF) precipitation over tropical South America (SA) is characterized by the South American Monsoon System (SAMS) and the South Atlantic Convergence Zone (SACZ). The increase in atmospheric temperature and water vapor content over the SA during the last decades of the 20 th century could affect the duration and amplitude of the SAMS and the intensity of the SACZ. This research examines the spatial variability of precipitation trends over SE Brazil, focusing on the SACZ. More specifically, this study investigates trends in precipitation over Southeastern Brazil (SE Brazil) and examines changes in the position and intensity of the SACZ. SE Brazil is the most densely populated region in the country with a large portion of this population living in urban centers. The SACZ is important for agriculture and water supply for millions of people. One of the main goals of this research is to identify mechanisms associated with the observed changes in the characteristics of the SACZ during the last three decades of the 20th century, and examine the relative contribution of natural and anthropogenic forcing to precipitation trends. The first chapter investigates the pattern of spatial variability of precipitation trends over the coastal region of SE Brazil. This study shows that over the southern portion of the study area, precipitation is increasing due to the increase in the frequency and intensity of extreme events. Over the northern portion of the area, while the intensity of extreme events is increasing, the number of precipitating days is decreasing. This spatial pattern of precipitation trends suggests a poleward shift of the SACZ, which is investigated in the second chapter. Chapter 2 focuses on the underlying mechanisms associated with changes in precipitation intensity related to the position of the SACZ. Decadal variations in the mean state of the atmosphere suggest that the observed changes in precipitation over SE Brazil are associated with a weakening of the poleward winds along the eastern Brazilian coast that reduces the dynamic support necessary for convection along the equatorward margin of the SACZ. Additionally, this analysis also identifies a decrease in low-to-mid troposphere (700hPa) moisture over the tropical Atlantic in the recent decade that further reduces the moisture transported into the convective margin of the SACZ. Both mechanisms contribute to reducing precipitation over eastern tropical Brazil and characterize the poleward shift of the SACZ. The final chapter focuses on evaluating the contribution of natural variability and anthropogenic-related forcings to the poleward shift of the SACZ and drying conditions over eastern Brazil at the end of 20th century. Simulations from different scenarios of the Coupled Model Intercomparison Project phase 5 (CMPI5) models capable of reproducing the SACZ climatology suggest significant contribution of anthropogenic forcing on the SACZ-related precipitation trends. Despite the large discrepancies in the simulated precipitation trends, similarities among the ensemble members provide compelling evidence that the poleward shift of the SACZ in the last three decades of the 20 th century is largely enhanced by anthropogenic forcing. Collectively, the three chapters of this dissertation characterize the recent changes in precipitation related to a poleward shift of the SACZ and give novel insights into the influence of anthropogenic-related forcing on these changes. These findings advance the scientific understanding of the consequences of recent climate variability and change over eastern tropical South America, particularly over the SACZ.

  13. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses.

    PubMed

    Coe, Kirsten K; Belnap, Jayne; Sparks, Jed P

    2012-07-01

    Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous to desert ecosystems, play an array of ecological roles, and display a strong sensitivity to environmental changes. Crust mosses are particularly responsive to changes in precipitation and exhibit rapid declines in biomass and mortality following the addition of small rainfall events. Further, loss of the moss component in biocrusts leads to declines in crust structure and function. In this study, we sought to understand the physiological responses of the widespread and often dominant biocrust moss Syntrichia caninervis to alterations in rainfall. Moss samples were collected during all four seasons and exposed to two rainfall event sizes and three desiccation period (DP) lengths. A carbon balance approach based on single precipitation events was used to define the carbon gain or loss during a particular hydration period. Rainfall event size was the strongest predictor of carbon balance, and the largest carbon gains were associated with the largest precipitation events. In contrast, small precipitation events resulted in carbon deficits for S. caninervis. Increasing the length of the DP prior to an event resulted in reductions in carbon balance, probably because of the increased energetic cost of hydration following more intense bouts of desiccation. The season of collection (i.e., physiological status of the moss) modulated these responses, and the effects of DP and rainfall on carbon balance were different in magnitude (and often in sign) for different seasons. In particular, S. caninervis displayed higher carbon balances in the winter than in the summer, even for events of identical size. Overall, our results suggest that annual carbon balance and survivorship in biocrust mosses are largely driven by precipitation, and because of the role mosses play in biocrusts, changes in intra-annual precipitation patterns can have implications for hydrology, soil stability, and nutrient cycling in dryland systems.

  14. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGES

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; ...

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  15. How Are Changing Solar Ultraviolet Radiation and Climate Affecting Light-induced Chemical Processes in Aquatic Environments?

    EPA Science Inventory

    Changes in the ozone layer over the past three decades have resulted in increases in solar UV-B radiation (280-315 nm) that reach the surface of aquatic environments. These changes have been accompanied by unprecedented changes in temperature and precipitation patterns around the...

  16. Scaling Linguistic Characterization of Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Primo, C.; Gutierrez, J. M.

    2003-04-01

    Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.

  17. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States.

    PubMed

    Portmann, Robert W; Solomon, Susan; Hegerl, Gabriele C

    2009-05-05

    Changes in climate during the 20th century differ from region to region across the United States. We provide strong evidence that spatial variations in US temperature trends are linked to the hydrologic cycle, and we also present unique information on the seasonal and latitudinal structure of the linkage. We show that there is a statistically significant inverse relationship between trends in daily temperature and average daily precipitation across regions. This linkage is most pronounced in the southern United States (30-40 degrees N) during the May-June time period and, to a lesser extent, in the northern United States (40-50 degrees N) during the July-August time period. It is strongest in trends in maximum temperatures (T(max)) and 90th percentile exceedance trends (90PET), and less pronounced in the T(max) 10PET and the corresponding T(min) statistics, and it is robust to changes in analysis period. Although previous studies suggest that areas of increased precipitation may have reduced trends in temperature compared with drier regions, a change in sign from positive to negative trends suggests some additional cause. We show that trends in precipitation may account for some, but not likely all, of the cause point to evidence that shows that dynamical patterns (El Niño/Southern Oscillation, North Atlantic Oscillation, etc.) cannot account for the observed effects during May-June. We speculate that changing aerosols, perhaps related to vegetation changes, and increased strength of the aerosol direct and indirect effect may play a role in the observed linkages between these indices of temperature change and the hydrologic cycle.

  18. A possible abrupt change in summer precipitation over eastern China around 2009

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Wang, Zunya; Xiao, Ying; Zhou, Bing

    2017-04-01

    Historical studies have shown that summer rainfall in eastern China undergoes decadal variations, with three apparent changes in the late 1970s, 1992, and the late 1990s. The present observational study indicates that summer precipitation over eastern China likely underwent a change in the late 2000s, during which the main spatial pattern changed from negative-positive-negative to positive-negative in the meridional direction. This change in summer precipitation over eastern China may have been associated with circulation anomalies in the middle/upper troposphere. A strong trough over Lake Baikal created a southward flow of cold air during 2009-15, compared with 1999-2008, while the westward recession of the western Pacific subtropical high strengthened the moisture transport to the north, creating conditions that were conducive for more rainfall in the north during this period. The phase shift of the Pacific Decadal Oscillation in the late 2000s led to the Pacific-Japan-type teleconnection wave train shifting from negative to positive phases, resulting in varied summer precipitation over eastern China.

  19. Predicting the unpredictable: potential climate change impacts on vegetation in the Pacific Northwest

    Treesearch

    Marie Oliver; David W. Peterson; Becky Kerns

    2016-01-01

    Earth's climate is changing, as evidenced by warming temperatures, increased temperature variability, fluctuating precipitation patterns, and climate-related environmental disturbances. And with considerable uncertainty about the future, Forest Service land managers are now considering climate change adaptation in their planning efforts. They want practical...

  20. Understanding the science of climate change: Talking points - Impacts to Prairie Potholes and Grasslands

    Treesearch

    Rachel Loehman

    2009-01-01

    Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...

  1. 30,000 years of hydroclimatic variability in the coastal southwest United States: regional synthesis and forcings analysis.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.

    2015-12-01

    The coastal southwest United States is characterized by a winter dominated hydroclimate. Far from dependable, this region's supply of winter precipitation is highly variable and often characterized by hydrologic opposites - droughts and floods. Predicting future precipitation and hydrologic dynamics requires a paleoperspective. Here, we present an up-to-date synthesis of hydroclimatic variability over the past 30,000 years. A variety of terrestrial-based studies are examined and compared to understand patterns of regional hydroclimatic change. This comparison is extended into the San Joaquin Basin of California where future climate change will impact the region's agricultural stability and economy. Particularly interesting is the apparent role that Pacific sea surface temperatures (SSTs) play in modulating the region's hydroclimate over a variety of timescales. Are past periods of above average Pacific SSTs analogs for future global warming? If yes, the region might expect an increase in winter precipitation as SSTs rise in response to global warming. However, how this potential precipitation increase is manifest is unknown. For example, will the intensity of precipitation events increase and thus present increased flood hazards and diminished freshwater capture? Finally, we present evidence for changes in the source of winter precipitation over time as well as ecological responses to past hydrologic change.

  2. Changes in the intensity of Mediterranean precipitation: a comparison of east/west trends and their causes

    NASA Astrophysics Data System (ADS)

    Goodess, C. M.; Jones, P. D.

    2003-04-01

    Changes in the frequency and intensity of precipitation over the last 40 years have been investigated for the Iberian Peninsula and Greece. Over much of the Mediterranean the general tendency is towards decreasing precipitation, but the pattern of change is complex, particularly with respect to extremes. Over most of the Iberian Peninsula, the last 40 years has seen a trend towards more, but less wet rain days. However, in southeast Spain, the reverse has occurred, with more wet days with high precipitation amounts. Over Greece, the main tendency is towards fewer rain days, with little change in rain day amount, which is strongest over the Ionian and Aegean Seas and in winter. A few places, such as Rhodes, do however, show a weak trend towards more intense precipitation events in autumn. The precipitation changes observed over the Iberian Peninsula can, in part, be explained by changes in atmospheric circulation. They are associated with a decrease in the frequency of cyclonic circulation types and increases in the frequency of anticyclonic, easterly and south-easterly types (which can in turn be linked with changes in the intensity of the North Atlantic Oscillation and the frequency and intensity of Mediterranean and Atlantic cyclones). However, precipitation trends simulated by regression models with circulation-type frequency as the predictor variables are weaker than observed. The observed changes in circulation-type frequency over Greece (such as the increase in the frequency of the 'high-precipitation' cyclonic types and decrease in the 'low-precipitation' anticyclonic types) indicate an increase in precipitation. This is in contrast to the observed precipitation decreases. All the regression models underestimate year-to-year variability, and have problems in reproducing the observed trends. The common problems in both regions indicate that different forms of model may be required. The finding that the selected predictor variables are more successful at reproducing the observed precipitation trends in Spain than Greece, indicates different underlying physical processes which require further investigation. Goodess, CM and Jones, PD, 2002: Links between circulation and changes in the characteristics of Iberian precipitation, Int. J. Climatol. 22, 1593-1615. Acknowledgements: This work (http://www.cru.uea.ac.uk/~clareg/nerc.htm) was funded by the Commission of the European Union as part of the ACCORD project and by the UK Natural Environment Research Council.

  3. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    NASA Astrophysics Data System (ADS)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  4. Climate Change Signals in the EURO-CORDEX Simulations

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela; Preuschmann, Swantje

    2014-05-01

    A new high-resolution regional climate change ensemble has been established for Europe within the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) initiative. Within this presentation, the first results on climate change signals based on simulations with a horizontal resolution of 12.5 km for the new emission scenarios RCP4.5 and RCP8.5 will be presented. The new EURO-CORDEX ensemble results have been compared to the SRES A1B simulation results achieved within the ENSEMBLES project. The presentation is based on the results of the Paper JACOB et al. (2013). We concentrated on the statistical analysis of robustness and significance of the climate change signals for mean annual and seasonal temperature, total annual and seasonal precipitation, heavy precipitation, heat waves and dry spells, by using daily data for three time periods: 1971-2000, 2021-2050 and 2071-2100. The analysis of impact indices shows that for RCP8.5, there is a substantially larger change projected for temperature-based indices than for RCP4.5. The difference is less pronounced for precipitation-based indices. Two effects of the increased resolution can be regarded as an added value of regional climate simulations. Regional climate model simulations provide higher daily precipitation intensities, which are completely missing in the global climate model simulations, and they provide a significantly different climate change of daily precipitation intensities resulting in a smoother shift from weak to moderate and high intensities. The analysis of projected changes in the 95th percentile of the mean length of dry spells shows similar patterns for all scenarios. The climate projections from the new ensemble indicate a reduced northwards shift of Mediterranean drying evolution and slightly stronger mean precipitation increases over most of Europe. Within the high-resolution simulations in the EURO-CORDEX changes of the pattern for heavy precipitation events are clearly visible. (Jacob2013) Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O. B.; Bouwer, L.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; Georgopoulou, E.; Gobiet, A.; Menut, L.; Nikulin, G.; Haensler, A.; Hempelmann, N.; Jones, C.; Keuler, K.; Kovats, S.; Kröner, N.; Kotlarski, S.; Kriegsmann, A.; Martin, E.; Meijgaard, E.; Moseley, C.; Pfeifer, S.; Preuschmann, S.; Radermacher, C.; Radtke, K.; Rechid, D.; Rounsevell, M.; Samuelsson, P.; Somot, S.; Soussana, J.-F.; Teichmann, C.; Valentini, R.; Vautard, R.; Weber, B. & Yiou, P.( 2013): EURO-CORDEX: new high-resolution climate change projections for European impact research Regional Environmental Change, Springer Berlin Heidelberg, 2013, 1-16.

  5. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?

    NASA Astrophysics Data System (ADS)

    Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.

    2017-06-01

    Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.

  6. Understanding uncertainty in precipitation changes in a balanced perturbed-physics ensemble under multiple climate forcings

    NASA Astrophysics Data System (ADS)

    Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.

    2013-12-01

    Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].

  7. An Evaluation of CMIP5 Precipitation Variability for China Relative to Observations and CMIP3

    NASA Astrophysics Data System (ADS)

    Frauenfeld, O. W.; Chen, L.

    2013-12-01

    Precipitation represents an important link between the atmosphere, hydrosphere, and biosphere and is thus a key component of the climate system. As indicated by the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), global surface air temperatures increased by 0.74°C during the 20th century, with further warming of 0.2°C/decade projected by the 2030s. Projected changes in precipitation, however, are much more variable, and exhibit more complex temporal and spatial patterns. This presentation focuses on precipitation variability based on 20 general circulation models (GCMs) participating in the fifth coupled model intercomparison project (CMIP5). Specifically, we focus on China and provide a comprehensive evaluation of the CMIP5 models compared to historical 20th century precipitation variability from two observational precipitation products: the University of East Anglia's Climatic Research Unit (CRU) time series (TS) dataset version 3.10, and the Global Precipitation Climatology Centre (GPCC) version 6. We also reassess the performance of the third CMIP (CMIP3) to quantify potential improvements in CMIP5 over the previous generation of GCMs. Finally, we provide 21st century precipitation projections for China based on three representative concentration pathways (RCP): RCP 8.5, 4.5, and 2.6. These future precipitation projections are presented in light of the observed 20th century biases in the models. We find that CMIP5 models are able to better reproduce the general spatial pattern of observed 20th century precipitation than CMIP3. However, for China as a whole, the annual precipitation magnitude is overestimated in CMIP5, more so than in CMIP3. This smaller overestimation in CMIP3 was primarily driven by a large underestimation of summer precipitation. Spatially, overestimated precipitation magnitudes are evident for most regions of China, especially along the eastern margin of the Tibetan Plateau. Over southeastern China during summer, the precipitation amounts are underestimated. The multidecadal precipitation variability in CMIP5 is muted relative to observations, but improved when compared to CMIP3. We also assess precipitation trends and correlations relative to observations, and again find better agreement for CMIP5 than for CMIP3. Both observations and models indicated precipitation increases over parts of northwestern China, and decreases over the Tibetan Plateau throughout the 20th century. However, for the southeastern and northern regions of China there is poor agreement in precipitation trends. Precipitation is projected to increase across all of China under all the three emission scenarios during the 21st century. The largest significant trend is evident for RCP 8.5, which projects a precipitation increase of 1.5 mm/year, resulting in a 16% increase in precipitation by the end of the century. The smallest increases are projected to occur under the RCP 2.6 scenario, resulting in only a +6% change by 2100. The regions of greatest precipitation increases are the Tibetan Plateau and eastern China during summer, suggesting a potential change in the monsoonal circulation in the future.

  8. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  9. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    NASA Astrophysics Data System (ADS)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol oxidase and peroxidase) on the roots versus the soil were also an order of magnitude greater, however the activities were constant over time regardless of the treatment, whereas the activities in the soil increased then decreased after 50 days. Our results suggest that the frequency of precipitation affects early root decomposition and long-term soil carbon storage of dead roots relatively unaffected by changing precipitation patterns.

  10. CMIP5 model simulations of Ethiopian Kiremt-season precipitation: current climate and future changes

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Ballard, Tristan; Sun, Ge; Jeuland, Marc

    2016-05-01

    Kiremt-season (June-September) precipitation provides a significant water supply for Ethiopia, particularly in the central and northern regions. The response of Kiremt-season precipitation to climate change is thus of great concern to water resource managers. However, the complex processes that control Kiremt-season precipitation challenge the capability of general circulation models (GCMs) to accurately simulate precipitation amount and variability. This in turn raises questions about their utility for predicting future changes. This study assesses the impact of climate change on Kiremt-season precipitation using state-of-the-art GCMs participating in the Coupled Model Intercomparison Project Phase 5. Compared to models with a coarse resolution, high-resolution models (horizontal resolution <2°) can more accurately simulate precipitation, most likely due to their ability to capture precipitation induced by topography. Under the Representative Concentration Pathway (RCP) 4.5 scenario, these high-resolution models project an increase in precipitation over central Highlands and northern Great Rift Valley in Ethiopia, but a decrease in precipitation over the southern part of the country. Such a dipole pattern is attributable to the intensification of the North Atlantic subtropical high (NASH) in a warmer climate, which influences Ethiopian Kiremt-season precipitation mainly by modulating atmospheric vertical motion. Diagnosis of the omega equation demonstrates that an intensified NASH increases (decreases) the advection of warm air and positive vorticity into the central Highlands and northern Great Rift Valley (southern part of the country), enhancing upward motion over the northern Rift Valley but decreasing elsewhere. Under the RCP 4.5 scenario, the high-resolution models project an intensification of the NASH by 15 (3 × 105 m2 s-2) geopotential meters (stream function) at the 850-hPa level, contributing to the projected precipitation change over Ethiopia. The influence of the NASH on Kiremt-season precipitation becomes more evident in the future due to the offsetting effects of two other major circulation systems: the East African Low-level Jet (EALLJ) and the Tropical Easterly Jet (TEJ). The high-resolution models project a strengthening of the EALLJ, but a weakening of the TEJ. Future changes in the EALLJ and TEJ will drive this precipitation system in opposite directions, leading to small or no net changes in precipitation in Ethiopia.

  11. The effects of food web structure on ecosystem function exceeds those of precipitation.

    PubMed

    Trzcinski, M Kurtis; Srivastava, Diane S; Corbara, Bruno; Dézerald, Olivier; Leroy, Céline; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2016-09-01

    Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  12. Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Jin, Jonghun; Lee, Ji-Woo; Cha, Dong-Hyun; Suh, Myoung-Seok; Ahn, Joong-Bae; Hong, Song-You; Kang, Hyun-Suk; Joh, Minsu

    2017-12-01

    This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June-July-August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071-2100) with a present climate (1981-2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.

  13. Regional trends in early-monsoon rainfall over Vietnam and CCSM4 attribution

    NASA Astrophysics Data System (ADS)

    Li, R.; Wang, S. S.-Y.; Gillies, R. R.; Buckley, B. M.; Yoon, J.-H.; Cho, C.

    2018-04-01

    The analysis of precipitation trends for Vietnam revealed that early-monsoon precipitation has increased over the past three decades but to varying degrees over the northern, central and southern portions of the country. Upon investigation, it was found that the change in early-monsoon precipitation is associated with changes in the low-level cyclonic airflow over the South China Sea and Indochina that is embedded in the large-scale atmospheric circulation associated with a "La Niña-like" anomalous sea surface temperature pattern with warming in the western Pacific and Indian Oceans and cooling in the eastern Pacific. The Community Climate System Model version 4 (CCSM4) was subsequently used for an attribution analysis. Over northern Vietnam an early-monsoon increase in precipitation is attributed to changes in both greenhouse gases and natural forcing. For central Vietnam, the observed increase in early-monsoon precipitation is reproduced by the simulation forced with greenhouse gases. However, over southern Vietnam the early-monsoon precipitation increase is less definitive where aerosols were seen to be preponderant but natural forcing through the role of the Interdecadal Pacific Oscillation may well be a factor that is not resolved by CCSM4. Increased early-monsoonal precipitation over the coastal lowland and deltas has the potential to amplify economic and human losses.

  14. Long-term Observations of Intense Precipitation Small-scale Spatial Variability in a Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.

    2017-12-01

    In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

  15. A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin; Nie, Junsheng; Wang, Zhao; Qiang, Xiaoke; Garzanti, Eduardo; Pfaff, Katharina; Song, Yougui; Stevens, Thomas

    2018-04-01

    Spatiotemporal variations in East Asian Monsoon (EAM) precipitation during the Quaternary have been intensively studied. However, spatial variations in pre-Quaternary EAM precipitation remain largely uninvestigated, preventing a clear understanding of monsoon dynamics during a warmer climatic period. Here we compare the spatial differences in heavy mineral assemblages between Quaternary loess and pre-Quaternary Red Clay on the Chinese Loess Plateau (CLP) to analyze spatial patterns in weathering. Prior studies have revealed that unstable hornblende is the dominant (∼50%) heavy mineral in Chinese loess deposited over the past 500 ka, whereas hornblende content decreases to <10% in strata older than ∼1 Ma in the central CLP because of diagenesis. In the present study we found that hornblende is the dominant heavy mineral in 2-2.7 Ma loess on the northeastern CLP (at Jiaxian), which today receives little precipitation. Conversely, hornblende content in the upper Miocene-Pliocene Red Clay at Jiaxian is <10%, as in the central CLP. The early Quaternary abundance of hornblende at Jiaxian indicates that the current northwestward-decreasing precipitation pattern and consequent dry climate at Jiaxian must have been initiated since ∼2.7 Ma, preventing hornblende dissolution to amounts <10% as observed in the central CLP. By contrast, the 7 Ma and 3 Ma Jiaxian Red Clay hornblende content is significantly less than that of the Xifeng samples, despite the fact that today Xifeng receives more precipitation than Jiaxian, with expected enhanced hornblende weathering. This suggests that the northeastern CLP received more precipitation during the Late Miocene-Pliocene than at Xifeng, indicating that the precipitation gradient on the CLP was more east-west during the Late Miocene-Pliocene rather than northwest-southeast as it was in the Quaternary. A comparison of magnetic susceptibility records for these sections confirms this inference. We attribute this major change in climatic patterns at ∼2.7 Ma to decreased northward moisture transportation associated with Northern Hemisphere glaciation and cooling in the Quaternary. This study therefore demonstrates the potential usefulness of employing heavy mineral analysis in both paleoclimatic and paleooceanographic reconstructions.

  16. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    NASA Astrophysics Data System (ADS)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation, and to (b) decompose the NDVI signal into partial primary production components for herbaceous vegetation and shrubs across the study site. We further apply remote-sensed annual net primary production (ANPP) estimations and landscape type classification to explore the influence of inter-annual variations in seasonal precipitation on the production of herbaceous and shrub vegetation. Our results suggest that changes in the amount and temporal pattern of precipitation comprising reductions in monsoonal summer rainfall and/or increases in winter precipitation may enhance the shrub-encroachment process in desert grasslands of the American Southwest.

  17. A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.

    2013-12-01

    Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.

  18. An analysis of the daily precipitation variability in the Himalayan orogen using a statistical parameterisation and its potential in driving landscape evolution models with stochastic climatic forcing

    NASA Astrophysics Data System (ADS)

    Deal, Eric; Braun, Jean

    2015-04-01

    A current challenge in landscape evolution modelling is to integrate realistic precipitation patterns and behaviour into longterm fluvial erosion models. The effect of precipitation on fluvial erosion can be subtle as well as nonlinear, implying that changes in climate (e.g. precipitation magnitude or storminess) may have unexpected outcomes in terms of erosion rates. For example Tucker and Bras (2000) show theoretically that changes in the variability of precipitation (storminess) alone can influence erosion rate across a landscape. To complicate the situation further, topography, ultimately driven by tectonic uplift but shaped by erosion, has a major influence on the distribution and style of precipitation. Therefore, in order to untangle the coupling between climate, erosion and tectonics in an actively uplifting orogen where fluvial erosion is dominant it is important to understand how the 'rain dial' used in a landscape evolution model (LEM) corresponds to real precipitation patterns. One issue with the parameterisation of rainfall for use in an LEM is the difference between the timescales for precipitation (≤ 1 year) and landscape evolution (> 103 years). As a result, precipitation patterns must be upscaled before being integrated into a model. The relevant question then becomes: What is the most appropriate measure of precipitation on a millennial timescale? Previous work (Tucker and Bras, 2000; Lague, 2005) has shown that precipitation can be properly upscaled by taking into account its variable nature, along with its average magnitude. This captures the relative size and frequency of extreme events, ensuring a more accurate characterisation of the integrated effects of precipitation on erosion over long periods of time. In light of this work, we present a statistical parameterisation that accurately models the mean and daily variability of ground based (APHRODITE) and remotely sensed (TRMM) precipitation data in the Himalayan orogen with only a few parameters. We also demonstrate over what spatial and temporal scales this parameterisation applies and is stable. Applying the parameterisation over the Himalayan orogen reveals large-scale strike-perpendicular gradients in precipitation variability in addition to the long observed strike-perpendicular gradient in precipitation magnitude. This observation, combined with the theoretical work mentioned above, suggests that variability is an integral part of the interaction between climate and erosion. References Bras, R. L., & Tucker, G. E. (2000). A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resources Research, 36(7), 1953-1964. doi:10.1029/2000WR900065 Lague, D. (2005). Discharge, discharge variability, and the bedrock channel profile. Journal of Geophysical Research, 110(F4), F04006. doi:10.1029/2004JF000259

  19. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland.

    PubMed

    Xu, Zhenzhu; Shimizu, Hideyuki; Ito, Shoko; Yagasaki, Yasumi; Zou, Chunjing; Zhou, Guangsheng; Zheng, Yuanrun

    2014-02-01

    Warming, watering and elevated atmospheric CO₂-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO₂, high temperature, and four simulated precipitation patterns. Elevated CO₂ stimulated plant growth by 10.8-41.7 % for a C₃ leguminous shrub, Caragana microphylla, and by 33.2-52.3 % for a C₃ grass, Stipa grandis, across all temperature and watering treatments. Elevated CO₂, however, did not affect plant biomass of a C₄ grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0-69.7 % stimulation of growth occurred with elevated CO₂ under drought conditions. Plant growth was enhanced in the C₃ shrub and the C₄ grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO₂ on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO₂. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO₂ enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.

  20. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    NASA Astrophysics Data System (ADS)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2018-03-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  1. Understanding the science of climate change: Talking points - Impacts to western mountains and forests

    Treesearch

    Rachel Loehman

    2009-01-01

    Observed climate changes in the Western Mountains and Forests bioregion include increased seasonal, annual, minimum, and maximum temperatures, altered precipitation patterns, and a shift toward earlier timing of peak runoff. These climatic changes have resulted in widespread mortality in western forests, species range shifts and changes in phenology, productivity, and...

  2. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments

    EPA Science Inventory

    Climate change is altering sea-level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin la...

  3. Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    EPA Science Inventory

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  4. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land

    DOE PAGES

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...

    2018-04-27

    Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less

  5. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  6. Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Ru; Wang, S.-Y. Simon; Guan, Biing T.

    2018-03-01

    A 110-year precipitation record in Taiwan, located at the western edge of the subtropical North Pacific, depicts a pronounced quasi-decadal oscillation (QDO). The QDO in Taiwan exhibits a fluctuating relationship with the similar decadal variations of sea surface temperature (SST) anomalies in the central equatorial Pacific, known as the Pacific QDO. A regime change was observed around 1960, such that the decadal variation of Taiwan's precipitation became more synchronized with the Pacific QDO's coupled evolutions of SST and atmospheric circulation than before, while the underlying pattern of the Pacific QOD did not change. Using long-term reanalysis data and CMIP5 single-forcing experiments, the presented analysis suggests that increased SST in the subtropical western Pacific and the strengthened western extension of the North Pacific subtropical anticyclone may have collectively enhanced the relationship between the Taiwan precipitation and the Pacific QDO. This finding provides possible clues to similar regime changes in quasi-decadal variability observed around the western Pacific rim.

  7. Patterns of change in high frequency precipitation variability over North America.

    PubMed

    Roque-Malo, Susana; Kumar, Praveen

    2017-09-18

    Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data, we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. Further, these changes are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Existence of localized clusters with opposing trend to that of broader geographic variation illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns over the entire North American continent have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.

  8. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regardingmore » the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  9. Projected climate change for the coastal plain region of Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  10. Using Nitrogen Stable Isotope Tracers to Track Climate Change Impacts on Coastal Salt Marshes

    EPA Science Inventory

    Climate change impacts on coastal salt marshes are predicted to be complex and multi-faceted. In addition to rising sea level and warmer water temperatures, regional precipitation patterns are also expected to change. At least in the Northeast and Mid-Atlantic U.S., more severe s...

  11. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike

    2017-08-01

    The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis.

  12. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.

    2017-11-01

    A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.

  13. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  14. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  15. An open-access CMIP5 pattern library for temperature and precipitation: Description and methodology

    DOE PAGES

    Lynch, Cary D.; Hartin, Corinne A.; Bond-Lamberty, Benjamin; ...

    2017-05-15

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squared regression methods. We exploremore » the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90°N/S). Bias and mean errors between modeled and pattern predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5°C, but choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. As a result, this paper describes our library of least squared regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns.« less

  16. An Investigation of Topography Modulated Low Level Moisture Convergence Patterns in the Southern Appalachians Using WRF

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Duan, Y.; Barros, A.

    2015-12-01

    The Southern Appalachian Mountains (SAM) region is a biodiversity hot-spot that is vulnerable to land use/land cover changes due to its proximity to the rapidly growing population in the Southeast U.S. Persistent near surface moisture and associated microclimates observed in this region have been documented since the colonization of the area. The landform in this area, in particular in the inner mountain region, is highly complex with nested valleys and ridges. The geometry of the terrain causes distinct diurnal and seasonal local flow patterns that result in highly complex interactions of this low level moisture with meso- and synoptic-scale cyclones passing through the region. The Weather Research and Forecasting model (WRF) was used to conduct high resolution simulations of several case studies of warm season precipitation in the SAM with different synoptic-scale conditions to investigate this interaction between local and larger-scale flow patterns. The aim is to elucidate the microphysical interactions among these shallow orographic clouds and preexisting precipitating cloud systems and identify uncertainties in the model microphysics using in situ measurements. Findings show that ridge-valley precipitation gradients, in particular the "reverse" to the classical orographic effect observed in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level cloud and precipitation promoted through landform controls on local flow. Moisture convergence patterns follow the peaks and valleys as represented by WRF terrain, and the topography effectively controls their timing and spatial structure. The simulations support the hypothesis that ridge-valley precipitation gradients, and in particular the reverse orographic enhancement effect in inner mountain valleys, is linked to horizontal heterogeneity in the vertical structure of low level clouds and precipitation promoted through landform controls on moisture convergence.

  17. Observed and Projected Changes to the Precipitation Annual Cycle

    DOE PAGES

    Marvel, Kate; Biasutti, Michela; Bonfils, Celine; ...

    2017-06-08

    Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less

  18. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  19. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  20. Are human activities induced runoff change overestimated?

    NASA Astrophysics Data System (ADS)

    Zhang, Danwu; Cong, Zhentao

    2017-04-01

    In the context of climate change, not only does the amount of annual precipitation and potential evapotranspiration alter, but also do the seasonal characteristics of climate, such as intra-annual distribution of water and energy. Yet, the runoff change induced by the change in seasonality of climatic forces is seldom evaluated, which is usually thought as the results of human activity, leading to contaminative runoff change attribution results. The past 50-year climatology seasonality was investigated by analyzing the daily meteorological records of 743 national weather stations across the China. Obvious spatial pattern of climatology seasonality emerged in China. The trend analysis indicated that there is decrease in precipitation seasonality, leaving other seasonal characteristics, such as peak time of climate forcing unchanged. With the aid of stochastic soil moisture model, water-energy balance models which take the effects of climate seasonality into consideration are developed. Efforts are made to achieve a better understanding of mean annual runoff change due to the climate change. As a representative of hydrologic responses, the contributions of variations in climate, especially in precipitation seasonality, and land use to runoff change of 282 catchments in China were evaluated. The results showed that the decline of precipitation seasonality has a significant influence on runoff change in the Yellow River, Haihe River and Liaohe River. Meanwhile, it also indicated that the contribution of land use change to runoff change is overestimated by the common runoff change attribution methods.

  1. The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Levine, Richard C.; Turner, Andrew G.; Martin, Gill M.; Woolnough, Steven J.; Schiemann, Reinhard; Mizielinski, Matthew S.; Roberts, Malcolm J.; Vidale, Pier Luigi; Demory, Marie-Estelle; Strachan, Jane

    2016-02-01

    The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9°-0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.

  2. A Study of Heavy Precipitation Events in Taiwan During 10-13 August, 1994. Part 2; Mesoscale Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.

    2001-01-01

    Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.

    Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less

  4. Future changes in precipitation patterns and extremes: a model-based approach

    NASA Astrophysics Data System (ADS)

    Mitsakis, Evangelos; Stamos, Iraklis; Anastassiadou, Kalliopi; Kammerer, Harald; Kaundinya, Ingo; Kohl, Bernhard; Kapsomenakis, John; Zerefos, Christos; Aifadopoulou, Georfia

    2016-04-01

    In recent decades, the Earth has experienced abrupt climate changes, including changes of mean precipitation heights as well as precipitation extremes. It is very likely that the abrupt climate changes which are result of the increase of the greenhouse gases (GHG) concentration (IPCC 2007) will continue with an accelerate magnitude in the coming decades. The modern tool used to project the future climate change is General Circulation Models (GCMs). Due to computational resources limitations, the horizontal resolution of present day GCMs is quite low, usually in the order of hundreds of kilometers. In such a crude resolution many local aspects of the climate are unable to be represented. In addition, the topographical input is equally crude, thus excluding important local features of the topographic forcing. For these reasons downscaling methods have been developed, which input the GCM results producing high resolution localized climate information. Dynamical downscaling is achieved using Regional Climate Models (RCMs) that increase the resolution of the GCMs to even less than 10 km. In that direction, future changes in the mean precipitation as well as precipitation extremes due to the anthropogenic climate change over the area of Greece are examined for various emission scenarios in the framework of this paper (e.g. RCP 8.5, SRES A1B, etc.). Regarding Greece, future changes are based on daily precipitation data from 18 Region Climate Models simulations (6 for RCP 8.5 and 12 for SRES A1B). The changes in precipitation extremes are defined by calculating the changes of nine extreme precipitation indices which are divided in three categories: percentile (R75p, R95p, R99p), absolute threshold (Rmax, R10, R20, R50, RX5day) and duration (CDD) indices, as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). Taking into account all the results that are discussed explicitly in the following sections we conclude that the mean precipitation as well as the number of moderate rainy days is projected to decrease over Greece especially in the end of 21th century. Nevertheless the frequency as well as the strength of individual extremely high precipitation events will be increased over the largest part of Greece.

  5. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    NASA Astrophysics Data System (ADS)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  6. Effect of drought on productivity in a Costa Rican tropical dry forest

    NASA Astrophysics Data System (ADS)

    Castro, S. M.; Sanchez-Azofeifa, G. A.; Sato, H.

    2018-04-01

    Climate models predict that precipitation patterns in tropical dry forests (TDFs) will change, with an overall reduction in rainfall amount and intensification of dry intervals, leading to greater susceptibility to drought. In this paper, we explore the effect of drought on phenology and carbon dynamics of a secondary TDF located in the Santa Rosa National Park (SRNP), Costa Rica. Through the use of optical sensors and an eddy covariance flux tower, seasonal phenology and carbon fluxes were monitored over a four-year period (2013-2016). Over this time frame, annual precipitation varied considerably. Total precipitation amounts for the 2013-2016 seasons equaled 1591.8 mm (+14.4 mm SD), 1112.9 mm (+9.9 mm SD), 600.8 mm (+7.6 mm SD), and 1762.2 mm (+13.9 mm SD), respectively. The 2014 and 2015 (ENSO) seasonal precipitation amounts represent a 30% and 63% reduction in precipitation, respectively, and were designated as drought seasons. Phenology was affected by precipitation patterns and availability. The onset of green-up was closely associated with pre-seasonal rains. Drought events lead to seasonal NDVI minimums and changes in phenologic cycle length. Carbon fluxes, assimilation, and photosynthetic light use efficiency were negatively affected by drought. Seasonal minimums in photosynthetic rates and light use efficiency were observed during drought events, and gross primary productivity was reduced by 13% and 42% during drought seasons 2014 and 2015, respectively. However, all four growth seasons were net carbon sinks. Results from this study contribute towards a deeper understanding of the impact of drought on TDF phenology and carbon dynamics.

  7. Regional model simulations of New Zealand climate

    NASA Astrophysics Data System (ADS)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  8. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    NASA Astrophysics Data System (ADS)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  9. Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast

    NASA Astrophysics Data System (ADS)

    Agel, L. A.; Barlow, M. A.

    2016-12-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.

  10. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi

    2018-04-01

    Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.

  11. Green technologies for reducing slope erosion.

    DOT National Transportation Integrated Search

    2010-01-01

    As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...

  12. Rocks and Rain: orographic precipitation and the form of mountain ranges

    NASA Astrophysics Data System (ADS)

    Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.

    2005-12-01

    In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.

  13. Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment

    NASA Astrophysics Data System (ADS)

    Dan, Li; Ji, Jinjun; Xie, Zhenghui; Chen, Feng; Wen, Gang; Richey, Jeffrey E.

    2012-06-01

    To examine the potential sensitivity of the Huang-Huai-Hai Plain (3H) region of China to potential changes in future precipitation and temperature, a hydrological evaluation using the VIC hydrological model under different climate scenarios was carried out. The broader perspective is providing a scientific background for the adaptation in water resource management and rural development to climate change. Twelve climate scenarios were designed to account for possible variations in the future with respect to the baseline of historic climate patterns. Results from the six representative types of climate scenarios (+2°C and +5°C warming, and 0%, +15%, -15% change in precipitation) show that rising temperatures for normal precipitation and for wet scenarios (+15% precipitation) yield greater increased evapotranspiration in the south than in the north, which is confirmed by the remaining six scenarios described below. For a 15% change in precipitation, the largest increase or decrease of evapotranspiration occurs between 33 and 36°N and west of 118°E, a region where evapotranspiration is sensitive to precipitation variation and is affected by the amount of water available for evaporation. Rising temperatures can lead to a south-to-north decreasing gradient of surface runoff. The six scenarios yield a large variation of runoff in the southern end of the 3H, which means that this zone is sensitive to climate change through surface runoff change. The Jiangsu province in the southeastern part of the 3H region shows an obvious sensitivity in soil moisture to climate change. On a regional mean scale, the hydrological change induced by the increasing precipitation from 15% to 30% is more obvious than that induced by greater warming of +5°C relative to +2°C. These simulations identify key regions of sensitivity in hydrological variation to climate change in the provinces of 3H, which can be used as guides in implementing adaptation.

  14. Winter Precipitation Forecast in the European and Mediterranean Regions Using Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Totz, Sonja; Tziperman, Eli; Coumou, Dim; Pfeiffer, Karl; Cohen, Judah

    2017-12-01

    The European climate is changing under global warming, and especially the Mediterranean region has been identified as a hot spot for climate change with climate models projecting a reduction in winter rainfall and a very pronounced increase in summertime heat waves. These trends are already detectable over the historic period. Hence, it is beneficial to forecast seasonal droughts well in advance so that water managers and stakeholders can prepare to mitigate deleterious impacts. We developed a new cluster-based empirical forecast method to predict precipitation anomalies in winter. This algorithm considers not only the strength but also the pattern of the precursors. We compare our algorithm with dynamic forecast models and a canonical correlation analysis-based prediction method demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.

  15. Can small island mountains provide relief from the Subtropical Precipitation Decline? Simulating future precipitation regimes for small island nations using high resolution Regional Climate Models.

    NASA Astrophysics Data System (ADS)

    Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.

    2017-12-01

    Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.

  16. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Dimri, A. P.

    2018-04-01

    Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.

  17. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012

    NASA Astrophysics Data System (ADS)

    Bezerra, Bergson G.; Silva, Lindenberg L.; Santos e Silva, Claudio M.; de Carvalho, Gilvani Gomes

    2018-02-01

    The São Francisco River is strategically important due to its hydroelectric potential and for bringing the largest water body of Brazilian Semiarid region, supplying water for irrigation, urban, and industrial activities. Thereby, for the purpose of characterizing changes on the precipitation patterns over São Francisco River basin, 11 extremes precipitation indices as defined by the joint WMO/CCI/ETCCDMI/CLIVAR project were calculated using daily observation from the 59 rain gauges during 1947-2012 period. The extreme climatic indices were calculated with the RClimDex software, which performs an exhaustive data quality control, intending to identify spurious errors and dataset inconsistencies. Weak and significant regional changes were observed in both CDD and SDII indices. Most precipitation extremes indices decreased but without statistical significance. The spatial analysis of indices did not show clearly regional changes due to the complexity of hydrometeorology of the region. In some cases, two rainfall stations exhibited opposite trends with the same significance level although they are separated by a few kilometers. This has occurred more frequently in Lower-Middle São Francisco, probably associated with intense land cover change over the last decades in this region.

  18. Variations of annual and seasonal runoff in Guangdong Province, south China: spatiotemporal patterns and possible causes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng

    2015-06-01

    In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.

  19. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Treesearch

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  20. The variability of temperature and precipitation over Korean Peninsula induced by off-equatorial western Pacific precipitation during boreal summer

    NASA Astrophysics Data System (ADS)

    Jeong, Yerim; Ham, Yoo-Geun

    2016-04-01

    The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.

  1. Insights into changes in precipitation patterns in Brazil from oxygen isotope ratios on speleothems

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Mathias, V.; Stephen, B. J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R. L.; Karmann, I.; Auler, A. S.

    2008-12-01

    Variations in tropical precipitation on millennial and orbital time scales can reflect a Hadley-cell-related anti- phasing between the Northern and Southern hemispheres due to the influence of insolation on the global summer monsoons. A new δ18O speleothem record from northeastern Brazil shows that insolation- driven changes in monsoon intensity are capable of producing a similar, zonally oriented anti-phasing within the same hemisphere. Comparison of our speleothem record with other precipitation-sensitive proxies from the central Andes and southeastern Brazil shows that precipitation in Northeastern Brazil has been out of phase with insolation and rainfall in the rest of tropical South America south of the equator since the Last Glacial Maximum. Northeastern Brazil experienced humid conditions when summer insolation was reduced and arid conditions when insolation was high. While previous interpretations of past climate change in NE South America have commonly invoked meridional displacements in ITCZ location as the main mechanism for changes in precipitation on millennial time scales, our results suggest that remote monsoon forcing is responsible for much of the observed precipitation changes on orbital time scales during the Holocene. These results demonstrate that orbitally driven out-of-phase relationships in precipitation are not limited to interhemispheric anti-phasing as demonstrated previously, but may well occur within the same hemisphere. Speleothem records also indicate contrasting climatic conditions around the Last Glacial Maximum in Brazil, characterized by marked dry and wet climates in the Nordeste and in southeastern Brazil, respectively. It is likely, however, that these regional differences primarily reflect more distant extratropical teleconnections from the Atlantic Ocean and high northern latitude changes during glacial conditions.

  2. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is hypothesized that: 1) long-term future hydrology and water quality in surface and subsurface drainage areas will be influenced by LULC and climate change, and 2) this approach will be useful to identify specific areas contributing the most pollutants to aquifers due to LULC and climate change.

  3. Language Patterns and Therapeutic Change.

    ERIC Educational Resources Information Center

    Phoenix, Valdemar G.; Lindeman, Mary L.

    Noting that the mental health practitioner needs highly developed linguistic and communicative skills in order to precipitate therapeutic changes, this paper discusses the nature of the contexts of therapeutic interaction. It examines verb tense as a linguistic context marker and shows how various schools of therapy can use it. In addition, it…

  4. Spatial pattern and scale influence invader demographic response to simulated precipitation change in an annual grassland community

    USDA-ARS?s Scientific Manuscript database

    It is important to predict which invasive species will benefit from future changes in climate, and thereby identify those invaders that need particular attention and prioritization of management efforts. Because establishment, persistence, and spread determine invasion success, this prediction requ...

  5. Belowground Response to Drought in a Tropical Forest Soil. II. Change in Microbial Function Impacts Carbon Composition

    Treesearch

    Nicholas J. Bouskill; Tana E. Wood; Richard Baran; Zhao Hao; Zaw Ye; Ben P. Bowen; Hsiao Chien Lim; Peter S. Nico; Hoi-Ying Holman; Benjamin Gilbert; Whendee L. Silver; Trent R. Northen; Eoin L. Brodie

    2016-01-01

    Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however...

  6. Biochar can positively influence soil moisture relations

    USDA-ARS?s Scientific Manuscript database

    One major issue related to climate change is the potential to improve soil water relations in light of changes in future precipitation patterns or reductions in water availability in drier portions of the world (such as the western US). It appears that biochar may play a positive role, but that rol...

  7. Global salinity predictors of western United States precipitation

    NASA Astrophysics Data System (ADS)

    Liu, T.; Schmitt, R. W.; Li, L.

    2016-12-01

    Moisture transport from the excess of evaporation over precipitation in the global ocean drives terrestrial precipitation patterns. Sea surface salinity (SSS) is sensitive to changes in ocean evaporation and precipitation, and therefore, to changes in the global water cycle. We use the Met Office Hadley Centre EN4.2.0 SSS dataset to search for teleconnections between autumn-lead seasonal salinity signals and winter precipitation over the western United States. NOAA CPC Unified observational US precipitation in winter months is extracted from bounding boxes over the northwest and southwest and averaged. Lead autumn SON SSS in ocean areas that are relatively highly correlated with winter DJF terrestrial precipitation are filtered by a size threshold and treated as individual predictors. After removing linear trends from the response and explanatory variables and accounting for multiple collinearity, we use best subsets regression and the Bayesian information criterion (BIC) to objectively select the best model to predict terrestrial precipitation using SSS and SST predictors. The combination of autumn SSS and SST predictors can skillfully predict western US winter terrestrial precipitation (R2 = 0.51 for the US Northwest and R2 = 0.7 for the US Southwest). In both cases, SSS is a better predictor than SST. Thus, incorporating SSS can greatly enhance the accuracy of existing precipitation prediction frameworks that use SST-based climate indices and by extension improve watershed management.

  8. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in soil water regimes between the IM and GP regions may be useful for understanding the potential influence of climate changes on soil water patterns and resulting dominant plant functional groups in both regions.

  9. Western forest, fire risk, and climate change

    Treesearch

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  10. Western forests, fire risk, and climate change.

    Treesearch

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  11. A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US

    NASA Astrophysics Data System (ADS)

    McFarland, J.; Sarofim, M. C.; Martinich, J.

    2017-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  12. Improving Snow Process Modeling with Satellite-Based Estimation of Near-Surface-Air-Temperature Lapse Rate

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2016-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.

  13. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    PubMed

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  14. The Use of Oceanic Indices Variations Due to Climate Change to Predict Annual Discharge Variations in Northeastern United States

    NASA Astrophysics Data System (ADS)

    Berton, R.; Shaw, S. B.; Chandler, D. G.; Driscoll, C. T.

    2014-12-01

    Climatic change affects streamflow in watersheds with winter snowpack and an annual snowmelt hydrograph. In the northeastern US, changes in streamflow are driven by both the advanced timing of snowmelt and increasing summer precipitation. Projections of climate for the region in the 21st century is for warmer winters and wetter summers. Water planners need to understand future changes in flow metrics to determine if the current water resources are capable of fulfilling future demands or adapting to future changes in climate. The study of teleconnection patterns between oceanic indices variations and hydrologic variables may help improve the understanding of future water resources conditions in a watershed. The purpose of this study is to evaluate the correlation between oceanic indices and discharge variations in the Merrimack Watershed. The Merrimack Watershed is the fourth largest basin in New England which drains much of New Hampshire and northeastern portions of Massachusetts, USA. Variations in sea surface temperature (SST) and sea level pressure (SLP) are defined by the Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (NAO), respectively. We hypothesize that temporal changes in discharge are related to AMO and NAO variations since precipitation and discharge are highly correlated in the Merrimack. The Merrimack Watershed consists of undisturbed (reference) catchments and disturbed (developed) basins with long stream gauge records (> 100 years). Developed basins provide an opportunity to evaluate the impacts of river regulation and land development on teleconnection patterns as well as changing climate. Time series of AMO and NAO indices over the past 150 years along with Merrimack annual precipitation and discharge time series have shown a 1 to 2-year watershed hydrologic memory; higher correlation between Merrimack‎ annual precipitation and discharge with AMO and NAO are observed when a 1 to 2-year lag is given to AMO and NAO indices. For instance, the mean correlation of AMO with precipitation/discharge for a zero-year lag was 0.16/0.09 and increased to 0.26/0.23 for a 1-year lag. Our study provides an insight on the lagged hydrologic response of reference catchments and developed basins to variations in oceanic indices.

  15. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    PubMed

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of shellfish harvest waters should account for changes in climate conditions and that SLP patterns may be particularly important for predicting years with extremely high levels of fecal coliforms. Published by Elsevier Ltd.

  16. Large‐scale heavy precipitation over central Europe and the role of atmospheric cyclone track types

    PubMed Central

    Lexer, Annemarie; Homann, Markus; Blöschl, Günter

    2017-01-01

    ABSTRACT Precipitation patterns over Europe are largely controlled by atmospheric cyclones embedded in the general circulation of the mid‐latitudes. This study evaluates the climatologic features of precipitation for selected regions in central Europe with respect to cyclone track types for 1959–2015, focusing on large‐scale heavy precipitation. The analysis suggests that each of the cyclone track types is connected to a specific pattern of the upper level atmospheric flow, usually characterized by a major trough located over Europe. A dominant upper level cut‐off low (COL) is found over Europe for strong continental (CON) and van Bebber's type (Vb) cyclones which move from the east and southeast into central Europe. Strong Vb cyclones revealed the longest residence times, mainly due to circular propagation paths. The central European cyclone precipitation climate can largely be explained by seasonal track‐type frequency and cyclone intensity; however, additional factors are needed to explain a secondary precipitation maximum in early autumn. The occurrence of large precipitation totals for track events is strongly related to the track type and the region, with the highest value of 45% of all Vb cyclones connected to heavy precipitation in summer over the Czech Republic and eastern Austria. In western Germany, Atlantic winter cyclones are most relevant for heavy precipitation. The analysis of the top 50 precipitation events revealed an outstanding heavy precipitation period from 2006 to 2011 in the Czech Republic, but no gradual long‐term change. The findings help better understand spatio‐temporal variability of heavy precipitation in the context of floods and may be used for evaluating climate models.

  17. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Brim-Box, Jayne; Tepley, Alan J.

    2015-01-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1–September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982–2003; PC1mussel) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1discharge; r = −0.88; P < 0.0001). PC1mussel and PC1discharge were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change.

  18. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest.

    PubMed

    Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J

    2015-02-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change. © 2014 John Wiley & Sons Ltd.

  19. Applications for predicting precipitation and vegetation patterns at landscape scale using lightning strike data

    Treesearch

    Deborah Ulinski Potter

    1999-01-01

    Previous publications discussed the results of my dissertation research on relationships between seasonality in precipitation and vegetation patterns at landscape scale. Summer precipitation at a study site in the Zuni Mountains, NM, was predicted from lightning strike and relative humidity data using multiple regression. Summer precipitation patterns were mapped using...

  20. Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns

    NASA Astrophysics Data System (ADS)

    Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah

    2018-05-01

    Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.

  1. Representativeness of four precipitation observational networks of China

    NASA Astrophysics Data System (ADS)

    Ren, Yuyu; Ren, Guoyu

    2012-08-01

    Four precipitation observational networks with varied station densities are maintained in China. They are: the Global Climate Observation System (GCOS) Surface Network (GSN), the national Reference Climate Network (RCN), the national Basic Meteorological Network (BMN), and the national Ordinary Meteorological Network (OMN). The GSN, RCN, BMN, and the merged network of RCN and BMN (R&B) have been widely used in climatology and climate change studies. In this paper, the impact of the usage of different networks on the precipitation climatology of China is evaluated by using the merged dataset of All Station Network (ASN) as a benchmark. The results show that all networks can capture the main features of the country average precipitation and its changing trends. The differences of average annual precipitation of the various networks from that of the ASN are less than 50 mm (⩽ 10%). All networks can successfully detect the rising trend of the average annual precipitation during 1961-2009, with the R&B exhibiting the best representativeness (only 2.90% relative difference) and the GSN the poorest (39.77%). As to the change trends of country average monthly precipitation, the networks can be ranked in descending order as R&B (1.27%), RCN (2.35%), BMN (4.17%), and GSN (7.46%), and larger relative differences appear from August to November. The networks produce quite consistent spatial patterns of annual precipitation change trends, and all show an increasing trend of precipitation in Northwest and Southeast China, and a decreasing trend in North China, Northeast China, and parts of central China. However, the representativeness of the BMN and R&B are better in annual and seasonal precipitation trends, in spite of the fact that they are still far from satisfactory. The relative differences of trends in some months and regions even reach more than 50%. The results also show that the representativeness of the RCN for country average precipitation is higher than that of the BMN because the RCN has a more homogeneous distribution of stations.

  2. An open-access CMIP5 pattern library for temperature and precipitation: description and methodology

    NASA Astrophysics Data System (ADS)

    Lynch, Cary; Hartin, Corinne; Bond-Lamberty, Ben; Kravitz, Ben

    2017-05-01

    Pattern scaling is used to efficiently emulate general circulation models and explore uncertainty in climate projections under multiple forcing scenarios. Pattern scaling methods assume that local climate changes scale with a global mean temperature increase, allowing for spatial patterns to be generated for multiple models for any future emission scenario. For uncertainty quantification and probabilistic statistical analysis, a library of patterns with descriptive statistics for each file would be beneficial, but such a library does not presently exist. Of the possible techniques used to generate patterns, the two most prominent are the delta and least squares regression methods. We explore the differences and statistical significance between patterns generated by each method and assess performance of the generated patterns across methods and scenarios. Differences in patterns across seasons between methods and epochs were largest in high latitudes (60-90° N/S). Bias and mean errors between modeled and pattern-predicted output from the linear regression method were smaller than patterns generated by the delta method. Across scenarios, differences in the linear regression method patterns were more statistically significant, especially at high latitudes. We found that pattern generation methodologies were able to approximate the forced signal of change to within ≤ 0.5 °C, but the choice of pattern generation methodology for pattern scaling purposes should be informed by user goals and criteria. This paper describes our library of least squares regression patterns from all CMIP5 models for temperature and precipitation on an annual and sub-annual basis, along with the code used to generate these patterns. The dataset and netCDF data generation code are available at doi:10.5281/zenodo.495632.

  3. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    NASA Astrophysics Data System (ADS)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  4. Extreme Historical Droughts in the South-Eastern Alps — Analyses Based on Standardised Precipitation Index

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael

    2016-10-01

    Droughts are natural phenomena affecting the environment and human activities. There are various drought definitions and quantitative indices; among them is the Standardised Precipitation Index (SPI). In the drought investigations, historical events are poorly characterised and little data are available. To decipher past drought appearances in the southeastern Alps with a focus on Slovenia, precipitation data from HISTALP data repository were taken to identify extreme drought events (SPI ≤ -2.00) from the second half of the 19th century to the present day. Several long-term extreme drought crises were identified in the region (between the years 1888 and 1896; after World War I, during and after World War II). After 1968, drought patterns detected with SPI changed: shorter, extreme droughts with different time patterns appeared. SPI indices of different time spans showed correlated structures in space and between each other, indicating structured relations.

  5. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  6. Explaining European fungal fruiting phenology with climate variability.

    PubMed

    Andrew, Carrie; Heegaard, Einar; Høiland, Klaus; Senn-Irlet, Beatrice; Kuyper, Thomas W; Krisai-Greilhuber, Irmgard; Kirk, Paul M; Heilmann-Clausen, Jacob; Gange, Alan C; Egli, Simon; Bässler, Claus; Büntgen, Ulf; Boddy, Lynne; Kauserud, Håvard

    2018-06-01

    Here we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems. © 2018 by the Ecological Society of America.

  7. Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe

    PubMed Central

    Eronen, Jussi T.; Janis, Christine M.; Chamberlain, C. Page; Mulch, Andreas

    2015-01-01

    Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift. PMID:26041349

  8. A Marginal Cost Based "Social Cost of Carbon" Provides Inappropriate Guidance in a World That Needs Rapid and Deep Decarbonization

    NASA Astrophysics Data System (ADS)

    Morgan, M. G.; Vaishnav, P.; Azevedo, I. L.; Dowlatabadi, H.

    2016-12-01

    Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.

  9. The Changing California Coast: The Effect of a Variable Water Budget on Coastal Vegetation Succession

    NASA Technical Reports Server (NTRS)

    Hsu, Wei-Chen; Remar, Alex; McClure, Adam; Williams, Emily; Kannan, Soumya; Steers, Robert; Schmidt, Cindy; Skiles, Joseph W.; Hsu, Wei-Chen

    2011-01-01

    The land-ocean interface along the central coast of California is one of the most diverse biogeographic regions of the state. This area is composed of a species-rich mosaic of coastal grassland, shrubland, and forest vegetation types. An acceleration of conifer encroachment into shrublands and shrub encroachment into grasslands along the coast has been recently documented. These vegetation changes are believed to be driven primarily by fire suppression and changing grazing patterns. Climatic variables such as precipitation, fog, cloud cover, temperature, slope, and elevation also play an important role in vegetation succession. Our study area is located along the central California coast, which is characterized by a precipitation gradient from the relatively wetter and cooler north to the drier and warmer south. Some studies indicate changing fog patterns along this coast, which may greatly impact vegetation. A decrease in water availability could slow succession processes. The primary objective of this project is to determine if vegetation succession rates are changing for the study area and to identify climate and ecosystem variables which contribute to succession, specifically the transition among grassland, shrubland, and forest. To identify vegetation types and rates of succession, we classified two Landsat TM 5 scenes from 1985 to 2010 with a resulting overall accuracy of 82.4%. Vegetation succession was correlated to changes in maximum and minimum temperatures, precipitation, and elevation for each sub-region of the study area. Fog frequency was then compared between the northern and southern regions of the study area for determining the spatial relation between fog frequency and the percent of vegetation change.

  10. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  11. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  12. Spatiotemporal patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes

    NASA Astrophysics Data System (ADS)

    Xiao, M.

    2016-12-01

    Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and these will be important to further understand the possible geophysical processes linking the teleconnections of each climate index on the seasonal extreme precipitation in the Poyang Lake basin.

  13. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China.

    PubMed

    Gong, Chunmei; Bai, Juan; Wang, Junhui; Zhou, Yulu; Kang, Tai; Wang, Jiajia; Hu, Congxia; Guo, Hongbo; Chen, Peilei; Xie, Pei; Li, Yuanfeng

    2016-07-14

    Precipitation patterns are influenced by climate change and profoundly alter the carbon sequestration potential of ecosystems. Carbon uptake by shrubbery alone accounts for approximately one-third of the total carbon sink; however, whether such uptake is altered by reduced precipitation is unclear. In this study, five experimental sites characterised by gradual reductions in precipitation from south to north across the Loess Plateau were used to evaluate the Caragana korshinskii's functional and physiological features, particularly its carbon fixation capacity, as well as the relationships among these features. We found the improved net CO2 assimilation rates and inhibited transpiration at the north leaf were caused by lower canopy stomatal conductance, which enhanced the instantaneous water use efficiency and promoted plant biomass as well as carbon accumulation. Regional-scale precipitation reductions over a certain range triggered a distinct increase in the shrub's organic carbon storage with an inevitable decrease in the soil's organic carbon storage. Our results confirm C. korshinskii is the optimal dominant species for the reconstruction of fragile dryland ecosystems. The patterns of organic carbon storage associated with this shrub occurred mostly in the soil at wetter sites, and in the branches and leaves at drier sites across the arid and semi-arid region.

  14. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, A.; Ekman, A. M. L.; Körnich, H.

    2012-04-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere due to their ability to scatter and absorb incoming solar radiation. Persistent particle emissions in certain regions of the world have lead to quasi-permanent aerosol forcing patterns. This spatially varying forcing pattern has the potential to modify temperature gradients that in turn alter pressure gradients and the atmospheric circulation. This study focuses on the effect of aerosol direct radiative forcing on northern hemisphere wintertime stationary waves. A global general circulation model based on the ECMWF operational forecast model is applied (EC-Earth). Aerosols are prescribed as monthly mean mixing ratios of sulphate, black carbon, organic carbon, dust and sea salt. Only the direct aerosol effect is considered. The climatic change is defined as the difference between model simulations using present-day and pre-industrial concentrations of aerosol particles. Data from 40-year long simulations using a coupled ocean-atmosphere model system are used. In EC-Earth, the high aerosol loading over South Asia leads to a surface cooling, which appears to enhance the South Asian winter monsoon and weaken the Indian Ocean Walker circulation. The anomalous Walker circulation leads to changes in tropical convective precipitation and consequent changes in latent heat release which effectively acts to generate planetary scale waves propagating into the extra-tropics. Using a steady-state linear model we verify that the aerosol-induced anomalous convective precipitation is a crucial link between the wave changes and the direct aerosol radiative forcing.

  15. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chunmei; Leung, Lai R.; Gochis, David

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less

  16. A multiyear study of soil moisture patterns across agricultural and forested landscapes

    NASA Astrophysics Data System (ADS)

    Georgakakos, C. B.; Hofmeister, K.; O'Connor, C.; Buchanan, B.; Walter, T.

    2017-12-01

    This work compares varying spatial and temporal soil moisture patterns in wet and dry years between forested and agricultural landscapes. This data set spans 6 years (2012-2017) of snow-free soil moisture measurements across multiple watersheds and land covers in New York State's Finger Lakes region. Due to the relatively long sampling period, we have captured fluctuations in soil moisture dynamics across wetter, dryer, and average precipitation years. We can therefore analyze response of land cover types to precipitation under varying climatic and hydrologic conditions. Across the study period, mean soil moisture in forest soils was significantly drier than in agricultural soils, and exhibited a smaller range of moisture conditions. In the drought year of 2016, soil moisture at all sites was significantly drier compared to the other years. When comparing the effects of land cover and year on soil moisture, we found that land cover had a more significant influence. Understanding the difference in landscape soil moisture dynamics between forested and agricultural land will help predict watershed responses to changing precipitation patterns in the future.

  17. Projected Changes in the Annual Cycle of Precipitation over Central Asia by CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Yu, X.; Zhao, Y.

    2017-12-01

    Future changes in the annual cycle of the precipitation in central Asia (CA) were estimated based on the historical and Representative Concentration Pathway 8.5 (RCP8.5) experiments from 25 models of the Coupled Model Intercomparison Project phase 5 (CMIP5). Compared with the Global Precipitation Climatology Project (GPCP) observations, the historical (1979-1999) experiments showed that most models can capture the migration of rainfall centers, but remarkable discrepancies exist in the location and intensity of rainfall centers between simulations and observations. Considering the skill scores of precipitation and pattern correlations of circulations, which are closely related to the precipitation for each month, for the 25 models, the four best models (e.g., CanESM2, CMCC-CMS, MIROC5 and MPI-ESM-LR) with relatively good performance were selected. The four models' ensemble mean indicated that the migration and location of the precipitation centers were better reproduced, except the intensity of the centers was overestimated, compared with the result that only considered precipitation. Based on the four best models' ensemble mean under RCP8.5 scenarios, precipitation was projected to increase dramatically over most of the CA region in the boreal cold seasons (November, December, January, February, March, April and May) with the maximum in December in the end of twenty-first century (2079-2099), and several positive centers were located in the Pamirs Plateau and the Tianshan Mountains. By contrast, the precipitation changes were weak in the boreal warm seasons (June, July, August, September and October), with a wet center located in the northern Himalayas. Furthermore, there remain some uncertainties in the projected precipitation regions and periods obtained by comparing models' ensemble results of this paper and the results of previous studies. These uncertainties should be investigated in future work.

  18. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.

    PubMed

    Prevéy, Janet S; Seastedt, Timothy R

    2015-11-01

    Shifting precipitation patterns resulting from global climate change will influence the success of invasive plant species. In the Front Range of Colorado, Bromus tectorum (cheatgrass) and other non-native winter annuals have invaded grassland communities and are becoming more abundant. As the global climate warms, more precipitation may fall as rain rather than snow in winter, and an increase in winter rain could benefit early-growing winter annuals, such as B. tectorum, to the detriment of native species. In this study we measured the effects of simulated changes in seasonal precipitation and presence of other plant species on population growth of B. tectorum in a grassland ecosystem near Boulder, Colorado, USA. We also performed elasticity analyses to identify life transitions that were most sensitive to precipitation differences. In both study years, population growth rates were highest for B. tectorum growing in treatments receiving supplemental winter precipitation and lowest for those receiving the summer drought treatment. Survival of seedlings to flowering and seed production contributed most to population growth in all treatments. Biomass of neighboring native plants was positively correlated with reduced population growth rates of B. tectorum. However, exotic plant biomass had no effect on population growth rates. This study demonstrates how interacting effects of climate change and presence of native plants can influence the population growth of an invasive species. Overall, our results suggest that B. tectorum will become more invasive in grasslands if the seasonality of precipitation shifts towards wetter winters and allows B. tectorum to grow when competition from native species is low.

  19. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.

    2005-12-01

    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  20. Relations between fish abundances, summer temperatures, and forest harvest in a northern Minnesota stream system from 1997 to 2007

    USGS Publications Warehouse

    Merten, Eric C.; Hemstad, Nathaniel A.; Eggert, L.S.; Johnson, L.B.; Kolka, R.K.; Newman, Raymond M.; Vondracek, Bruce C.

    2015-01-01

    Short-term effects of forest harvest on fish habitat have been well documented, including sediment inputs, leaf litter reductions, and stream warming. However, few studies have considered changes in local climate when examining postlogging changes in fish communities. To address this need, we examined fish abundances between 1997 and 2007 in a basin in a northern hardwood forest. Streams in the basin were subjected to experimental riparian forest harvest in fall 1997. We noted a significant decrease for fish index of biotic integrity and abundance of Salvelinus fontinalis and Phoxinus eos over the study period. However, for P. eos and Culaea inconstans, the temporal patterns in abundances were related more to summer air temperatures than to fine sediment or spring precipitation when examined using multiple regressions. Univariate regressions suggested that summer air temperatures influenced temporal patterns in fish communities more than fine sediment or spring precipitation.

  1. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.

    2014-10-01

    Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.

  2. Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools

    NASA Astrophysics Data System (ADS)

    Hararuk, O.; Obrist, D.; Luo, Y.

    2013-04-01

    Substantial amounts of mercury (Hg) in the terrestrial environment reside in soils and are associated with soil organic carbon (C) pools, where they accumulated due to increased atmospheric deposition resulting from anthropogenic activities. The purpose of this study was to examine potential sensitivity of surface soil Hg pools to global change variables, particularly affected by predicted changes in soil C pools, in the contiguous US. To investigate, we included a soil Hg component in the Community Land Model based on empirical statistical relationships between soil Hg / C ratios and precipitation, latitude, and clay; and subsequently explored the sensitivity of soil C and soil Hg densities (i.e., areal-mass) to climate scenarios in which we altered annual precipitation, carbon dioxide (CO2) concentrations and temperature. Our model simulations showed that current sequestration of Hg in the contiguous US accounted for 15 230 metric tons of Hg in the top 0-40 cm of soils, or for over 300 000 metric tons when extrapolated globally. In the simulations, US soil Hg pools were most sensitive to changes in precipitation because of strong effects on soil C pools, plus a direct effect of precipitation on soil Hg / C ratios. Soil Hg pools were predicted to increase beyond present-day values following an increase in precipitation amounts and decrease following a reduction in precipitation. We found pronounced regional differences in sensitivity of soil Hg to precipitation, which were particularly high along high-precipitation areas along the West and East Coasts. Modelled increases in CO2 concentrations to 700 ppm stimulated soil C and Hg accrual, while increased air temperatures had small negative effects on soil C and Hg densities. The combined effects of increased CO2, increased temperature and increased or decreased precipitation were strongly governed by precipitation and CO2 showing pronounced regional patterns. Based on these results, we conclude that the combination of precipitation and CO2 should be emphasised when assessing how climate-induced changes in soil C may affect sequestration of Hg in soils.

  3. Using dendrometer and dendroclimatology data to predict the growth response of Douglas-fir to climate change in the Pacific Northwest, USA

    EPA Science Inventory

    Altered seasonal climate patterns towards hotter, drier summers through the 21st century resulting from global climate change could affect the growth of coniferous forests in the Pacific Northwest (PNW) region of North America. The seasonal effects of temperature, precipitation,...

  4. Policy and strategy considerations for assisted migration on USDA Forest Service lands

    Treesearch

    Randy Johnson; Sandy Boyce; Leslie Brandt; Vicky Erickson; Louis Iverson; Greg Kujawa; Borys Tkacz

    2013-01-01

    Due to increased temperatures and shifts in precipitation patterns associated with climate change, bioclimatic zones that provide habitat for many species are expected to expand, contract, disappear, shift poleward, or move towards higher elevations (WGA 2008). Species will respond to changing climate and disturbance regimes individually, with some species moving...

  5. Promoting Sustainable Economic Growth in Mexico (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, A.; Butheau, M.; Sandor, D.

    2013-11-01

    Mexico is the second largest economy in Latin America, with rapid growth occurring in the industrial and services sectors. A forward-thinking country on climate change, the nation recognizes that the threat of higher temperatures, changes in precipitation patterns, and more frequent weather-related disasters could pose a substantial risk to its expanding economy.

  6. A USCLVAR Multi-Model Assessment of the Impact of SST Anomalies and Land-Atmosphere Feedbacks on Drought

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2009-01-01

    The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.

  7. How sensitive extreme precipitation events on the west coast of Norway are to changes in the Sea Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Sandvik, M. I.; Sorteberg, A.

    2013-12-01

    Studies (RegClim, 2005; Caroletti & Barstad, 2010; Bengtsson et al., 2009; Trenberth, 1999; Pall et al., 2007) indicate an increased risk of more frequent precipitation extremes in a warming world, which may result in more frequent flooding, avalanches and landslides. Thus, the ability to understand how processes influence extreme precipitation events could result in a better representation in models used in both research and weather forecasting. The Weather Research and Forecasting (WRF) model was used on 26 extreme precipitation events located on the west coast of Norway between 1980-2011. The goal of the study was to see how sensitive the intensity and distribution of the precipitation for these case studies were to a warmer/colder Atlantic Ocean, with a uniform change of ×2°C. To secure that the large-scale system remained the same when the Sea Surface Temperature (SST) was changed, spectral nudging was introduced. To avoid the need of a convective scheme, and the uncertainties it brings, a nested domain with a 2km grid resolution was used over Southern Norway. WRF generally underestimated the daily precipitation. The case studies were divided into 2 clusters, depending on the wind direction towards the coast, to search for patterns within each of the clusters. By the use of ensemble mean, the percentage change between the control run and the 2 sensitivity runs were different for the 2 clusters.

  8. Climate change and observed climate trends in the fort cobb experimental watershed.

    PubMed

    Garbrecht, J D; Zhang, X C; Steiner, J L

    2014-07-01

    Recurring droughts in the Southern Great Plains of the United States are stressing the landscape, increasing uncertainty and risk in agricultural production, and impeding optimal agronomic management of crop, pasture, and grazing systems. The distinct possibility that the severity of recent droughts may be related to a greenhouse-gas induced climate change introduces new challenges for water resources managers because the intensification of droughts could represent a permanent feature of the future climate. Climate records of the Fort Cobb watershed in central Oklahoma were analyzed to determine if recent decade-long trends in precipitation and air temperature were consistent with climate change projections for central Oklahoma. The historical precipitation record did not reveal any compelling evidence that the recent 20-yr-long decline in precipitation was related to climate change. Also, precipitation projections by global circulation models (GCMs) displayed a flat pattern through the end of the 21st century. Neither observed nor projected precipitation displayed a multidecadal monotonic rising or declining trend consistent with an ongoing warming climate. The recent trend in observed annual precipitation was probably a decade-scale variation not directly related to the warming climate. On the other hand, the observed monotonic warming trend of 0.34°C decade that started around 1978 is consistent with GCM projections of increasing temperature for central Oklahoma. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Climate change projections of boreal summer precipitation over tropical America by using statistical downscaling from CMIP5 models

    NASA Astrophysics Data System (ADS)

    Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-12-01

    Climate change projections for the last 30 years of the 21st century, for boreal summer precipitation in tropical America, have been made by developing a statistical downscaling (SD) model applied to the SLP outputs of 20 GCMs of CMIP5, for present climate (1970-2000), and for future (2071-2100) under the RCP2.6, RCP4.5 and RCP8.5 scenarios. For present climate, many SD GCMs faithfully reproduce the precipitation field in many regions of the study area. For future climate, as the radiative forcing increases, the projected changes intensify and the regions affected expand, with higher coherence between models. The zone between central and southeastern Brazil registered the most pronounced precipitation changes by a large number of SD models, even for the RCP2.6. Except for this region in Brazil, in general, the changes in rainfall range from moderate (± 25%) to intense (from ±70% to ±100%) as the radiative forcing increases from the RCP2.6-RCP8.5. For this latter scenario, all SD models present significant precipitation changes for more than 50% of the area, in some cases reaching 75% of area with significant changes. For the ensemble mean, the results show three extensive regions with significant changes under the three scenarios, the most highlighted changes being for the RCP8.5: a northwest-southeast band that extends from northern Mexico to eastern Brazil, crossing through northern Colombia, along with the regions in the south of the study area, with generally moderate precipitation increases; and a band that extends from eastern Ecuador to southeastern Brazil, with major decreasing changes. This pattern of change could be related with a possible strengthening in frequency in terms of La Niña events for the end of the century.

  10. Recent and future extreme precipitation over Ukraine

    NASA Astrophysics Data System (ADS)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase of Atlantic multidecadal oscillation. Typical space distribution of extreme precipitation (R95p) for seasons and for year is characterized by their southward intensity increasing from North-East and North-West. Summer precipitation extremes are characterized by quite homogeneous distribution. Linear trends of indices of precipitation extremes (R95p, R20mm and R30mm) for period 1951 - 2005 are mainly negative in winter season and positive in summer. To analyze the possible changes of extreme precipitation it was calculated the R95p index for recent climate period (1986 - 2005) and for periods 2046 - 2065 and 2081 - 2100 (as it was recommended by IPCC). Its difference between 1986 - 2005 and 2046 - 2065 shows that intensity of extreme precipitation will decrease in the north-east and increase in the south-west regions, especially in summer season. Magnitude of intensity changes of extreme precipitation will be ± 4 - 5 mm/day. The intensity changes of extreme precipitation since the recent climate period till the end of the century will be some less (2 - 3 mm/day) than in previous period, except summer months. Number of cases with precipitation extremes will be increase in southern regions of Ukraine in summer seasons. In other seasons it will be at the recent climate level.

  11. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    PubMed

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  12. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    PubMed Central

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  13. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    PubMed

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  14. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.

    PubMed

    Nielsen, Uffe N; Ball, Becky A

    2015-04-01

    Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model. © 2014 John Wiley & Sons Ltd.

  15. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2018-06-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than 15 mm and a decrease in the days with precipitation less than 5 mm. Under both RCPs, there would be an increasing trend in the magnitude of changes in precipitation extremes indices (R95p, R99p, and SDII) over China, while an opposite trend is projected for CWD and no apparent trend is projected for WDF from 2036-2065 to 2070-2099. Increased extreme precipitation amounts accompanied with decreased frequencies of extreme precipitation suggest that the future daily extreme precipitation intensity is likely to become large in northeast China and south China.

  16. Multi-model Ensemble Regional Climate Projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Kang, S.; IM, E. S.; Eltahir, E. A. B.

    2016-12-01

    In this study, the future change in precipitation due to global warming is investigated over the Maritime Continent using the MIT Regional Climate Model (MRCM). A total of nine 30-year projections under multi-GCMs (CCSM, MPI, ACCESS) and multi-scenarios of emissions (Control, RCP4.5, RCP8.5) are dynamically downscaled using the MRCM with 12km horizontal resolution. Since downscaled results tend to systematically overestimate the precipitation regardless of GCM used as lateral boundary conditions, the Parametric Quantile Mapping (PQM) is applied to reduce this wet bias. The cross validation for the control simulation shows that the PQM method seems to retain the spatial pattern and temporal variability of raw simulation, however it effectively reduce the wet bias. Based on ensemble projections produced by dynamical downscaling and statistical bias correction, a reduction of future precipitation is discernible, in particular during dry season (June-July-August). For example, intense precipitation in Singapore is expected to be reduced in RCP8.5 projection compared to control simulation. However, the geographical patterns and magnitude of changes still remain uncertain, suffering from statistical insignificance and a lack of model agreement. Acknowledgements This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology

  17. Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grassland Ecosystem Function

    PubMed Central

    Fry, Ellen L.; Manning, Pete; Allen, David G. P.; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A.

    2013-01-01

    Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management. PMID:23437300

  18. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.

  19. A Century Trend of Precipitation in Forest Watersheds from the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Feng, G.; Ouyang, Y.; Leininger, T.; Han, Y.

    2017-12-01

    Estimates of hydrological processes in forest watersheds are essential to water supply planning, water quality protection, water resources management, and ecological restoration; whereas the century precipitation variation due to climate change could exacerbate forest watershed hydrological processes and add uncertainties to the processes. In this study, the multivariate statisitcal analysis technique was employed to identify a century temporal trend of precipitation in forest watersheds from the Lower Mississippi River Basin (LMRB). Seveal surface water monitoring stations in the LMRB, located in forest watersheds with very little land use disturbance and a century record, were selected to obtain precipitation data. Using frequency distribution analysis with HYDSTRA model, we found that the mean annual precipitation in a decadal scale increased as time elapsed over a 100-year period. Our study further revealed that the precipitation intensity for one-hour duration increased sigificantly in every 10 years for a 100-year period. During this period, the annual mean dry day frequency decreased in a decadal scale, whereas the annual mean wet day frequency increased for the same scale. Results indicated the precipitation pattern has been altered in the LMRB and the selected forest watersheds in this basin seems to become wetter during the past 100 years as a result of climate change.

  20. Impact of Altered Precipitation Patterns on Plant Productivity and Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Haase, L.; Flanagan, L. B.

    2017-12-01

    Precipitation patterns are expected to shift towards larger but fewer rain events, with longer intermittent dry periods, associated with climate change. The larger rain events may compensate for and help to mitigate climate change effects on key ecosystem functions such as plant productivity and soil respiration in semi-arid grasslands. We experimentally manipulated the amount and frequency of simulated precipitation added to trenched, treatment plots that were covered by rain shelters, and measured the response in plant productivity and soil respiration in a native, grassland ecosystem near Lethbridge, Alberta. We compared the observed responses to the predictions of a conceptual ecosystem response model developed by Knapp et al. 2008 (BioScience 58: 811-821). Two experiments were conducted during 14 weeks of the growing season from May-August. The first experiment (normal amount) applied total growing season precipitation of 180 mm (climate normal), and the second experiment (reduced amount) applied total precipitation of 90 mm. In both experiments, precipitation was applied at two frequencies, 1 rain event every week (normal frequency) and 1 rain event every two weeks (reduced frequency). In the normal amount experiment, the average rain event was 12.8 mm for the normal frequency treatment and 25.8 mm for the reduced frequency treatment. In the reduced amount experiment, the average rain event was 6.4 mm for the normal frequency treatment and 12.8 mm for the reduced frequency treatment. We hypothesized that larger but fewer rain events would result in increased plant productivity and soil respiration for both experiments. Plant greenness values calculated from digital photographs were used as a proxy for plant productivity, and showed significantly higher values for the normal vs. reduced amount experiment. Soil respiration rate also showed significantly higher values for the normal vs. reduced amount experiment. No significant treatment effect could be detected between the normal vs. reduced frequency treatments in both experiments for either the plant greenness or soil respiration measurements. The results of this study have implications for understanding the mechanisms underlying ecosystem responses to anticipated precipitation change in the Great Plains.

  1. Changes in Large-Scale Atmospheric Circulation Associated with Increased Extreme Precipitation Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Collow, A.; Bosilovich, M. G.; Koster, R. D.

    2016-12-01

    Over the past two decades a statistically significant increase in the frequency of summertime extreme precipitation events has been observed over the northeastern United States - the largest such increase in the US in terms of area and magnitude. In an effort to characterize synoptic scale patterns and changes to the atmospheric circulation associated with extreme precipitation events in this region, atmospheric fields from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) are composited on days that exceed the 90th percentile of precipitation from the CPC-Unified daily gauge-based precipitation observations. Changes over time in composites of sea level pressure, 500 hPa height, and the vertical profile of equivalent potential temperature indicate that the observed increase in extreme precipitation events is associated with extratropical cyclones, including cut off low pressure and frontal systems. Analysis of the Eady maximum growth rate, an indicator for storm tracks, shows that storms tracks in recent years have shifted southward. In addition, mean summertime transient meridional winds have decreased over time, slowing baroclinic systems and causing stationary systems to become more frequent, in agreement with previous studies examining blocking due to high pressure systems. The Atlantic Ocean provides a significant supply of moisture that converges over the region when a cyclonic circulation is situated to the south, and the statistically significant increase in Eady maximum growth rate over time there provides an increasingly improved thermodynamic environment for extreme precipitation events.

  2. Climate-change signals in national atmospheric deposition program precipitation data

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  3. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  4. Changes in Concurrent Precipitation and Temperature Extremes

    DOE PAGES

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  5. Macrophysical climate models and Holocene hunter-gatherer subsistence shifts in Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Mauldin, R. P.; Munoz, C.

    2013-12-01

    We use stable carbon isotopic values from bone collagen, as well as carbon values from carbonate extracted from bone apatite from 69 prehistoric human skeletal samples to investigate past resource use and climate relationships over the Middle and Late Holocene in Central Texas. Bone samples come from seven archaeological sites and samples date from 6,900 BP to the close of the prehistoric sequence at about 350 BP. Carbon isotopes from these samples suggest four broad dietary trends. From 6,900 through about 3,800 BP, carbon isotopes suggest a gradual increase in the consumption of resources that ultimately use a C3 photosynthetic pathway. A decline in δ13C in both collagen and carbonate values follows, suggesting a decrease in C3 resource use through roughly 2,900 BP. A variable, but once again increasing pattern on C3 resource use by prehistoric hunter-gatherers is indicated in bone isotopes through about 1,000 BP. After that date, a decrease in C3 resource dependence, with hints at greater subsistence diversity, is suggested through the close of the sequence at 350 BP. To assess the impact of climate shifts on this isotopic pattern, we developed a series of macrophysical climate models (MCM) for several locations in Central Texas focusing on fall, winter, and early spring precipitation. This fall-spring rainfall should closely determine C3 production. If subsistence shifts are responding to climate-induced changes in resource availability, then the measured hunter-gatherer carbon isotope trends summarized above should pattern with C3 production as monitored by the modeled fall-spring precipitation values. For the Middle Holocene portion of the sequence, the precipitation models suggest increasing C3 production, consistent with increasing C3 dependence shown in the isotopic data. A decline in C3 production between 3,900 and 3,000 BP in the models is also consistent with the isotopic decline at that point. After 3,000 BP, however, the coupling between fall-spring rainfall pattern and the bone isotope patterns begin to break down. Precipitation models suggest an essentially flat or slightly increasing pattern of production, while the isotopic data show a rapid C3 increase, and then a decline. This divergence is especially the case late in the sequence, with isotopic patterns showing rapid decreases in C3 resource use that are not consistent with the macrophysical climate models. If the precipitation models are accurate, the Late Holocene pattern of resource use reflects additional elements (e.g., regional population density changes, mobility shifts, social alliances) that require investigation. Standardized values. Data point colors reflect distinct climate trends.

  6. Role of moisture transport for Central American precipitation

    NASA Astrophysics Data System (ADS)

    María Durán-Quesada, Ana; Gimeno, Luis; Amador, Jorge

    2017-02-01

    A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980-2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.

  7. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system

    NASA Astrophysics Data System (ADS)

    Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.

    2016-02-01

    This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.

  8. Severe Weather in a Changing Climate: Getting to Adaptation

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Janssen, E.; Kunkel, K.

    2011-12-01

    Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the warming, and large precipitation events will likely increase in intensity and frequency. In the presentation, we will not only discuss the recent trends in severe weather and the projections of the impacts of climate change on severe weather in the future, but also specific examples of how this information is being used in developing and applying adaptation policies.

  9. Sensitivity of Pacific Cold Tongue and Double-ITCZ Bias to Convective Parameterization

    NASA Astrophysics Data System (ADS)

    Woelfle, M.; Bretherton, C. S.; Pritchard, M. S.; Yu, S.

    2016-12-01

    Many global climate models struggle to accurately simulate annual mean precipitation and sea surface temperature (SST) fields in the tropical Pacific basin. Precipitation biases are dominated by the double intertropical convergence zone (ITCZ) bias where models exhibit precipitation maxima straddling the equator while only a single Northern Hemispheric maximum exists in observations. The major SST bias is the enhancement of the equatorial cold tongue. A series of coupled model simulations are used to investigate the sensitivity of the bias development to convective parameterization. Model components are initialized independently prior to coupling to allow analysis of the transient response of the system directly following coupling. These experiments show precipitation and SST patterns to be highly sensitive to convective parameterization. Simulations in which the deep convective parameterization is disabled forcing all convection to be resolved by the shallow convection parameterization showed a degradation in both the cold tongue and double-ITCZ biases as precipitation becomes focused into off-equatorial regions of local SST maxima. Simulations using superparameterization in place of traditional cloud parameterizations showed a reduced cold tongue bias at the expense of additional precipitation biases. The equatorial SST responses to changes in convective parameterization are driven by changes in near equatorial zonal wind stress. The sensitivity of convection to SST is important in determining the precipitation and wind stress fields. However, differences in convective momentum transport also play a role. While no significant improvement is seen in these simulations of the double-ITCZ, the system's sensitivity to these changes reaffirm that improved convective parameterizations may provide an avenue for improving simulations of tropical Pacific precipitation and SST.

  10. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp.

    PubMed

    Liu, Cheng; Hofstra, Nynke; Franz, Eelco

    2013-05-15

    The likelihood of leafy green vegetable (LGV) contamination and the associated pathogen growth and survival are strongly related to climatic conditions. Particularly temperature increase and precipitation pattern changes have a close relationship not only with the fate and transport of enteric bacteria, but also with their growth and survival. Using all relevant literature, this study reviews and synthesises major impacts of climate change (temperature increases and precipitation pattern changes) on contamination sources (manure, soil, surface water, sewage and wildlife) and pathways of foodborne pathogens (focussing on Escherichia coli O157 and Salmonella spp.) on pre-harvested LGVs. Whether climate change increases their prevalence depends not only on the resulting local balance of the positive and negative impacts but also on the selected regional climate change scenarios. However, the contamination risks are likely to increase. This review shows the need for quantitative modelling approaches with scenario analyses and additional laboratory experiments. This study gives an extensive overview of the impacts of climate change on the contamination of pre-harvested LGVs and shows that climate change should not be ignored in food safety management and research. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Precipitation change and its effects on prehistorical human activities in the Gonghe Basin, Northeastern Qinghai-Tibet Plateau during middle and late Holocene

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoqing; Hou, Guangliang; Wang, Fangfang; Wang, Qingbo

    2018-02-01

    Northeastern Qinghai-tibet Plateau is considered as the ideal region for study of the climate change during the Holocene. Based on the meteorological data, the surface & fossil pollen data, this paper reconstructed the precipitation series of the region since middle Holocene with the GIS and MAT techniques, and discussed its relationship with prehistorical human activities. The results indicate that there are four major climatic phases: (I) Middle Holocene Humid Phase (6300-5000 aBP), with the primitive millet-farming first imported into the region; (II) Late Middle Holocene Sub-humid Phase (5000-3900 aBP), with the millet-farming spread rapidly within the region; (III) Late Holocene Fluctuation Phase (3900-2900 aBP), with the mean annual precipitation dropped down to lower than 240 mm, and a production mode-shift to a combination of cropping and husbandry; (IV) Late Holocene Stationary Phase (2900-0 aBP), with a precipitation alike the modern time, and a steady farming-pastoral economic pattern.

  12. More robust regional precipitation projection from selected CMIP5 models based on multiple-dimensional metrics

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, L.; Leung, L. R.; Lin, G.; Lu, J.; Gao, Y.; Zhang, Y.

    2017-12-01

    Projecting precipitation changes is challenging because of incomplete understanding of the climate system and biases and uncertainty in climate models. In East Asia where summer precipitation is dominantly influenced by the monsoon circulation and the global models from Coupled Model Intercomparison Project Phase 5 (CMIP5), however, give various projection of precipitation change for 21th century. It is critical for community to know which models' projection are more reliable in response to natural and anthropogenic forcings. In this study we defined multiple-dimensional metrics, measuring the model performance in simulating the present-day of large-scale circulation, regional precipitation and relationship between them. The large-scale circulation features examined in this study include the lower tropospheric southwesterly winds, the western North Pacific subtropical high, the South China Sea Subtropical High, and the East Asian westerly jet in the upper troposphere. Each of these circulation features transport moisture to East Asia, enhancing the moist static energy and strengthening the Meiyu moisture front that is the primary mechanism for precipitation generation in eastern China. Based on these metrics, 30 models in CMIP5 ensemble are classified into three groups. Models in the top performing group projected regional precipitation patterns that are more similar to each other than the bottom or middle performing group and consistently projected statistically significant increasing trends in two of the large-scale circulation indices and precipitation. In contrast, models in the bottom or middle performing group projected small drying or no trends in precipitation. We also find the models that only reasonably reproduce the observed precipitation climatology does not guarantee more reliable projection of future precipitation because good simulation skill could be achieved through compensating errors from multiple sources. Herein the potential for more robust projections of precipitation changes at regional scale is demonstrated through the use of discriminating metric to subsample the multi-model ensemble. The results from this study provides insights for how to select models from CMIP ensemble to project regional climate and hydrological cycle changes.

  13. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  14. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM

    NASA Astrophysics Data System (ADS)

    Jackson, L. C.; Kahana, R.; Graham, T.; Ringer, M. A.; Woollings, T.; Mecking, J. V.; Wood, R. A.

    2015-12-01

    The impacts of a hypothetical slowdown in the Atlantic Meridional Overturning Circulation (AMOC) are assessed in a state-of-the-art global climate model (HadGEM3), with particular emphasis on Europe. This is the highest resolution coupled global climate model to be used to study the impacts of an AMOC slowdown so far. Many results found are consistent with previous studies and can be considered robust impacts from a large reduction or collapse of the AMOC. These include: widespread cooling throughout the North Atlantic and northern hemisphere in general; less precipitation in the northern hemisphere midlatitudes; large changes in precipitation in the tropics and a strengthening of the North Atlantic storm track. The focus on Europe, aided by the increase in resolution, has revealed previously undiscussed impacts, particularly those associated with changing atmospheric circulation patterns. Summer precipitation decreases (increases) in northern (southern) Europe and is associated with a negative summer North Atlantic Oscillation signal. Winter precipitation is also affected by the changing atmospheric circulation, with localised increases in precipitation associated with more winter storms and a strengthened winter storm track. Stronger westerly winds in winter increase the warming maritime effect while weaker westerlies in summer decrease the cooling maritime effect. In the absence of these circulation changes the cooling over Europe's landmass would be even larger in both seasons. The general cooling and atmospheric circulation changes result in weaker peak river flows and vegetation productivity, which may raise issues of water availability and crop production.

  15. Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics

    USGS Publications Warehouse

    Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.

    2015-01-01

    Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.

  16. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length ofmore » the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.« less

  17. Hydroregime prediction models for ephemeral groundwater-driven sinkhole wetlands: a planning tool for climate change and amphibian conservation

    Treesearch

    C. H. Greenberg; S. Goodrick; J. D. Austin; B. R. Parresol

    2015-01-01

    Hydroregimes of ephemeral wetlands affect reproductive success of many amphibian species and are sensitive to altered weather patterns associated with climate change.We used 17 years of weekly temperature, precipitation, and waterdepth measurements for eight small, ephemeral, groundwaterdriven sinkhole wetlands in Florida sandhills to develop a hydroregime predictive...

  18. Response of Biological Soil Crust Diazotrophs to Season, Altered Summer Precipitation, and Year-Round Increased Temperature in an Arid Grassland of the Colorado Plateau, USA

    DOE PAGES

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; ...

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y -1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3 × 10 6 to 1 × 108 g -1 soil, and nifH from heterocystous cyanobacteriamore » closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.« less

  19. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    USGS Publications Warehouse

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  20. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the colorado plateau, USA.

    PubMed

    Yeager, Chris M; Kuske, Cheryl R; Carney, Travis D; Johnson, Shannon L; Ticknor, Lawrence O; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (∼33 Tg y(-1)), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3 × 10(6) to 1 × 10(8) g(-1) soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. SpirirestisnifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2-3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  1. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang

    2017-01-01

    Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most situations. Karst spring discharge as a proxy can represent groundwater resource variability at a regional scale, and is more strongly influenced by climate variation.

  2. Precipitation and temperature changes in the major Chinese river basins during 1957-2013 and links to sea surface temperature

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Prange, Matthias; Merkel, Ute

    2016-05-01

    The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific Quasi-Decadal Oscillation.

  3. Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Jeng; Lee, Tsung-Yu

    2017-04-01

    Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping with extreme events in empirical seasonal predictions are also carried out. Findings from this work will contribute to the development of an integrated water resources planning and management system.

  4. Sub-annual paleoenvironmental information evaluated from intensity variations of fluorescent annual layers in a stalagmite from Ryuo-do Cave, Nagasaki Prefecture, western Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, Hana; Onishi, Yuri; Ishihara, Yoshiro; Yoshimura, Kazuhisa

    2017-04-01

    Stalagmites can provide various types of paleoenvironmental information such as information on vegetation and climate changes. Fluorescent annual layers formed by humic substances (mainly fulvic acids: FA) in these stalagmites can also provide a time proxy, and a time series on precipitation. Fluorescence intensity patterns in these annual layers can be classified into symmetric, gradually increasing and gradually decreasing types. Onishi et al. (EGU2016) demonstrated the existence of these fluorescence intensity patterns in the annual layers, and their stratigraphic changes, by numerical simulations, and suggested that the patterns could provide paleoenvironmental information at a sub-annual resolution. In this study, we carried out an analysis of fluorescence intensity patterns in the annual layers of a stalagmite from Ryuo-do Cave, Nagasaki Prefecture, western Japan, and also simulated the patterns in the stalagmite, to obtain paleoenvironmental information. Fluorescence intensity patterns in the annual layers are strongly affected by annual variations in FA concentration and precipitation rates of calcite. As the result of simulations of fluorescence intensity patterns, cumulative variations and various types of pattern are reproduced. These differences are depending on time lags between the variation of the FA concentration in the drip waters, and that of the growth rate of the stalagmite. Co-precipitation models of FA are divided into the "Hiatus model" in which FA are preferentially preserved in the stalagmite when its growth rate is relatively low, and the "Partition coefficient (PC) model" in which FA concentrations in the stalagmite increase when the calcite precipitation rate is relatively high. However, various fluorescence intensity patterns in the annual layers could be formed under a combination or either of both of the models. Fluorescence intensity patterns in an annual layer in the stalagmite from Ryuo-do Cave, Nagasaki Prefecture, western Japan vary stratigraphically, and multiple types of fluorescence intensity pattern are observed in the stalagmite. When the co-precipitation of FA is governed by the hiatus model, it is suggested that a gradual increase in the annual layers will result from a large accumulation of calcite after the annual peak in the FA concentration, whereas there will be a gradual decrease if the main growth occurs before the annual peak in FA concentration. However, in the case of the PC model, a gradually increasing type of pattern is formed if the main growth occurs before the annual peak in FA concentration, and a gradually decreasing type is formed if the main growth occurs afterwards. If the annual peak of FA concentration occurs several months after high summer, it is suggested that intervals showing a gradually increasing type were formed in winter, and intervals showing a gradually decreasing type were formed in the early summer, in the case of the hiatus model. In the case of PC model, the seasons are reversed. In the climatic environment around the Ryuo-do Cave, the growth rates of stalagmites are affected by cave air circulation in winter and by rainfall (rainy season) in early summer.

  5. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence intomore » thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  6. The Influence of the Regional Hadley and Walker Circulations on Precipitation Patterns over Africa in El Niño, La Niña, and Neutral Years

    NASA Astrophysics Data System (ADS)

    de Oliveira, Cristiano Prestrelo; Aímola, Luis; Ambrizzi, Tércio; Freitas, Ana Carolina Vasques

    2018-02-01

    This study focuses on the differential impacts of the positive (El Niño), negative (La Niña), and neutral phases of the El Niño Southern Oscillation (ENSO) on precipitation over Africa during DJF and JJA, evaluated through changes in the regional Hadley and Walker Circulations. Identification of the Hadley and Walker Cells was done using stream function mass transport calculations of ERA-Interim reanalysis data from 1979 to 2014. Analysis of the spatial pattern of precipitation anomalies shows that during DJF, El Niño (La Niña) negatively (positively) impacts precipitation over the African continent. During JJA, El Niño (La Niña) influences precipitation variability over the Sahel region, producing positive (negative) anomalies. Negative precipitation anomalies associated with El Niño (DJF) over southern Africa are linked to a strengthening in subsidence of the descending branch of the regional Hadley Cell, and during JJA the negative precipitation anomalies over the Sahel are associated with a weakening of the ascending branch of the regional Hadley Cell. During La Niña events in DJF, there is a tendency toward increased convection in southern Africa, associated with a stronger ascending branch and weaker descending branch of the regional Hadley Cell. During La Niña events in JJA, positive precipitation anomalies over the Sahel are associated with an intensification of the ascending branch of the regional Hadley Cell north of the equator.

  7. Hydrological patterns in warming permafrost: comparing results from a control and drained site on a floodplain tundra near Chersky, Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Boelck, Sandra; Goeckede, Mathias; Hildebrandt, Anke; Vonk, Jorien; Heimann, Martin

    2017-04-01

    Permafrost areas represent a major reservoir for organic carbon. At the same time, permafrost ecosystems are very susceptible to changing climate conditions. The stability of this reservoir, i.e. changes in lateral and vertical carbon fluxes in permafrost ecosystems, largely depends on groundwater level, temperature and vegetation community. Particularly during summer when the soil thaws and a so-called active layer develops, fluctuations in carbon flux rates are often dominantly driven by water availability. Such dry soil conditions are expected to become more frequent in the future due to deepening active layers as a consequence of climate change. This could result in degradation of polygonal tundra landscape properties with channelled water transport pathways. Therefore, water table depth and the associated groundwater fluxes are crucial to understand transport patterns and to quantify the lateral export of carbon through an aquatic system. Consequently, a fundamental understanding of hydrological patterns on ecosystem structure and function is required to close the carbon balance of permafrost ecosystems. This study focuses on small-scale hydrological patterns and its influencing factors, such as topography and precipitation events. Near Chersky, Northeast Siberia, we monitored (i) a control site of floodplain tundra, and (ii) a drained site, characterised by a drainage ring which was constructed in 2004, to study the effects of water availability on the carbon cycle. This experimental disturbance simulates drainage effects following the degradation of ice-rich permafrost ecosystems under future climate change. Continuous monitoring of water table depth in drained and control areas revealed small-scale water table variations. At several key locations, we collected water samples to determine the isotopic composition (δ18O, δD) of surface water, suprapermafrost groundwater and precipitation. Furthermore, a weir at the drainage ditch was constructed to directly measure the discharge of the drained system. This hydrological sampling programme was complemented by continuous monitoring of atmospheric vertical turbulent carbon fluxes and meteorological conditions by two eddy-covariance towers on each site. Our results from the hydrological sampling campaign of summer 2016 indicate that total discharge through the drained system was mainly driven by precipitation events as well as modified evaporative loss due to temperature changes. The distributed network of groundwater gauges allows deriving lateral, local scale groundwater flow direction and its spatial variability, as well as the response to precipitation events within different parts of this ecosystem. Isotopic analysis of water samples showed the contribution of specific end member water sources, and how these vary across the season while the active layer deepens. Future research will focus on carbon fluxes, distribution and sources in relation to hydrological patterns.

  8. An assessment of tropical cyclone representation in a regional reanalysis and a shape metric methodology for studying the evolving precipitation structure prior to and during landfall

    NASA Astrophysics Data System (ADS)

    Zick, Stephanie E.

    Tropical cyclone (TC) precipitation is intricately organized with multiple scales of phenomena collaborating to harness the massive energy required to support these storms. During landfall, a TC leaves the tropical oceanic environment and encounters a wide range of continental air mass regimes. Although evolving precipitation patterns are qualitatively observed in these storms during landfall, the timing and spatial variability of these structural changes have yet to be quantified or documented. This dissertation integrates meteorological and geographic concepts to explore the representation and evolution of TC rainfall at the crucial time of landfall when coastal and inland communities and environments are most vulnerable to TC-associated flooding. This research begins with a two-part assessment of TC representation in the North American Regional Reanalysis (NARR), which is selected for its documented skill in characterizing North American precipitation patterns. Due to the sparsely available data over the tropical oceans, spatial biases exist in both global and regional reanalysis datasets. However, within the NARR the introduction of over-ocean precipitation assimilation in 2004 leads to an improved analysis of TC warm core structure, which results in an improved precipitation forecast. Collectively, these studies highlight the need for sophisticated observational and data assimilation systems. Specifically, the development of new, novel precipitation assimilation techniques will be valuable to the construction of better-quality forecasting tools with more authentic TC representation. In the third study, the fundamental geographic concept of compactness is utilized to construct a shape metric methodology for investigating (a) the overall evolution of and (b) the spatiotemporal positions of significant changes to synoptic-scale precipitation structure. These metrics encompass the characteristic geometries of TCs moving into the mid-latitudes: asymmetry, fragmentation, and dispersiveness. In 2004-2012 TCs, increasing (decreasing) compactness is observed in the eastern and central (western) Gulf of Mexico. Dispersiveness increases prior to landfall in most cases; however, asymmetry and fragmentation increase more commonly in western (versus eastern) Gulf landfalls. These results indicate that structural changes occur in advance of landfall, while the TC inner core is positioned over warm Gulf of Mexico waters, particularly in storms that make landfall in the northern and western Gulf States.

  9. Estimating the Temporal Domain when the Discount of the Net Evaporation Term Affects the Resulting Net Precipitation Pattern in the Moisture Budget Using a 3-D Lagrangian Approach

    PubMed Central

    Castillo, Rodrigo; Nieto, Raquel; Drumond, Anita; Gimeno, Luis

    2014-01-01

    The Lagrangian FLEXPART model has been used during the last decade to detect moisture sources that affect the climate in different regions of the world. While most of these studies provided a climatological perspective on the atmospheric branch of the hydrological cycle in terms of precipitation, none assessed the minimum temporal domain for which the climatological approach is valid. The methodology identifies the contribution of humidity to the moisture budget in a region by computing the changes in specific humidity along backward (or forward) trajectories of air masses over a period of ten days beforehand (afterwards), thereby allowing the calculation of monthly, seasonal and annual averages. The current study calculates as an example the climatological seasonal mean and variance of the net precipitation for regions in which precipitation exceeds evaporation (E-P<0) for the North Atlantic moisture source region using different time periods, for winter and summer from 1980 to 2000. The results show that net evaporation (E-P>0) can be discounted after when the integration of E-P is done without affecting the general net precipitation patterns when it is discounted in a monthly or longer time scale. PMID:24893002

  10. An east-west climate see-saw in the Mediterranean during the last 2.6 ka: evidence and mechanisms

    NASA Astrophysics Data System (ADS)

    Roberts, C.; Moreno-Caballud, A.; Valero-Garces, B. L.; Luterbacher, J.; Xoplaki, E.; Allcock, S. L.

    2012-12-01

    Global precipitation anomalies during the Common Era show a spatial coherency that appears to be about an order of magnitude lower (i.e. smaller) than for temperature changes, as some areas became wetter while others experienced drought (Seager et al., 2007, Quat. Sci. Rev. 26, 2322-36). The Mediterranean basin (10°W-40°E; 30°-45°N) is influenced by some of the main mechanisms acting upon the global climate system and its regional water resources are sensitive to hydro-climatic variations. Reconstructing the timing, intensity, and patterns of hydrological variability in the Mediterranean is important for testing spatial-temporal coherency in palaeo-precipitation, and for understanding underlying climate forcing mechanisms. The region offers a broad spectrum of documentary information and natural archives which allow high-resolution climate reconstructions (Luterbacher et al., 2012, In: Lionello et al. (eds) The Mediterranean Climate: from past to future. Elsevier, pp. 87-185). During the period of instrumental records, the NAO has strongly influenced inter-annual precipitation variations in the western Mediterranean, while parts of the eastern basin have shown an anti-phase relationship in precipitation and atmospheric pressure. A wide array of proxy-climate data from Iberia and Morocco indicate overall drier conditions during the Medieval Climate Anomaly (MCA) and a generally wetter climate in the Little Ice Age (LIA)(Moreno et al., 2012, Quat. Sci. Rev. 43, 16-32). This pattern is consistent with strong NAO forcing of western Mediterranean climate over the last 1.1 ka (Trouet et al., 2009; Science 324, 78-80). High-resolution palaeolimnological evidence from central Anatolia exhibit an opposite pattern, implying that an east-west climate see-saw operated in the Mediterranean basin during the LIA and MCA (Roberts et al., 2012; Glob. Planet. Change 84-85, 23-34). However, the strongest evidence for higher (lower) winter season precipitation during the MCA (LIA) does not come from the southeast sector of the Mediterranean basin, as would be expected from the pattern of NAO forcing seen during the instrumental period. Prior to the MCA, many proxy-climate records show changes of significantly larger amplitude than during the last millennium, notably during and after the Roman period. However, absolute chronologies become less precise with dating errors of ±>50 yr (Dermody et al., 2012; Clim. Past 8, 637-651), making correlations less robust. Before 2.6 ka BP, i.e. coincident with the northern European grenzhorizont, proxy-climate records from the Mediterranean show changes which imply a significant shift in atmospheric boundary conditions (e.g. radiative forcing). It is clear that hydro-climatic trends have been non-uniform across the Mediterranean in recent millennia. The contrasting spatio-temporal patterns across the basin appear to have been determined by a combination of different climate modes along with major physical geographical controls, not by NAO forcing alone, and/or the character of the NAO and its teleconnections have been non-stationary.

  11. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  12. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  13. Compound-Specific Hydrogen Isotope Evidence of Late Quaternary Paleohydrologic Change from the Atlantic Coastal Plain, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Lane, C.; Taylor, A. K.; Spencer, J.; Jones, K.

    2017-12-01

    Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen isotope analyses of terrestrially-derived n-alkanes (δ2Halkane) from Jones Lake and Singletary Lake in eastern North Carolina spanning the last 50,000 years. Combined with prior pollen, charcoal, and bulk sediment geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but marked differences in edaphic conditions at the two sites likely due to differing water table depths. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that resemble the Bølling Allerød and Younger Dryas climatic events indicating potential sensitivity of regional hydrology to rapid climate change. The δ2Halkane data indicate a generally mesic Holocene that supported colonization by Quercus-dominated ecosystems during the early to middle Holocene. Evidence of increased aridity on the in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions in eastern North Carolina during the middle to late Holocene, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. This pattern may be indicative of a stronger Pacific basin influence on regional paleoprecipitation patterns than the distally-closer Atlantic. A transition from Quercus-to Pinus-dominated ecosystems 5500 cal yr B.P. is accompanied by a large increase in charcoal abundance, but is not coincident with any high-amplitude changes in the δ2Halkane record, indicating that precipitation variability was not likely the mechanism responsible for this ecological transition. While further development of regional paleohydrological records is necessary, the lack of a clear change in middle Holocene precipitation dynamics and the temporally-heterogeneous nature of the Quercus-Pinus transition in the region indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the ecological change.

  14. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  15. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China

    PubMed Central

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954

  16. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.

    PubMed

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.

  17. Climate change impacts in Iran: assessing our current knowledge

    NASA Astrophysics Data System (ADS)

    Rahimi, Jaber; Malekian, Arash; Khalili, Ali

    2018-02-01

    During recent years, various studies have focused on investigating the direct and indirect impacts of climate changes in Iran while the noteworthy fact is the achievement gained by these researches. Furthermore, what should be taken into consideration is whether these studies have been able to provide appropriate opportunities for improving further studies in this particular field or not. To address these questions, this study systematically reviewed and summarized the current available literature (n = 150) regarding the impacts of climate change on temperature and precipitation in Iran to assess our current state of knowledge. The results revealed that while all studies discuss the probable changes in temperature and precipitation over the next decades, serious contradictions could be seen in their results; also, the general pattern of changes was different in most of the cases. This matter may have a significant effect on public beliefs in climate change, which can be a serious warning for the activists in this realm.

  18. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.

    PubMed

    Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos

    2016-07-19

    Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.

  19. The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Ao, Juan; Sun, Jianqi

    2016-05-01

    The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies (SSTAs) over the South Pacific Ocean (SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.

  20. Potential individual versus simultaneous climate change effects on soybean (C 3) and maize (C 4) crops: An agrotechnology model based study

    NASA Astrophysics Data System (ADS)

    Mera, Roberto J.; Niyogi, Dev; Buol, Gregory S.; Wilkerson, Gail G.; Semazzi, Fredrick H. M.

    2006-11-01

    Landuse/landcover change induced effects on regional weather and climate patterns and the associated plant response or agricultural productivity are coupled processes. Some of the basic responses to climate change can be detected via changes in radiation ( R), precipitation ( P), and temperature ( T). Past studies indicate that each of these three variables can affect LCLUC response and the agricultural productivity. This study seeks to address the following question: What is the effect of individual versus simultaneous changes in R, P, and T on plant response such as crop yields in a C 3 and a C 4 plant? This question is addressed by conducting model experiments for soybean (C 3) and maize (C 4) crops using the DSSAT: Decision Support System for Agrotechnology Transfer, CROPGRO (soybean), and CERES-Maize (maize) models. These models were configured over an agricultural experiment station in Clayton, NC [35.65°N, 78.5°W]. Observed weather and field conditions corresponding to 1998 were used as the control. In the first set of experiments, the CROPGRO (soybean) and CERES-Maize (maize) responses to individual changes in R and P (25%, 50%, 75%, 150%) and T (± 1, ± 2 °C) with respect to control were studied. In the second set, R, P, and T were simultaneously changed by 50%, 150%, and ± 2 °C, and the interactions and direct effects of individual versus simultaneous variable changes were analyzed. For the model setting and the prescribed environmental changes, results from the first set of experiments indicate: (i) precipitation changes were most sensitive and directly affected yield and water loss due to evapotranspiration; (ii) radiation changes had a non-linear effect and were not as prominent as precipitation changes; (iii) temperature had a limited impact and the response was non-linear; (iv) soybeans and maize responded differently for R, P, and T, with maize being more sensitive. The results from the second set of experiments indicate that simultaneous change analyses do not necessarily agree with those from individual changes, particularly for temperature changes. Our analysis indicates that for the changing climate, precipitation (hydrological), temperature, and radiative feedbacks show a non-linear effect on yield. Study results also indicate that for studying the feedback between the land surface and the atmospheric changes, (i) there is a need for performing simultaneous parameter changes in the response assessment of cropping patterns and crop yield based on ensembles of projected climate change, and (ii) C 3 crops are generally considered more sensitive than C 4; however, the temperature-radiation related changes shown in this study also effected significant changes in C 4 crops. Future studies assessing LCLUC impacts, including those from agricultural cropping patterns and other LCULC-climate couplings, should advance beyond the sensitivity mode and consider multivariable, ensemble approaches to identify the vulnerability and feedbacks in estimating climate-related impacts.

  1. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

  2. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  3. Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe.

    PubMed

    Eronen, Jussi T; Janis, Christine M; Chamberlain, C Page; Mulch, Andreas

    2015-06-22

    Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene-Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66-23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50-37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow

    USDA-ARS?s Scientific Manuscript database

    The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...

  5. Spatio-Temporal Changes In Non-Extreme Precipitation Variability Over North America

    NASA Astrophysics Data System (ADS)

    Roque, S.

    2016-12-01

    Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. The median increase in fraction of wet days in a year indicates that in 2010, North America experienced an additional 11 days of precipitation compared to 1960 (when the median number of wet days was 96), and wet periods that were 0.14 days longer than those in 1960 (when the median was 1.78 days). Further, these changes in high-frequency precipitation are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Results reveal the existence of localized clusters with opposing trends to that of broader geographic variation, which illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems, and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.

  6. Comparing spatial and temporal patterns of river water isotopes across networks

    EPA Science Inventory

    A detailed understanding of the spatial and temporal dynamics of water sources across river networks is central to managing the impacts of climate change. Because the stable isotope composition of precipitation varies geographically, variation in surface-water isotope signatures ...

  7. Future Temperatures and Precipitations in the Arid Northern-Central Chile: A Multi-Model Downscaling Approach

    NASA Astrophysics Data System (ADS)

    Souvignet, M.; Heinrich, J.

    2010-03-01

    Downscaling of global climate outputs is necessary to transfer projections of potential climate change scenarios to local levels. This is of special interest to dry mountainous areas, which are particularly vulnerable to climate change due to risks of reduced freshwater availability. These areas play a key role for hydrology since they usually receive the highest local precipitation rates stored in form of snow and glaciers. In the central-northern Chile (Norte Chico, 26-33ºS), where agriculture still serves as a backbone of the economy as well as ensures the well being of people, the knowledge of water resources availability is essential. The region is characterised by a semiarid climate with a mean annual precipitation inferior to 100mm. Moreover, the local climate is also highly influenced by the ENSO phenomenon, which accounts for the strong inter-annual variability in precipitation patterns. Although historical and spatially extensive precipitation data in the headwaters of the basins in this region are not readily available, records at coastal stations show worrisome trends. For instance, the average precipitation in La Serena, the most important city located in the Coquimbo Region, has decreased dramatically in the past 100 years. The 30-year monthly average has decreased from 170 mm in the early 20th century to values less than 80 mm nowadays. Climate Change is expected to strengthen this pattern in the region, and therefore strongly influence local hydrological patterns. The objectives of this study are i) to develop climate change scenarios (2046-2099) for the Norte Chico using multi-model predictions in terms of temperatures and precipitations, and ii) to compare the efficiency of two downscaling techniques in arid mountainous regions. In addition, this study aims at iii) providing decision makers with sound analysis of potential impact of Climate Change on streamflow in the region. For the present study, future local climate scenarios were developed for maximum, minimum temperature and precipitation in the research area based on four different General Circulation Models (GCMs). On the first hand, the Statistical Downscaling Model (SDSM) was used. This model is based on a multiple linear regression method and is best described as a hybrid of the stochastic weather generator and transfer function methods. One common advantage of statistical downscaling is that it ensures the maintenance of local spatial and temporal variability in generating realistic data time series. On the other hand and for comparison purposes, the Change Factor method was used. This methodology is relatively straightforward and ideal for rapid climate change assessment. The outputs of the HadCM3, CGCM3.1, GDFL-CM2 and MRI-CGCM2.3.2 A1 and B2 scenarios were downscaled with both methodologies and thereafter compared by means of several hydro-meteorological indices for a 55-years period (2045-2099). Preliminary results indicate that local temperatures are expected to rise in the region, whereas precipitations may decrease. However, minimum and maximum temperatures might increase at a faster rate at higher altitude areas. In addition, the Cordillera mountain range may encounter and longer winters with a dramatic decrease of icing days (Tmax<0°C). As for precipitation, both SRES scenarios for all models return a diminishing tendency, though the A2 scenario results show a faster decrease rate. Results indicate potential strong inter-seasonal and inter-annual perturbations in Rainfall in the region. Consequently, the Norte Chico will possibly see its streamflow strongly impacted with a resulting high variability at the seasonal and inter-annual level. A probabilistic analysis of the projections of the four GCMs provided a better representation of uncertainties linked with downscaled scenarios. Whereas maximum and minimum temperatures were accurately simulated by both downscaling methods, precipitation simulations returned weaker results. SDSM proved to have a poor ability to simulate extreme rainfall events and few conclusions could be drawn with respect to future occurrences of ENSO phenomena. On the other hand, the change factor method reproduced comparatively better historical precipitations. Despite all sources of error and uncertainties, which must be taken into account when handling the projections, this study addresses an issue that goes beyond local concerns and aims at developing a better understanding of impacts of climate change in fragile environments such as the arid and semiarid transition zone of north-central Chile. Its additional applied component goes therefore beyond the classical comparative study and aims at supporting stakeholders in their processes of decision making.

  8. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008

    USGS Publications Warehouse

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.

  9. A procedure for assessing future trends of subdaily precipitation values on point scale

    NASA Astrophysics Data System (ADS)

    Rianna, Guido; Villani, Veronica; Mercogliano, Paola; Vezzoli, Renata

    2015-04-01

    In many areas of Italy, urban flooding or floods in small mountain basins, induced by heavy precipitations on subdaily scale, represent remarkable hazards able to cause huge damages and casualties often increased by very high population density. A proper assessment about how frequency and magnitude of such events could change under the effect of Climate Changes (CC) is crucial for the development of future territorial planning (such as early warning systems). The current constraints of climate modeling, also using high resolution RCM, prevent an adequate representation of subdaily precipitation patterns (mainly concerning extreme values) while available observed datasets are often unsuitable for the application of the bias-correction (BC) techniques requiring long time series. In this work, a new procedure is proposed: at point scale, precipitation outputs on 24 and 48 hours are provided by high resolution (about 8km) climate simulation performed through the RCM COSMO_CLM driven by GCM CMCC_CM and bias-corrected by quantile mapping approach. These ones are adopted for a monthly stochastic disaggregation approach combining Random Parameter Bartlett-Lewis (RPBL) gamma model with appropriate rainfall disaggregation technique. The last one implements empirical correction procedures, called adjusting procedures, to modify the model rainfall output, so that it is consistent with the observed rainfall values on daily time scale. In order to take into account the great difficulties related to minimization of objective function required by retrieving the 7 RPBL parameters, for each dataset the computations are repeated twenty times. Moreover, adopting statistical properties on 24 and 48 hours to retrieve RPBL parameters allows, according Bo et al. (1994), to infer statistical properties until hourly scale maintaining the information content about the possible changes in precipitation patterns due to CC. The entire simulation chain is tested on Baiso weather station, in Northern Italy; the station is representative of a basin of Secchia river, tributary of the Po River; for this station, are available hourly data on 2003-2012 time span while, since 1981, are available daily data and maximum yearly values until hourly scale. In order to evaluate the uncertainties related to stand-alone approach for retrieving hourly data, it is first tested adopting, as input, observed data on 1981-2010 period; after, for the same time interval, RPBL parameters are estimated using BC RCM precipitation data. However, as control, the available hourly data cover only a part of this span. The results show how the approach, in term of mean and maximum values, return satisfying results until 6 hours while for higher resolutions the errors became significant. Finally, in order to assess the possible effects of CC on subdaily precipitation patterns, the same simulation chain is adopted to provide hourly precipitation datasets also for thirty years 2071-2100 under concentration scenarios RCPs 4.5 and RCP 8.5; the comparison between these ones and control period, permits to understand how, in wet season, the expected warming could produce a reduction in mean duration of precipitation events but with higher rainfall intensity; however, during the summer, the strong reduction in precipitation values could deeply affect also hourly values.

  10. Changing climates, changing forests: A western North American perspective

    Treesearch

    Christopher J. Fettig; Mary L. Reid; Barbara J. Bentz; Sanna Sevanto; David L. Spittlehouse; T. Wang

    2013-01-01

    The Earth’s mean surface air temperature has warmed by ~1C over the last 100 years and is projected to increase at a faster rate in the future, accompanied by changes in precipitation patterns and increases in the occurrence of extreme weather events. In western North America, projected increases in mean annual temperatures range from ~1−3.5C by the 2050s,...

  11. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  12. [Relationships of wetland landscape fragmentation with climate change in middle reaches of Heihe River, China].

    PubMed

    Jiang, Peng-Hui; Zhao, Rui-Feng; Zhao, Hai-Li; Lu, Li-Peng; Xie, Zuo-Lun

    2013-06-01

    Based on the 1975-2010 multi-temporal remotely sensed TM and ETM images and meteorological data, in combining with wavelet analysis, trend surface simulation, and interpolation method, this paper analyzed the meteorological elements' spatial distribution and change characteristics in the middle reaches of Heihe River, and elucidated the process of wetland landscape fragmentation in the study area by using the landscape indices patch density (PD), mean patch size (MPS), and patch shape fragment index (FS). The relationships between the wetland landscape fragmentation and climate change were also approached through correlation analysis and multiple stepwise regression analysis. In 1975-2010, the overall distribution patterns of precipitation and temperature in the study area were low precipitation in high temperature regions and high precipitation in low temperature regions, and the main characteristics of climate change were the conversion from dry to wet and from cold to warm. In the whole study period, the wetland landscape fragmentation was mainly manifested in the decrease of MPS, with a decrement of 48.95 hm2, and the increase of PD, with an increment of 0.006 ind x hm(-2).

  13. Can trait patterns along gradients predict plant community responses to climate change?

    PubMed

    Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis

    2016-10-01

    Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.

  14. A Global-Scale Examination of Monsoon-Related Precipitation.

    NASA Astrophysics Data System (ADS)

    Janowiak, John E.; Xie, Pingping

    2003-12-01

    A pentad version of the Global Precipitation Climatology Project global precipitation dataset is used to document the annual and interannual variations in precipitation over monsoon regions around the globe. An algorithm is described that determines objectively wet season onset and withdrawal for individual years, and this tool is used to examine the behavior of various characteristics of the major monsoon systems. The definition of onset and withdrawal are determined by examining the ramp-up and diminution of rainfall within the context of the climatological rainfall at each location. Also examined are interannual variations in onset and withdrawal and their relationship to rainy season precipitation accumulations. Changes in the distribution of “heavy” and “light” precipitation events are examined for years in which “abundant” and “poor” wet seasons are observed, and associations with variations in large-scale atmospheric general circulation features are also examined. In particular, some regions of the world have strong associations between wet season rainfall and global-scale patterns of 200-hPa streamfunction anomalies.

  15. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    NASA Astrophysics Data System (ADS)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  16. A model for evaluating stream temperature response to climate change scenarios in Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven

    2010-01-01

    Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.

  17. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    NASA Astrophysics Data System (ADS)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  18. Impacts of water and nutrient availability on loblolly pine function

    Treesearch

    Maxwell Wightman; Timothy Martin; Eric Jokela; Carlos Gonzalez-Benecke

    2015-01-01

    The impact of climate change on temperature and precipitation patterns in the southeastern United States are likely to have important effects on southern pine systems. A 2009 summary from the U.S. Global Change Research Program indicated that the southeastern U.S. will experience an increase in average temperature of 2.5 to 5 °C by the 2080s.

  19. Department of Defense 2014 Climate Change Adaptation Roadmap

    DTIC Science & Technology

    2014-06-01

    CREDIT: NANCY JONESBONBREST, PEO C3T HATCHLINGS FROM ENDANGERED SEA TURTLES ARE RELEASED INTO THE ATLANTIC OCEAN NEAR KENNEDY SPACE CENTER/CAPE...changing precipitation patterns, climbing sea levels, and more extreme weather events will intensify the challenges of global instability, hunger...disasters. Our coastal installations are vulnerable to rising sea levels and increased flooding, while droughts, wildfires, and more extreme temperatures

  20. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Treesearch

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  1. Climate-growth relationships for yellow-poplar across structural and site quality gradients in the southern Appalachian Mountains

    Treesearch

    Tara L. Keyser; Peter M. Brown

    2014-01-01

    Forecasted changes in climate across the southeastern US include an increase in temperature along with more variable precipitation patterns, including an increase in the severity and frequency of drought events. As such, the management of forests for increased resistance or resilience to the direct and indirect effects of climate change, including decreased tree- and...

  2. Variation in genetic structure and gene flow across the range of Sequoiadendron giganteum (giant sequoia)

    Treesearch

    Rainbow DeSilva; Richard S. Dodd

    2017-01-01

    During this century, climate warming and altered precipitation patterns will lead to habitat changes that may be beneficial to some long-lived tree species and detrimental to others. Paleoendemics, with limited and disjunct distributions will face the greatest challenges, as migration rates will be too slow to keep pace with rapid environmental change and populations...

  3. Determining the resilience of carbon dynamics in semi-arid biomes of the Southwestern US to severe drought and altered rainfall patterns

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Hilton, T. W.; Fox, A. M.; Osuna, J. L.

    2011-12-01

    Water is critically important for biotic processes in semi-arid ecosystems and 2011 is developing as one of the most severe drought years on record for many parts of the Southwestern US. To quantify the impact of this severe drought on regional carbon and energy balance, we need a more detailed understanding of how water limitation alters ecosystem processes across a range of semi-arid biomes. We quantified the impact of severe drought and changes in both the quantity and distribution of precipitation on ecosystem biotic structure and function across the range of biomes represented in the NM elevation gradient network (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine forest and subalpine mixed conifer forest). We compared how daily, seasonal and annual carbon and energy balance and their components in each of these biomes respond to changes in rainfall patterns using continuous measurements of carbon, water and energy exchange and associated measurements in each of these biomes during a 5 year period (2006-2011) that included a severe drought, and large variability in both winter precipitation and the timing and intensity of the monsoon. To understand the underlying mechanisms, we used time series of radiation absorbed by vegetation, surface albedo, soil moisture storage, phenology, gross primary productivity (GPP), ecosystem respiration (Re), and WorldView-2 images acquired pre- and post-monsoon in each of these biomes. In all of the biomes except the desert grassland site, the strength and timing of both winter and monsoon precipitation are important controls over carbon and energy dynamics in this region, though we see site-specific sensitivities across the elevation gradient. Over the past 5 years, carbon dynamics in the desert grassland site appears to be decoupled from winter precipitation. In addition, carbon dynamics in disturbed grassland and pinon-juniper ecosystems were more sensitive to severe drought than their undisturbed counterparts. We use the results to extend theory related to the vulnerability of semi-arid ecosystems to climate change and to understand biotic feedbacks within these biomes that may help to maintain resilience against structural and functional change. We also used the NCAR Community Land Model (CLM) parameterized for each biome and run in point mode to quantify the implications these changes in rainfall patterns have on ecosystem physiology, and regional carbon balance.

  4. Interdecadal variability of the Afro-Asian summer monsoon system

    NASA Astrophysics Data System (ADS)

    Li, Yi; Ding, Yihui; Li, Weijing

    2017-07-01

    The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century (1901-2014) and during the last three decades (1979-2014). A recent abrupt change of precipitation occurred in the late 1990s. Since then, the entire rainbelt of the Afro-Asia monsoon system has advanced northwards in a coordinated way. Consistent increases in precipitation over the Huanghe-Huaihe River valley and the Sahel are associated with the teleconnection pattern excited by the warm phase of the Atlantic Multidecadal Oscillation (AMO). A teleconnection wave train, with alternating cyclones/anticyclones, is detected in the upper troposphere. Along the teleconnection path, the configuration of circulation anomalies in North Africa is characterized by coupling of the upper-level anticyclone (divergence) with low-level thermal low pressure (convergence), facilitating the initiation and development of ascending motions in the Sahel. Similarly, in East Asia, a coupled circulation pattern also excites ascending motion in the Huanghe-Huaihe River valley. The synchronous increase in precipitation over the Sahel and Huanghe-Huaihe River valley can be attributed to the co-occurrences and in-phase changes of ascending motion. On the other hand, the warm phase of the AMO results in significant warming in the upper troposphere in North Africa and the northern part of East Asia. Such warming contributes to intensification of the tropical easterly jet through increasing the meridional pressure gradient both at the entrance region (East Asia) and the exit region (Africa). Accordingly, precipitation over the Sahel and Huanghe-Huaihe River valley intensifies, owing to ageostrophic secondary cells. The results of this study provide evidence for a consistent and holistic interdecadal change in the Afro-Asian summer monsoon.

  5. Understanding Extreme Precipitation Behaviour in British Columbia's Lower Mainland Using Historical and Proxy Records

    NASA Astrophysics Data System (ADS)

    Spry, Christina

    In British Columbia, Pineapple Express storms can lead to flooding, slope failures and negative impacts to water quality. Mitigating the impacts of extreme weather events in a changing climate requires an understanding of how local climate responds to regional-toglobal climate forcing patterns. In this study, I use historical and proxy data to identify the distinguishing characteristics of Pineapple Express storms and to develop a tree ring oxygen isotope record (1960--1995) of local climate conditions in the Lower Mainland of British Columbia. I found that high magnitude Pineapple Express storms have significantly higher precipitation and streamflow than other storms types, which result in relatively high contributions of Pineapple Express storms to the annual water budget. As well, Pineapple Express precipitation is characterized by an enriched delta18O isotopic signature when compared to precipitation originating from the North Pacific Ocean. However, differences in source water do not appear to be driving the variability in tree ring delta18O ratios. Instead, tree ring isotopic values exhibit a regional climate pattern that is strongly driven by latitudinal temperature gradients and the Rayleigh distillation effect. Therefore, future warmer conditions may decrease the temperature gradient between the equator and the poles, which can be recorded in the tree ring isotope record. The results also suggest that warmer temperatures due to climate change could result in more active Pineapple Express storm seasons, with multiple PE storms happening over a short period of time. Concurrent storms significantly increase the risk to society because the resulting antecedent saturated soil conditions can trigger precipitationinduced natural hazards. Keywords: extreme weather; stable isotopes; Pineapple Express; British Columbia; climate change; tree rings.

  6. Spatial and Temporal Patterns of Dissolved Organic Matter Characteristics in the Upper Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lee, B. S.; Lajtha, K.

    2014-12-01

    Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.

  7. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  8. Soil temperature extrema recovery rates after precipitation cooling

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    From a one dimensional view of temperature alone variations at the Earth's surface manifest themselves in two cyclic patterns of diurnal and annual periods, due principally to the effects of diurnal and seasonal changes in solar heating as well as gains and losses of available moisture. Beside these two well known cyclic patterns, a third cycle has been identified which occurs in values of diurnal maxima and minima soil temperature extrema at 10 cm depth usually over a mesoscale period of roughly 3 to 14 days. This mesoscale period cycle starts with precipitation cooling of soil and is followed by a power curve temperature recovery. The temperature recovery clearly depends on solar heating of the soil with an increased soil moisture content from precipitation combined with evaporation cooling at soil temperatures lowered by precipitation cooling, but is quite regular and universal for vastly different geographical locations, and soil types and structures. The regularity of the power curve recovery allows a predictive model approach over the recovery period. Multivariable linear regression models alloy predictions of both the power of the temperature recovery curve as well as the total temperature recovery amplitude of the mesoscale temperature recovery, from data available one day after the temperature recovery begins.

  9. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumendu; Khan, Ansar; Akbari, Hashem; Wang, Yupeng

    2016-12-01

    This paper intended to investigate spatio-temporal monotonic trend and shift in concentration of monsoon precipitation across West Bengal, India, by analysing the time series of monthly precipitation from 18 weather stations during the period from 1901 to 2002. In dealing with, the inhomogeneity in the precipitation series, RHtestsV4 software package is used to detect, and adjust for, multiple change points (shifts) that could exist in data series. Finally, the cumulative deviation test was applied at 5% significant level to check the homogeneity (presence of historic changes by cumulative deviations test). Afterward, non-parametric Mann-Kendall (MK) test and Theil-Sen estimator (TSE) was applied to detect of nature and slope of trends; and, Sequential Mann Kendall (SQMK) test was applied for detection of turning point and magnitude of change in trends. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation in precipitation data series. Four indices- precipitation concentration index (PCI), precipitation concentration degree (PCD), precipitation concentration period (PCP) and fulcrum (centre of gravity) were used to detect precipitation concentration and the spatial pattern in it. The application of the above-mentioned procedures has shown very notable statewide monotonic trend for monsoon precipitation time series. Regional cluster analysis by SQMK found increasing precipitation in mountain and coastal regions in general, except during the non- monsoon seasons. The results show that higher PCI values were mainly observed in South Bengal, whereas lower PCI values were mostly detected in North Bengal. The PCI values are noticeably larger in places where both monsoon total precipitation and span of rainy season are lower. The results of PCP reveal that precipitation in Gangetic Bengal mostly occurs in summer (monsoon season), and the rainy season arrives earlier in North Bengal than South Bengal, whereas the results of PCD also indicate that the precipitation in North Bengal was more dispersed within a year than that in South Bengal. The concentration characteristic of precipitation could be detected by fulcrum analysis, and significant concentration over most of West Bengal was obvious within July month band. Precipitation trend observed in West Bengal is compared with that in Central India (CI) region and comparison of precipitation departure with Indian monsoon and Gangetic Bengal can be explained by forecasting ensemble.

  10. Precipitation-generated oscillations in open cellular cloud fields.

    PubMed

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  11. Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects

    NASA Astrophysics Data System (ADS)

    Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.

    2014-12-01

    Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).

  12. Examining effects of sea level rise and marsh crabs on Spartina patens using mesocosms

    EPA Science Inventory

    Coastal salt marshes provide essential ecosystem services but face increasing threats from habitat loss, eutrophication, changing precipitation patterns, and accelerating rates of sea level rise (SLR). Recent studies have suggested that herbivory and burrowing by native salt mars...

  13. Circulation pattern-based assessment of projected climate change for a catchment in Spain

    NASA Astrophysics Data System (ADS)

    Gupta, Hoshin V.; Sapriza-Azuri, Gonzalo; Jódar, Jorge; Carrera, Jesús

    2018-01-01

    We present an approach for evaluating catchment-scale hydro-meteorological impacts of projected climate change based on the atmospheric circulation patterns (ACPs) of a region. Our approach is motivated by the conjecture that GCMs are especially good at simulating the atmospheric circulation patterns that control moisture transport, and which can be expected to change in response to global warming. In support of this, we show (for the late 20th century) that GCMs provide much better simulations of ACPs than those of precipitation amount for the Upper Guadiana Basin in central Spain. For the same period, four of the twenty GCMs participating in the most recent (5th) IPCC Assessment provide quite accurate representations of the spatial patterns of mean sea level pressure, the frequency distribution of ACP type, the 'number of rainy days per month', and the daily 'probability of rain' (they also reproduce the trend of 'wet day amount', though not the actual magnitudes). A consequent analysis of projected trends and changes in hydro-climatic ACPology between the late 20th and 21st Centuries indicates that (1) actual changes appear to be occurring faster than predicted by the models, and (2) for two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) the expected decline in precipitation volume is associated mainly with a few specific ACPs (primarily directional flows from the Atlantic Ocean and Cantabric Sea), and with decreasing probability of rain (linked to increasing temperatures) rather than wet day amount. Our approach is a potentially more insightful alternative for catchment-scale climate impacts assessments than the common approach of statistical downscaling and bias correction.

  14. Domestic and International Climate Migration from Rural Mexico

    PubMed Central

    Nawrotzki, Raphael J.; Runfola, Daniel M.; Hunter, Lori M.; Riosmena, Fernando

    2016-01-01

    Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move. PMID:28439146

  15. Domestic and International Climate Migration from Rural Mexico.

    PubMed

    Nawrotzki, Raphael J; Runfola, Daniel M; Hunter, Lori M; Riosmena, Fernando

    2016-12-01

    Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move.

  16. Relations between fish abundances, summer temperatures, and forest harvest in a northern Minnesota stream system from 1997 to 2007

    USGS Publications Warehouse

    Merten, Eric C.; Hemstad, Nathaniel A.; Eggert, S.L.; Johnson, L.B.; Kolka, Randall K.; Newman, Raymond M.; Vondracek, Bruce C.

    2010-01-01

    Short-term effects of forest harvest on fish habitat have been well documented, including sediment inputs, leaf litter reductions, and stream warming. However, few studies have considered changes in local climate when examining postlogging changes in fish communities. To address this need, we examined fish abundances between 1997 and 2007 in a basin in a northern hardwood forest. Streams in the basin were subjected to experimental riparian forest harvest in fall 1997. We noted a significant decrease for fish index of biotic integrity and abundance of Salvelinus fontinalis and Phoxinus eos over the study period. However, for P. eos and Culaea inconstans, the temporal patterns in abundances were related more to summer air temperatures than to fine sediment or spring precipitation when examined using multiple regressions. Univariate regressions suggested that summer air temperatures influenced temporal patterns in fish communities more than fine sediment or spring precipitation.

  17. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N concentrations are more variable in grasses which could indicate higher plasticity in grass N uptake compared to shrubs. Resin N supports the 15N patterns. Resin N declined more rapidly under grasses and was lower than under shrubs, presumably due to high grass N uptake. Resin N was particularly high under shrubs in wetter conditions indicating that shrubs could not take advantage of high N supply. Together the 15N and resin N patterns indicate that grasses accumulate more N and begin N uptake earlier in the season than shrubs. Although 15N did not differ in response to rainfall, invasion alters the distribution of N in the system. Rain was only manipulated for one growing season; multiple years of altered precipitation may yield significant differences. Early season N uptake by grasses, the low variability in shrub 15N and low shrub 15N in wetter conditions, despite high resin N, indicates that N competition between invasive grasses and native shrubs is weak. If N supply is sufficient for shrub demands, invasive grasses and shrubs could coexist. This study contributes to a broader understanding of how changes in resource supply, plant phenology and functional type interact and respond to climate change.

  18. Allergenic pollen season variations in the past two decades under changing climate in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2014-01-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 (95% Confidence Interval (CI), 1.1–4.9) days earlier on average than in the 1990s (1994–2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9%–62.9%) and 46.0% (95% CI, 21.5%–70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States. PMID:25266307

  19. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2012-12-01

    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.

  20. Stable Isotopes of Precipitation During Tropical Sumatra Squalls in Singapore

    NASA Astrophysics Data System (ADS)

    He, Shaoneng; Goodkin, Nathalie F.; Kurita, Naoyuki; Wang, Xianfeng; Rubin, Charles Martin

    2018-04-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems during the intermonsoon and southwest monsoon seasons in Singapore. To understand how they affect precipitation isotopes, we monitored the δ value of precipitation daily and continuously (every second and integrated over 30 s) during all squalls in 2015. We found that precipitation δ18O values mainly exhibit a "V"-shape pattern and less commonly a "W"-shape pattern. Variation in δ18O values during a single event is about 1 to 6‰ with the lowest values mostly observed in the stratiform zone, which agrees with previous observations and modeling simulations. Reevaporation can significantly affect δ values, especially in the last stage of the stratiform zone. Daily precipitation is characterized by periodic negative shifts in δ value, largely associated with the squalls rather than moisture source change. The shifts can be more than 10‰, larger than intraevent variation. Initial δ18O values of events are highly variable, and those with the lowest values also have the lowest initial values. Therefore, past convective activities in the upwind area can significantly affect the δ18O, and convection at the sampling site has limited contribution to isotopic variability. A significant correlation between precipitation δ18O value and regional outgoing longwave radiation and rainfall in the Asian monsoon region and western Pacific suggests that regional organized convection probably drives stable isotopic compositions of precipitation. A drop in the frequency of the squalls in 2015 is related to weak organized convection in the region caused by El Niño.

  1. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  2. Effects of climate change on saltwater intrusion at Hilton Head Island, SC. U.S.A.

    USGS Publications Warehouse

    Payne, Dorothy F.

    2010-01-01

    Sea‐level rise and changes in precipitation patterns may contribute to the occurrence and affect the rate of saltwater contamination in the Hilton Head Island, South Carolina area. To address the effects of climate change on saltwater intrusion, a threedimensional, finite‐element, variable‐density, solute‐transport model was developed to simulate different rates of sea‐level rise and variation in onshore freshwater recharge. Model simulation showed that the greatest effect on the existing saltwater plume occurred from reducing recharge, suggesting recharge may be a more important consideration in saltwater intrusion management than estimated rates of sea‐level rise. Saltwater intrusion management would benefit from improved constraints on recharge rates by using model‐independent, local precipitation and evapotranspiration data, and improving estimates of confining unit hydraulic properties.

  3. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.

  4. Climate change as a migration driver from rural and urban Mexico

    NASA Astrophysics Data System (ADS)

    Nawrotzki, Raphael J.; Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando

    2015-11-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on US-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.

  5. Climate Change as Migration Driver from Rural and Urban Mexico.

    PubMed

    Nawrotzki, Raphael J; Hunter, Lori M; Runfola, Daniel M; Riosmena, Fernando

    2015-11-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.

  6. Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, Nancy; Carrillo-Romo, Felipe; Jaramillo-Vigueras, David

    2004-10-01

    This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol-1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.

  7. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Bony, S.; Braconnot, P.

    2015-12-01

    Most climate studies characterize the future climate change by considering the evolution between a fixed current baseline and the future. It emphasizes an increase of future precipitation changes with global warming. Here we use an alternative approach that considers rate of change indicators related to precipitation using projections of an ensemble of General Circulation Models. The rate is defined by the difference between two subsequent 20-year periods. This approach can be relevant to impacts affecting upcoming generations, and to their continuous adaptation towards a changing target. Under the strongest emission pathway (RCP8.5), moistening and drying rates strongly increase at the global scale. As we move further over the twenty-first century, more and more regions exhibit substantial rates. These regions are modified over time due to spatial variability of precipitation. However, we show that they tend to become more geographically stationary through the century, leading to persisting trends at several places over the globe. Whilst global warming is accelerating, this spatial stabilization is due to the decreasing relative influence of global circulation in precipitation changes compared to thermodynamic processes. In specific regions, the combination of intensification and persistence of such substantial rates should be considered in the framework of future impact studies (i.e. the Mediterranean Sea, Central America, South Asia and the Arctic). These trends are already visible in the current period, but could almost disappear if strong mitigation policies (RCP2.6) were quickly implemented.

  8. Impact of climate change on European weather extremes

    NASA Astrophysics Data System (ADS)

    Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim

    2015-04-01

    An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.

  9. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    PubMed

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  10. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  11. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    DOE PAGES

    Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; ...

    2014-11-25

    We report that in many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of naturalmore » variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.« less

  12. Changing Summer Precipitation Pattern Alters Microbial Community Response to Fall Wet-up in a Mediterranean Soil

    NASA Astrophysics Data System (ADS)

    Barnard, R. L.; Osborne, C. A.; Firestone, M. K.

    2014-12-01

    The large soil CO2 efflux associated with rewetting dry soils after the dry summer period significantly contributes to the annual carbon budget of Mediterranean grasslands. Rapid reactivation of soil heterotrophic activity and a pulse of available carbon are both required to fuel the CO2 pulse. Better understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting future changes in carbon cycling. Here, we investigated the effects of a controlled rewetting event on the soil CO2 efflux pulse and on the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores previously subjected to three different precipitation patterns over four months (full summer dry season, extended wet season, and absent dry season). Phylogenetic marker genes for bacteria (16S) and fungi (28S) were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. Even after having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response. Moreover, we found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry conditions (predicted to change under future climate) is important in conditioning the response potential of the soil bacterial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  13. Assessing the vulnerability of the transportation industry of Ukraine to future climate change

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2017-04-01

    Climate change will affect transportation primarily through increases in several types of weather and climate extremes. The impacts will vary by mode of transportation and region of the country, but they will be widespread and costly in both human and economic terms and will require significant changes in the planning, design, construction, operation, and maintenance of transportation systems. In the study impact of climate change on operation of road transport are analysed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean, maximum and minimum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 28 cities distributed evenly across Ukraine. Spatial and temporal distributions of meteorological variables are obtained. The statistic characteristics obtained were compared with the correspondent climate normals and highway-related temporal changeability is determined. Frequency of freezing rain, wet snow, very hot days, droughts, fogs, ice-covered ground, slippery wet ground, ice and snow slippery coat are investigated. Climate and economic risks to the road transport network are assessed. Maps of spatial distribution of risk assessment are obtained. The results obtained show typical weather pattern is changed and climate and weather extreme influencing on operation of road transport are more frequent for the both scenarios, but for the RCP 8.5 scenario hazard weather occurs more often. During the period of 2011-2050 significant climate warming (by 2-3°C) is registered. Extreme temperatures are observed more frequently. High temperatures bring on growth in frequency of wildfires and heat waves. Annual precipitation amount decreases, except the western mountain and northern regions, where precipitation amount increase on 35%. Increase in temperature and decrease in precipitation can produce droughts in southern, eastern and central regions. But growth in precipitation in mountain region can cause flooding and landslides. Strong increase in mixed precipitation and significant reduction in ice and liquid precipitation take place for all territory of Ukraine. In the southern region ice precipitation is virtually vanished and observed only 2-3 days per year. Growth of mixed precipitation causes increase in severe weather events such as freezing precipitation, ice-covered ground and snow slippery coat.

  14. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem

    USGS Publications Warehouse

    Christensen, L.; Tague, C.L.; Baron, Jill S.

    2008-01-01

    Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright ?? 2008 John Wiley & Sons, Ltd.

  15. Effects of global climate change on maize volatile production

    USDA-ARS?s Scientific Manuscript database

    Increasing atmospheric CO2 concentrations [CO2] are projected to have critical impacts on precipitation patterns, potentially leading to a dramatic increase in the frequency and duration of drought across the North American Corn Belt and other agriculturally relevant areas around the world (IPCC2007...

  16. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  17. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  18. A Numerical Study of Hurricane Erin (2001). Part 1; Model Verification and Storm Evolution

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Braun, Scott A.; Halverson, J.; Heymsfield, G.

    2006-01-01

    The fifth-generation Pennsylvania State University National Center for Atmospheric Research (PSU NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Erin (2001) at high resolution (4-km spacing) from its early development as a tropical depression on 7 September 2001, through a period of rapid intensification into a strong hurricane (8 9 September), and finally into a stage during which it maintains its intensity on 10 September. These three stages of formation, intensification, and maintenance in the simulation are in good agreement with the observed evolution of Erin. The simulation shows that during the formation and early portions of the intensification stages, intensification is favored because the environmental wind shear is weak and the system moves over a warm tongue of water. As Erin intensifies, the wind shear gradually increases with the approach of an upper-level trough and strengthening of a low-level high pressure system. By 10 September, the wind shear peaks and begins to decrease, the storm moves over slightly cooler waters, and the intensification ends. Important structural changes occur at this time as the outer precipitation shifts from the northeastern and eastern sides to the western side of the eye. A secondary wind maximum and an outer eyewall begin to develop as precipitation begins to surround the entire eye. The simulation is used to investigate the role of vertical wind shear in the changes of the precipitation structure that took place between 9 and 10 September by examining the effects of changes in storm-relative flow and changes in the shear-induced tilt. Qualitative agreement is found between the divergence pattern and advection of vorticity by the relative flow with convergence (divergence) generally associated with asymmetric inflow (outflow) in the eyewall region. The shift in the outer precipitation is consistent with a shift in the low-level relative inflow from the northeastern to the northwestern side of the storm. The changes in the relative flow are associated with changes in the environmental winds as the hurricane moves relative to the upper trough and the low-level high pressure system. Examination of the shear-induced tilt of the vortex shows that the change in the tilt direction is greater than that of the shear direction as the tilt shifts from a northerly orientation to northwesterly. Consistent with theory for adiabatic vortices, the maximum low-level convergence and upper-level divergence (and the maximum upward motion) occurs in the direction of tilt. Consequently, both mechanisms may play roles in the changes in the precipitation pattern.

  19. A Numerical Study of Hurricane Erin (2001). Part 1; Model Verification and Storm Evolution

    NASA Technical Reports Server (NTRS)

    Wu, Liquang; Braun, Scott A.; Halverson, J.; Heymsfield, G.

    2003-01-01

    The Pennsylvania State University-National Center for Atmospheric Research mesoscale model MM5 is used to simulate Hurricane Erin (2001) at high resolution (4-km spacing) from its early development as a tropical depression on 7 September 2001, through a period of rapid intensification into a strong hurricane (8-9 September), and finally into a stage during which it maintains its intensity on 10 September. These three stages of development, intensification, and maintenance in the simulation are in good agreement with the observed evolution of Erin. The simulation shows that during the development and early portions of the intensification stages, intensification is favored because the environmental wind shear is weak and the system moves over a warm tongue of water. As Erin intensifies, the wind'shear gradually increases with the approach of an upper-level trough and strengthening of a low-level high pressure system. By 10 September, the wind shear peaks and begins to decrease, the storm moves over slightly cooler waters, and the intensification ends. Important structural changes occur at this time as the outer precipitation shift from the northeastern and eastern sides to the western side of the eye and precipitation begins to surround the entire eye to initiate the development of a secondary wind maximum and an outer eyewall. The simulation is used to investigate the role of vertical wind shear in the changes of the precipitation structure that took place between 9-10 September by examining the effects of both storm-relative flow changes and changes in the shear-induced tilt. Qualitative agreement is found between the divergence pattern and advection of vorticity by the relative flow with convergence (divergence) generally associated with asymmetric inflow (outflow) in the eyewall region. The shift in the outer precipitation is consistent with a shift in the low-level relative inflow from the northeastern to the northwestern side of the storm. The changes in the relative flow are associated with changes in the winds as the hurricane moves relative to the upper tough and the low-level high pressure system. Examination of the shear-induced tilt of the vortex shows that the change in the tilt direction is greater than that of the shear direction as the tilt shifts from a northerly orientation to northwesterly. Consistent with theory for adiabatic vortices, the maximum low-level convergence and upper-level divergence (and the maximum upward motion) occurs in the direction of tilt. Consequently, both mechanisms may play roles in the changes in the precipitation pattern.

  20. Climatic variability during the last deglaciation: A stalagmite-based multi-proxy record from Mawmluh cave, India

    NASA Astrophysics Data System (ADS)

    Huguet, C.; Munnuru Singamshetty, K.; Routh, J.; Fietz, S.; Mangini, A.; Ghosh, P.; Lone, M. A.; Rangarajan, R.; Eliasson, J.

    2016-12-01

    The Mawmluh cave in northeastern India, is affected by global climate patterns displaying glacial-interglacial patterns and also the Indian Summer Monsoon (ISM). Precipitation from the ISM plays a vital role for the local community and thus, understanding the driving forces of ISM fluctuations became a recent focus of a number of paleoclimate studies. Here, we used the stalagmite KM-1 from Mawmluh cave to reconstruct climate variability during the last glacial-interglacial transition from 22 to 6 ka. For the first time, molecular proxy data (TEX86 and MBT/CBT derived from isoprenoid and branched GDGTs respectively) were coupled to stable isotope records (δ13C and δ18O) and compared to other speleothem records in Asia. ISM system abruptly transition between a suppressed and active state which is associated to changes in vegetation and thus shifts in δ13C. The abrupt δ13C shift observed in our record indicate changes to wetter climate in the Holocene, which are coupled to increase in abundance of GDGTs indicating higher production and/or transfer to KM-1. The TEX86-derived temperature roughly follows the glaciation-deglaciation cycle and Holocene changes. The TEX86 results show good correspondence with the δ18O records for temperature highlighting the potential for the use of molecular proxy in speleothem based climate reconstructions. While the MBT/CBT proxy is also defined as a temperature proxy it is not coupled with δ18O patterns, and thus shows no clear temperature signal. A decoupling between MBT/CBT from soils and the connected speleothems as well as a precipitation-moisture effect on this proxy have been previously reported. In this particular case the MBT/CBT seems to be better related to precipitation-monsoon changes, and thus warrant further exploration as a complementary proxy to isotope records for monsoon strength.

  1. Spatio-temporal variability of several eco-precipitation indicators in China

    NASA Astrophysics Data System (ADS)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of λ and 1/θ with a saltation point in the year 1997 and 1992, respectively. This study indicates that uniform and concentrated extreme precipitation significantly increased in China under the climate change, which brings severer challenge in constructing eco-hydrological models to make rational countermeasures.

  2. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range.

    PubMed

    Kleinhesselink, Andrew R; Adler, Peter B

    2018-05-01

    Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range. © 2018 by the Ecological Society of America.

  3. Climate impacts on agriculture: Implications for forage and rangeland production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g.,more » community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N-fixing organisms), as well as the ecosystem carbon balance, essential nutrients, and water.« less

  4. Identification of the atmospheric river drivers key on local flood generating mechanism and its sensitivity under the climate change

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Mauger, Guillaume; Salathé, Eric; Mitchell, Todd P.

    2017-04-01

    Flooding is one of the natural hazard that causes the significant economic, ecosystem and human losses every year. Large percentage of floodings in the western of the US caused by heavy precipitation events are associated to atmospheric rivers (ARs). With the warmer climate is expected an increase of saturated water pressure which could increase the intensity and frequency of the ARs. In this work we attend to address two questions: 1) what are the large-scale drivers that promotes differences in ARs promoting heavy precipitation at different locations and 2) how climate change will influence on ARs and extreme precipitation. The methods applied in our analysis consist on a dynamical downscaling using the Weather Research and Forecasting (WRF) model. The target region is the western coastline U.S. on a domain with 12-km grid spacing. Regional climate simulations (RCM) encompass a historical period (1970-2010) and future projections (2020-2060) using NNRP and ECHAM as initial and boundary conditions. Clustering methods are applied to the RCM to identify regions with similar precipitation variability. At each region, the extreme events of precipitation according to 99 percentile are identified and associated to integrated vapor transport (ITV). Results show how heaviest precipitation in each region is associated to different AR patterns. When an AR impacts coastline, the direction and intensity of the IVT determine the areas affected by heavy precipitation. Coastal mountains play a key role intensifying the precipitation in the coastline and avoiding the inland penetration of the IVT. The shape of the atmospheric rivers is related to differences in 500 hPa geopotential between the mean and the extreme precipitation. Areas with heaviest precipitation are located in the interface of Z500 differences.

  5. Seasonal precipitation extreme indices in mainland Portugal: trends and variability in the period 1941-2007

    NASA Astrophysics Data System (ADS)

    Santo, Fátima E.; Ramos, Alexandre M.; de Lima, M. Isabel P.; Trigo, Ricardo M.

    2013-04-01

    Changes in the precipitation regimes are expected to be accompanied by variations in the occurrence of extreme events, which in turn could be related to low frequency variability. The impact on the society and environment requires that the regional specificities are understood. For mainland Portugal, this work reports the results of the analysis of trends in selected precipitation indices calculated from daily precipitation data from 57 meteorological stations, recorded in the period 1941-2007; additionally we have also investigated the correlations between these indices and several modes of low frequency variability over the area. We focus on exploring regional differences and seasonal variations in the intensity, frequency and duration of extreme precipitation events. The precipitation indices were assessed at the seasonal scale and calculated at both the station and regional scales. Results sometimes highlight marked changes in seasonal precipitation and show that: i) trends in spring and autumn have opposite signals: statistically significant drying trends in the spring are accompanied by a reduction in precipitation extremes; in autumn, wetting trends are detected for all precipitation indices, although overall they are not significant at the 5% level; ii) there seems to be a tendency for a reduction in the duration of the rainy season; iii) the North Atlantic Oscillation (NAO) is the mode of variability that has the highest influence on precipitation extremes over mainland Portugal, particularly in the winter and autumn, and is one of the most important teleconnection patterns in all seasons. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  6. To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Lohmann, U.

    2017-12-01

    Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL

  7. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  8. Effect of ecological restoration and climate change on ecosystems: a case study in the Three-Rivers Headwater Region, China.

    PubMed

    Jiang, Chong; Zhang, Linbo

    2016-06-01

    The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China's 'Water Tower' owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000-2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000-2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000-2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.

  9. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  10. A Lagrangian perspective of the hydrological cycle in the Congo River basin

    NASA Astrophysics Data System (ADS)

    Sorí, Rogert; Nieto, Raquel; Vicente-Serrano, Sergio M.; Drumond, Anita; Gimeno, Luis

    2017-08-01

    The Lagrangian model FLEXPART is used to identify the moisture sources of the Congo River basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation minus precipitation. This method permits the annual-scale identification of five continental and four oceanic principal regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB, which provides more than 50 % of the total atmospheric moisture contribution to precipitation over itself. Additionally, both the land that extends to the east of the CRB and the eastern equatorial South Atlantic Ocean are very important sources, while the Red Sea source is merely important in the (E - P) budget over the CRB despite its high evaporation rate. The moisture-sink patterns over the CRB in air masses that were tracked forward in time from all the sources follow the latitudinal rainfall migration and are mostly highly correlated with the pattern of the precipitation rate, ensuring a link between them. In wet (dry) years, the contribution of moisture to precipitation from the CRB over itself increases (decreases). Despite the enhanced evaporative conditions over the basin during dry years, the vertically integrated moisture flux (VIMF) divergence inhibits precipitation and suggests the transport of moisture from the CRB to remote regions.

  11. Mapping the changing pattern of local climate as an observed distribution

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Stainforth, David; Watkins, Nicholas

    2013-04-01

    It is at local scales that the impacts of climate change will be felt directly and at which adaptation planning decisions must be made. This requires quantifying the geographical patterns in trends at specific quantiles in distributions of variables such as daily temperature or precipitation. Here we focus on these local changes and on the way observational data can be analysed to inform us about the pattern of local climate change. We present a method[1] for analysing local climatic timeseries data to assess which quantiles of the local climatic distribution show the greatest and most robust trends. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily temperature from specific locations across Europe over the last 60 years. Our method extracts the changing cumulative distribution function over time and uses a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of the sensitivity of different quantiles of the distributions to changing climate. Geographical location and temperature are treated as independent variables, we thus obtain as outputs the pattern of variation in sensitivity with temperature (or occurrence likelihood), and with geographical location. We find as an output many regionally consistent patterns of response of potential value in adaptation planning. We discuss methods to quantify and map the robustness of these observed sensitivities and their statistical likelihood. This also quantifies the level of detail needed from climate models if they are to be used as tools to assess climate change impact. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, in press [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201

  12. Linking precipitation, evapotranspiration and soil moisture content for the improvement of predictability over land

    NASA Astrophysics Data System (ADS)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo

    2013-04-01

    Climate change scenarios are expected to show an intensification of the hydrological cycle together with modifications of evapotranspiration and soil moisture content. Evapotranspiration changes have been already evidenced for the end of the 20th century. The variance of evapotranspiration has been shown to be strongly related to the variance of precipitation over land. Nevertheless, the feedbacks between evapotranspiration, soil moisture and precipitation have not yet been completely understood at present-day. Furthermore, soil moisture reservoirs are associated to a memory and thus their proper initialization may have a strong influence on predictability. In particular, the linkage between precipitation and soil moisture is modulated by the effects on evapotranspiration. Therefore, the investigation of the coupling between these variables appear to be of primary importance for the improvement of predictability over the continents. The coupled manifold (CM) technique (Navarra and Tribbia 2005) is a method designed to separate the effects of the variability of two variables which are connected. This method has proved to be successful for the analysis of different climate fields, like precipitation, vegetation and sea surface temperature. In particular, the coupled variables reveal patterns that may be connected with specific phenomena, thus providing hints regarding potential predictability. In this study we applied the CM to recent observational datasets of precipitation (from CRU), evapotranspiration (from GIMMS and MODIS satellite-based estimates) and soil moisture content (from ESA) spanning a time period of 23 years (1984-2006) with a monthly frequency. Different data stratification (monthly, seasonal, summer JJA) have been employed to analyze the persistence of the patterns and their characteristical time scales and seasonality. The three variables considered show a significant coupling among each other. Interestingly, most of the signal of the evapotranspiration-precipitation coupled terms comes from the summer (JJA), when convective motions increase sensitivity to surface conditions over land. The CM analysis of the response of evapotranspiration to soil moisture allowed a characterization of the robustness of the coupling between these two variables which has been identified as a key requirement for precipitation predictability (Koster et al. 2000). References Navarra, A., and J. Tribbia (2005), The coupled manifold, J. Atmos. Sci., 62, 310-330. Koster, R. D., M. J. Suarez, and M. Heiser (2000), Variance and predictability of precipitation at seasonal-to-interannual timescales, J. Hydrometeor., 1, 26-46.

  13. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region receives. Our results indicate that the causes of hydrologic fluctuations are spatially diverse and that future projections will need to consider more than just thermodynamic changes for accurate regional predictions.

  14. Characterizing the Precipitation Processes in Hurricane Karl (2010) Through Analysis of Airborne Doppler Radar Data and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    DeHart, J.; Houze, R.

    2016-12-01

    Airborne radar data and numerical simulations are employed to investigate the structure of Hurricane Karl (2010). Karl peaked in intensity as a major hurricane in the Gulf of Mexico before making landfall on the mountainous coast of Veracruz, Mexico. Multiple aircraft extensively sampled Karl during the NASA GRIP campaign, including NASA's DC-8 aircraft instrumented with the Advanced Precipitation Radar 2 (APR-2), which is a high-resolution, dual-frequency Doppler radar. Data from APR-2 provide a unique opportunity to characterize the precipitation structure of Karl as it underwent orographic modification. As Karl made landfall on 17 September 2010, the vertical structure of the precipitation echo varied spatially around the Mexican terrain. The precipitation variation was linked to several factors: landfall, orientation of flow relative to the topographic features, and differing characteristics inherent to the eyewall and rainbands. Despite the differences in the reflectivity intensity across the storm, we show that low-level reflectivity enhancement occurred only where upslope flow was favorable. The radar data indicate that the processes initially contributing to the reflectivity enhancement were warm-cloud processes, either through collection of orographically-generated cloud water or shallow convection. But as Karl weakened, the low-level enhancement processes were overshadowed by deep convection that developed along the terrain. Analysis of the radar data is complemented by a series of numerical simulations, which reasonably reproduce the track, intensity and structure of Karl. The simulated thermodynamic and kinematic patterns provide a holistic view of Karl's evolution during landfall. We use terrain modification experiments to examine the sensitivity of the orographic enhancement processes to the three-dimensional terrain and land surface characteristics. Consistent with the radar analysis, warm-cloud enhancement processes are visible in the spatial pattern of hydrometeor mixing ratios and in a shift towards greater mixing ratios. We link changes in the microphysical patterns with the thermodynamic and kinematic environments in which the patterns are embedded. We also examine the relative contributions of intense convection and forced ascent to the precipitation totals.

  15. Changes in seasonal and diurnal precipitation types during summer over South Korea in the late twenty-first century (2081-2100) projected by the RegCM4.0 based on four RCP scenarios

    NASA Astrophysics Data System (ADS)

    Oh, Seok-Geun; Suh, Myoung-Seok

    2018-01-01

    Changes in seasonal and diurnal precipitation types over South Korea during summer in the late twenty-first century (2081-2100) were projected under four RCP scenarios using the Regional Climate Model (RegCM4.0) with a horizontal resolution of 12.5 km. Two boundary conditions, ERA-Interim and HadGEM2-AO, were used to drive the RegCM4.0 (jointly named RG4_ERA and RG4_HG2, respectively). In general, the RegCM4.0 reproduces the spatial distribution of summer precipitation over Northeast Asia for the current climate (1989-2008) reasonably well. The RG4_HG2 shows larger dry biases over South Korea, when compared with observations, than does the RG4_ERA. These strong dry biases result from the underestimation of convective precipitation (CPR) and are particularly noticeable in late afternoons during July and August. It is related to the performance of HadGEM2-AO which simulated southwesterly winds weakly in that time. However, interestingly, the RG4_HG2 simulates similar increases in the contribution of CPR to total precipitation after mid-July, resulting in comparable performance in the reproduction of heavy precipitation. In the late twenty-first century, a significant increase (decrease) in CPR (NCPR) is generally projected over South Korea, and particularly under the RCP8.5. During June, the total precipitation is affected primarily by changes in NCPR under RCP2.6 and RCP6.0. After mid-July, increasing total precipitation is primarily caused by the distinct increases in CPR in the late afternoons; this pattern is particularly noticeable under RCP8.5, which is associated with more destabilized atmospheric conditions during July and August. Light and heavy precipitation are projected to decrease and increase, respectively, under RCP8.5.

  16. Atmospheric circulation patterns and spatial climatic variations in Beringia

    NASA Astrophysics Data System (ADS)

    Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.

    1998-08-01

    Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.

  17. Possible teleconnections between East and South Asian summer monsoon precipitation in projected future climate change

    NASA Astrophysics Data System (ADS)

    Woo, Sumin; Singh, Gyan Prakash; Oh, Jai-Ho; Lee, Kyoung-Min

    2018-01-01

    The present paper examined the teleconnections between two huge Asian summer monsoon components (South and East Asia) during three time slices in future: near-(2010-2039), mid-(2040-2069) and far-(2070-2100) futures under the RCP4.5 and RCP8.5 scenarios. For this purpose, a high-resolution atmospheric general circulation model is used and integrated at 40 km horizontal resolution. To get more insight into the relationships between the two Asian monsoon components, we have studied the spatial displaying correlation coefficients (CCs) pattern of precipitation over the entire Asian monsoon region with that of South Asia and three regions of East Asia (North China, Korea-Japan and Southern China) separately during the same three time slices. The possible factors responsible for these teleconnections are explored by using mean sea level pressure (MSLP) and wind fields at 850 hPa. The CC pattern of precipitation over South Asia shows an in-phase relationship with North China and an out-of-phase relationship with Korea-Japan, while precipitation variations over Korea-Japan and Southern China exhibit an out-of-phase relationship with South Asia. The CCs analysis between the two Asian blocks during different time slices shows the strongest CCs during the near and far future with the RCP8.5 scenario. The CC pattern of precipitation over Korea-Japan and Southern China with the wind (at 850 hPa) and MSLP fields indicate that the major parts of the moisture over Korea-Japan gets transported from the west Pacific along the western limb of NPSH, while the moisture over Southern China comes from the Bay of Bengal and South China Seas for good monsoon activity.

  18. Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity

    PubMed Central

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716

  19. Reconstructing Hydrologic Variability in Southwestern North America Using Speleothem Proxies and Precipitation Isotopes from California

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, Staryl

    Precipitation in southwestern North America has exhibited significant natural variability over the past few thousand years. This variability has been attributed to sea surface temperature regimes in the Pacific and Atlantic oceans, and to the attendant shifts in atmospheric circulation patterns. In particular, decadal variability in the North Pacific has influenced precipitation in this region during the twentieth century, but links to earlier droughts and pluvials are unclear. Here I assess these links using delta18 O measurements from a speleothem from southern California that spans AD 854-- 2007. I show that variations in the oxygen isotopes of the speleothem correlate to sea surface temperatures in the Kuroshio Extension region of the North Pacific, which affect the atmospheric trajectory and isotopic composition of moisture reaching the study site. Interpreting our speleothem data as a record of sea surface temperatures in the Kuroshio Extension, I find a strong 22-year periodicity, suggesting a persistent solar influence on North Pacific decadal variability. A comparison with tree-ring records of precipitation during the past millennium shows that some droughts occurred during periods of warmth in the Kuroshio Extension, similar to the instrumental record. However, other droughts did not and instead were likely influenced by other factors. The carbon isotope record indicates drier conditions are associated with higher delta13C values and may be a suitable proxy for reconstructing past drought variability. More research is needed to determine the controls on trace element concentrations. Finally, I find a significant increase in sea surface temperature variability over the past 150 years, which may reflect an influence of greenhouse gas concentrations on variability in the North Pacific. While drought is a common feature of climate in this region, most climate models also project extreme precipitation events to increase in frequency and severity because the climate changes largely due to increased water vapor content in a warmer atmosphere. I also utilize precipitation data and isotopic analysis from precipitation samples collected weekly from near the cave site at Giant Forest, Sequoia National Park, California, from 2001 to 2011, to analyze climate mode patterns during extreme precipitation events and to construct an isotopic data base of precipitation samples. Composite maps indicate extreme precipitation weeks consist of a weaker Aleutian Low, coupled with a deep low pressure cell located northwest of California and enhanced subtropical moisture. I find extreme precipitation weeks occur more often during the La Nina phase and less during the positive Eastern Pacific (EP) phase or during the Central Pacific (CP) neutral phase at our site. Analyses of climate mode patterns and precipitation amounts indicate that when the negative Arctic Oscillation (AO), negative and neutral Pacific North American pattern (PNA), and positive Southern Oscillation Index (SOI) (La Nina) are in sync, the maximum amount of precipitation anomalies are distributed along the Western US. Additionally, the central or eastern Pacific location of El Nino Southern Oscillation sea surface temperature anomalies can further enhance predictive capabilities of the landfall location of extreme precipitation.

  20. Continuous Real-time Measurements of δ-values of Precipitation during Rain Events: Insights into Tropical Convection

    NASA Astrophysics Data System (ADS)

    He, S.; Goodkin, N.; Jackisch, D.; Ong, M. R.

    2017-12-01

    Studying how the tropical convection affects stable isotopes in precipitation can help us understand the evolution of the precipitation isotopes over time and improve the interpretation of paleoclimate records in the tropical region. We have been continuously monitoring δ-values of precipitation during rain events in Singapore for the past three years (2014-2017) using a diffusion sampler-cavity ring-down spectrometer (DS-CRDS) system. This period of time spans the most recent El Niño and La Niña, and thus affords us the opportunity to use our ultra-high temporal resolutsion data to examine the El Niño-Southern Oscillation (ENSO) impact on the precipitation isotopes during convection and the intra-annual variability in the region. δ-values of precipitation could change significantly during a single event, and mainly exhibits "V" (or "U" ) shape or "W" shape patterns. The mesoscale subsidence and rain re-evaporation are two processes that largely shape the isotopes of precipitation during events. Time series of the initial, highest and lowest δ-values of individual events, and absolute change in δ-values during these events show clear evolution over time. Events with low δ-values occurred less frequently in 2015 than the other years. Likewise, the frequency of events with larger magnitude change in δ-values and low initial values are also lower in 2015. The events with low averaged δ-values usually have very low initial δ-values, and are closely associated with organized regional convection, indicating that the convective activities in the upwind area can significantly influence the δ-values of precipitation. All these observations suggest lower intensity and frequency of regional organized convection in 2015. The ENSO event in 2015 was likely responsible for these changes. During an ENSO event, convection over the central and eastern Pacific is strengthened while that of the western Pacific and Southeast Asia is supressed, resulting in a weakened monsoon in the region. Therefore, we believe that ENSO can not only impact the regional convection, but also drive the intra-annual variability in δ-values of precipitation in the area.

  1. Shifts in historical streamflow extremes in the Colorado River Basin

    DOE PAGES

    Solander, Kurt C.; Bennett, Katrina Eleanor; Middleton, Richard Stephen

    2017-07-10

    The global phenomenon of climate change-induced shifts in precipitation leading to "wet regions getting wetter" and "dry regions getting drier" has been widely studied. However, the propagation of these changes in atmospheric moisture within stream channels is not a direct relationship due to differences in the timing of how changing precipitation patterns interact with various land surfaces. Streamflow is of particular interest in the Colorado River Basin (CRB) due to the region’s rapidly growing population, projected temperature increases that are expected to be higher than elsewhere in the contiguous United States, and subsequent climate-driven disturbances including drought, vegetation mortality, andmore » wildfire, which makes the region more vulnerable to changes in hydrologic extremes. Here in this study, we determine how streamflow extremes have shifted in the CRB using two statistical methods—the Mann-Kendall trend detection analysis and Generalized Extreme Value (GEV) theorem. We evaluate these changes in the context of key flow metrics that include high and low flow percentiles, maximum and minimum 7-day flows, and the center timing of streamflow using historical gage records representative of natural flows. Monthly results indicate declines of up to 41% for high and low flows during the June to July peak runoff season, while increases of up to 24% were observed earlier from March to April. Finally, our results highlight a key threshold elevation and latitude of 2300 m and 39° North, respectively, where there is a distinct shift in the trend. The spatiotemporal patterns observed are indicative of changing snowmelt patterns as a primary cause of the shifts. Identification of how this change varies spatially has consequences for improved land management strategies, as specific regions most vulnerable to threats can be prioritized for mitigation or adaptation as the climate warms.« less

  2. Shifts in historical streamflow extremes in the Colorado River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solander, Kurt C.; Bennett, Katrina Eleanor; Middleton, Richard Stephen

    The global phenomenon of climate change-induced shifts in precipitation leading to "wet regions getting wetter" and "dry regions getting drier" has been widely studied. However, the propagation of these changes in atmospheric moisture within stream channels is not a direct relationship due to differences in the timing of how changing precipitation patterns interact with various land surfaces. Streamflow is of particular interest in the Colorado River Basin (CRB) due to the region’s rapidly growing population, projected temperature increases that are expected to be higher than elsewhere in the contiguous United States, and subsequent climate-driven disturbances including drought, vegetation mortality, andmore » wildfire, which makes the region more vulnerable to changes in hydrologic extremes. Here in this study, we determine how streamflow extremes have shifted in the CRB using two statistical methods—the Mann-Kendall trend detection analysis and Generalized Extreme Value (GEV) theorem. We evaluate these changes in the context of key flow metrics that include high and low flow percentiles, maximum and minimum 7-day flows, and the center timing of streamflow using historical gage records representative of natural flows. Monthly results indicate declines of up to 41% for high and low flows during the June to July peak runoff season, while increases of up to 24% were observed earlier from March to April. Finally, our results highlight a key threshold elevation and latitude of 2300 m and 39° North, respectively, where there is a distinct shift in the trend. The spatiotemporal patterns observed are indicative of changing snowmelt patterns as a primary cause of the shifts. Identification of how this change varies spatially has consequences for improved land management strategies, as specific regions most vulnerable to threats can be prioritized for mitigation or adaptation as the climate warms.« less

  3. Remote sensing, global warming, and vector-borne disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Beck, L.; Dister, S.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially altermore » these factors, thereby affecting the spatial and temporal patterns of disease.« less

  4. Global change and the distributional dynamics of migratory bird populations wintering in Central America.

    PubMed

    La Sorte, Frank A; Fink, Daniel; Blancher, Peter J; Rodewald, Amanda D; Ruiz-Gutierrez, Viviana; Rosenberg, Kenneth V; Hochachka, Wesley M; Verburg, Peter H; Kelling, Steve

    2017-12-01

    Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change. © 2017 John Wiley & Sons Ltd.

  5. Southern Nevada ecosystem stressors [Chapter 2

    Treesearch

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  6. Impact of varying storm intensity and consecutive dry days on grassland soil moisture

    USDA-ARS?s Scientific Manuscript database

    Intra-annual precipitation patterns are expected to shift toward more intense storms and longer dry periods due to changes in climate within the next decades. Using satellite-derived estimates of plant growth data from 2000-2012, this study quantified the relationship between intra-annual precipitat...

  7. Photosynthesis, growth and maize yields in the context of global change

    USDA-ARS?s Scientific Manuscript database

    Maize is the third most important grain crop behind wheat and rice. Global mean temperatures are rising primarily due to anthropogenic carbon dioxide emissions into the earth’s atmosphere. Warmer temperatures over major landmasses are predicted to alter precipitation patterns and to increase the f...

  8. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  9. Responses of Spartina alterniflora to Multiple Stressors: Changing Precipitation Patterns, Accelerated Sea Level Rise, and Nutrient Enrichment

    EPA Science Inventory

    Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the United States and elsewhere. Managers require good information on responses of wetlands to the combined stressors that these habitats experience, or may in the future as a resul...

  10. Rainfall Intensity Effects on Runoff and Sediment Losses From a Colorado Alfisol

    USDA-ARS?s Scientific Manuscript database

    For the Front Range region of Colorado, quantifying rainfall partitioning under current and/or proposed farming practices and changing precipitation patterns is the first step to understanding how to efficiently conserve water and soil resources to meet crop water demands. We quantified the effects ...

  11. Environmental interactions that influence secondary metabolism and development in the saprophytic crop pathogen Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a pathogenic and opportunistic fungus that can infect several crops of agricultural importance and has the potential to produce carcinogenic mycotoxins such as aflatoxin. Predicted changes in global temperatures, precipitation patterns and carbon dioxide levels are expected to ...

  12. Nitrogen retention in salt marsh systems across nutrient-enrichment, elevation, and precipitation regimes: a multiple stressor experiment

    EPA Science Inventory

    In the Northeastern U.S., multiple anthropogenic stressors, including changing nutrient loads, accelerated sea-level rise, and altered climactic patterns are co-occurring, and are likely to influence salt marsh nitrogen (N) dynamics. We conducted a multiple stressor mesocosm expe...

  13. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  14. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

  15. Cenozoic climate evolution in Asian region and its influence on isotopic composition of precipitation

    NASA Astrophysics Data System (ADS)

    Botsyun, Svetlana; Donnadieu, Yannick; Sepulchre, Pierre; Risi, Camille; Fluteau, Frédéric

    2015-04-01

    The evolution of Asian climate during the Cenozoic as well as the onset of monsoon systems in this area is highly debated. Factors that control climate include the geographical position of continents, the land-sea distribution and altitude of orogens. In tern, several climatic parameters such as air temperature, precipitation amount and isotopic fractionation through mass-dependent processes impact precipitation δ18O lapse rate. Stable oxygen paleoaltimetry is considered to be a very efficient and widely applied technique, but the link between stable oxygen composition of precipitation and climate is not well established. To quantify the influence of paleogeography changes on climate and precipitation δ18O over Asia, the atmospheric general circulation model LMDZ-iso, with embedded stable oxygen isotopes, was used. For more realistic experiments, sea surface temperatures were calculated with the fully coupled model FOAM. Various scenarios of TP growth have been applied together with Paleocene, Eocene, Oligocene and Miocene boundary conditions. The results of our numerical modelling show a significant influence of paleogeography changes on the Asian climate. The retreat of the Paratethys ocean, the changes in latitudinal position of India, and the height of the Tibetan Plateau most likely control precipitation patterns over Asia and cause spatial and temporal isotopic variations linked with the amount effect. Indian Ocean currents restructuring during the Eocene induces a substantial warming over Asian continent. The adiabatic and non-adiabatic temperature effects explain some of δ18O signal variations. We highlight the importance of these multiple factor on paleoelevations estimates derived using oxygen stable isotopes.

  16. Assessment of CLIGEN precipitation and storm pattern generation under four precipitation depth categories in China

    USDA-ARS?s Scientific Manuscript database

    CLIGEN (CLImate GENerator) is a widely used stochastic weather generator to simulate continuous daily precipitation and storm pattern information for hydrological and soil erosion models. Although CLIGEN has been tested in several regions in the world, thoroughly assessment before applying it to Chi...

  17. Variations in Global Precipitation: Climate-scale to Floods

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2006-01-01

    Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.

  18. Differences in Water-use Strategies Along an Aridity Gradient Between Two Coexisting Desert Shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic Approaches with Physiological Evidence

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Li, X.; Huawu, W.; Wang, P.; Wang, Y.; WU, X.; Li, W.; Huang, Y.

    2017-12-01

    Understanding of the responses of different plant species to changes in available water source is critical for accurately modeling and predicting species dynamic and the effect of expected climate change on plant distribution. Our study aimed to explore whether there were differences of water use strategies between the two coexisting shrubs (Reaumuria songarica Maxim and Nitraria.sphaerocarpa Maxim ) in response to different amounts of summer precipitation. We conducted a 3-year field observations at three sites along a gradient of precipitation from middle to lower reaches of Heihe River basin (HRB), northwestern China. Stable oxygen composition (δ18O) in plant xylem water, soil water, and groundwater were analyzed concurrently with ecophysiological measurement at monthly intervals during the growing seasons. The results showed that both R. soongorica and N. sphaerocarpa growing in regions with precipitation dominated water supply exhibited distinct seasonal pattern in water source utilization. In contrast, R. soongorica in the most arid site has the consistent water-use strategy relying primarily on groundwater sources regardless seasonality of precipitation. Water source for coexisting R. soongorica and N. sphaerocarpa did not differ at the sites where precipitation amount was high, but they were a significant different in more arid locations. N. sphaerocarpa is more sensitive to summer precipitation than R. soongorica in terms of predawn water potential (Ψpd), stomatal conductance and foliage δ13C. Our findings reveal that plant relying groundwater sources could maintain a consistent water use strategies, but did not for plants took up precipitation-derived water source. Our results demonstrated that N. sphaerocarpa with a shallower rooting system was more responsive for summer rainfall than did for R. soongorica. We also found that the difference in water source uptake between the coexisting species was more apparent in more arid locations. Results of this work will improve our understanding of complex interactions between species and water condition in such dry environments Keywords: Hydrological niche; Reaumuria soongorica; Nitraria sphaerocarpa; Water use pattern; δ18O; δ13C

  19. High sensitivity of gross primary production in the Rocky Mountains to summer rain

    USGS Publications Warehouse

    Berkelhammer, M.; Stefanescu, I.C.; Joiner, J.; Anderson, Lesleigh

    2017-01-01

    In the catchments of the Rocky Mountains, peak snowpack is declining in response to warmer spring temperatures. To understand how this will influence terrestrial gross primary production (GPP), we compared precipitation data across the intermountain west with satellite retrievals of solar-induced fluorescence (SIF), a proxy for GPP. Annual precipitation patterns explained most of the spatial and temporal variability of SIF, but the slope of the response was dependent on site to site differences in the proportion of snowpack to summer rain. We separated the response of SIF to different seasonal precipitation amounts and found that SIF was approximately twice as sensitive to variations in summer rain than snowpack. The response of peak GPP to a secular decline in snowpack will likely be subtle, whereas a change in summer rain amount will have precipitous effects on GPP. The study suggests that the rain use efficiency of Rocky Mountain ecosystems is strongly dependent on precipitation form and timing.

  20. Uncertainties in Projecting Future Changes in Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yang; Lu, Jian; Leung, L. Ruby

    This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts alsomore » significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both total and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.« less

  1. Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.

    2009-06-01

    In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.

  2. Using Dynamically Downscaled Climate Model Outputs to Inform Projections of Extreme Precipitation Events

    NASA Technical Reports Server (NTRS)

    Wobus, Cameron; Reynolds, Lara; Jones, Russell; Horton, Radley; Smith, Joel; Fries, J. Stephen; Tryby, Michael; Spero, Tanya; Nolte, Chris

    2015-01-01

    Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect between the nature of the events that cause damaging floods and the models used to project how climate change might influence their magnitude. This could be a particular problem when developing scenarios to inform future storm water management options under future climate scenarios. In this study we sought to close this gap, using sub-daily outputs from the Weather Research and Forecasting model (WRF) from each of the nine climate regions in the United States. Specifically, we asked 1) whether WRF outputs projected consistent patterns of change for sub-daily and daily precipitation extremes; and 2) whether this dynamically downscaled model projected different magnitudes of change for 3-hourly vs 24-hourly extreme events. We extracted annual maximum values for 3-hour through 24-hour precipitation totals from an 11-year time series of hindcast (1995-2005) and mid-century (2045-2055) climate, and calculated the direction and magnitude of change for 3-hour and 24-hour extreme events over this timeframe. The model results project that the magnitude of both 3-hour and 24-hour events will increase over most regions of the United States, but there was no clear or consistent difference in the relative magnitudes of change for sub-daily vs daily events.

  3. Equilibrium line altitudes and climate during the Late Holocene glacial maximum in the Andes

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J.

    2012-12-01

    Documenting the spatial and temporal pattern of climate change associated with widespread glacial fluctuations during Late Holocene time is critical for understanding the mechanisms underlying these climatic/glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) associated with the most prominent glacial advance during the last millennium for four alpine glaciers in different climatic regimes in the Andes. We reconstruct scenarios of the climatic conditions (temperature and precipitation anomalies) that accommodate the ELA depressions. The glaciers studied are an unnamed glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S) and Tranquilo glacier (47°S). Results from the combined geomorphic analysis and application of a surface energy and mass balance model suggest that there is not a unique combination of temperature and precipitation conditions that accommodates the ELA change recorded since the Late Holocene maximum at the four sites. Assuming no change in precipitation, the ELA depressions could be explained by a cooling (with respect to present-day values) of at least -0.7°C at Cordillera Vilcanota, -1.0°C at Tapado glacier, -0.5°C at Cipreses glacier and -1.3°C at Tranquilo glacier. In contrast, assuming no change in temperature, the ELA depressions could be explained by an increase in the precipitation of at least 0.51 m (63% of the annual precipitation) at Cordillera Vilcanota, 0.33 m (95%) at Tapado glacier, 0.17 m (21%) at Cipreses glacier and 0.68 m (62%) at Tranquilo glacier. Our results serve as targets to test predictions from models of global climate dynamics for the last millennium and contribute to the understanding of the mechanisms underlying the Late Holocene glacial fluctuations.

  4. Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Kelly, Sara A.; Takbiri, Zeinab; Belmont, Patrick; Foufoula-Georgiou, Efi

    2017-10-01

    Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000-69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30-200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.

  5. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    NASA Astrophysics Data System (ADS)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  6. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  7. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs

    NASA Astrophysics Data System (ADS)

    Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.

    2018-05-01

    We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in contrast to what most marine proxy climate records suggest.

  8. Spatiotemporal pattern of vegetation remote sensing phenology and its response to climatic factors on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    An, S.; Chen, X.

    2015-12-01

    Based on the MODIS MCD12Q2 remote sensing phenology product, we analyzed spatiotemporal variations of vegetation green-up, maturity, senescence and brown-off dates, and their relation to spatiotemporal patterns of air temperature and precipitation on the Qinghai-Tibet Plateau (QTP). From 2001 to 2012, phenological time series at about 11.7%~15.1% pixels indicate significant linear trends (P<0.1) with strong spatial consistency. Namely, pixels with significant phenological advancement and growing season lengthening are mainly distributed in the middle and eastern parts of the QTP, while pixels with significant phenological delay and growing season shortening are mainly distributed in the western and southern parts as well as the eastern edge of the QTP. Similar spatial patterns for positive and negative linear trends of the minimum and maximum EVI, and the time-integrated EVI during the growing season were detected in the above two regions, respectively. With regard to climatic factors, mean annual temperature shows an increased trend over the QTP except for the eastern edge, whereas annual precipitation displays an increased trend in the middle and eastern parts but a decreased trend in the western and southern parts as well as the eastern edge of the QTP. These findings suggest that phenological advancement, growing season lengthening, and vegetation activity enhancement in the middle and eastern parts might be attributed to coincident temperature and precipitation increase. By contrast, phenological delay, growing season shortening, and vegetation activity reduction in the western and southern parts as well as the eastern edge might be caused by opposite changes of temperature and precipitation, and strong evaporation induced water shortage. Furthermore, a partial correlation analysis indicates that green-up, maturity, and brown-off dates were influenced by preceding temperature and precipitation, while senescence date was affected by preceding precipitation.

  9. Summer precipitation prediction in the source region of the Yellow River using climate indices

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2016-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.

  10. Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-07-01

    Uncertainties in climate modelling are well documented in literature. Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional scale. In the present work, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from statistically downscaled GCM projections in Columbia River Basin (CRB). Analysis is performed using two different statistically downscaled climate projections (with ten GCMs downscaled products each, for RCP 4.5 and RCP 8.5, from CMIP5 dataset) namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. The two datasets for BCSD and MACA are downscaled from observed data for both scenarios projections i.e. RCP4.5 and RCP8.5. Analysis is performed using spatial change (yearly scale), temporal change (monthly scale), percentile change (seasonal scale), quantile change (yearly scale), and wavelet analysis (yearly scale) in the future period from the historical period, respectively, at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice versa for temperature. Most of the models have indicated considerate positive change in quantiles and percentiles for both precipitation and temperature. Wavelet analysis provided insights into possible explanation to changes in precipitation.

  11. Statistical Attribution of Changes in Streamflow in the U.S. Midwest over the 20th and 21st Centuries

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Villarini, G.

    2016-12-01

    Streamflows have increased notably across the Midwest over the past century. These changes have largely been attributed to the influence of upward trends in heavy precipitation and agricultural increases in row crop production. However, attempts to understand the specific causes of the changes in streamflow timing, magnitude, frequency, and seasonality have led to much debate in recent years, particularly regarding the influence of changing agricultural practices. Separating the different - climatic or land use/land cover - drivers of changing streamflow from a statistical perspective is not straightforward, and different methods have been implemented in the literature. Here, we develop statistical models in 476 U.S. Midwest river basins with long-term USGS discharge records to investigate the influence of the main drivers of changing streamflows: urbanization (using basin-averaged population per square kilometer), agricultural land cover (total corn and soybean harvested acreage), basin-averaged temperature, basin-averaged precipitation, and antecedent soil moisture (using precipitation from the month preceding each season as a proxy). We model the changes in the seasonal discharge quantiles from low to high flows as a function of these drivers (separately and combined), to evaluate which set of predictors is the best in each river basin. Results indicate that precipitation is indeed the most widespread driver in regions that are neither predominantly agricultural nor heavily urbanized. Elsewhere, we find strong regional patterns in terms of the best-fitting drivers, depending on climate, agricultural land cover and urbanization. Using these models, we then examine the sensitivity of discharge to different scenarios based on potential changes in each of the predictors. The projected changes have profound implications for water resources management across the Midwest.

  12. Implications of a decrease in the precipitation area for the past and the future

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.

    2018-04-01

    The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.

  13. Impact of climate change on water resources in South Sikkim, India

    NASA Astrophysics Data System (ADS)

    Vishwakarma, C. A.; Pant, M.; Asthana, H.; Singh, P.; Rena, V.; Mukherjee, S.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean temperature has increased by 0.6 ± 0.2°C since 1861 and predicts an increase of 2 to 4° C over the next 100 years. The direct effect of climate change on groundwater resources depends on the variation in the volume and distribution of groundwater and its recharge. Ingty and Bawa (2012) have summarized the detailed observation of climate change and its impact on biodiversity and natural resources in the Lachen valley, Sikkim using weather-based indicator of climate change like lesser snowfall, shifts in seasonal timing, uneven rainfall, accelerated glacial melt, and drying of water sources. South Sikkim is the most drought-prone area of the state and this is worst hit district by climate change. In Sikkim, more than three-fourths people feel that the water resources are drying up and out of them 60.2% believe that there is less snow at present time rather than the past. The subsurface aquifers are mainly recharged by precipitation or through the interaction of surface water bodies like lakes, glaciers, streams and rivers. But due to the effect of climate change the rate of precipitation and snow cover melting, the water scarcity problem had started. According to Indian Meteorological Department (Namthang AWS, South Sikkim), the annual precipitation has decreased from 2533 mm to 1503 mm. Spring is the main source of water in South Sikkim and most of the spring have become seasonal or dried. The average spring discharge data in the year 2000 was 100.18 l/m and after ten years it decreased by 26.12 l/m. With the decrease in precipitation and spring discharge, the agriculture productivity also get affected and it affect the socio-economic condition of South district. This study looks into various factors impacting the discharge at springs highlighting the effect of climate change induced precipitation pattern and land cover dynamics using SLURP (Semi-distributed Land Use based Runoff Processes).

  14. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  15. Changes in the Probability of Extreme Events: Where to Look for their Causes?

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Gulev, S. K.

    2011-12-01

    When wet or dry events are extraordinary and are associated with flooding, water shortages, severe vegetation stress, crop failures, property losses, and harm to human health, we name them extremes. Numerous observational studies show that in the past several decades precipitation has become more intense over most of the extra-tropics. At the same time, (and often in the same regions) precipitation events may occur more or less frequently or come in sequences of prolonged no-rain and wet periods. Each extreme event which manifests itself is a consequence of individual factors that are difficult to foresee. However, when these events occur more frequently, we must admit that there are changes in the probability of their occurrence and try to estimate why this happens. For example, in attempts to project prolonged extreme events (such as droughts) in a given season, climatologists used to look for their precursors in the Earth system "memory" that include anomalies in sea ice (SI) and snow cover extents (SCE), sea surface temperature (SST), and soil moisture and for their patterns (e.g., Southern Oscillation). However, the major "memory" component of the Earth system is the Earth Climate System itself. It began changing (IPCC 2007) and is not any longer a constant factor: SST, SI, and SCE anomalies of the past now became "climatology" and it is time to include this new reality in our analyses of the frequency and intensity of extreme events. Furthermore, land use, urban development, industrial development, and water management keep changing landscapes and, there are good reasons to believe that regional environmental changes feed back causing in some areas changes in the probability of extreme events. The central United States is among the regions where the strongest increase in intense rainfall in the 20th century has been documented. This raises the question of how precipitation patterns in the central US will evolve in the future: Will the recent trends toward increases in intense rainfall continue? We present and try to substantiate a hypothesis that the observed changes in characteristics of precipitation in the central US during the 20th century have been produced by interactions of local and regional land use change with global climate changes. We shall describe climatological and anthropogenic precursors of several extreme outbreaks over the northern extratropics. These precursors were waiting for their time and manifested themselves when the time became right. For example, in order to anticipate changes in the probability of the future heat outbreaks over Europe (including European Russia), the factors that control prolonged summer anticyclone conditions over the region should be thoroughly monitored and skillfully projected. Apparently, anomalies and/or trends in regional mean surface air temperature and precipitation are not the best among these precursors.

  16. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.

    PubMed

    Ford, Trent W; Frauenfeld, Oliver W

    2016-01-18

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

  17. Reduced transpiration response to precipitation pulses precedes mortality in a piñon-juniper woodland subject to prolonged drought.

    PubMed

    Plaut, Jennifer A; Wadsworth, W Duncan; Pangle, Robert; Yepez, Enrico A; McDowell, Nate G; Pockman, William T

    2013-10-01

    Global climate change is predicted to alter the intensity and duration of droughts, but the effects of changing precipitation patterns on vegetation mortality are difficult to predict. Our objective was to determine whether prolonged drought or above-average precipitation altered the capacity to respond to the individual precipitation pulses that drive productivity and survival. We analyzed 5 yr of data from a rainfall manipulation experiment in piñon-juniper (Pinus edulis-Juniperus monosperma) woodland using mixed effects models of transpiration response to event size, antecedent soil moisture, and post-event vapor pressure deficit. Replicated treatments included irrigation, drought, ambient control and infrastructure control. Mortality was highest under drought, and the reduced post-pulse transpiration in the droughted trees that died was attributable to treatment effects beyond drier antecedent conditions and reduced event size. In particular, trees that died were nearly unresponsive to antecedent shallow soil moisture, suggesting reduced shallow absorbing root area. Irrigated trees showed an enhanced response to precipitation pulses. Prolonged drought initiates a downward spiral whereby trees are increasingly unable to utilize pulsed soil moisture. Thus, the additive effects of future, more frequent droughts may increase drought-related mortality. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Correlation between total precipitable water and precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Keum, Wangho; Lim, Gyu-Ho

    2017-04-01

    The precipitation rate(PR) and the total precipitable water(TPW) interact with various physical mechanisms. The correlation of two variables changes with difference of domain resolution and characteristics of the region. This poster analyzes the correlation between PR and TPW over East Asia using Cyclostationary Empirical Orthogonal Function(CSEOF) which is one of the PCA analysis. The CSEOF is useful to search a periodic pattern of the data. The anomalies which is subtracted climatological mean from the original data are used to represent annual cycles. Two variances of ERA-Interim Monthly Total Column Water vapor and GPCP monthly precipitation amounts with 372 time since January, 1984 to December, 2014 are decomposed into several modes separately. The first mode which explain largest variance are used in analysis. PC of both PR and TPW increase recently on mean value and amplitude, and they show considerable correlation on phase. The correlation coefficient of PR and TPW is 0.61 and maintains the same values by month. The result of harmonic analysis shows 2 to 6 year oscillations. As result of decomposed modes of two variables, there is the relationship between TPW PC series and horizontal moisture gradient. The Horizontal moist gradient can change affect moisture flux convergence which is one of important variable of rainfall events.

  19. Tropical circulation and precipitation response to ozone depletion and recovery

    NASA Astrophysics Data System (ADS)

    Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke

    2017-06-01

    Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.

  20. Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    NASA Technical Reports Server (NTRS)

    Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendon, D.I.; Galewsky, J.; LeGrande, A. N.; Risi, C.; Sharp, Z. D.; hide

    2015-01-01

    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors.

Top