Sample records for changing rainfall patterns

  1. Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations.

    PubMed

    Roitberg, Elena; Shoshany, Maxim

    2017-01-01

    Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.

  2. Rainfall pattern variability as climate change impact in The Wallacea Region

    NASA Astrophysics Data System (ADS)

    Pujiastuti, I.; Nurjani, E.

    2018-04-01

    The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.

  3. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  4. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    NASA Astrophysics Data System (ADS)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  5. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  6. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.

    PubMed

    Reichwaldt, Elke S; Ghadouani, Anas

    2012-04-01

    Toxic cyanobacterial blooms represent a serious hazard to environmental and human health, and the management and restoration of affected waterbodies can be challenging. While cyanobacterial blooms are already a frequent occurrence, in the future their incidence and severity are predicted to increase due to climate change. Climate change is predicted to lead to increased temperature and changes in rainfall patterns, which will both have a significant impact on inland water resources. While many studies indicate that a higher temperature will favour cyanobacterial bloom occurrences, the impact of changed rainfall patterns is widely under-researched and therefore less understood. This review synthesizes the predicted changes in rainfall patterns and their potential impact on inland waterbodies, and identifies mechanisms that influence the occurrence and severity of toxic cyanobacterial blooms. It is predicted that there will be a higher frequency and intensity of rainfall events with longer drought periods in between. Such changes in the rainfall patterns will lead to favourable conditions for cyanobacterial growth due to a greater nutrient input into waterbodies during heavy rainfall events, combined with potentially longer periods of high evaporation and stratification. These conditions are likely to lead to an acceleration of the eutrophication process and prolonged warm periods without mixing of the water column. However, the frequent occurrence of heavy rain events can also lead to a temporary disruption of cyanobacterial blooms due to flushing and de-stratification, and large storm events have been shown to have a long-term negative effect on cyanobacterial blooms. In contrast, a higher number of small rainfall events or wet days can lead to proliferation of cyanobacteria, as they can rapidly use nutrients that are added during rainfall events, especially if stratification remains unchanged. With rainfall patterns changing, cyanobacterial toxin concentration in waterbodies is expected to increase. Firstly, this is due to accelerated eutrophication which supports higher cyanobacterial biomass. Secondly, predicted changes in rainfall patterns produce more favourable growth conditions for cyanobacteria, which is likely to increase the toxin production rate. However, the toxin concentration in inland waterbodies will also depend on the effect of rainfall events on cyanobacterial strain succession, a process that is still little understood. Low light conditions after heavy rainfall events might favour non-toxic strains, whilst inorganic nutrient input might promote the dominance of toxic strains in blooms. This review emphasizes that the impact of changes in rainfall patterns is very complex and will strongly depend on the site-specific dynamics, cyanobacterial species composition and cyanobacterial strain succession. More effort is needed to understand the relationship between rainfall patterns and cyanobacterial bloom dynamics, and in particular toxin production, to be able to assess and mediate the significant threat cyanobacterial blooms pose to our water resources. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  8. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  9. Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response

    NASA Astrophysics Data System (ADS)

    Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.

    2015-12-01

    Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.

  10. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.

  11. Demographic patterns of a widespread long-lived tree are associated with rainfall and disturbances along rainfall gradients in SE Australia

    PubMed Central

    Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon

    2013-01-01

    Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160

  12. Increases in tropical rainfall driven by changes in frequency of organized deep convection.

    PubMed

    Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George

    2015-03-26

    Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.

  13. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  14. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  15. Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016

    NASA Astrophysics Data System (ADS)

    Chooi Tan, Kok

    2018-04-01

    The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.

  16. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  17. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system

    Treesearch

    Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran

    2017-01-01

    Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...

  18. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    NASA Astrophysics Data System (ADS)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  19. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  20. Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions

    PubMed Central

    Tao, Wanghai; Wu, Junhu; Wang, Quanjiu

    2017-01-01

    Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431

  1. Changes to Sub-daily Rainfall Patterns in a Future Climate

    NASA Astrophysics Data System (ADS)

    Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.

    2012-12-01

    An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.

  2. The effects of more extreme rainfall patterns on nitrogen leaching from a field crop system in the upper Midwest, USA

    NASA Astrophysics Data System (ADS)

    Hess, L.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2016-12-01

    As global surface temperatures rise, the proportion of total rainfall that falls in heavy storm events is increasing in many areas, in particular the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for ecosystem nutrient losses, especially from agricultural ecosystems. We conducted a multi-year rainfall manipulation experiment to examine how more extreme rainfall patterns affect nitrogen (N) leaching from row-crop ecosystems in the upper Midwest, and to what extent tillage may moderate these effects. 5x5m rainout shelters were installed in April 2015 to impose control and extreme rainfall patterns in replicated plots under conventional tillage and no-till management at the Kellogg Biological Station LTER site. Plots exposed to the control rainfall treatment received ambient rainfall, and those exposed to the extreme rainfall treatment received the same total amount of water but applied once every 2 weeks, to simulate larger, less frequent storms. N leaching was calculated as the product of measured soil water N concentrations and modeled soil water drainage at 1.2m depth using HYDRUS-1D. Based on data to date, more N has been leached from both tilled and no-till soils exposed to the extreme rainfall treatment compared to the control rainfall treatment. Results thus far suggest that greater soil water drainage is a primary driver of this increase, and changes in within-system nitrogen cycling - such as net N mineralization and crop N uptake - may also play a role. The experiment is ongoing, and our results so far suggest that intensifying precipitation patterns may exacerbate N leaching from agricultural soils, with potentially negative consequences for receiving ground- and surface waters, as well as for farmers.

  3. Detecting potential anomalies in projections of rainfall trends and patterns using human observations

    NASA Astrophysics Data System (ADS)

    Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.

    2016-12-01

    Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.

  4. Animal perception of seasonal thresholds: changes in elephant movement in relation to rainfall patterns.

    PubMed

    Birkett, Patricia J; Vanak, Abi T; Muggeo, Vito M R; Ferreira, Salamon M; Slotow, Rob

    2012-01-01

    The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice.

  5. Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall

    NASA Astrophysics Data System (ADS)

    Lucero, O. A.; Rodriguez, N. C.

    In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2

  6. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

  7. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system

    Treesearch

    Ayron M. Strauch; Richard A. MacKenzie; Christian P. Giardina; Gregory L. Bruland

    2015-01-01

    Rising atmospheric CO2 and resulting warming are expected to impact freshwater resources in the tropics, but few studies have documented how natural stream flow regimes in tropical watersheds will respond to changing rainfall patterns. To address this data gap, we utilized a space-for-time substitution across a naturally occurring and highly...

  8. The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2016-12-01

    Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.

  9. Disparity in rainfall trend and patterns among different regions: analysis of 158 years' time series of rainfall dataset across India

    NASA Astrophysics Data System (ADS)

    Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.

    2017-10-01

    Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.

  10. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  11. Migration Related to Climate Change: Impact, Challenges and Proposed Policy Initiatives

    NASA Astrophysics Data System (ADS)

    Sarkar, A.

    2015-12-01

    Migration of human population possesses a great threat to human development and nation building. A significant cause for migration is due to change in climatic conditions and vulnerabilities associated with it. Our case study focuses on the consequent reason and impact of such migration in the coastal areas of West Bengal, India. The changes in rainfall pattern and the variation of temperature have been considered as parameters which have resulted in migration. It is worthy to note that the agricultural pattern has subsequently changed over the last two decades due to change in rainfall and temperature. India being an agriculture oriented economy, the changes in the meteorological variables have not only altered the rate of agricultural pattern but also the rate of migration. A proposed framework depicting relationship between changes in meteorological variables and the migration pattern, and an estimate of how the migration pattern is expected to change over the next century by utilizing the downscaled values of future rainfall and temperature has been analyzed. Moreover, various public policy frameworks has also been proposed through the study for addressing the challenges of migration related to climate change. The proposed public policy framework has been streamlined along the lines of various international treaties and conventions in order to integrate the policy initiatives through universalization of law and policy research.

  12. A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Ting, M.

    2017-12-01

    The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, we investigate the co-variability of the July-August mean rainfall across the Indian subcontinent (IS) and the TP. We found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation -that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk-Road wave train due to its link to rainfall over the northwestern IS.

  13. Addressing the mischaracterization of extreme rainfall in regional climate model simulations - A synoptic pattern based bias correction approach

    NASA Astrophysics Data System (ADS)

    Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona

    2018-01-01

    Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.

  14. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  15. Changing character of rainfall in eastern China, 1951-2007.

    PubMed

    Day, Jesse A; Fung, Inez; Liu, Weihan

    2018-02-27

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call "frontal rain events." In spring and early summer (known as "Meiyu Season"), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951-2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the "South Flood-North Drought" pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994-2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  16. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  17. New Indices to Evaluate the Effects of Rainfall Pattern on Runoff and Soil Loss under Different Vegetation in the Loess Plateau, China.

    NASA Astrophysics Data System (ADS)

    Liu, J.; Gao, G.; Jiao, L.; Fu, B.

    2016-12-01

    The rainfall amount, density and duration were commonly used to evaluate the influences of rainfall on runoff and soil loss, which could completely express the information of rainfall, especially rainfall pattern. In this study, the peak zone of rainfall intensity (PZRI) and intra-event intermittency of rainfall (IERI) were developed to detect the effects of rainfall pattern on runoff and soil loss under different land cover types in the Loess Plateau of China. The runoff and soil loss of three vegetation types (Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis) and bare land were measured from 2012 to 2015. The PZRI was significantly correlated with average rainfall intensity (I) and maximum rainfall intensity in 30 minutes (I30). The runoff coefficient (RC) and soil loss were not significantly correlated with I, but they were significantly affected by I30 and PZRI (p<0.05). The greater value of IERI indicated more proportion of PZRI in rainfall duration, and there was positive correlation between IERI and RC. It was showed that the RC was most correlated with PZRI, whereas the correlation between soil loss and I30 was most significant under all cover types. This indicated that the changes of rainfall pattern had more effects on runoff than soil loss. In addition, the position of PZRI in the rainfall profile had an important role on runoff and soil loss. RC and soil loss under bare land was most sensitive to the occurrence period of rainfall peak, followed by Prunus armeniaca, Artemisia sacrorum and Andropogon yunnanensis.

  18. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Murphy, Sheila F.

    2014-01-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.

  19. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.

    2017-04-01

    The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.

  20. Drought stress suppresses phytoalexin production against Fusarium verticilliodes

    USDA-ARS?s Scientific Manuscript database

    Global climate change involves rising temperatures and potentially decreased rainfall or changes in rainfall patterns, which could dramatically decrease the yield of food crops. Drought alone can impair plant growth and development, but in nature plants are continuously exposed to both abiotic and b...

  1. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities.

    PubMed

    De Paola, Francesco; Giugni, Maurizio; Topa, Maria Elena; Bucchignani, Edoardo

    2014-01-01

    Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).

  2. Changing character of rainfall in eastern China, 1951–2007

    NASA Astrophysics Data System (ADS)

    Day, Jesse A.; Fung, Inez; Liu, Weihan

    2018-03-01

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  3. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa

    NASA Astrophysics Data System (ADS)

    Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.

    2018-05-01

    This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain, but a weaker ENSO/IOD signal over the southern part of the region. This signal is consistent and robust in all global and regional model simulations. The projected increase in OND rainfall over the eastern horn of Africa might be linked with the mean changes in SST over Indian and Pacific Ocean basins and the associated Walker circulations.

  4. Prolonged dry periods between rainfall events shorten the growth period of the resurrection plant Reaumuria soongorica.

    PubMed

    Zhang, Zhengzhong; Shan, Lishan; Li, Yi

    2018-01-01

    The resurrection plant Reaumuria soongorica is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of R. soongorica to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage-specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season. Reduced rainfall decreased the aboveground and total biomass, while additional precipitation generally advanced R. soongorica growth and biomass accumulation. An increased interval between rainfall events resulted in an increase in root biomass in the middle of the growing season, followed by a decrease toward the end. The response to the combination of increased rainfall quantity and interval was similar to the response to increased interval alone, suggesting that the effects of changes in rainfall patterns exert a greater influence than increased rainfall quantity. Thus, despite the short duration of this experiment, consequences of changes in rainfall regime on seedling growth were observed. In particular, a prolonged rainfall interval shortened the growth period, suggesting that climate change-induced rainfall variability may have significant effects on the structure and functioning of desert ecosystems.

  5. A single scaling parameter as a first approximation to describe the rainfall pattern of a place: application on Catalonia

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier

    2018-02-01

    As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.

  6. Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)

    NASA Astrophysics Data System (ADS)

    Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto

    2018-02-01

    Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.

  7. Disaggregating from daily to sub-daily rainfall under a future climate

    NASA Astrophysics Data System (ADS)

    Westra, S.; Evans, J.; Mehrotra, R.; Sharma, A.

    2012-04-01

    We describe an algorithm for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous fine-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of atmospheric predictors representative of the future climate. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric profile more reflective of expected future conditions. When looking at the scaling from daily to sub-daily rainfall over the historical record, it was found that the relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically showing more intense rain falling over shorter periods compared with cooler seasons and stations. Importantly, by regressing against atmospheric covariates such as temperature this effect was almost entirely eliminated, providing a basis for suggesting the approach may be valid when extrapolating sub-daily sequences to a future climate. The method of fragments algorithm was then applied to nine stations around Australia, and showed that when holding the total daily rainfall constant, the maximum intensity of a short duration (6 minute) rainfall increased by between 4.1% and 13.4% per degree change in temperature for the maximum six minute burst, between 3.1% and 6.8% for the maximum one hour burst, and between 1.5% and 3.5% for the fraction of the day with no rainfall. This highlights that a large proportion of the change to the distribution of precipitation in the future is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.

  8. The influence of ENSO, PDO and PNA on secular rainfall variations in Hawai`i

    NASA Astrophysics Data System (ADS)

    Frazier, Abby G.; Elison Timm, Oliver; Giambelluca, Thomas W.; Diaz, Henry F.

    2017-11-01

    Over the last century, significant declines in rainfall across the state of Hawai`i have been observed, and it is unknown whether these declines are due to natural variations in climate, or manifestations of human-induced climate change. Here, a statistical analysis of the observed rainfall variability was applied as first step towards better understanding causes for these long-term trends. Gridded seasonal rainfall from 1920 to 2012 is used to perform an empirical orthogonal function (EOF) analysis. The leading EOF components are correlated with three indices of natural climate variations (El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Pacific North American (PNA)), and multiple linear regression (MLR) is used to model the leading components with climate indices. PNA is the dominant mode of wet season (November-April) variability, while ENSO is most significant in the dry season (May-October). To assess whether there is an anthropogenic influence on rainfall, two methods are used: a linear trend term is included in the MLR, and pattern correlation coefficients (PCC) are calculated between recent rainfall trends and future changes in rainfall projected by downscaling methods. PCC results indicate that recent observed rainfall trends in the wet season are positively correlated with future expected changes in rainfall, while dry season PCC results do not show a clear pattern. The MLR results, however, show that the trend term adds significantly to model skill only in the dry season. Overall, MLR and PCC results give weak and inconclusive evidence for detection of anthropogenic signals in the observed rainfall trends.

  9. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.

  10. Impacts of different rainfall patterns on hyporheic zone under transient conditions

    NASA Astrophysics Data System (ADS)

    Liu, S.; Chui, T. F. M.

    2017-12-01

    The hyporheic zone (HZ), the region beneath or alongside a streambed, can play a vital role in stream ecology. Several previous studies have investigated the influential factors on the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can be dynamic and transient, during a transient event such as a storm. Therefore, this study investigates the changes of the HZ under the transient conditions of a storm, and examines the impacts of different rainfall patterns (i.e., intensity and duration) on the HZ. A two-dimensional groundwater-stream model is developed with a domain of 10-meter long and 2-meter deep. The streambed consists of a series of dunes that induce hyporheic exchanges. Brinkman-Darcy and Navier-Stokes equations are respectively employed for the subsurface and stream water, and the velocity and the pressure are coupled at the interface (i.e., the streambed). To compare the results from different rainfall patterns, the influential duration (IT) and the influential depth (ID) are proposed and evaluated. IT is the time required for the HZ to return to its intial stage, once it starts to change. ID is the maximum increment in the depth of the HZ. To accurately detect the region of the HZ in different situations, the moving split-window analysis method is used. The region of the HZ is found to vary significantly under different rainfall intensities. Rainfall intensity displays logarithmic relationships with both the IT and ID with high coefficients of determination (r2=0.98). The derived relationships can be used to predict the influrence of a rainfall event on the HZ. However, the influence of rainfall duration on the HZ depends on other factors such as groundwater response. Rainfall duration displays positive realionships with the IT and ID, but only between certain lower and upper thresholds of rainfall duration. If rainfall duration is shorter than the lower threshold value or longer than the upper value, the IT and ID will have little change with rainfall duration.

  11. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  12. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  13. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.

    PubMed

    Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru

    2012-06-15

    Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.

  14. Analysis of rainfall over northern Peru during El Nino: A PCDS application

    NASA Technical Reports Server (NTRS)

    Goldberg, R.; Tisnado, G.

    1986-01-01

    In an examination of GOES satellite data during the 1982 through 1983 El Nino period, the appearance of lee wave cloud patterns was revealed. A correlation was hypothesized relating an anomalous easterly flow across the Andes with the appearance of these wave patterns and with the subsequent onset of intense rainfall. The cloud patterns are belived to be associated with the El Nino period and could be viewed as precursors to significant changes in weather patterns. The ultimate goal of the researchers will be the ability to predict occurrences of rainstorms associated with the appearance of lee waves and related cloud patterns as harbingers of destruction caused by flooding, huaycos, and other catastrophic consequences of heavy and abnormal rainfall. Rainfall data from about 70 stations in northern Peru from 1980 through 1984 were formatted to be utilized within the Pilot Climate Data System (PCDS). This time period includes the 1982 through 1983 El Nino period. As an example of the approach, a well-pronounced lee wave pattern was shown from a GOES satellite image of April 4, 1983. The ground truth data were then displayed via the PCDS to graphically demonstrate the increase in intensity and areal distribution of rainfall in the northern Peruvian area in the next 4 to 5 days.

  15. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    NASA Astrophysics Data System (ADS)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year. Including the rainfall pattern as a parameter to the partitioning of litter carbon could help better project soil carbon cycling in the Mid-Atlantic region.

  16. Rainfall statistics changes in Sicily

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.

    2013-07-01

    Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.

  17. Large rainfall changes consistently projected over substantial areas of tropical land

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  18. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  19. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  20. Attributing the Human Influence on Precipitation Changes over India

    NASA Astrophysics Data System (ADS)

    R, D.; Achutarao, K. M.; Thanigachalam, A.

    2017-12-01

    Variations in rainfall over India -much of which is received during the summer monsoon season (June-September) - influences the economy of the country as nearly 50% of the population is engaged in the agricultural sector which constitutes 17.4% of the GDP of India. The agriculture and economy of India is highly vulnerable to any changes in the monsoon rainfall is well recognised. Recent decades have seen decreasing monsoon rainfall in various parts of India. Whether these are a consequence of natural monsoon variations or are caused by specific anthropogenic factors is an important question to answer in formulating the right policy response to these changes. Understanding the physical changes is also a first step towards being able to attribute downstream impacts due to rainfall changes. We have carried out an optimal fingerprint based Detection & Attribution analysis to study the changing rainfall patterns. We make use of outputs from 7 models in the Coupled Model Intercomparison Project Phase-5 (CMIP5) database that carried out single forcing experiments with, Natural, GHG, Anthropogenic Aerosols, and historical (All) forcings. We use multiple observational datasets of rainfall (CRU 3.22 and IMD gridded) to account for observational uncertainty to analyse seasonal (JJA and DJF) and annual mean rainfall over the 1906-2005 period. Our analysis shows the dominant role of GHG and Anthropogenic Aerosol forcings on the observed rainfall changes.

  1. Influence of net freshwater supply on salinity in Florida Bay

    USGS Publications Warehouse

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central and West Regions.

  2. Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall

    NASA Astrophysics Data System (ADS)

    Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James

    2010-05-01

    The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.

  3. Short-term climate change and the extinction of the snail Rhachistia aldabrae (Gastropoda: Pulmonata).

    PubMed

    Gerlach, Justin

    2007-10-22

    The only known population of the Aldabra banded snail Rhachistia aldabrae declined through the late twentieth century, leading to its extinction in the late 1990s. This occurred within a stable habitat and its extinction is attributable to decreasing rainfall on Aldabra atoll, associated with regional changes in rainfall patterns in the late twentieth and early twenty-first century. It is proposed that the extinction of this species is a direct result of decreasing rainfall leading to increased mortality of juvenile snails.

  4. Changing patterns of daily precipitation totals at the Coweeta Hydrologic Laboratory, North Carolina, USA

    Treesearch

    T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank

    2017-01-01

    A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...

  5. The northward shift of Meiyu rain belt and its possible association with rainfall intensity changes and the Pacific-Japan pattern

    NASA Astrophysics Data System (ADS)

    Gao, Qingjiu; Sun, Yuting; You, Qinglong

    2016-12-01

    The meridional location change of Meiyu rain belt and its relationship with the rainfall intensity and circulation background changes for the period 1958-2009 are examined using daily rainfall datasets from 756 stations in China, the 6-h ERA-Interim reanalyses, CRU monthly temperature and daily outgoing long-wave radiation (OLR) data from the US National Oceanic and Atmospheric Administration (NOAA). The results indicate that the Meiyu rain belt experienced a northward shift in the late 1990s in response to global warming. Moreover, the intensity of interannual and day-to-day variability of rainfall within Meiyu period has been increasing in the warming climate. The amplification of the variability within Meiyu period over the northern Yangtze-Huai River Valley (YHRV) is much larger than that of the southern YHRV. The large difference in the trends of variance within the Meiyu period between these two regions induces a spatial varying for different rainfall categories in terms of intensity. More significant positive trends in heavy and extreme heavy rainfall occur over northern YHRV compared with southern YHRV, which is a crucial indicator of changes in the rain band, despite the observation of an increase in heavy and very heavy rain events and a decrease in weak events throughout the entire YHRV. A composite of the atmospheric circulation indicates that intense northward horizontal transport and the convergence of water vapor fluxes are the immediate causes of the rain band shift. Besides, through forcing a northward extended convection over the tropics, the Pacific-Japan (P-J) pattern induces a northward expansion of western Pacific Subtropical High, leading to intensified convergence and enhanced rainfall over Northern YHRV.

  6. Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá

    PubMed Central

    Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael

    2014-01-01

    Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503

  7. Climatological determinants of woody cover in Africa.

    PubMed

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  8. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  9. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  10. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China

    PubMed Central

    Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun

    2017-01-01

    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507

  11. Summer Rains and Dry Seasons in the Upper Blue Nile Basin: The Predictability of Half a Century of Past and Future Spatiotemporal Patterns

    PubMed Central

    Mellander, Per-Erik; Gebrehiwot, Solomon G.; Gärdenäs, Annemieke I.; Bewket, Woldeamlak; Bishop, Kevin

    2013-01-01

    During the last 100 years the Ethiopian upper Blue Nile Basin (BNB) has undergone major changes in land use, and is now potentially facing changes in climate. Rainfall over BNB supplies over two-thirds of the water to the Nile and supports a large local population living mainly on subsistence agriculture. Regional food security is sensitive to both the amount and timing of rain and is already an important political challenge that will be further complicated if scenarios of climate change are realized. In this study a simple spatial model of the timing and duration of summer rains (Kiremt) and dry season (Bega), and annual rain over the upper BNB was established from observed data between 1952 and 2004. The model was used to explore potential impacts of climate change on these rains, using a down-scaled ECHAM5/MP1-OM scenario between 2050 and 2100. Over the observed period the amount, onset and duration of Kiremt rains and rain-free Bega days have exhibited a consistent spatial pattern. The spatially averaged annual rainfall was 1490 mm of which 93% was Kiremt rain. The average Kiremt rain and number of rainy days was higher in the southwest (322 days) and decreased towards the north (136 days). Under the 2050–2100 scenario, the annual mean rainfall is predicted to increase by 6% and maintain the same spatial pattern as in the past. A larger change in annual rainfall is expected in the southwest (ca. +130 mm) with a gradually smaller change towards the north (ca. +70 mm). Results highlight the need to account for the characteristic spatiotemporal zonation when planning water management and climate adaptation within the upper BNB. The presented simple spatial resolved models of the presence of Kiremt and annual total rainfall could be used as a baseline for such long-term planning. PMID:23869219

  12. Droughts, rainfall and rural water supply in northern Nigeria

    NASA Astrophysics Data System (ADS)

    Tarhule, Aondover Augustine

    Knowledge concerning various aspects of drought and water scarcity is required to predict, and to articulate strategies to minimize the effects of future events. This thesis investigated different aspects of droughts and rainfall variability at several time scales and described the dynamics of water supply and use in a rural village in northeastern Nigeria. The parallel existence of measured climatic records and information on famine/folklore events is utilized to calibrate the historical information against the measured data. It is shown that famines or historical droughts occurred when the cumulative deficit of rainfall fell below 1.3 times the standard deviation of the long-term mean rainfall. The study demonstrated that famine chronologies are adequate proxy for drought events, providing a means for the reconstruction of the drought/climatic history of the region. Analysis of recent changes in annual rainfall characteristics show that the series of annual rainfall and number of rain days experienced a discontinuity during the 1960's, caused largely by the decrease in the frequency of moderate to high intensity rain events. The periods prior to and after the change point are homogenous and provide an objective basis for the estimation of changes in rainfall characteristics, drought parameters and for demarcating the region into sub-zones. Rainfall variability was unaffected by the abrupt change. Furthermore, the variability is independently distributed and adequately described by the normal distribution. This allows estimates of the probability of various magnitudes or thresholds of variability. The effects of droughts and rainfall variability are most strongly felt in rural areas. Analysis of the patterns of water supply and use in a typical rural village revealed that the hydrologic system is driven by the local rainfall. Perturbations in the rains propagate through the system with short lag time between the various components. Where fadama aquifers occur, they offer a major supplement of water for six to seven months during the dry season. Under traditional systems, the pattern of water withdrawal from the fadama aquifers is designed to accommodate the diverse interests of different groups and to minimize the potential for conflict. The results contribute to our understanding of drought and water scarcity and are useful in various practical applications.

  13. Rainfall Intensity Effects on Runoff and Sediment Losses From a Colorado Alfisol

    USDA-ARS?s Scientific Manuscript database

    For the Front Range region of Colorado, quantifying rainfall partitioning under current and/or proposed farming practices and changing precipitation patterns is the first step to understanding how to efficiently conserve water and soil resources to meet crop water demands. We quantified the effects ...

  14. A comparative modeling analysis of multiscale temporal variability of rainfall in Australia

    NASA Astrophysics Data System (ADS)

    Samuel, Jos M.; Sivapalan, Murugesu

    2008-07-01

    The effects of long-term natural climate variability and human-induced climate change on rainfall variability have become the focus of much concern and recent research efforts. In this paper, we present the results of a comparative analysis of observed multiscale temporal variability of rainfall in the Perth, Newcastle, and Darwin regions of Australia. This empirical and stochastic modeling analysis explores multiscale rainfall variability, i.e., ranging from short to long term, including within-storm patterns, and intra-annual, interannual, and interdecadal variabilities, using data taken from each of these regions. The analyses investigated how storm durations, interstorm periods, and average storm rainfall intensities differ for different climate states and demonstrated significant differences in this regard between the three selected regions. In Perth, the average storm intensity is stronger during La Niña years than during El Niño years, whereas in Newcastle and Darwin storm duration is longer during La Niña years. Increase of either storm duration or average storm intensity is the cause of higher average annual rainfall during La Niña years as compared to El Niño years. On the other hand, within-storm variability does not differ significantly between different ENSO states in all three locations. In the case of long-term rainfall variability, the statistical analyses indicated that in Newcastle the long-term rainfall pattern reflects the variability of the Interdecadal Pacific Oscillation (IPO) index, whereas in Perth and Darwin the long-term variability exhibits a step change in average annual rainfall (up in Darwin and down in Perth) which occurred around 1970. The step changes in Perth and Darwin and the switch in IPO states in Newcastle manifested differently in the three study regions in terms of changes in the annual number of rainy days or the average daily rainfall intensity or both. On the basis of these empirical data analyses, a stochastic rainfall time series model was developed that incorporates the entire range of multiscale variabilities observed in each region, including within-storm, intra-annual, interannual, and interdecadal variability. Such ability to characterize, model, and synthetically generate realistic time series of rainfall intensities is essential for addressing many hydrological problems, including estimation of flood and drought frequencies, pesticide risk assessment, and landslide frequencies.

  15. Identification of statistically independent climatic pattern in GRACE and hydrological model data over West-Africa

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Forootan, E.; Eicker, A.; Hoffmann-Dobrev, H.

    2012-04-01

    West-African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources, for instance reduced freshwater availability, and changes in the frequency, duration and magnitude of droughts and floods. Extracting the main patterns of water storage change in West Africa from remote sensing and linking them to climate variability, is therefore an essential step to understand the hydrological aspects of the region. In this study, the higher order statistical method of Independent Component Analysis (ICA) is employed to extract statistically independent water storage patterns from monthly Gravity Recovery And Climate Experiment (GRACE), from the WaterGAP Global Hydrology Model (WGHM) and from Tropical Rainfall Measuring Mission (TRMM) products over West Africa, for the period 2002-2012. Then, to reveal the influences of climatic teleconnections on the individual patterns, these results were correlated to the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) indices. To study the predictability of water storage changes, advanced statistical methods were applied on the main independent Sea Surface Temperature (SST) patterns over the Atlantic and Indian Oceans for the period 2002-2012 and the ICA results. Our results show a water storage decrease over the coastal regions of West Africa (including Sierra Leone, Liberia, Togo and Nigeria), associated with rainfall decrease. The comparison between GRACE estimations and WGHM results indicates some inconsistencies that underline the importance of forcing data for hydrological modeling of West Africa. Keywords: West Africa; GRACE-derived water storage; ICA; ENSO; IOD

  16. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  17. Vegetation Variability And Its Effect On Monsoon Rainfall Over South East Asia: Observational and Modeling Results

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.

    2005-12-01

    Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.

  18. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  19. A Stand-Alone Demography and Landscape Structure Module for Earth System Models: Integration with Inventory Data from Temperate and Boreal Forests

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2014-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  20. Final Scientific Report for "The Interhemispheric Pattern in 20th Century and Future Abrupt Change in Regional Tropical Rainfall"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, John C. H.; Wehner, Michael F.

    2012-10-29

    This is the final scientific report for grant DOE-FG02-08ER64588, "The Interhemispheric Pattern in 20th Century and Future Abrupt Change in Regional Tropical Rainfall."The project investigates the role of the interhemispheric pattern in surface temperature – i.e. the contrast between the northern and southern temperature changes – in driving rapid changes to tropical rainfall changes over the 20th century and future climates. Previous observational and modeling studies have shown that the tropical rainband – the Intertropical Convergence Zone (ITCZ) over marine regions, and the summer monsoonal rainfall over land – are sensitive to the interhemispheric thermal contrast; but that the linkmore » between the two has not been applied to interpreting long-term tropical rainfall changes over the 20th century and future.The specific goals of the project were to i) develop dynamical mechanisms to explain the link between the interhemispheric pattern to abrupt changes of West African and Asian monsoonal rainfall; ii) Undertake a formal detection and attribution study on the interhemispheric pattern in 20th century climate; and iii) assess the likelihood of changes to this pattern in the future. In line with these goals, our project has produced the following significant results: 1.We have developed a case that suggests that the well-known abrupt weakening of the West African monsoon in the late 1960s was part of a wider co-ordinated weakening of the West African and Asian monsoons, and driven from an abrupt cooling in the high latitude North Atlantic sea surface temperature at the same time. Our modeling work suggests that the high-latitude North Atlantic cooling is effective in driving monsoonal weakening, through driving a cooling of the Northern hemisphere that is amplified by positive radiative feedbacks. 2.We have shown that anthropogenic sulfate aerosols may have partially contributed to driving a progressively southward displacement of the Atlantic Intertropical Convergence Zone (ITCZ) over the course of the 20th century prior to the 1980s. This is based on our detection and attribution analysis of 20th century simulations done by international modeling groups as part of the Coupled Model Intercomparison Project phase 3 (CMIP3). We repeated the same analysis with the current CMIP5 multimodel simulations, with essentially similar results. 3.Future projections of the global interhemispheric thermal gradient suggest a pronounced trend that well exceeds the 20th century range of behavior. The major cause of this trend is due to anthropogenic greenhouse gas emissions, acting in such a way as to warm the North more than the South. This result is based on our analysis of the CMIP3 and 5 simulations of future scenarios. The underlying suggestion is that tropical rainfall may concentrate more northwards in the future climate, though further research is required to more firmly establish that result.Taken together, our results shows the important role of the interhemispheric thermal gradient in determining tropical rainfall changes in the 20th century and future. Our analysis specifically highlights high-latitude North Atlantic sea surface temperature, and anthropogenic sulfate aerosols, as important drivers of the interhemispheric gradient over the 20th century; and anthropogenic greenhouse gases in the 21st. The PI has written a review paper in order to promote the awareness of the interhemispheric gradient amongst the climate science community.Our project was instrumental in developing the career of a postdoctoral scholar, as well as contributing to the research training of three Ph.D. candidates.« less

  1. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  2. Spatial and temporal variation of rainfall trends of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Wickramagamage, P.

    2016-08-01

    This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.

  3. Projecting Changes in S. Florida Rainfall for the 21st century: Scenarios, Downscaling and Analysis

    NASA Astrophysics Data System (ADS)

    Cioffi, F.; Lall, U.; Monti, A.

    2013-12-01

    A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 65-years record (1948-2012) of daily rainfall amount at nineteen stations in South Florida and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds on the specific latitude of 27N (ZW27N) from 10 to 1000 hPa. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, South Florida should be subjected to more frequent dry conditions for the most part of the year, due mainly to a reduction of number of wet days and, at the same time, the territory should be also affected by extreme rainfall events that are more intense than the present ones. What appears from results is an increases of rainfall variability. This scenario seems coherent with the trends of rainfall patterns observed in the XX century. An investigation on the causes of such hydrologic changes, and specifically on the role of North Atlantic Subtropical High is pursued.

  4. Forecasting of Seasonal Rainfall using ENSO and IOD teleconnection with Classification Models

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Hornberger, G. M.

    2017-12-01

    Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present an analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli, river basin. Forecasting of rainfall as classes - above normal, normal, and below normal - can be useful for water resource management decision making. Quadratic discrimination analysis (QDA) and random forest models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. These models can be used to forecast the likelihood of areal rainfall anomalies using predicted climate indices. Results can be used for decisions regarding allocation of water for agriculture and electricity generation within the Mahaweli project of Sri Lanka.

  5. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    NASA Astrophysics Data System (ADS)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  6. River catchment rainfall series analysis using additive Holt-Winters method

    NASA Astrophysics Data System (ADS)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  7. Application of Statistical Downscaling Techniques to Predict Rainfall and Its Spatial Analysis Over Subansiri River Basin of Assam, India

    NASA Astrophysics Data System (ADS)

    Barman, S.; Bhattacharjya, R. K.

    2017-12-01

    The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.

  8. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature

    PubMed Central

    Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R

    2012-01-01

    Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202

  9. An exploratory study on occurrence and impact of climate change on agriculture in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Varadan, R. Jayakumara; Kumar, Pramod; Jha, Girish Kumar; Pal, Suresh; Singh, Rashmi

    2017-02-01

    This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  10. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  11. Patterns and perceptions of climate change in a biodiversity conservation hotspot.

    PubMed

    Hartter, Joel; Stampone, Mary D; Ryan, Sadie J; Kirner, Karen; Chapman, Colin A; Goldman, Abraham

    2012-01-01

    Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management.

  12. Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot

    PubMed Central

    Hartter, Joel; Stampone, Mary D.; Ryan, Sadie J.; Kirner, Karen; Chapman, Colin A.; Goldman, Abraham

    2012-01-01

    Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management. PMID:22384244

  13. Indices of climate change based on patterns from CMIP5 models, and the range of projections

    NASA Astrophysics Data System (ADS)

    Watterson, I. G.

    2018-05-01

    Changes in temperature, precipitation, and other variables simulated by 40 current climate models for the 21st century are approximated as the product of the global mean warming and a spatial pattern of scaled changes. These fields of standardized change contain consistent features of simulated change, such as larger warming over land and increased high-latitude precipitation. However, they also differ across the ensemble, with standard deviations exceeding 0.2 for temperature over most continents, and 6% per degree for tropical precipitation. These variations are found to correlate, often strongly, with indices based on those of modes of interannual variability. Annular mode indices correlate, across the 40 models, with regional pressure changes and seasonal rainfall changes, particularly in South America and Europe. Equatorial ocean warming rates link to widespread anomalies, similarly to ENSO. A Pacific-Indian Dipole (PID) index representing the gradient in warming across the maritime continent is correlated with Australian rainfall with coefficient r of - 0.8. The component of equatorial warming orthogonal to this index, denoted EQN, has strong links to temperature and rainfall in Africa and the Americas. It is proposed that these indices and their associated patterns might be termed "modes of climate change". This is supported by an analysis of empirical orthogonal functions for the ensemble of standardized fields. Can such indices be used to help constrain projections? The relative similarity of the PID and EQN values of change, from models that have more skilful simulation of the present climate tropical pressure fields, provides a basis for this.

  14. Statistical analysis of trends in monthly precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia

    NASA Astrophysics Data System (ADS)

    Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.

    2018-05-01

    Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.

  15. A process-based investigation into the impact of the Congo basin deforestation on surface climate

    NASA Astrophysics Data System (ADS)

    Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou

    2015-06-01

    The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.

  16. Darfur: rainfall and conflict

    NASA Astrophysics Data System (ADS)

    Kevane, Michael; Gray, Leslie

    2008-07-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.

  17. Effects of biotic and abiotic factors on the temporal dynamic of bat-fruit interactions

    NASA Astrophysics Data System (ADS)

    Laurindo, Rafael de Souza; Gregorin, Renato; Tavares, Davi Castro

    2017-08-01

    Mutualistic interactions between animals and plants vary over time and space based on the abundance of fruits or animals and seasonality. Little is known about this temporal dynamic and the influence of biotic and abiotic factors on the structure of interaction networks. We evaluated changes in the structure of network interactions between bats and fruits in relation to variations in rainfall. Our results suggest that fruit abundance is the main variable responsible for temporal changes in network attributes, such as network size, connectance, and number of interactions. In the same way, temperature positively affected the abundance of fruits and bats. An increase in temperature and alterations in rainfall patterns, due to human induced climate change, can cause changes in phenological patterns and fruit production, with negative consequences to biodiversity maintenance, ecological interactions, and ecosystem functioning.

  18. Simulated projection of ISMR over Indian Himalayan region: assessment from CSIRO-CORDEX South Asia experiments

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sandipan; Hazra, Anupam; Kumar, Kireet; Nandi, Shyamal K.; Dhyani, Pitamber P.

    2017-09-01

    In view of a significant lacuna in the Himalaya-specific knowledge of forthcoming expected changes in the rainfall climatology, this study attempts to assess the expected changes in the Indian summer monsoon rainfall (ISMR) pattern exclusively over the Indian Himalayan Region (IHR) during 2020-2070 in comparison to a baseline period of 1970-2005 under two different warming scenarios, i.e., representative concentration pathways 4.5 and 8.5 (RCP 4.5 and RCP 8.5). Five climate model products from the Commonwealth Scientific and Industrial Research Organization initiated Coordinated Regional Climate Downscaling Experiment of World Climate Research Programme over south Asia region are used for this purpose. Among the several different features of ISMR, this study attempts to investigate expected changes in the average summer monsoon rainfall and percent monthly rainfall to the total monsoon seasonal rainfall using multimodel averages. Furthermore, this study attempts to identify the topographical ranges which are expected to be mostly affected by the changing average monsoon seasonal rainfall over IHR. Results from the multimodel average analysis indicate that the rainfall climatology is expected to increase by >0.75 mm/day over the foothills of northwest Himalaya during 2020-2070, whereas the rainfall climatology is expected to decrease for the flood plains of Brahmaputra under a warmer climate. The monthly percent rainfall of June is expected to rise by more than 1% over the northwestern Himalaya during 2020-2040 (although insignificant at p value <0.05), whereas the same for August and September is expected to decrease over the eastern Himalaya under a warmer climate. In terms of rainfall changes along the altitudinal gradient, this study indicates that the two significant rainfall regions, one at around 900 m and the other around 2000 m of the northwestern Himalaya are expected to see positive changes (>1%) in rainfall climatology during 2020-2070, whereas regions more than 1500 m in eastern Himalaya are expected to experience inconsistent variation in rainfall climatology under a warmer climate scenario.

  19. Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Barros, A.; simoes, s

    2002-05-01

    During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.

  20. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  1. Flood risk reduction and flow buffering as ecosystem services - Part 2: Land use and rainfall intensity effects in Southeast Asia

    NASA Astrophysics Data System (ADS)

    van Noordwijk, Meine; Tanika, Lisa; Lusiana, Betha

    2017-05-01

    Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of rainfall. This ecosystem service is inherent to geology and climate, but buffering also responds to human use and misuse of the landscape. Buffering can be part of management feedback loops if salient, credible and legitimate indicators are used. The flow persistence parameter Fp in a parsimonious recursive model of river flow (Part 1, van Noordwijk et al., 2017) couples the transmission of extreme rainfall events (1 - Fp), to the annual base-flow fraction of a watershed (Fp). Here we compare Fp estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai and Bialo) and Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal timescale. The likely response in each of these four to variation in rainfall properties (including the maximum hourly rainfall intensity) and land cover (comparing scenarios with either more or less forest and tree cover than the current situation) was explored through a basic daily water-balance model, GenRiver. This model was calibrated for each site on existing data, before being used for alternative land cover and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season values for all four sites. Across the four catchments Fp values decreased with increasing annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the values considered typical for each landscape was predicted to cause a decrease in Fp values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change plus changes in rainfall intensity depends on other characteristics of the watersheds, and generalisations made on the basis of one or two case studies may not hold, even within the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest-agroforestry mosaic case studies. Inter-annual variability in Fp is large relative to effects of land cover change. Multiple (5-10) years of paired-plot data would generally be needed to reject no-change null hypotheses on the effects of land use change (degradation and restoration). Fp trends over time serve as a holistic scale-dependent performance indicator of degrading/recovering watershed health and can be tested for acceptability and acceptance in a wider social-ecological context.

  2. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    PubMed

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  3. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    PubMed Central

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  4. Diagnostic evaluation of distributed physically based model at the REW scale (THREW) using rainfall-runoff event analysis

    NASA Astrophysics Data System (ADS)

    Tian, F.; Sivapalan, M.; Li, H.; Hu, H.

    2007-12-01

    The importance of diagnostic analysis of hydrological models is increasingly recognized by the scientific community (M. Sivapalan, et al., 2003; H. V. Gupta, et al., 2007). Model diagnosis refers to model structures and parameters being identified not only by statistical comparison of system state variables and outputs but also by process understanding in a specific watershed. Process understanding can be gained by the analysis of observational data and model results at the specific watershed as well as through regionalization. Although remote sensing technology can provide valuable data about the inputs, state variables, and outputs of the hydrological system, observational rainfall-runoff data still constitute the most accurate, reliable, direct, and thus a basic component of hydrology related database. One critical question in model diagnostic analysis is, therefore, what signature characteristic can we extract from rainfall and runoff data. To this date only a few studies have focused on this question, such as Merz et al. (2006) and Lana-Renault et al. (2007), still none of these studies related event analysis with model diagnosis in an explicit, rigorous, and systematic manner. Our work focuses on the identification of the dominant runoff generation mechanisms from event analysis of rainfall-runoff data, including correlation analysis and analysis of timing pattern. The correlation analysis involves the identification of the complex relationship among rainfall depth, intensity, runoff coefficient, and antecedent conditions, and the timing pattern analysis aims to identify the clustering pattern of runoff events in relation to the patterns of rainfall events. Our diagnostic analysis illustrates the changing pattern of runoff generation mechanisms in the DMIP2 test watersheds located in Oklahoma region, which is also well recognized by numerical simulations based on TsingHua Representative Elementary Watershed (THREW) model. The result suggests the usefulness of rainfall-runoff event analysis for model development as well as model diagnostics.

  5. Interactive effects of seasonal drought and elevated atmospheric carbon dioxide concentration on prokaryotic rhizosphere communities.

    PubMed

    Drigo, Barbara; Nielsen, Uffe N; Jeffries, Thomas C; Curlevski, Nathalie J A; Singh, Brajesh K; Duursma, Remko A; Anderson, Ian C

    2017-08-01

    Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO 2 ]). Both changes in [CO 2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO 2 ] (ambient + 240 ppm; [eCO 2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO 2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO 2 ], suggesting that [eCO 2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO 2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO 2 ]. These results provide strong evidence that [eCO 2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Developing New Rainfall Estimates to Identify the Likelihood of Agricultural Drought in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Funk, C. C.; Husak, G. J.; Michaelsen, J.; Peterson, P.; Lasndsfeld, M.; Rowland, J.; Aguilar, L.; Rodriguez, M.

    2012-12-01

    The population in Central America was estimated at ~40 million people in 2009, with 65% in rural areas directly relying on local agricultural production for subsistence, and additional urban populations relying on regional production. Mapping rainfall patterns and values in Central America is a complex task due to the rough topography and the influence of two oceans on either side of this narrow land mass. Characterization of precipitation amounts both in time and space is of great importance for monitoring agricultural food production for food security analysis. With the goal of developing reliable rainfall fields, the Famine Early warning Systems Network (FEWS NET) has compiled a dense set of historical rainfall stations for Central America through cooperation with meteorological services and global databases. The station database covers the years 1900-present with the highest density between 1970-2011. Interpolating station data by themselves does not provide a reliable result because it ignores topographical influences which dominate the region. To account for this, climatological rainfall fields were used to support the interpolation of the station data using a modified Inverse Distance Weighting process. By blending the station data with the climatological fields, a historical rainfall database was compiled for 1970-2011 at a 5km resolution for every five day interval. This new database opens the door to analysis such as the impact of sea surface temperature on rainfall patterns, changes to the typical dry spell during the rainy season, characterization of drought frequency and rainfall trends, among others. This study uses the historical database to identify the frequency of agricultural drought in the region and explores possible changes in precipitation patterns during the past 40 years. A threshold of 500mm of rainfall during the growing season was used to define agricultural drought for maize. This threshold was selected based on assessments of crop conditions from previous seasons, and was identified as an amount roughly corresponding to significant crop loss for maize, a major crop in most of the region. Results identify areas in central Honduras and Nicaragua as well as the Altiplano region in Guatemala that experienced 15 seasons of agricultural drought for the period May-July during the years 1970-2000. Preliminary results show no clear trend in rainfall, but further investigation is needed to confirm that agricultural drought is not becoming more frequent in this region.

  7. Climatological studies on precipitation features and large-scale atmospheric fields on the heavy rainfall days in the eastern part of Japan from the Baiu to midsummer season

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo

    2017-04-01

    In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall more than 10mm/h was large in the southern half of the heavy rainfall area, moderate rain with less than 10 mm/h contributed greatly to the total rainfall in the northern half. In Patter B, that heavy rainfall area was located just in the area with strong low-level warm advection around the Baiu front to the east of the typhoon. The warm advection near the heavy rainfall area was also found in Pattern A, the heavy rainfall occurred just on the southwest of the large advection. It is noted that, although the very warm humid air can intrude northward by the strong S-ly wind to the east of the typhoon in both Pattern A and B, the low-level baroclinicity around the eastern Japan was stronger in Pattern B. In midsummer, the similar situations to while the "Pattern B"-like situation was not seen. This might be greatly reflected by the seasonal change in the southern boundary of the Okhotsk air mass from the Baiu to midsummer and we will also examine that in the future.

  8. Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.

    2017-12-01

    Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.

  9. The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit

    NASA Astrophysics Data System (ADS)

    Lee, June-Yi; Kwon, MinHo; Yun, Kyung-Sook; Min, Seung-Ki; Park, In-Hong; Ham, Yoo-Geun; Jin, Emilia Kyung; Kim, Joo-Hong; Seo, Kyong-Hwan; Kim, WonMoo; Yim, So-Young; Yoon, Jin-Ho

    2017-05-01

    Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.

  10. Climate-change driven increase in high intensity rainfall events: Analysis of development in the last decades and towards an extrapolation of future progression

    NASA Astrophysics Data System (ADS)

    Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel

    2015-04-01

    Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.

  11. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-02-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  12. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-06-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease in evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  13. Innovative technologies to understand hydrogeomorphic impacts of climate change scenarios on gully development in drylands: case study from Ethiopia

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; Abraha, Amanuel; De Wulf, Alain; Poesen, Jean

    2014-05-01

    Taking climate change scenarios into account, rainfall patterns are likely to change over the coming decades in eastern Africa. In brief, large parts of eastern Africa are expected to experience a wetting, including seasonality changes. Gullies are threshold phenomena that accomplish most of their geomorphic change during short periods of strong rainfall. Understanding the links between geomorphic change and rainfall characteristics in detail, is thus crucial to ensure the sustainability of future land management. In this study, we present image-based 3D modelling as a low-cost, flexible and rapid method to quantify gully morphology from terrestrial photographs. The methodology was tested on two gully heads in Northern Ethiopia. Ground photographs (n = 88-235) were taken during days with cloud cover. The photographs were processed in PhotoScan software using a semi-automated Structure from Motion-Multi View Stereo (SfM-MVS) workflow. As a result, full 3D models were created, accurate at cm level. These models allow to quantify gully morphology in detail, including information on undercut walls and soil pipe inlets. Such information is crucial for understanding the hydrogeomorphic processes involved. Producing accurate 3D models after each rainfall event, allows to model interrelations between rainfall, land management, runoff and erosion. Expected outcomes are the production of detailed vulnerability maps that allow to design soil and water conservation measures in a cost-effective way. Keywords: 3D model, Ethiopia, Image-based 3D modelling, Gully, PhotoScan, Rainfall.

  14. Fluvial signatures of modern and paleo orographic rainfall gradients

    NASA Astrophysics Data System (ADS)

    Schildgen, Taylor; Strecker, Manfred

    2016-04-01

    The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to arid precipitation regimes. Indeed, despite uniform lithology and uplift history, we see patterns in river steepness values and in chi plots that are consistest a rainfall gradient on the (former) windward side of the range and asymmetric precipitation across the range. We suggest that morphological aspects of the river networks in such regions are dominated by their history of changing climate. These morphologic signatures appear to persist for millions of years in NW Argentina, most likely because the transition from a wetter to a drier climate has prevented a rapid readjustment to new forcing conditions. Reference: Han, J., Gasparini, N.M., and Johnson, J.P., 2015, Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes. Earth Surf. Process. Landforms, 40(10), 1334-1350.

  15. Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime.

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich

    1993-06-01

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.

  16. A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young

    2016-09-01

    The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.

  17. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  18. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.

  19. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present‐Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    PubMed Central

    Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.

    2018-01-01

    Abstract Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount. PMID:29861837

  20. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  1. Response of transpiration to rain pulses for two tree species in a semiarid plantation.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration (Ec) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall Ec development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance (Gc) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-dG c/dlnVPD to Gcref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low Ec. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand Ec. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the Ec recovery. Further, the stand Ec was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. Ec enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall Ec recovery. Ec recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall Ec increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of Ec in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  2. Hydrological impacts of climate change on the Tejo and Guadiana Rivers

    NASA Astrophysics Data System (ADS)

    Kilsby, C. G.; Tellier, S. S.; Fowler, H. J.; Howels, T. R.

    2007-05-01

    A distributed daily rainfall runoff model is applied to the Tejo and Guadiana river basins in Spain and Portugal to simulate the effects of climate change on runoff production, river flows and water resource availability with results aggregated to the monthly level. The model is calibrated, validated and then used for a series of climate change impact assessments for the period 2070 2100. Future scenarios are derived from the HadRM3H regional climate model (RCM) using two techniques: firstly a bias-corrected RCM output, with monthly mean correction factors calculated from observed rainfall records; and, secondly, a circulation-pattern-based stochastic rainfall model. Major reductions in rainfall and streamflow are projected throughout the year; these results differ from those for previous studies where winter increases are projected. Despite uncertainties in the representation of heavily managed river systems, the projected impacts are serious and pose major threats to the maintenance of bipartite water treaties between Spain and Portugal and the supply of water to urban and rural regions of Portugal.

  3. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Kong, W.; Chiang, J. C. H.

    2015-12-01

    The Holocene East Asian Summer Monsoon (EASM) was characterized by a trend to weaker monsoon intensity paced by orbital insolation. Here, we attribute the stronger EASM intensity in the early-mid Holocene to changes in the timing of the transition between the EASM seasonal stages - Spring, pre Mei- Yu, Mei-Yu, and Summer - during that time. Following the recent 'jet transition hypothesis' (Chiang et al., 2015), we explore the role of north-south displacement of the westerlies relative to the Tibetan Plateau that is hypothesized to control the downstream EASM seasonality changes across the Holocene. To this end, we analyze model simulations of the Holocene EASM, compare the simulated Holocene climate with the paleodata observations, and examine the role of atmospheric circulation and specifically the westerlies in modulating the East Asia summer climate. The PMIP3 climate model simulations suggest that, compared to the pre-industrial, the Mei-Yu onset and the transition from Mei-Yu to Summer rainfall occur earlier in the mid-Holocene. The advanced seasonal rainfall transition is accompanied by the weakened and northward-shifted upstream westerlies. In our atmospheric general circulation model (coupled to a slab ocean) simulations of various time periods across the Holocene (9ka, 6ka, 3ka, and pre-industrial), we quantitatively show that the timing and the length of each rainfall stage are closely related to the jet position over East Asia. We also show that the simulated changes in the maximum annual rainfall band and dust emission over East Asia largely agree with the paleo-proxy observations. In addition, we find that changes to the seasonal rainfall transitions, latitudinal westerly position, and stationary eddy activity over East Asia co-vary across the Holocene. In particular, we argue that the changes in the rainfall seasonal transitions are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road Pattern', riding along the westerly jet. We end by discussing the mechanism that is proposed to explain the changed EASM seasonality across the Holocene.

  4. Heat and Freshwater Budgets in the Eastern Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.

    2002-12-01

    Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.

  5. The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil

    Treesearch

    James Grogan; Mark Schulze

    2012-01-01

    Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter-annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla...

  6. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  7. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE PAGES

    Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...

    2018-04-16

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  8. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses.

    PubMed

    Coe, Kirsten K; Belnap, Jayne; Sparks, Jed P

    2012-07-01

    Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous to desert ecosystems, play an array of ecological roles, and display a strong sensitivity to environmental changes. Crust mosses are particularly responsive to changes in precipitation and exhibit rapid declines in biomass and mortality following the addition of small rainfall events. Further, loss of the moss component in biocrusts leads to declines in crust structure and function. In this study, we sought to understand the physiological responses of the widespread and often dominant biocrust moss Syntrichia caninervis to alterations in rainfall. Moss samples were collected during all four seasons and exposed to two rainfall event sizes and three desiccation period (DP) lengths. A carbon balance approach based on single precipitation events was used to define the carbon gain or loss during a particular hydration period. Rainfall event size was the strongest predictor of carbon balance, and the largest carbon gains were associated with the largest precipitation events. In contrast, small precipitation events resulted in carbon deficits for S. caninervis. Increasing the length of the DP prior to an event resulted in reductions in carbon balance, probably because of the increased energetic cost of hydration following more intense bouts of desiccation. The season of collection (i.e., physiological status of the moss) modulated these responses, and the effects of DP and rainfall on carbon balance were different in magnitude (and often in sign) for different seasons. In particular, S. caninervis displayed higher carbon balances in the winter than in the summer, even for events of identical size. Overall, our results suggest that annual carbon balance and survivorship in biocrust mosses are largely driven by precipitation, and because of the role mosses play in biocrusts, changes in intra-annual precipitation patterns can have implications for hydrology, soil stability, and nutrient cycling in dryland systems.

  9. Satellite time-series data for vegetation phenology detection and environmental assessment in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Suepa, Tanita

    The relationship between temporal and spatial data is considered the major advantage of remote sensing in research related to biophysical characteristics. With temporally formatted remote sensing products, it is possible to monitor environmental changes as well as global climate change through time and space by analyzing vegetation phenology. Although a number of different methods have been developed to determine the seasonal cycle using time series of vegetation indices, these methods were not designed to explore and monitor changes and trends of vegetation phenology in Southeast Asia (SEA). SEA is adversely affected by impacts of climate change, which causes considerable environmental problems, and the increase in agricultural land conversion and intensification also adds to those problems. Consequently, exploring and monitoring phenological change and environmental impacts are necessary for a better understanding of the ecosystem dynamics and environmental change in this region. This research aimed to investigate inter-annual variability of vegetation phenology and rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an enhanced visualization method for phenological information dissemination. In this research, spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. Furthermore, a web mapping application was developed to present the output of phenological and environmental analysis with interactive functions. The results revealed that satellite time-series data provided a great opportunity to study regional vegetation variability and internal climatic fluctuation. The EVI and phenological patterns varied spatially according to climate variations and human management. The overall regional mean EVI value in SEA from 2001 to 2010 has gradually decreased and phenological trends appeared to shift towards a later and slightly longer growing season. Regional vegetation dynamics over SEA exhibited patterns associated with major climate events such as El Nino in 2005. The rainy season tended to start early and end late and the length of rainy season was slightly longer. However, the amount of rainfall has decreased from 2001 to 2010. The relationship between phenology and rainfall varied among different ecosystems. Additionally, the local scale results indicated that rainfall is a dominant force of phenological changes in naturally vegetated areas and rainfed croplands, whereas human management is a key factor in heavily agricultural areas with irrigated systems. The results of estimating GHG emissions from rice fields in Thailand demonstrated that human management, climate variation, and physical geography had a significant influence on the change in GHG emissions. In addition, the complexity of spatio-temporal patterns in phenology and related variables were displayed on the visualization system with effective functions and an interactive interface. The information and knowledge in this research are useful for local and regional environmental management and for identifying mitigation strategies in the context of climate change and ecosystem dynamics in this region.

  10. Solar Variability Controls on Rainfall in the Last Millennia: Evidence from a Highly Resolved Stalagmite Record from DeSoto Caverns (USA)

    NASA Astrophysics Data System (ADS)

    Aharon, P.; Lambert, W.; Hellstrom, J.

    2009-12-01

    Moisture transport from the Gulf of Mexico (GOM) inland has a considerable influence on both regional and continental rainfall patterns. Recent episodes of drought in the Southeastern USA exposed the vulnerability of the regional infrastructure to climate changes and gave rise to inter-state “water wars”. In order to better understand the cause of these periodic droughts and their controlling climate factors we have initiated a study of stalagmites from the DeSoto Caverns (Alabama, USA) that intersect the moisture flow from GOM. Combination of unusually high growth rates (up to 2 mm/decade), prominent dark and light seasonal layers, pristine aragonite mineralogy, precise U/Th dates acquired from mg-size samples and tight sampling (n=195) afforded generation of biannual (δ18O and δ13C of exceptional clarity spanning the last 700 yrs. The stalagmite (DSSG1) top yields isotope values (δ18O=-5.5 per-mill VPDB; δ13C=-10.1 per-mill VPDB) that are in good agreement with the predicted equilibrium isotope values. The oxygen and carbon isotope records exhibit a number of alternating negative and positive phase changes of

  11. Climate teleconnections and recent patterns of human and animal disease outbreaks

    USDA-ARS?s Scientific Manuscript database

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the p...

  12. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  13. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  14. Trends and projections of Southern Hemisphere baroclinicity: the role of external forcing and impact on Australian rainfall

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten S.; Frederiksen, Jorgen S.; Sisson, Janice M.; Osbrough, Stacey L.

    2017-05-01

    Changes in the characteristics of Southern Hemisphere (SH) storms, in all seasons, during the second half of the twentieth century, have been related to changes in the annual cycle of SH baroclinic instability. In particular, significant negative trends in baroclinic instability, as measured by the Phillips Criterion, have been found in the region of the climatological storm tracks; a zonal band of significant positive trends occur further poleward. Corresponding to this decrease/increase in baroclinic instability there is a decrease/increase in the growth rate of storm formation at these latitudes over this period, and in some cases a preference for storm formation further poleward than normal. Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that these trends are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land-use change. The MME is used in an analysis of variance method to separate the internal (natural) variability in the Phillips Criterion from influences associated with anomalous external radiative forcing. In all seasons, the leading externally forced mode has a significant trend and a loading pattern highly correlated with the pattern of trends in the Phillips Criterion. The covariance between the externally forced component of SH rainfall and the leading external mode strongly resembles the MME pattern of SH rainfall trends. A comparison between similar analyses of MME simulations using the second half of the twenty-first century of the Representative Concentration Pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in the Phillips Criterion and rainfall are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations.

  15. Circulation system configuration characteristics of four rainfall patterns in summer over the East China

    NASA Astrophysics Data System (ADS)

    Zhao, Junhu; Yang, Liu; Feng, Guolin

    2018-02-01

    In this study, the simultaneous atmospheric circulation system configuration characteristics of the four rainfall patterns (FRP) over the East China during the period 1951-2015 are analyzed in order to investigate their formation mechanisms. The results confirm that the FRP possess obvious differences in the upper-level, middle-level, and lower-level troposphere. In northern China rainfall pattern (NCP) years, the East Asian subtropical westerly jet stream (EAJS) shows a northward trend, with a higher intensity than normal; the blocking high (BH) in the mid-high latitudes is inactive; and the western Pacific subtropical high (WPSH) tends to be stronger, with a location to the north of its normal position. The East Asian summer monsoon (EASM) is stronger, which promotes vapor transport to northern China, and this leads to increased rainfall. In intermediate rainfall pattern (IRP) years, the EAJS position is close to that in normal years; the BH is inactive; the WPSH tends to be weaker, with a location to the east of its normal position; and the EASM is stronger, which is conducive to increased rainfall over the Huaihe River Basin. In Yangtze River rainfall pattern (YRP) years, the circulations are found to be almost opposite in their features to those in NCP years. In South China rainfall pattern (SCP) years, the circulations are found to be almost opposite in their features to those in IRP years. This leads to increased rainfall over South China. Therefore, the different circulation system configuration characteristics lead to the different rainfall patterns.

  16. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years

    PubMed Central

    Hong, Bing; Gasse, Françoise; Uchida, Masao; Hong, Yetang; Leng, Xuetian; Shibata, Yasuyuki; An, Ning; Zhu, Yongxuan; Wang, Yu

    2014-01-01

    A detailed and well-dated proxy record of summer rainfall variation in arid Central Asia is lacking. Here, we report a long-term, high resolution record of summer rainfall extracted from a peat bog in arid eastern-Central Asia (AECA). The record indicates a slowly but steadily increasing trend of summer rainfall in the AECA over the past 8500 years. On this long-term trend are superimposed several abrupt increases in rainfall on millennial timescales that correspond to rapid cooling events in the North Atlantic. During the last millennium, the hydrological climate pattern of the AECA underwent a major change. The rainfall in the past century has reached its highest level over the 8500-year history, highlighting the significant impact of the human-induced greenhouse effect on the hydrological climate in the AECA. Our results demonstrate that even in very dry eastern-Central Asia, the climate can become wetter under global warming. PMID:24923304

  17. Scaling Linguistic Characterization of Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Primo, C.; Gutierrez, J. M.

    2003-04-01

    Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.

  18. Tendencies of extreme values on rainfall and temperature and its relationship with teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Taboada, J. J.; Cabrejo, A.; Guarin, D.; Ramos, A. M.

    2009-04-01

    It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. Rainfall does not show a clear tendency in its yearly accumulated values. The aim of this work is to study different extreme indices of rainfall and temperatures analysing variability and possible trends associated to climate change. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). The definition of the extreme indices was taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparison of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: fewer nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. This trend is expected to continue in the next decades because of anthropogenic climate change. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic Oscillation) has also some relationship with these tendencies, but only related with cold days and nights in winter. Rainfall index do not show any clear tendency on the annual scale. Nevertheless, the count of days when precipitation is greater than 20mm (R20mm) and the total precipitation when rainfall is greater than 95th percentile (R95pTOT) diminishes in winter and spring, but increases in autumn. This trend is related with NAO in winter and spring and with SCA in autumn.

  19. Impacts of climate change on rainfall extremes and urban drainage systems: a review.

    PubMed

    Arnbjerg-Nielsen, K; Willems, P; Olsson, J; Beecham, S; Pathirana, A; Bülow Gregersen, I; Madsen, H; Nguyen, V-T-V

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding of how to describe precipitation patterns in a changing climate in order to design and operate urban drainage infrastructure. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future.

  20. Soil erosion predictions from a landscape evolution model - An assessment of a post-mining landform using spatial climate change analogues.

    PubMed

    Hancock, G R; Verdon-Kidd, D; Lowry, J B C

    2017-12-01

    Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  2. Rainfall Patterns and U.S. Migration from Rural Mexico

    PubMed Central

    Hunter, Lori M.; Murray, Sheena; Riosmena, Fernando

    2014-01-01

    In many rural regions of developing countries, natural resource dependency means changes in climate patterns hold tremendous potential to impact livelihoods. When environmentally-based livelihood options are constrained, migration can become an important adaptive strategy. Using data from the Mexican Migration Project, we model U.S. emigration from rural communities as related to community, household and climate factors. The results suggest that households subjected to recent drought conditions are far more likely to send a U.S. migrant, but only in communities with strong migration histories. In regions lacking such social networks, rainfall deficits actually reduce migration propensities, perhaps reflecting constraints in the ability to engage in migration as a coping strategy. Policy implications emphasize diversification of rural Mexican livelihoods in the face of contemporary climate change. PMID:25473143

  3. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    NASA Astrophysics Data System (ADS)

    Osunmadewa, Babatunde Adeniyi; Gebrehiwot, Worku Zewdie; Csaplovics, Elmar; Adeofun, Olabinjo Clement

    2018-03-01

    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  4. Responses of the sustainable yield of groundwater to annual rainfall and pumping patterns in the Baotou Plain, North China

    NASA Astrophysics Data System (ADS)

    Liao, Z.; LONG, Y., Sr.; Wei, Y.; Guo, Z.

    2017-12-01

    Serious water deficits and deteriorating environmental quality are threatening the sustainable socio-economic development and the protection of the ecology and the environment in North China, especially in Baotou City. There is a common misconception that groundwater extraction can be sustainable if the pumping rate does not exceed the total natural recharge in a groundwater basin. The truth is that the natural recharge is mainly affected by the rainfall and that groundwater withdrawal determines the sustainable yield of the aquifer flow system. The concept of the sustainable yield is defined as the allowance pumping patterns and rates that avoid adverse impacts on the groundwater system. The sustainable yield introduced in this paper is a useful baseline for groundwater management under all rainfall conditions and given pumping scenarios. A dynamic alternative to the groundwater sustainable yield for a given pumping pattern and rate should consider the responses of the recharge, discharge, and evapotranspiration to the groundwater level fluctuation and to different natural rainfall conditions. In this study, methods for determining the sustainable yield through time series data of groundwater recharge, discharge, extraction, and precipitation in an aquifer are introduced. A numerical simulation tool was used to assess and quantify the dynamic changes in groundwater recharge and discharge under excessive pumping patterns and rates and to estimate the sustainable yield of groundwater flow based on natural rainfall conditions and specific groundwater development scenarios during the period of 2007 to 2014. The results of this study indicate that the multi-year sustainable yield only accounts for about one-half of the average annual recharge. The future sustainable yield for the current pumping scenarios affected by rainfall conditions are evaluated quantitatively to obtain long-term groundwater development strategies. The simulation results show that sufficient rainfall supports excessive pumping patterns, causing a slow and disproportionate groundwater storage recovery and water level rise. In addition, the decrease in the recharge and the increase in the discharge were found to have a notable effect on the dynamic annual sustainable yield, especially in a drought year.

  5. Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew

    2015-02-01

    Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.

  6. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data

    NASA Astrophysics Data System (ADS)

    Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo

    2011-02-01

    Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.

  7. Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

    NASA Astrophysics Data System (ADS)

    Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.

    2014-10-01

    Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.

  8. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    PubMed

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  9. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.

  10. Simulation of rainfall-runoff for major flash flood events in Karachi

    NASA Astrophysics Data System (ADS)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  11. Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2014-10-01

    The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.

  12. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  13. The Roles of Climate Change and El Niño in the Record Low Rainfall in October 2015 in Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Karoly, David; Black, Mitchell; Grose, Michael; King, Andrew

    2017-04-01

    The island state of Tasmania, in southeast Australia, received record low average rainfall of 21 mm in October 2015, 17% of the 1961-90 normal. This had major impacts across the state, affecting agriculture and hydroelectric power generation and preconditioning the landscape for major bushfires the following summer. Rainfall in Tasmania is normally high throughout the year, with variations in Austral spring associated with mean sea level pressure (MSLP) and circulation variations due to El Niño, the Indian Ocean dipole (IOD), and the southern annular mode (SAM). Spring rainfall is declining and projected to decrease further in Tasmania We have investigated the roles of anthropogenic climate change, the 2015/16 El Niño, and internal atmospheric variability on this record low October rainfall using observational data, regional climate simulations driven by specified sea surface temperatures (SSTs) from the weather@home Australia and New Zealand (w@h ANZ) project, and coupled climate model simulations from the Coupled Model Intercomparison Project phase 5. Anthropogenic climate change and the strong El Niño in 2015 very likely increased the chances of breaking the previous record low rainfall in 1965. In terms of contributions to the magnitude of this rainfall deficit, internal atmospheric variability as indicated by the Pacific-South American MSLP pattern was likely the main contributor, with El Niño next and a smaller but significant contribution from anthropogenic climate change. In this case, it was the MSLP and circulation changes associated with anthropogenic climate change in the Southern Hemisphere middle and high latitudes and not the thermodynamic effects of anthropogenic climate change that contributed to this event. Karoly, D. J., M.T. Black, M.R. Grose and A. D. King (2016) The roles of climate change and El Niño in the record low rainfall in October 2015 in Tasmania, Australia [in "Explaining Extremes of 2015 from a Climate Perspective"]. Bull. Am. Met. Soc., 97, S127-S130.

  14. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.

    PubMed

    Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta

    2011-02-01

    The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models which provide the appropriate output data, such as reliable information on rainfall characteristics relevant for environmental management. Copyright © 2009. Published by Elsevier Ltd.

  15. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  16. Effects of shifting seasonal rainfall patterns on net primary productivity and carbon storage in tropical seasonally dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, T.; Manzoni, S.; Feng, X.; Menezes, R.; Porporato, A. M.

    2013-12-01

    Although seasonally dry ecosystems (SDEs), identified by prolonged drought followed by a short, but intense, rainy season, cover large regions of the tropics, their biogeochemical response to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Both productivity and soil respiration are positively affected by seasonal soil moisture availability, creating a delicate balance between C deposition through litterfall and C losses through heterotrophic respiration. As climate change projections for the tropics predict decreased annual rainfall and increased dry season length, it is critical to understand how variations in seasonal rainfall distributions control this balance. To address this question, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, the related soil C inputs through litterfall, and soil C dynamics. The model is parameterized for a case study from a drought-deciduous caatinga ecosystem in northeastern Brazil. Results indicate that when altering the seasonal rainfall patterns for a fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall plays a dominant role in describing this relationship, leading at times to the emergence of distinct optima in both primary production and C sequestration. Examining these results in the context of climate-driven changes to wet season duration and mean annual precipitation indicate that the initial hydroclimatic regime of a particular ecosystem is an important factor to predict both the magnitude and direction of the effects of shifting seasonal distributions on productivity and C storage. Although highly productive ecosystems will likely experience declining C storage with predicted climate shifts, those currently operating well below peak production can potentially see improved C stocks with the onset of declining rainfall due to reduced soil respiration. a) Annual average net primary productivity and b) the temporally averaged ensemble soil carbon concentration <(C_yr )> are plotted against the length of the wet season T_W, for six annual rainfall rates (m yr-1).

  17. Assessing climate change impacts on soil salinity development with proximal and satellite sensors

    USDA-ARS?s Scientific Manuscript database

    Changes in climate patterns have dramatically influenced some agricultural areas. Examples include the historic 5-year drought in California’s San Joaquin Valley (SJV) and the 20-year above average annual rainfall in the Red River Valley (RRV) of the Midwestern USA. Climate change may have impacted ...

  18. Climate Change and Societal Response: Livelihoods, Communities, and the Environment

    ERIC Educational Resources Information Center

    Molnar, Joseph J.

    2010-01-01

    Climate change may be considered a natural disaster evolving in slow motion on a global scale. Increasing storm intensities, shifting rainfall patterns, melting glaciers, rising sea levels, and other manifold alterations are being experienced around the world. Climate has never been constant in any location, but human-induced changes associated…

  19. Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Storch, H.; Zorita, E.; Cubasch, U.

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less

  20. High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia

    2003-01-01

    Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.

  1. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning

    NASA Astrophysics Data System (ADS)

    Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  2. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning.

    PubMed

    Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  3. Analysis of mechanical system of extreme rainfall events using backward tracking on information from the atmosphere circulation pattern for the 2000-2015 precipitation record in South Korea

    NASA Astrophysics Data System (ADS)

    So, B. J.; Kwon, H. H.

    2016-12-01

    A natural disaster for flood and drought have occurred in different parts of the world, and the disasters caused by significant extreme hydrological event in past years. Several studies examining stochastic analysis based nonstationary analysis reported for forecasting and outlook for extreme hydrological events, but there is the procedure to select predictor variables. In this study, we analyzed mechanical system of extreme rainfall events using backward tracking to determine the predictors of nonstationary considering the atmosphere circulation pattern. First, observed rainfall data of KMA (Korea Meteorological Administration) and ECMWF ERA-Interm data were constructed during the 2000-2015 period. Then, the 7day backward tracking were performed to establish the path of air mass using the LAGRANTO Tool considering the observed rainfall stations located in S. Korea as a starting point, The tracking information for rainfall event were clustered and then, we extracts the main influence factor based on the categorized tracking path considering to information of rainfall magnitude (e.g,, mega-sized, medium-sized). Finally, the nonstationary predictors are determined through a combination of factors affecting the nonstationary rainfall simulation techniques. The predictors based on a mechanical structure is expected to be able to respond to external factors such as climate change. In addition, this method can be used to determine the prediction factor in different geographical areas by different position.

  4. Comparing rainfall patterns between regions in Peninsular Malaysia via a functional data analysis technique

    NASA Astrophysics Data System (ADS)

    Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah

    2011-12-01

    SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.

  5. Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM

    NASA Astrophysics Data System (ADS)

    Tahir, T.; Hashim, A. M.; Yusof, K. W.

    2018-04-01

    Climate change is a global phenomenon that has affected hundreds of people around the globe. In transitional climatic patterns, it is essential to compute the severity of rainfall in the regions prone to hydro-meteorological disasters. Therefore, the main aim of this study is to assess the severity of rainfall under three Representative Concentration Pathways (RCPs) from Global Climate Model data of CanESM2 in Limbang River basin. Furthermore, the objective is to check the capability of Statistical Downscaling Model (SDSM) in the tropical region. The historical data of nine weather stations were used for the period of 30 years (1976 - 2005) and Global Climate Model data of CanESM2 under RCPs of RCP2.6, RCP4.5 and RCP8.5 for the period of 2071-2100. The model was calibrated for the period of 1976-1995 and validated for the period of 1996-2005. After successful calibration and validation of SDSM, the future rainfall was simulated separately for all the three scenarios of RCPs. The obtained results have shown the values of R2 and RMSE for the model calibration and validation ranged between 0.58 – 0.86 and between 1.49 and 4.7, respectively for all stations. The obtained future rainfall data from 2071 – 2100 was then compared with the base period rainfall from 1976 - 2005. It was shown that under RCP2.6 scenario there will be an increase of 8.13%, while 14.7% rise in the RCP4.5 scenario during the period of 2071- 2100. An abrupt increase of about 40.6% was observed under the robust scenario of RCP8.5. Therefore, it is concluded that future pattern of rainfall in Limbang River basin under all the scenarios is constantly increasing due to the climate change.

  6. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  7. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    PubMed Central

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-01-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288

  8. Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berhe, Asmeret A.; Suttle, K. Blake; Burton, Sarah D.

    2012-09-03

    Shifts in regional precipitation patterns will be a major component of global climate change. Rainfall will show greater and more variable changes in response to rising earth surface temperatures than most other climatic variables, and will be a major driver of ecosystem change. We studied the consequences of predicted changes in California’s rainy season for storage and stabilization mechanisms of soil organic matter (SOM). In a controlled and replicated experiment, we amended rainfall over large plots of natural grassland in accordance with alternative scenarios of future climate change. Results show that increases in annual rainfall have important consequences for soilmore » C storage, but that the strength and even direction of these effects depend entirely on seasonal timing. Rainfall increases during the winter rainy season led to pronounced C loss from soil while rainfall increases after the typical rainy season increased soil C stocks. Analysis of mineral-OM associations reveals a powerful mechanism underlying this difference: increased winter rainfall vastly diminished the role of Fe and Al oxides in SOM stabilization. Dithionite extractable crystalline Fe oxides explained more than 35 percent of the variability in C storage in ambient control and spring-addition treatments, compared to less than 0.01 percent in the winter-addition treatment. Likewise, poorly crystalline Fe and Al oxides explained more than 25 and 40 percent of the variability in C storage, respectively, in the control and spring-addition treatments compared to less than 5 percent in the -winter-addition treatment. Increases in annual precipitation identical in amount but at three-month offsets produced opposite effects on soil C storage. These results highlight the complexity inherent in biospheric feedbacks to the climate system, and the way that careful experimentation can penetrate that complexity to improve predictions of ecosystem and climatic change.« less

  9. Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh

    2016-04-01

    Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.

  10. Local weather conditions have complex effects on the growth of blue tit nestlings.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R

    2016-08-01

    Adverse weather conditions are expected to result in impaired nestling development in birds, but empirical studies have provided equivocal support for such a relationship. This may be because the negative effects of adverse weather conditions are masked by parental effects. Globally, ambient temperatures, rainfall levels and wind speeds are all expected to increase in a changing climate and so there is a need for a better understanding of the relationship between weather conditions and nestling growth. Here, we describe a correlative study that examined the relationships between local temperatures, rainfall levels and wind speeds and the growth of individual blue tit (Cyanistes caeruleus) nestlings in relation to their hatching order and sex. We found that changes in a range of morphological characters were negatively related to both temperature and wind speed, but positively related to rainfall. These patterns were further influenced by the hatching order of the nestlings but not by nestling sex. This suggests that the predicted changes in local weather conditions may have complex effects on nestling growth, but that parents may be able to mitigate the adverse effects via adaptive parental effects. We therefore conclude that local weather conditions have complex effects on avian growth and the implications for patterns of avian growth in a changing climate are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  12. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.

  13. El Niño, Rainfall, and the Shifting Geography of Cholera in Africa

    NASA Astrophysics Data System (ADS)

    Moore, S.; Azman, A. S.; Zaitchik, B. F.; McKay, H.; Lessler, J.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between El Niño patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa where many cholera cases and deaths are reported. To understand how ENSO affects the geographic distribution of cholera incidence in Africa, we used a hierarchical Bayesian approach to integrate over 17,000 annual observations of cholera incidence from 2000-2014 in over 3,000 unique locations of varying spatial extent, ranging from entire countries to neighborhoods. The resulting maps reflect modeled cholera incidence at a fine spatial resolution using reported counts of cholera cases, key explanatory variables, and a spatially-dependent covariance term. We then examined the potential mechanistic association between ENSO-related changes in cholera incidence and several environmental variables including rainfall. El Niño profoundly changed the annual geographic distribution of cholera in Africa from 2000-2014, shifting the burden to continental East Africa, where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall suggesting a complex relationship between rainfall and cholera incidence. Here we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño and non-El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with El Niño forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.

  14. Socioeconomic impacts of climate change on rural communities in the United States

    Treesearch

    Pankaj Lal; Janaki Alavalapati; D Evan Mercer

    2011-01-01

    Climate change refers to any distinct change in measures of climate such as temperature, rainfall, snow, or wind patterns lasting for decades or longer (USEPA 2009). In the last decade, there has been a clear consensus among scientists that the world is experiencing a rapid global climate change, much of it attributable to anthropogenic activities. The extent of...

  15. Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Chung, Eun-Sung; Ismail, Tarmizi bin

    2017-11-01

    This study assesses the possible changes in rainfall patterns of Sarawak in Borneo Island due to climate change through statistical downscaling of General Circulation Models (GCM) projections. Available in-situ observed rainfall data were used to downscale the future rainfall from ensembles of 20 GCMs of Coupled Model Intercomparison Project phase 5 (CMIP5) for four Representative Concentration Pathways (RCP) scenarios, namely, RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Model Output Statistics (MOS) based downscaling models were developed using two data mining approaches known as Random Forest (RF) and Support Vector Machine (SVM). The SVM was found to downscale all GCMs with normalized mean square error (NMSE) of 48.2-75.2 and skill score (SS) of 0.94-0.98 during validation. The results show that the future projection of the annual rainfalls is increasing and decreasing on the region-based and catchment-based basis due to the influence of the monsoon season affecting the coast of Sarawak. The ensemble mean of GCMs projections reveals the increased and decreased mean of annual precipitations at 33 stations with the rate of 0.1% to 19.6% and one station with the rate of - 7.9% to - 3.1%, respectively under all RCP scenarios. The remaining 15 stations showed inconsistency neither increasing nor decreasing at the rate of - 5.6% to 5.2%, but mainly showing a trend of decreasing rainfall during the first period (2010-2039) followed by increasing rainfall for the period of 2070-2099.

  16. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    NASA Astrophysics Data System (ADS)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  17. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils.

    PubMed

    Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël

    2018-03-01

    The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Impact of rainfall pattern on interrill erosion process

    USDA-ARS?s Scientific Manuscript database

    The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...

  19. Assessing the impact of climate change on soil salinity development in agricultural areas using ground and satellite sensors

    USDA-ARS?s Scientific Manuscript database

    Changes in climatic patterns have impacted some agricultural areas. Examples include the historic drought in California’s San Joaquin Valley (2011-2015) and the recent 18-year above average annual rainfall and snowfall in the Red River Valley of the Midwestern USA (1993-2011). Climate change has imp...

  20. Plant calendar pattern based on rainfall forecast and the probability of its success in Deli Serdang regency of Indonesia

    NASA Astrophysics Data System (ADS)

    Darnius, O.; Sitorus, S.

    2018-03-01

    The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.

  1. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo.

    PubMed

    Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki

    2013-01-01

    Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.

  2. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa.

    PubMed

    Mertz, Ole; D'haen, Sarah; Maiga, Abdou; Moussa, Ibrahim Bouzou; Barbier, Bruno; Diouf, Awa; Diallo, Drissa; Da, Evariste Dapola; Dabi, Daniel

    2012-06-01

    Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic changes and their perceptions were compared across north-south and west-east rainfall gradients. More than 80% of all households found that rainfall had decreased, especially in the wettest areas. Increases in wind speeds and temperature were perceived by an overall 60-80% of households. Contrary to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources, vegetation, and fauna, but more so in the 500-900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region, especially in the 500-900 mm zones and the western part of SSWA.

  3. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  4. Changing On Diurnal Cycle Of Rainfall In Northern Coastal Of West Java

    NASA Astrophysics Data System (ADS)

    Yulihastin, E.; Hadi, T. W.; Ningsih, N. S.

    2017-12-01

    The floods event in the north of Java was largely due to persistent of rainfall that occurred in the morning which indicated of deviation of diurnal pattern of rainfall. The shift of the phase of diurnal rainfall cycle using TRMM satellite hourly data of 3B41RT on the rainy period of 2000-2016 exhibits over land from Late Afternoon-Early Midnight (LA-EM) to morning. The peak of the cycle changes from diurnal to semidiurnal with a peak occurring in LA-EM and morning. Location of rainfall which usually occurs in the oceans shifted into near coastal area. The classification of diurnal rainfall cycles based on composite analysis shows four types: Normal (N) Type (45.6%) with one peak rainfall occurring in the afternoon until night, Diurnal (D) Type (26%) with one peak and phase opposite to normal type, Semidiurnal (SD) Type (6.5 %) with two peaks and the main peak occurring in the afternoon until night, Third Diurnal (TD) Type (21.7%) with three peaks and the main peak occurs in the morning. The classification was confirmed using the objective method of Empirical Mode Decomposition (EMD) and obtained three IMFs representing three diurnal cycle modes of Type TD (67.8%) with the main rain peak taking place in the afternoon, Type D with rain peak occurring in the early hours (18.9%), and SD type (9.9%) with the first peak occurred in the afternoon. For D Type, the results also prove that the diurnal cycle with significant deviations in amplitude occurred in February 2002, 2004, 2008, 2014, wich is the maximum rainfall occurs in the EM. It also seems that in those years, rainfall intensity is concentrated on the northern coast of West Java while in the Java Sea rainfall was minimum.

  5. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran.

    PubMed

    Lopes, Marta S; Royo, Conxita; Alvaro, Fanny; Sanchez-Garcia, Miguel; Ozer, Emel; Ozdemir, Fatih; Karaman, Mehmet; Roustaii, Mozaffar; Jalal-Kamali, Mohammad R; Pequeno, Diego

    2018-01-01

    Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations.

  6. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran

    PubMed Central

    Lopes, Marta S.; Royo, Conxita; Alvaro, Fanny; Sanchez-Garcia, Miguel; Ozer, Emel; Ozdemir, Fatih; Karaman, Mehmet; Roustaii, Mozaffar; Jalal-Kamali, Mohammad R.; Pequeno, Diego

    2018-01-01

    Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations. PMID:29765385

  7. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, Tyler; Manzoni, Stefano; Feng, Xue; Menezes, Rômulo S. C.; Porporato, Amilcare

    2013-07-01

    seasonally dry conditions are typical of large areas of the tropics, their biogeochemical responses to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Seasonal moisture availability positively affects both productivity and soil respiration, resulting in a delicate balance between C deposition as litterfall and C loss through heterotrophic respiration. To understand how rainfall seasonality (i.e., duration of the wet season and rainfall distribution) affects this balance and to provide estimates of long-term C sequestration, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, related C inputs through litterfall, and soil C dynamics. A drought-deciduous caatinga ecosystem in northeastern Brazil is used as a case study to parameterize the model. When extended to different patterns of rainfall seasonality, the results indicate that for fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall is a critical driver of this relationship, leading at times to distinct optima in both production and C storage. These theoretical predictions are discussed in the context of parameter uncertainties and possible changes in rainfall regimes in tropical dry ecosystems.

  8. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  9. Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.

    2017-12-01

    Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)

  10. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.

    PubMed

    Suepa, Tanita; Qi, Jiaguo; Lawawirojwong, Siam; Messina, Joseph P

    2016-05-01

    The spatio-temporal characteristics of remote sensing are considered to be the primary advantage in environmental studies. With long-term and frequent satellite observations, it is possible to monitor changes in key biophysical attributes such as phenological characteristics, and relate them to climate change by examining their correlations. Although a number of remote sensing methods have been developed to quantify vegetation seasonal cycles using time-series of vegetation indices, there is limited effort to explore and monitor changes and trends of vegetation phenology in the Monsoon Southeast Asia, which is adversely affected by changes in the Asian monsoon climate. In this study, MODIS EVI and TRMM time series data, along with field survey data, were analyzed to quantify phenological patterns and trends in the Monsoon Southeast Asia during 2001-2010 period and assess their relationship with climate change in the region. The results revealed a great regional variability and inter-annual fluctuation in vegetation phenology. The phenological patterns varied spatially across the region and they were strongly correlated with climate variations and land use patterns. The overall phenological trends appeared to shift towards a later and slightly longer growing season up to 14 days from 2001 to 2010. Interestingly, the corresponding rainy season seemed to have started earlier and ended later, resulting in a slightly longer wet season extending up to 7 days, while the total amount of rainfall in the region decreased during the same time period. The phenological shifts and changes in vegetation growth appeared to be associated with climate events such as EL Niño in 2005. Furthermore, rainfall seemed to be the dominant force driving the phenological changes in naturally vegetated areas and rainfed croplands, whereas land use management was the key factor in irrigated agricultural areas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effects of Drought, Pest Pressure and Light Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree Species across a Tropical Rainfall Gradient

    PubMed Central

    Gaviria, Julian; Engelbrecht, Bettina M. J.

    2015-01-01

    Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important. PMID:26619138

  12. Aerosol and Urban Land Use Effect on Rainfall Around Cities in Indo-Gangetic Basin From Observations and Cloud Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Qian, Yun; Kumar, Shailendra; Ruby Leung, L.

    2018-04-01

    Coupling of urban land use land cover (LULC) and aerosol loading on rainfall around cities in the Gangetic Basin (GB) is examined here. Long-term observations illustrate more rainfall at urban core and climatological downwind regions compared to the upwind regions of Kanpur, a metropolitan area located in central GB. In addition, analysis of a 15 day cloud resolving simulation using the Weather Research and Forecasting model also illustrated similar rainfall pattern around other major cities in the GB. Interestingly, the enhancement of downwind rainfall was greater than that over urban regions, and it was positively associated with both the urban area of the city and ambient aerosol loading during the propagating storm. Further, to gain a process-level understanding, a typical storm that propagated northwestward across Kanpur was simulated using Weather Research and Forecasting under three different scenarios. Case 1 has realistic LULC representation of Kanpur, while the grids representing the Kanpur urban region were replaced by cropland LULC pattern in Case 2. Comparison illustrated that urban heat island effect caused convergence of winds and moisture in the lower troposphere, which enhances convection over urban region and induced more rainfall over the urban core compared to upwind regions. Case 3 is similar to Case 1 but lower aerosol concentration (by a factor of 100) over the storm region. Analysis shows that aerosol-induced microphysical changes delay the initiation of warm rain (over the upwind region) but enhance ice phase particle formation in latter stages (over the urban and downwind regions) resulting in increase in downwind rainfall.

  13. Dynamic models of farmers adaptation to climate change (case of rice farmers in Cemoro Watershed, Central Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Farming activities are generally very sensitive to climate change variations. Global climate change will result in changes of patterns and distribution of rainfall. The impact of changing patterns and distribution of rainfall is the occurrence of early season shifts and periods of planting. Therefore, farmers need to adapt to the occurrence of climate change to avoid the decrease productivity on the farm land. This study aims to examine the impacts of climate change adaptation that farmers practiced on the farming productivity. The analysis is conducted dynamically using the Powersim 2.5. The result of analysis shows that the use of Planting Calendar and Integrated Crops Management technology can increase the rice productivity of certain area unity. Both technologies are the alternatives for farmers to adapt to climate change. Both farmers who adapt to climate change and do not adapt to climate change, experience an increase in rice production, time after time. However, farmers who adapt to climate change, increase their production faster than farmers who do not adapt to climate change. The use of the Planting Calendar and Integrated Crops Management strategy together as a farmers’ adaptation strategy is able to increase production compared to non-adaptive farmers.

  14. El Niño and the shifting geography of cholera in Africa.

    PubMed

    Moore, Sean M; Azman, Andrew S; Zaitchik, Benjamin F; Mintz, Eric D; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J; Olson, David; Lessler, Justin

    2017-04-25

    The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa-and away from Madagascar and portions of southern, Central, and West Africa-where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.

  15. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices

    NASA Astrophysics Data System (ADS)

    Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei

    2017-08-01

    Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.

  16. Influence of climatic variables, forest type, and condition on activity patterns of Geoffroyi's spider monkeys throughout Mesoamerica.

    PubMed

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Chaves, Oscar M; Sánchez-López, Sónia; Aureli, Filippo; Stoner, Kathryn E

    2011-12-01

    Understanding how species cope with variations in climatic conditions, forest types and habitat amount is a fundamental challenge for ecologists and conservation biologists. We used data from 18 communities of Mesoamerican spider monkeys (Ateles geoffroyi) throughout their range to determine whether their activity patterns are affected by climatic variables (temperature and rainfall), forest types (seasonal and nonseasonal forests), and forest condition (continuous and fragmented). Data were derived from 15 published and unpublished studies carried out in four countries (Mexico, El Salvador, Costa Rica, and Panama), cumulatively representing more than 18 years (221 months, >3,645 hr) of behavioral observations. Overall, A. geoffroyi spent most of their time feeding (38.4 ± 14.0%, mean ± SD) and resting (36.6 ± 12.8%) and less time traveling (19.8 ± 11.3%). Resting and feeding were mainly affected by rainfall: resting time increased with decreasing rainfall, whereas feeding time increased with rainfall. Traveling time was negatively related to both rainfall and maximum temperature. In addition, both resting and traveling time were higher in seasonal forests (tropical dry forest and tropical moist forest) than in nonseasonal forests (tropical wet forest), but feeding time followed the opposite pattern. Furthermore, spider monkeys spent more time feeding and less time resting (i.e., higher feeding effort) in forest fragments than in continuous forest. These findings suggest that global climate changes and habitat deforestation and fragmentation in Mesoamerica will threaten the survival of spider monkeys and reduce the distributional range of the species in the coming decades. © 2011 Wiley Periodicals, Inc.

  17. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha

    2016-09-01

    A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

  18. Long term leaf phenology and leaf exchange strategies of a cerrado savanna community

    NASA Astrophysics Data System (ADS)

    de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.

    2017-04-01

    Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global change scenarios.

  19. Effects of Hydrological Parameters on Palm Oil Fresh Fruit Bunch Yield)

    NASA Astrophysics Data System (ADS)

    Nda, M.; Adnan, M. S.; Suhadak, M. A.; Zakaria, M. S.; Lopa, R. T.

    2018-04-01

    Climate change effects and variability have been studied by many researchers in diverse geophysical fields. Malaysia produces large volume of palm oil, the effects of climate change on hydrological parameters (rainfall and precipitation) could have adverse effects on palm oil fresh fruit bunch (FFB) production with implications at both local and international market. It is important to understand the effects of climate change on crop yield to adopt new cultivation techniques and guaranteeing food security globally. Based on this background, the paper’s objective is to investigate the effects of rainfall and temperature pattern on crop yield (FFB) within five years period (2013 - 2017) at Batu Pahat District. The Man - Kendall rank technique (trend test) and statistical analyses (correlation and regression) were applied to the dataset used for the study. The results reveal that there are variabilities in rainfall and temperature from one month to the other and the statistical analysis reveals that the hydrological parameters have an insignificant effect on crop yield.

  20. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    USDA-ARS?s Scientific Manuscript database

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California’s San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minn...

  1. Understanding the science of climate change: Talking points - Impacts to the Gulf Coast

    Treesearch

    Rachel Loehman; Greer Anderson

    2010-01-01

    Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...

  2. Prognostic Aspects of Sub-seasonal Rainfall Characteristics using the Outputs of General Circulation Model: An Application of Statistical Downscaling and Temporal Disaggregation

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mohanty, U. C.; Ghosh, K.

    2015-12-01

    Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.

  3. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa

    USGS Publications Warehouse

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2015-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.

  4. Vegetation Controls on Weathering Intensity during the Last Deglacial Transition in Southeast Africa

    PubMed Central

    Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie

    2014-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation. PMID:25406090

  5. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa.

    PubMed

    Ivory, Sarah J; McGlue, Michael M; Ellis, Geoffrey S; Lézine, Anne-Marie; Cohen, Andrew S; Vincens, Annie

    2014-01-01

    Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.

  6. Climate Change and Your National Forest: Assessing the potential effects of climate change on the El Yunque National Forest

    Treesearch

    L.N. Jennings; E.A. Treasure; S.G. McNulty

    2013-01-01

    Forestlands across the world are experiencing increased threats from fire, insect and plant invasions, disease, extreme weather, and drought. Scientists project increases in temperature and changes in rainfall patterns that can make these threats occur more often, with more intensity, and/or for longer durations. Although many of the effects of future changes are...

  7. Modeling and forecasting rainfall patterns of southwest monsoons in North-East India as a SARIMA process

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-02-01

    Weather forecasting is an important issue in the field of meteorology all over the world. The pattern and amount of rainfall are the essential factors that affect agricultural systems. India experiences the precious Southwest monsoon season for four months from June to September. The present paper describes an empirical study for modeling and forecasting the time series of Southwest monsoon rainfall patterns in the North-East India. The Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting for this region. The study has shown that the SARIMA (0, 1, 1) (1, 0, 1)4 model is appropriate for analyzing and forecasting the future rainfall patterns. The Analysis of Means (ANOM) is a useful alternative to the analysis of variance (ANOVA) for comparing the group of treatments to study the variations and critical comparisons of rainfall patterns in different months of the season.

  8. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  9. Prediction of future climate change for the Blue Nile, using RCM nested in GCM

    NASA Astrophysics Data System (ADS)

    Sayed, E.; Jeuland, M.; Aty, M.

    2009-04-01

    Although the Nile River Basin is rich in natural resources, it faces many challenges. Rainfall is highly variable across the region, on both seasonal and inter-annual scales. This variability makes the region vulnerable to droughts and floods. Many development projects involving Nile waters are currently underway, or being studied. These projects will lead to land-use patterns changes and water distribution and availability. It is thus important to assess the effects of a) these projects and b) evolving water resource management and policies, on regional hydrological processes. This paper seeks to establish a basis for evaluation of such impacts within the Blue Nile River sub-basin, using the RegCM3 Regional Climate Model to simulate interactions between the land surface and climatic processes. We first present results from application of this RCM model nested with downscaled outputs obtained from the ECHAM5/MPI-OM1 transient simulations for the 20th Century. We then investigate changes associated with mid-21st century emissions forcing of the SRES A1B scenario. The results obtained from the climate model are then fed as inputs to the Nile Forecast System (NFS), a hydrologic distributed rainfall runoff model of the Nile Basin, The interaction between climatic and hydrological processes on the land surface has been fully coupled. Rainfall patterns and evaporation rates have been generated using RegCM3, and the resulting runoff and Blue Nile streamflow patterns have been simulated using the NFS. This paper compares the results obtained from the RegCM3 climate model with observational datasets for precipitation and temperature from the Climate Research Unit (UK) and the NASA Goddard Space Flight Center GPCP (USA) for 1985-2000. The validity of the streamflow predictions from the NFS is assessed using historical gauge records. Finally, we present results from modeling of the A1B emissions scenario of the IPCC for the years 2034-2055. Our results indicate that future changes in rainfall may vary over different areas of the Upper Blue Nile catchment in Ethiopia. Our results suggest that there may be good reasons for developing climate models with finer spatial resolution than the more commonly used GCMs.

  10. Application of the empirical orthogonal function to study the rainfall pattern in Daerah Istimewa Yogyakarta province

    NASA Astrophysics Data System (ADS)

    Adi-Kusumo, Fajar; Gunardi, Utami, Herni; Nurjani, Emilya; Sopaheluwakan, Ardhasena; Aluicius, Irwan Endrayanto; Christiawan, Titus

    2016-02-01

    We consider the Empirical Orthogonal Function (EOF) to study the rainfall pattern in Daerah Istimewa Yogyakarta (DIY) Province, Indonesia. The EOF is one of the important methods to study the dominant pattern of the data using dimension reduction technique. EOF makes possible to reduce the huge dimension of observed data into a smaller one without losing its significant information in order to figures the whole data. The methods is also known as Principal Components Analysis (PCA) which is conducted to find the pattern of the data. DIY Province is one of the province in Indonesia which has special characteristics related to the rainfall pattern. This province has an active volcano, karst, highlands, and also some lower area including beach. This province is bounded by the Indonesian ocean which is one of the important factor to provide the rainfall. We use at least ten years rainfall monthly data of all stations in this area and study the rainfall characteristics based on the four regencies of the province. EOF analysis is conducted to analyze data in order to decide the station groups which have similar characters.

  11. The physics of rainclouds, what is behind rainfall trends?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2017-04-01

    In several locations in the world rainfall was significantly declining during the last four decades since about 1970, despite during the same timespan the water vapor availability in the planetary boundary layer (PBL) was increasing by about five percent. Increasing water vapor levels in the PBL are a result of climate change and well in agreement with the observed one degree increase of air temperature over the oceans. Increasing water vapor availability due to an increase in evaporation should lead to a higher turnover rate within the hydrological cycle, which should result either in more frequent or in more intense rainfall. Several regional observations especially along the Australian coastline show a contrary picture. Often rainfall is less frequent and the annual rainfall is declining. Also the number of rainy days goes down. This behavior could be caused by a number of different processes affecting both, the amount of liquid water in the atmosphere and the microphysical properties of clouds. Within the discussions are: -A change in the large scale advection patterns due to global warming, shifting the trajectories of low pressure systems, a slow process that takes several decades. -A change in land use by deforestation leading to lower roughness, higher albedo and lower convective energy. Such a land use change might happen within about one decade (e.g. Western Australia). -A change in aerosol abundance. Addition of anthropogenic cloud condensation nuclei lead instantly to smaller cloud droplets and subsequently to a regional to continental scale redistribution of rainfall within the time scales of cloud lifetime (hours to days). Airborne experiments show that indeed the number of aerosols in several of the respective areas investigated up to now was increasing roughly in time with the observed rainfall changes. However, only in few of the areas the availability of historical aerosol data is sufficient for a more detailed investigation. We show results from experiments in search for physical reasons for a regional scale rainfall decline observed along the Australian coastline. Here the historical database including an airborne survey in the early 70's allows to reconstruct a 'laboratory' notebook an aerosol trends. This makes the area a perfect 'natural laboratory' for such studies on the physical background for climate change trends and to disentangle different climate / hydrological cycle relevant physical processes.

  12. Climatic effects on mosquito abundance in Mediterranean wetlands

    PubMed Central

    2014-01-01

    Background The impact of climate change on vector-borne diseases is highly controversial. One of the principal points of debate is whether or not climate influences mosquito abundance, a key factor in disease transmission. Methods To test this hypothesis, we analysed ten years of data (2003–2012) from biweekly surveys to assess inter-annual and seasonal relationships between the abundance of seven mosquito species known to be pathogen vectors (West Nile virus, Usutu virus, dirofilariasis and Plasmodium sp.) and several climatic variables in two wetlands in SW Spain. Results Within-season abundance patterns were related to climatic variables (i.e. temperature, rainfall, tide heights, relative humidity and photoperiod) that varied according to the mosquito species in question. Rainfall during winter months was positively related to Culex pipiens and Ochlerotatus detritus annual abundances. Annual maximum temperatures were non-linearly related to annual Cx. pipiens abundance, while annual mean temperatures were positively related to annual Ochlerotatus caspius abundance. Finally, we modelled shifts in mosquito abundances using the A2 and B2 temperature and rainfall climate change scenarios for the period 2011–2100. While Oc. caspius, an important anthropophilic species, may increase in abundance, no changes are expected for Cx. pipiens or the salt-marsh mosquito Oc. detritus. Conclusions Our results highlight that the effects of climate are species-specific, place-specific and non-linear and that linear approaches will therefore overestimate the effect of climate change on mosquito abundances at high temperatures. Climate warming does not necessarily lead to an increase in mosquito abundance in natural Mediterranean wetlands and will affect, above all, species such as Oc. caspius whose numbers are not closely linked to rainfall and are influenced, rather, by local tidal patterns and temperatures. The final impact of changes in vector abundance on disease frequency will depend on the direct and indirect effects of climate and other parameters related to pathogen amplification and spillover on humans and other vertebrates. PMID:25030527

  13. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  14. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu

  15. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    NASA Astrophysics Data System (ADS)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  16. Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment

    NASA Astrophysics Data System (ADS)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2017-11-01

    Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific water resource systems.

  17. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia?

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd

    2017-08-01

    We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.

  18. Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk

    2009-01-01

    SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.

  19. Landuse/Landcover and Climate Change Interaction in the Derived Savannah Region of Nigeria

    NASA Astrophysics Data System (ADS)

    Akintuyi, A. O.; Fasona, M.; Soneye, A. S. O.

    2016-12-01

    The interaction of landuse/Landcover (LULC) and climate change, to a large extent, involves anthropogenic activities. This study was carried out in the derived savannah of Nigeria, a delicate ecological zone where the interaction of LULC and climate change could be well appreciated. The study evaluated coupled interaction between LULC and climate change and assessed the changes in the landuse/landcover patterns for the periods 1972, 1986, 2002 and 2010, evaluated the present (1941 - 2010) and future (2011 - 2050) variability in rainfall patterns and an attempt was made to predict the interaction between LULC and climate change during future climate. The study adopted remote sensing and GIS techniques, land change modeller and multivariate statistics The results suggest that the built up area, farmland, waterbody and woodland experienced a rapid increase of about 1,134.69%, 1,202.85%, 631.51% and 188.09%, respectively, while the forest cover, degraded surfaces and grassland lost about 19.32%, 72.76% and 0.05% respectively between 1972 and 2010. Furthermore, the study predicted 40.28% and 37.84% reduction in the forested area between 1986 and 2050 and 2010 and 2050 respectively. The study concludes that rainfall will be the major driver of LULC change within the study area under a future climate.

  20. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    USGS Publications Warehouse

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  1. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.

  2. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  3. Climate variability, vulnerability, and coping mechanism in Alaknanda catchment, Central Himalaya, India.

    PubMed

    Kumar, Kireet; Joshi, Sneh; Joshi, Varun

    2008-06-01

    A study was carried out to discover trends in the rainfall and temperature pattern of the Alaknanda catchment in the Central Himalaya. Data on the annual rainfall, monsoon rainfall for the last decade, and average annual temperatures over the last few decades were analyzed. Nonparametric methods (Mann-Kendall and Sen's method) were employed to identify trends. The Mann-Kendall test shows a decline in rainfall and rise in temperature, and these trends were found to be statistically significant at the 95% confidence level for both transects. Sen's method also confirms this trend. This aspect has to be considered seriously for the simple reason that if the same trend continues in the future, more chances of drought are expected. The impact of climate change has been well perceived by the people of the catchment, and a coping mechanism has been developed at the local level.

  4. Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia

    USGS Publications Warehouse

    Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, Daniel J.

    2007-01-01

    Seasonal patterns of tree growth are often related to rainfall, temperature, and relative moisture regimes. We asked whether diameter growth of mangrove trees in Micronesia, where seasonal changes are minimal, is continuous throughout a year or conforms to an annual cycle. We installed dendrometer bands on Sonneratia alba and Bruguiera gymnorrhiza trees growing naturally within mangrove swamps on the islands of Kosrae, Federated States of Micronesia (FSM), Pohnpei, FSM, and Butaritari, Republic of Kiribati, in the eastern Caroline Islands of the western Pacific Ocean. Trees were remeasured monthly or quarterly for as long as 6 yr. Annual mean individual tree basal area increments ranged from 7.0 to 79.6 cm2/yr for all S. alba trees and from 4.8 to 27.4 cm2/yr for all B. gymnorrhiza trees from Micronesian high islands. Diameter increment for S. alba on Butaritari Atoll was lower at 7.8 cm 2/yr for the one year measured. Growth rates differed significantly by hydrogeomorphic zone. Riverine and interior zones maintained up to seven times the annual diameter growth rate of fringe forests, though not on Pohnpei, where basal area increments for both S. alba and B. gymnorrhiza were approximately 1.5 times greater in the fringe zone than in the interior zone. Time-series modeling indicated that there were no consistent and statistically significant annual diameter growth patterns. Although rainfall has some seasonality in some years on Kosrae and Pohnpei and overall growth of mangroves was sometimes related positively to quarterly rainfall depths, seasonal diameter growth patterns were not distinctive. A reduced chance of moisture-related stress in high-rainfall, wetland environments may serve to buffer growth of Micronesian mangroves from climatic extremes. ?? 2007 The Author(s) Journal compilation ?? 2007 by The Association for Tropical Biology and Conservation.

  5. El Niño and the shifting geography of cholera in Africa

    PubMed Central

    Moore, Sean M.; Azman, Andrew S.; Zaitchik, Benjamin F.; Mintz, Eric D.; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J.; Olson, David; Lessler, Justin

    2017-01-01

    The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa—and away from Madagascar and portions of southern, Central, and West Africa—where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk. PMID:28396423

  6. Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse.

    PubMed

    Ghosh, Prosenjit; Prasanna, K; Banerjee, Yogaraj; Williams, Ian S; Gagan, Michael K; Chaudhuri, Atanu; Suwas, Satyam

    2018-05-31

    The Cretaceous greenhouse climate was accompanied by major changes in Earth's hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ 18 O and CO 2 clumped isotope Δ 47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India. These tandem records accurately reconstruct seasonal changes in sea surface temperature (SST) and seawater δ 18 O, allowing us to document freshwater discharge into the estuary, and make inferences about rainfall amount. The same analytical approach was applied to well-preserved fossil remains of the Cretaceous (Early Maastrichtian) mollusc Phygraea (Phygraea) vesicularis from the nearby Kallankuruchchi Formation in the Cauvery Basin of southern India. The palaeoenvironmental record shows that, unlike present-day India, where summer rainfall predominates, most rainfall in Cretaceous India occurred in winter. During the Early Maastrichtian, the Indian plate was positioned at ~30°S latitude, where present-day rainfall and storm activity is also concentrated in winter. The good match of the Cretaceous climate and present-day climate at ~30°S suggests that the large-scale atmospheric circulation and seasonal hydroclimate patterns were similar to, although probably more intense than, those at present.

  7. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2017-04-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  8. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  9. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo

    2012-05-01

    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  10. Describing rainfall in northern Australia using multiple climate indices

    NASA Astrophysics Data System (ADS)

    Wilks Rogers, Cassandra Denise; Beringer, Jason

    2017-02-01

    Savanna landscapes are globally extensive and highly sensitive to climate change, yet the physical processes and climate phenomena which affect them remain poorly understood and therefore poorly represented in climate models. Both human populations and natural ecosystems are highly susceptible to precipitation variation in these regions due to the effects on water and food availability and atmosphere-biosphere energy fluxes. Here we quantify the relationship between climate phenomena and historical rainfall variability in Australian savannas and, in particular, how these relationships changed across a strong rainfall gradient, namely the North Australian Tropical Transect (NATT). Climate phenomena were described by 16 relevant climate indices and correlated against precipitation from 1900 to 2010 to determine the relative importance of each climate index on seasonal, annual and decadal timescales. Precipitation trends, climate index trends and wet season characteristics have also been investigated using linear statistical methods. In general, climate index-rainfall correlations were stronger in the north of the NATT where annual rainfall variability was lower and a high proportion of rainfall fell during the wet season. This is consistent with a decreased influence of the Indian-Australian monsoon from the north to the south. Seasonal variation was most strongly correlated with the Australian Monsoon Index, whereas yearly variability was related to a greater number of climate indices, predominately the Tasman Sea and Indonesian sea surface temperature indices (both of which experienced a linear increase over the duration of the study) and the El Niño-Southern Oscillation indices. These findings highlight the importance of understanding the climatic processes driving variability and, subsequently, the importance of understanding the relationships between rainfall and climatic phenomena in the Northern Territory in order to project future rainfall patterns in the region.

  11. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Katherine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2011-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the period 2004 - 2009 have privileged different disease vectors. Chikungunya outbreaks occurred during the severe drought from late 2004 to 2006 over coastal East Africa and the western Indian Ocean islands and in the later years India and Southeast Asia. The chikungunya pandemic was caused by a Central/East African genotype that appears to have been precipitated and then enhanced by global-scale and regional climate conditions in these regions. Outbreaks of Rift Valley fever occurred following excessive rainfall period from late 2006 to late 2007 in East Africa and Sudan, and then in 2008 - 2009 in Southern Africa. The shift in the outbreak patterns of Rift Valley fever from East Africa to Southern Africa followed a transition of the El Nino/Southern Oscillation (ENSO) phenomena from the warm El Nino phase (2006-2007) to the cold La Nina phase (2007-2009) and associated patterns of variability in the greater Indian Ocean basin that result in the displacement of the centres of above normal rainfall from Eastern to Southern Africa. Understanding the background patterns of climate variability both at global and regional scale and their impacts on ecological drivers of vector borne-diseases is critical in long-range planning of appropriate response and mitigation measures.

  12. Global hotspots of river erosion under global warming

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, P.; Reichler, T.

    2017-12-01

    Extreme precipitation plays a significant role for river hydrology, flood hazards and landscape response. For example, the September 2013 rainstorm in the Colorado Front Range evacuated the equivalent of hundreds to thousands of years of hillslope weathering products. Although promoted by steep topography, the Colorado event is clearly linked to rainfall intensity, since most of the 1100 debris flows occurred within the highest rainfall contour. Additional evidence for a strong link between extreme precipitation and river erosion comes from the sedimentary record, and especially from that of past greenhouse climates. The existence of such a link suggests that information about global rainfall patterns can be used to define regions of increased erosion potential. However, the question arises what rainfall criteria to use and how well the method works. A related question is how ongoing climate change and the corresponding shifts in rainfall might impact the results. Here, we use atmospheric reanalysis and output from a climate model to identify regions that are particularly susceptible to landscape change in response to extreme precipitation. In order to define the regions, we combine several hydroclimatological and geomorphological criteria into a single index of erosion potential. We show that for current climate, our criteria applied to atmospheric reanalysis or to climate model data successfully localize known areas of increased erosion potential, such as the Colorado region. We then apply our criteria to climate model data for future climate to document how the location, extent, and intensity of erosion hotspots are likely to change under global warming.

  13. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.

  14. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  15. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  16. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  17. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades.

    PubMed

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  18. Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN

    NASA Astrophysics Data System (ADS)

    Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.

    2016-12-01

    In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.

  19. Effect of precipitation pattern on leaching of preservative from treated wood and implications for accelerated testing

    Treesearch

    Stan Lebow

    2014-01-01

    There is a need to develop improved accelerated test methods for evaluating the leaching of wood preservatives from treated wood exposed to precipitation. In this study the effects of rate of rainfall and length of intervals between rainfall events on leaching was evaluated by exposing specimens to varying patterns of simulated rainfall under controlled laboratory...

  20. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Treesearch

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  1. Power-law scaling in daily rainfall patterns and consequences in urban stream discharges

    NASA Astrophysics Data System (ADS)

    Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.

    2016-04-01

    Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.

  2. Stable isotope ratios in rainfall and water vapour at Bangalore, Southern India during the monsoon period of 2013

    NASA Astrophysics Data System (ADS)

    Peethambaran, Rahul; Ghosh, Prosenjit

    2015-04-01

    Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and air parcel trajectories, atmospheric parameters such as rainfall, temperature and relative humidity and quantitative estimation of local source moisture source contributions will be discussed at the time of presentation.

  3. Change-point analysis of geophysical time-series: application to landslide displacement rate (Séchilienne rock avalanche, France)

    NASA Astrophysics Data System (ADS)

    Amorese, D.; Grasso, J.-R.; Garambois, S.; Font, M.

    2018-05-01

    The rank-sum multiple change-point method is a robust statistical procedure designed to search for the optimal number and the location of change points in an arbitrary continue or discrete sequence of values. As such, this procedure can be used to analyse time-series data. Twelve years of robust data sets for the Séchilienne (French Alps) rockslide show a continuous increase in average displacement rate from 50 to 280 mm per month, in the 2004-2014 period, followed by a strong decrease back to 50 mm per month in the 2014-2015 period. When possible kinematic phases are tentatively suggested in previous studies, its solely rely on the basis of empirical threshold values. In this paper, we analyse how the use of a statistical algorithm for change-point detection helps to better understand time phases in landslide kinematics. First, we test the efficiency of the statistical algorithm on geophysical benchmark data, these data sets (stream flows and Northern Hemisphere temperatures) being already analysed by independent statistical tools. Second, we apply the method to 12-yr daily time-series of the Séchilienne landslide, for rainfall and displacement data, from 2003 December to 2015 December, in order to quantitatively extract changes in landslide kinematics. We find two strong significant discontinuities in the weekly cumulated rainfall values: an average rainfall rate increase is resolved in 2012 April and a decrease in 2014 August. Four robust changes are highlighted in the displacement time-series (2008 May, 2009 November-December-2010 January, 2012 September and 2014 March), the 2010 one being preceded by a significant but weak rainfall rate increase (in 2009 November). Accordingly, we are able to quantitatively define five kinematic stages for the Séchilienne rock avalanche during this period. The synchronization between the rainfall and displacement rate, only resolved at the end of 2009 and beginning of 2010, corresponds to a remarkable change (fourfold increase in mean displacement rate) in the landslide kinematic. This suggests that an increase of the rainfall is able to drive an increase of the landslide displacement rate, but that most of the kinematics of the landslide is not directly attributable to rainfall amount. The detailed exploration of the characteristics of the five kinematic stages suggests that the weekly averaged displacement rates are more tied to the frequency or rainy days than to the rainfall rate values. These results suggest the pattern of Séchilienne rock avalanche is consistent with the previous findings that landslide kinematics is dependent upon not only rainfall but also soil moisture conditions (as known as being more strongly related to precipitation frequency than to precipitation amount). Finally, our analysis of the displacement rate time-series pinpoints a susceptibility change of slope response to rainfall, as being slower before the end of 2009 than after, respectively. The kinematic history as depicted by statistical tools opens new routes to understand the apparent complexity of Séchilienne landslide kinematic.

  4. Landslides Are Common In The Amazon Rainforests Of SE Peru

    NASA Astrophysics Data System (ADS)

    Khanal, S. P.; Muttiah, R. S.; Janovec, J. P.

    2005-12-01

    The recent landslides in La Conchita, California, Mumbai, India, Ratnapura, Sri Lanka and Sugozu village, Turkey have dramatically illustrated prolonged rainfall on water induced change in soil shear stress. In these examples, the human footprint may have also erased or altered the natural river drainage from small to large scales. By studying patterns of landslides in natural ecosystems, government officials, policy makers, engineers, geologists and others may be better informed about likely success of prevention or amelioration programs in risk prone areas. Our study area in the Los Amigos basin in Amazon rainforests of Southeastern Peru, has recorded several hundred landslides. The area has no large human settlements. The basin is characterized by heavy rainfall, dense vegetation, river meander and uniform soils. Our objectives were: 1). Determine the spatial pattern of landslides using GIS and Remotely sensed data, 2). Model the statistical relationship between environmental variables and, 3). Evaluate influence of drainage on landscape and soil loss. GIS layers consisted of: 50cm aerial imagery, DEMs, digitized streams, soils, geology, rainfall from the TRMM satellite, and vegetation cover from the LANDSAT and MODIS sensors.

  5. Modulation of Heavy Rainfall in the Middle East and North Africa by Madden-Julian Oscillation Using High Resolution Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Deng, L.; Stenchikov, G. L.; McCabe, M. F.; Bangalath, H. K.

    2014-12-01

    Recently, the modulation of subtropical rainfall by the dominant tropical intraseasonal signal of the Madden-Julian Oscillation (MJO), has been explored through the discussion of the MJO-convection-induced Kelvin and Rossby wave related teleconnection patterns. Our study focuses on characterizing the modulation of heavy rainfall in the Middle East and North Africa (MENA) region by the MJO, using the Geophysical Fluid Dynamics Laboratory (GFDL) global High Resolution Atmospheric Model (HIRAM) simulations (25-km; 1979-2012) and a combination of available atmospheric products from satellite, in-situ and reanalysis data. The observed Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) and the simulated SST from GFDL's global coupled carbon-climate Earth System Models (ESM2M) are employed in HIRAM to investigate the sensitivity of the simulated heavy rainfall and MJO to SST. The future trend of the extreme rainfalls and their links to the MJO response to climate change are examined using HIRAM simulations of 2012-2050 with the RCP4.5 and RCP 8.5 scenarios to advance the possibility of characterization and forecasting of future extreme rainfall events in the MENA region.

  6. Internal and International Mobility as Adaptation to Climatic Variability in Contemporary Mexico: Evidence from the Integration of Census and Satellite Data.

    PubMed

    Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando

    2017-08-01

    Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.

  7. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    PubMed

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  8. Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite.

    NASA Astrophysics Data System (ADS)

    Shepherd, J. Marshall; Pierce, Harold; Negri, Andrew J.

    2002-07-01

    Data from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar (PR) were employed to identify warm-season rainfall (1998-2000) patterns around Atlanta, Georgia; Montgomery, Alabama; Nashville, Tennessee; and San Antonio, Waco, and Dallas, Texas. Results reveal an average increase of about 28% in monthly rainfall rates within 30-60 km downwind of the metropolis, with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with the Metropolitan Meteorological Experiment (METROMEX) studies of St. Louis, Missouri, almost two decades ago and with more recent studies near Atlanta. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  9. Climate change and wildfire around southern Africa

    NASA Astrophysics Data System (ADS)

    Kimura, K.

    2013-12-01

    When the climate change in southern Africa is analyzed, the effects of rainfall by Inter Tropical Convergence Zone(ITCZ) and cyclone are important. In this study, the rainfall patterns are analyzed with synoptic analysis. The southern limit of ITCZ is around the arid zone around Namibia, Botswana, Zimbabwe and Mozambique. This zone has some effects of both ITCZ and extratropical cyclones by season. As well as this, the eastern part of this area has heavy rainfall by the cyclone from the Indian Ocean once in several years. In the other hand, a lot of wildfire occurs in this area. The main cause of the wildfire is anthropogenic misbehavior of the fire by the slash-and-burn agriculture. Recently we can find the wildfire detected with the satellite imagery like Terra/Aqua MODIS. We can compare the weather environment and the wildfire occurrence with Geographical Information System. We have tried making the fire weather index suitable for the southern African semi-arid area.

  10. On the stationarity of Floods in west African rivers

    NASA Astrophysics Data System (ADS)

    NKA, B. N.; Oudin, L.; Karambiri, H.; Ribstein, P.; Paturel, J. E.

    2014-12-01

    West Africa undergoes a big change since the years 1970-1990, characterized by very low precipitation amounts, leading to low stream flows in river basins, except in the Sahelian region where the impact of human activities where pointed out to justify the substantial increase of floods in some catchments. More recently, studies showed an increase in the frequency of intense rainfall events, and according to observations made over the region, increase of flood events is also noticeable during the rainy season. Therefore, the assumption of stationarity on flood events is questionable and the reliability of flood evolution and climatic patterns is justified. In this work, we analyzed the trends of floods events for several catchments in the Sahelian and Sudanian regions of Burkina Faso. We used thirteen tributaries of large river basins (Niger, Nakambe, Mouhoun, Comoé) for which daily rainfall and flow data were collected from national hydrological and meteorological services of the country. We used Mann-Kendall and Pettitt tests to detect trends and break points in the annual time series of 8 rainfall indices and the annual maximum discharge records. We compare the trends of precipitation indices and flood size records to analyze the possible causality link between floods size and rainfall pattern. We also analyze the stationary of the frequency of flood exceeding the ten year return period level. The samples were extracted by a Peak over threshold method and the quantification of change in flood frequency was assessed by using a test developed by Lang M. (1995). The results exhibit two principal behaviors. Generally speaking, no trend is detected on catchments annual maximum discharge, but positive break points are pointed out in a group of three right bank tributaries of the Niger river that are located in the sahelian region between 300mm to 650mm. These same catchments show as well an increase of the yearly number of flood greater than the ten year flood since 1980. However, there is no consistency between rain fall pattern and flood size pattern in the entire region.

  11. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence

  12. Monsoon rainfall over India in June and link with northwest tropical pacific - June ISMR and link with northwest tropical pacific

    NASA Astrophysics Data System (ADS)

    Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio

    2018-03-01

    Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.

  13. The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Richard, Sandra; Walsh, Kevin J. E.

    2017-09-01

    Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.

  14. Pyro-eco-hydrologic feedbacks and catchment co-evolution in fire-prone forested uplands

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Inbar, Assaf; Lane, Patrick; Nyman, Petter

    2017-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in standing biomass, soil depth/quality, and fire regimes, even within areas with similar rainfall, geology and catenary position. These system properties have traditionally been investigated independently, however recent research in the areas of post fire hydrology and erosion, and new insights into forest structure, fuel moisture, and flammability, suggest the presence of critical co-evolutionary feedbacks between fire, soils and vegetation that may explain the observed system states. To test this hypothesis we started with a published ecohydrologic model, modifying and extending the algorithms to capture feedbacks between hyrology and fire, and between fire, vegetation and soil production and erosion. The model was parameterized and calibrated with new data from instrumented forested hillslopes across energy and rainfall gradients generated by selecting sites with a range of aspect (energy) and elevation (rainall). The calibrated model was able to reasonably replicate the observed patterns of standing biomass, water balance, fire interval, and soil depth. The catchment co-evolution/feedback modelling approach to understanding patterns of vegetation, soils and fire regimes provides a promising new paradigm for predicting the response of forested se Australian catchments to declining rainfall and increasing temperatures under climate change.

  15. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall.

    PubMed

    Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W

    2007-01-01

    The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.

  16. Measurement of surface water runoff from plots of two different sizes

    NASA Astrophysics Data System (ADS)

    Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel

    2002-05-01

    Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.

  17. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    PubMed

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  18. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Ambrizzi, Tercio; Da Rocha, Rosmeri P.; Alves, Lincoln M.; Cuadra, Santiago V.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C.; Ferraz, Simone E. T.

    2010-11-01

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N-15°S band, both in summer and especially in winter, reaching up to 6-8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.

  19. Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought.

    PubMed

    Hinojosa, M Belén; Parra, Antonio; Laudicina, Vito Armando; Moreno, José M

    2016-12-15

    Fire may cause significant alterations in soil properties. Post-fire soil dynamics can vary depending, among other factors, on rainfall patterns. However, little is known regarding variations in response to post-fire drought. This is relevant in arid and semiarid areas with poor soils, like much of the western Mediterranean. Furthermore, climate change projections in such areas anticipate reduced precipitation and longer annual drought periods, together with an increase in fire severity and frequency. This research evaluates the effects of experimental drought after fire on soil dynamics of a Cistus-Erica shrubland (Central Spain). A replicated (n=4) field experiment was conducted in which the total rainfall and its patterns were manipulated by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2months drought), moderate drought (25% reduction of historical control, 5months drought) and severe drought (45% reduction, 7months drought). After one growing season under these rainfall treatments, the plots were burned. One set of unburned plots under natural rainfall served as an additional control. Soils were collected seasonally. Fire increased soil P and N availability. Post-fire drought treatments reduced available soil P but increased N concentration (mainly nitrate). Fire reduced available K irrespective of drought treatments. Fire reduced enzyme activities and carbon mineralization rate, a reduction that was higher in post-fire drought-treated soils. Fire decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased. Post-fire drought decreased soil total microbial biomass and fungi, with bacteria becoming more abundant. Our results support that increasing drought after fire could compromise the resilience of Mediterranean ecosystems to fire. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The influence of land surface properties on Sahel climate. Part 1: Desertification

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Shukla, Jagadish

    1993-01-01

    This is a general circulation model sensitivity study of the physical mechanisms of the effects of desertification on the Sahel drought. The model vegetation types were changed in the prescribed desertification area, which led to changes in the surface characteristics. The model was integrated for three months (June, July, August) with climatological surface conditions (control) and desertification conditions (anomaly) to examine the summer season response to the changed surface conditions. The control and anomaly experiments consisted of five pairs of integrations with different initial conditions and/or sea surface temperature boundary conditions. In the desertification experiment, the moisture flux convergence and rainfall were reduced in the test area and increased to the immediate south of this area. The simulated anomaly dipole pattern was similar to the observed African drought patterns in which the axis of the maximum rainfall shifts to the south. The circulation changes in the desertification experiment were consistent with those observed during sub-Saharan dry years. The tropical easterly jet was weaker and the African easterly jet was stronger than normal. Further, in agreement with the observations, the easterly wave disturbances were reduced in intensity but not in number. Descending motion dominated the desertification area. The surface energy budget and hydrological cycle were also changed substantially in the anomaly experiment.

  1. Rainfall Intensity and Frequency Explain Production Basis Risk in Cumulative Rain Index Insurance

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Chitsomanus P.; Muneepeerakul, Rachata; Huffaker, Ray G.

    2017-12-01

    With minimal moral hazard and adverse selection, weather index insurance promises financial resilience to farmers struck by harsh weather conditions through swift compensation at affordable premium. Despite these advantages, the very nature of indexing gives rise to production basis risk as the selected weather indexes do not sufficiently correspond to actual damages. To address this problem, we develop a stochastic yield model, built upon a stochastic soil moisture model driven by marked Poisson rainfall. Our analysis shows that even under similar temperature and rainfall amount yields can differ significantly; this was empirically supported by a 2-year field experiment in which rain-fed maize was grown under very similar total rainfall. Here, the year with more intense, less-frequent rainfall produces a better yield—a rare counter evidence to most climate change projections. Through a stochastic yield model, we demonstrate the crucial roles of rainfall intensity and frequency in determining the yield. Importantly, the model allows us to compute rainfall pattern-related basis risk inherent in cumulative rain index insurance. The model results and a case study herein clearly show that total rainfall is a poor indicator of yield, imposing unnecessary production basis risk on farmers and false-positive payouts on insurers. Incorporating rainfall intensity and frequency in the design of rain index insurance can offer farmers better protection, while maintaining the attractive features of the weather index insurance and thus fulfilling its promise of financial resilience.

  2. Urbanization Induces Nonstationarity in Extreme Rainfall Characteristics over Contiguous United States

    NASA Astrophysics Data System (ADS)

    Singh, J.; Paimazumder, D.; Mohanty, M. P.; Ghosh, S.; Karmakar, S.

    2017-12-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the perceivable impacts of climate change, urbanization and land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Also, it may no longer be reasonable to model rainfall extremes as a stationary process, yet nearly all-existing infrastructure design, water resource planning methods assume that historical extreme rainfall events will remain unchanged in the future. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the CONUS to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity. We use 0.250 resolution of precipitation data for a period of 1948-2006, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of 74 GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. Next, four demographic variables i.e. population density, housing unit, low income population and population below poverty line, have been utilized to identify the urbanizing regions through developing urbanization index. Furthermore to strengthen the analysis, Land cover map for 1992, 2001 and 2006 have been utilized to identify the location with the high change in impervious surface. The results show significant differences in the 50- and 100-year intensity, volume and duration estimated under the both stationary and nonstationary condition in urbanizing regions. Further results exhibit that rainfall duration has been decreased while, rainfall volume has been increased under nonstationary condition, which indicates increasing flood potential of rainfall events. The present study facilitate the understanding of anthropogenic climate change to extreme rainfall characteristics i.e. intensity, volume and duration, which could be utilized in designing flood control structure through a proposed nonstationary modeling.

  3. Prediction of future climate change for the Blue Nile, using a nested Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Soliman, E.; Jeuland, M.

    2009-04-01

    Although the Nile River Basin is rich in natural resources, it faces many challenges. Rainfall is highly variable across the region, on both seasonal and inter-annual scales. This variability makes the region vulnerable to droughts and floods. Many development projects involving Nile waters are currently underway, or being studied. These projects will lead to land-use patterns changes and water distribution and availability. It is thus important to assess the effects of a) these projects and b) evolving water resource management and policies, on regional hydrological processes. This paper seeks to establish a basis for evaluation of such impacts within the Blue Nile River sub-basin, using the RegCM3 Regional Climate Model to simulate interactions between the land surface and climatic processes. We first present results from application of this RCM model nested with downscaled outputs obtained from the ECHAM5/MPI-OM1 transient simulations for the 20th Century. We then investigate changes associated with mid-21st century emissions forcing of the SRES A1B scenario. The results obtained from the climate model are then fed as inputs to the Nile Forecast System (NFS), a hydrologic distributed rainfall runoff model of the Nile Basin, The interaction between climatic and hydrological processes on the land surface has been fully coupled. Rainfall patterns and evaporation rates have been generated using RegCM3, and the resulting runoff and Blue Nile streamflow patterns have been simulated using the NFS. This paper compares the results obtained from the RegCM3 climate model with observational datasets for precipitation and temperature from the Climate Research Unit (UK) and the NASA Goddard Space Flight Center GPCP (USA) for 1985-2000. The validity of the streamflow predictions from the NFS is assessed using historical gauge records. Finally, we present results from modeling of the A1B emissions scenario of the IPCC for the years 2034-2055. Our results indicate that future changes in rainfall may vary over different areas of the Upper Blue Nile catchment in Ethiopia. Our results suggest that there may be good reasons for developing climate models with finer spatial resolution than the more commonly used GCMs.

  4. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a-priori information (topography, lithology, …) and rainfall metrics available from meteorological forecast may allow to better anticipate and mitigates landsliding associated with extreme rainfall events.

  5. The Relative Importance of Convective and Trade-wind Orographic Precipitation to Streamflow in the Luquillo Mountains, Eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Shanley, J. B.; Occhi, M.; Scatena, F. N.

    2012-12-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of Puerto Rico (18.3° N) have abundant rainfall and stream discharge, but relatively little storage capacity. Therefore, the water supply is vulnerable to drought and water availability may be affected by projected changes in regional temperature and atmospheric dynamics due to global warming. To help determine the links between climate and water availability, precipitation patterns were analyzed, and stable-isotope signatures of precipitation from different seasonal weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Stable isotope data include cloud water, rainfall, throughfall, streamflow, and groundwater from the Rio Mameyes and Rio Icacos/ Rio Blanco watersheds. Precipitation inputs have a wide range of stable isotope values, from fog/cloud water with δ2H and δ18O averaging +3.2‰, -1.74‰ respectively, to tropical storm rain with values as low as -154‰, -20.4‰. Spatial and temporal patterns of water isotopic values on this Caribbean island are different than higher latitude, continental watersheds. The data exhibit a 'reverse seasonality', with higher isotopic values in winter and lower values in summer; and stable isotope values of stream water do not decrease as expected with increasing altitude, because of cloud water input. Rain isotopic values vary predictably with local and mesoscale weather patterns and correlate strongly with cloud altitude. This correlation allows us to assign isotopic signatures to different sources of precipitation, and to investigate which climate patterns contribute to streamflow and groundwater recharge. At a measurement site at 615 m in the Luquillo Mountains, the average length of time between rain events was 15 h, and 45% of the rain events were <2 mm, reflecting the frequent small rain events of the trade-wind orographic rainfall weather pattern. Long-term average streamflow isotopic composition indicates a disproportionately large contribution of this trade-wind precipitation to streamflow, highlighting the importance of this climate pattern to the hydrology of the watersheds. Isotopic composition of groundwater suggests a slightly higher proportion of convective precipitation, but still smaller than in total rainfall. Hydrograph separation experiments yielded information on stormflow characteristics, with quantification of contributing sources determined from water isotopes and solute chemistry. The evidence that intense convective rain events run off and light trade-wind showers appear to contribute much of the baseflow indicates that the area may undergo a change in water supply if the trade-wind orographic precipitation dynamics in the Caribbean are affected by future climate change.

  6. Evaluation of common bean lines for adaptation to high temperatures in Honduras

    USDA-ARS?s Scientific Manuscript database

    As in other regions worldwide, common bean (Phaseolus vulgaris L.) production in Central America and the Caribbean (CA/C) region is threatened by effects of climate change including increasing temperatures and drought due to variable rainfall patterns. One of the main alternatives for increasing ada...

  7. Development and integration of sub-hourly rainfall-runoff modeling capability within a watershed model

    USDA-ARS?s Scientific Manuscript database

    Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...

  8. Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of patterns in endemic areas

    NASA Astrophysics Data System (ADS)

    Baracchini, Theo; King, Aaron A.; Bouma, Menno J.; Rodó, Xavier; Bertuzzo, Enrico; Pascual, Mercedes

    2017-10-01

    Seasonal patterns in cholera dynamics exhibit pronounced variability across geographical regions, showing single or multiple peaks at different times of the year. Although multiple hypotheses related to local climate variables have been proposed, an understanding of this seasonal variation remains incomplete. The historical Bengal region, which encompasses the full range of cholera's seasonality observed worldwide, provides a unique opportunity to gain insights on underlying environmental drivers. Here, we propose a mechanistic, rainfall-temperature driven, stochastic epidemiological model which explicitly accounts for the fluctuations of the aquatic reservoir, and analyze with this model the historical dataset of cholera mortality in the Bengal region. Parameters are inferred with a recently developed sequential Monte Carlo method for likelihood maximization in partially observed Markov processes. Results indicate that the hydrological regime is a major driver of the seasonal dynamics of cholera. Rainfall tends to buffer the propagation of the disease in wet regions due to the longer residence times of water in the environment and an associated dilution effect, whereas it enhances cholera resurgence in dry regions. Moreover, the dynamics of the environmental water reservoir determine whether the seasonality is unimodal or bimodal, as well as its phase relative to the monsoon. Thus, the full range of seasonal patterns can be explained based solely on the local variation of rainfall and temperature. Given the close connection between cholera seasonality and environmental conditions, a deeper understanding of the underlying mechanisms would allow the better management and planning of public health policies with respect to climate variability and climate change.

  9. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon.

    PubMed

    Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki

    2015-11-13

    Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect.

  10. Ecohydrological responses of a model semiarid system to precipitation pulses after a global change type dry-down depend on growth-form, event size, and time since establishment

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.

    2012-12-01

    Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4oC). Both growth forms were similarly responsive to episodic rainfall, regardless of event magnitude, though mesquite were able to maintain photosynthetic function for a longer period in response to each rain. However, in the second year of the experiment a new pattern of response to moisture and high temperature stress emerged. Under dry conditions, mesquite sustained high photosynthetic rates across a wider range of atmospheric temperatures and were less responsive to rainfall, regardless of event magnitude. In contrast, the limiting effect of high temperatures on bunchgrass photosynthesis was soil moisture dependent. In this case, the effects of high temperature limitation were exaggerated under dry conditions and relaxed when soil moisture was more abundant. Together, these trends yielded a significantly greater photosynthetic assimilation by deeper-rooted mesquite shrubs than shallow-rooted bunchgrasses under both temperature regimes. Combining these aboveground measurements of carbon uptake with belowground estimates of carbon efflux will allow us to make much more informed projections of net carbon balance within mixed vegetation shrublands across a range of global climate change projections.

  11. Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco

    1996-11-01

    The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.

  12. Use of Multiple Isotopic Systems to Interpret Ecosystem Processes in Hawaii

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Derry, L.; Vitousek, P.

    2007-12-01

    The Hawaiian Islands are an excellent natural laboratory for studying the way in which ecosystems develop and function under varying climates. The mantle-derived basalt parent material provides a constant reaction matrix, the trade winds provide an asymmetric climate pattern that means that the same-age lava flows can be studied under different forcing factors, the relatively few plant species that made it to Hawaii provide a simplified biotic influence on substrate. In essence, we find that the geochemical evolution of basalt weathering provides shifting boundary conditions that constrain ecosystem potentialities, and allows us to apply a number of isotopic systems to enhance the specificity of our interpretation of ecosystem processes. We have applied the following isotopes to assist us in understanding the processes that impact ecosystems: O, C, Sr, Ca, N, Si and Be, and are presently exploring the use of S and Mg. We use these isotopic systems within a matrix of controls that allows us to focus on specific questions. The isotopic signatures from different isotopic systems can define climate- response patterns that are non-linear with each defining different threshold and plateau in rainfall space. Measurement of these isotopic systems allows us to evaluate multiple chemical behaviors at once and to evaluate expected responses to perturbations to any of these tracers in response to past or future changes in climate or other ecosystem drives such as land cover change. For instance, based on deep-soil samples, the plants that grew before humans reached Hawaii have C13 values that drop from -14 per mil to -26 per mil as rainfall increases from 200 mm to 3000 mm. Today the surface-soil values remain close to -14 per mil throughout the rainfall gradient due to the introduction of C4 grasses for pasture. Along the same rainfall gradient, Sr isotopes demonstrate that as C3 plants began to predominate there was a fundmental shift in nutrients supplied from rocks to those supplied by rainfall.

  13. Impacts of different rainfall patterns on hyporheic zone under transient conditions

    NASA Astrophysics Data System (ADS)

    Liu, Suning; Chui, Ting Fong May

    2018-06-01

    The hyporheic zone (HZ) plays an important role in stream ecology. Previous studies have mainly focused on the factors influencing the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can become transient during a storm. This study investigates the impacts of different rainfall patterns (varying in intensity and duration) on the HZ under transient conditions. A two-dimensional numerical model of a 10-m long and 2-m deep domain is developed, in which the streambed consists of a series of dunes. Brinkman-Darcy and Navier-Stokes equations are respectively solved for groundwater and surface water, and velocity and pressure are coupled at the interface (i.e., the streambed surface). To compare the results under different transient conditions, this study proposes two indicators, i.e., the influential time (IT, the time required for the HZ to return to its initial state once it starts to change) and the influential depth (ID, the maximum increment in the HZ depth). To detect the extent to which the HZ undergoes significant spatial changes, moving split-window and inflection point tests are conducted. The results indicate that rainfall intensity (RI) and rainfall duration (RD) both display logarithmic relationships with the IT and ID with high coefficients of determination, but only between certain lower and upper thresholds of the RI and RD. Moreover, the distributions of the IT and ID as a function of the RI and RD are mapped using the surface spline and kriging interpolation methods to facilitate future prediction of the IT and ID. In addition, it is observed that the IT has a linear negative correlation with the groundwater response while the ID is not affected by different groundwater responses. All of the derived relationships can be used to predict the impacts of a future rainfall event on the HZ.

  14. Study of acid mine drainage management with evaluating climate and rainfall in East Pit 3 West Banko coal mine

    NASA Astrophysics Data System (ADS)

    Rochyani, Neny

    2017-11-01

    Acid mine drainage is a major problem for the mining environment. The main factor that formed acid mine drainage is the volume of rainfall. Therefore, it is important to know clearly the main climate pattern of rainfall and season on the management of acid mine drainage. This study focuses on the effects of rainfall on acid mine water management. Based on daily rainfall data, monthly and seasonal patterns by using Gumbel approach is known the amount of rainfall that occurred in East Pit 3 West Banko area. The data also obtained the highest maximum daily rainfall on 165 mm/day and the lowest at 76.4 mm/day, where it is known that the rainfall conditions during the period 2007 - 2016 is from November to April so the use of lime is also slightly, While the low rainfall is from May to October and the use of lime will be more and more. Based on calculation of lime requirement for each return period, it can be seen the total of lime and financial requirement for treatment of each return period.

  15. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian

    2017-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.

  16. Impact of Rainfall, Land-Cover and Population Growth on Groundwater - A Case Study From Karnataka State, India

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Chinnapa Reddy, A. R.

    2015-12-01

    Recent trends in climate, land-use pattern and population has affected almost every portable water resources in the world. Due to depleting surface water and untimely distribution of precipitation, the demand to use groundwater has increased considerably. Further recent studies have shown that the groundwater stress is more in developing countries like India. This study focuses on understanding the impacts of three major factors (i.e., rainfall, land-cover and population growth) effecting the groundwater levels. For this purpose, the correlation between the trends in groundwater time series is compared with trends in rainfall, land-cover and population growth. To detect the trends in time series, two statistical methods namely, least square method and Mann-Kendall method, are adopted. The results were analyzed based on the measurements from 1800 observation wells in the Karnataka state, India. The data is obtained for a total of 9 year time period ranging from 2005 to 2013. A gridded precipitation data of 0.5o× 0.5o over the entire region is used. The change in land-cover and population data was approximately obtained from the local governing bodies. The early results show significant correlation between rainfall and groundwater time series trends. The outcomes will assess the vulnerability of groundwater levels under changing physical and hydroclimatic conditions, especially under climate change.

  17. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate.

    PubMed

    Smettem, Keith R J; Waring, Richard H; Callow, John N; Wilson, Melissa; Mu, Qiaozhen

    2013-08-01

    There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study, we analyzed satellite-derived estimates of monthly LAI across forested coastal catchments of southwest Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, interannual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long-term decline in areal average underground water storage and diminished summer flows, with an emerging trend toward more ephemeral flow regimes. © 2013 John Wiley & Sons Ltd.

  18. Rainfall-enhanced blooming in typhoon wakes

    PubMed Central

    Lin, Y.-C.; Oey, L.-Y.

    2016-01-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899

  19. Rainfall-enhanced blooming in typhoon wakes.

    PubMed

    Lin, Y-C; Oey, L-Y

    2016-08-22

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  20. Rainfall-enhanced blooming in typhoon wakes

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  1. Rainfall-enhanced blooming in typhoon wakes

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Oey, L. Y.

    2016-12-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  2. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.

  3. Controls on carbon storage and weathering in volcanic ash soils across a climate gradient on Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Kramer, M. G.; Chadwick, O.

    2017-12-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire (250-2500mm rainfall) Mauna Kea climate gradient indicate that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform.

  4. The exceptionally wet year of 2014 over Greece: a statistical and synoptical-atmospheric analysis over the region of Thessaloniki

    NASA Astrophysics Data System (ADS)

    Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina

    2018-05-01

    The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.

  5. Influence of large-scale climate modes on dynamical complexity patterns of Indian Summer Monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen

    2015-04-01

    Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.

  6. The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz

    2015-07-01

    This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.

  7. Water - The key to global change. [of weather and climate

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1988-01-01

    The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.

  8. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.

  9. Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons

    NASA Astrophysics Data System (ADS)

    Chooi Tan, Kok

    2018-04-01

    The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.

  10. Distribution Patterns of Land Surface Water from Hurricanes Katrina and Rita

    NASA Image and Video Library

    2005-10-12

    The above images, derived from NASA QuikScat satellite data, show the extensive pattern of rain water deposited by Hurricanes Katrina and Rita on land surfaces over several states in the southern and eastern United States. These results demonstrate the capability of satellite scatterometers to monitor changes in surface water on land. The color scale depicts increases in radar backscatter (in decibels) between the current measurement and the mean of measurements obtained during the previous two weeks. The backscatter can be calibrated to measure increases in surface soil moisture resulting from rainfall. The yellow color corresponds to an increase of approximately 10 percent or more in surface soil moisture according to the calibration site of Lonoke, Ark. The two hurricanes deposited excessive rainfall over extensive regions of the Mississippi River basin. Basins the size of the Mississippi can take up to several weeks before such excess rainfall significantly increases the amount of river discharge in large rivers such as the Mississippi. With hurricane season not over until November 30, the potential exists for significant flooding, particularly if new rain water is deposited by new hurricanes when river discharge peaks up as a result of previous rainfalls. River discharge should be closely monitored to account for this factor in evaluating potential flood conditions in the event of further hurricanes. http://photojournal.jpl.nasa.gov/catalog/PIA03029

  11. Impacts of simulated drought stress and artificial damage on concentrations of flavonoids in Jatropha curcas (L.), a biofuel shrub.

    PubMed

    Lama, Ang Dawa; Kim, Jorma; Martiskainen, Olli; Klemola, Tero; Salminen, Juha-Pekka; Tyystjärvi, Esa; Niemelä, Pekka; Vuorisalo, Timo

    2016-11-01

    We studied the possible roles of flavonoids in the antioxidant and antiherbivore chemistry in Jatropha curcas (L.), a Latin American shrub that holds great potential as a source of biofuel. Changes in flavonoid concentrations in the leaves of J. curcas seedlings exposed to artificial damage and to different rainfall patterns were assessed by applying a 3 2 -factorial experiment in a greenhouse. The concentrations of different flavonoids in the leaves of seedlings were significantly affected by interaction effects of artificial damage, drought stress and age of the seedling. The highest flavonoid concentrations were obtained in seedlings imposed to the highest percentage of artificial damage (50 %) and grown under extreme drought stress (200 mm year -1 ). In this treatment combination, flavonoid concentrations were three-fold as compared to seedlings exposed to the same level of artificial damage but grown in 1900 mm year -1 rainfall application. Without artificial damage, the concentration of flavonoids in the seedlings grown in 200 mm year -1 rainfall application was still two-fold compared to seedlings grown in higher (>800 mm year -1 ) rainfall applications. Thus, the observed flavonoid concentration patterns in the leaves of J. curcas seedlings were primarily triggered by drought stress and light rather than by artificial damage, suggesting that drought causes oxidative stress in J. curcas.

  12. Future projections of synoptic weather types over the Arabian Peninsula during the twenty-first century using an ensemble of CMIP5 models

    NASA Astrophysics Data System (ADS)

    El Kenawy, Ahmed M.; McCabe, Matthew F.

    2017-10-01

    An assessment of future change in synoptic conditions over the Arabian Peninsula throughout the twenty-first century was performed using 20 climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. We employed the mean sea level pressure (SLP) data from model output together with NCEP/NCAR reanalysis data and compared the relevant circulation types produced by the Lamb classification scheme for the base period 1975-2000. Overall, model results illustrated good agreement with the reanalysis, albeit with a tendency to underestimate cyclonic (C) and southeasterly (SE) patterns and to overestimate anticyclones and directional flows. We also investigated future projections for each circulation-type during the rainy season (December-May) using three Representative Concentration Pathways (RCPs), comprising RCP2.6, RCP4.5, and RCP8.5. Overall, two scenarios (RCP4.5 and RCP 8.5) revealed a statistically significant increase in weather types favoring above normal rainfall in the region (e.g., C and E-types). In contrast, weather types associated with lower amounts of rainfall (e.g., anticyclones) are projected to decrease in winter but increase in spring. For all scenarios, there was consistent agreement on the sign of change (i.e., positive/negative) for the most frequent patterns (e.g., C, SE, E and A-types), whereas the sign was uncertain for less recurrent types (e.g., N, NW, SE, and W). The projected changes in weather type frequencies in the region can be viewed not only as indicators of change in rainfall response but may also be used to inform impact studies pertinent to water resource planning and management, extreme weather analysis, and agricultural production.

  13. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2017-05-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  14. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  15. Analysis and prediction of rainfall trends over Bangladesh using Mann-Kendall, Spearman's rho tests and ARIMA model

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid

    2017-08-01

    In this study, 60-year monthly rainfall data of Bangladesh were analysed to detect trends. Modified Mann-Kendall, Spearman's rho tests and Sen's slope estimators were applied to find the long-term annual, dry season and monthly trends. Sequential Mann-Kendall analysis was applied to detect the potential trend turning points. Spatial variations of the trends were examined using inverse distance weighting (IDW) interpolation. AutoRegressive integrated moving average (ARIMA) model was used for the country mean rainfall and for other two stations data which depicted the highest and the lowest trend in the Mann-Kendall and Spearman's rho tests. Results showed that there is no significant trend in annual rainfall pattern except increasing trends for Cox's Bazar, Khulna, Satkhira and decreasing trend for Srimagal areas. For the dry season, only Bogra area represented significant decreasing trend. Long-term monthly trends demonstrated a mixed pattern; both negative and positive changes were found from February to September. Comilla area showed a significant decreasing trend for consecutive 3 months while Rangpur and Khulna stations confirmed the significant rising trends for three different months in month-wise trends analysis. Rangpur station data gave a maximum increasing trend in April whereas a maximum decreasing trend was found in August for Comilla station. ARIMA models predict +3.26, +8.6 and -2.30 mm rainfall per year for the country, Cox's Bazar and Srimangal areas, respectively. However, all the test results and predictions revealed a good agreement among them in the study.

  16. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar

    2013-04-01

    The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.

  17. How predictable is the anomaly pattern of the Indian summer rainfall?

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the predictable modes, a set of P-E models is established to predict the principal component of each predictable mode, so that the ISMR anomaly pattern can be predicted by using the sum of the predictable modes. Three validation schemes are used to assess the performance of the P-E models' hindcast and independent forecast. The validated TCC skills of the P-E model here are more than doubled that of dynamical models' MME hindcast, suggesting a large room for improvement of the current dynamical prediction. The methodology proposed here can be applied to a wide range of climate prediction and predictability studies. The limitation and future improvement are also discussed.

  18. Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: Is statistical forecasting futile?

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.

    2017-04-01

    Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.

  19. Rainfall Modification by Urban Areas: New Perspectives from TRMM

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Pierce, Harold F.; Negri, Andrew

    2002-01-01

    Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  20. Developing Methods For Linking Surficial Aquifers With Localized Rainfall Data

    NASA Astrophysics Data System (ADS)

    Lafrenz, W. B.; van Gaalen, J. F.

    2008-12-01

    Water level hydrographs of the surficial aquifer can be evaluated to identify both the cause and consequence of water supply development. Rainfall, as a source of direct recharge and as a source of delayed or compounded recharge, is often the largest influence on surficial aquifer water level responses. It is clear that proximity of the rain gauge to the observation well is a factor in the degree of correlation, but in central Florida, USA, rainfall patterns change seasonally, with latitude, and with distance from the coast . Thus, for a location in central Florida, correlation of rain events with observed hydrograph responses depends on both distance and direction from an observation well to a rain gauge. In this study, we examine the use of extreme value analysis as a method of selecting the best rainfall data set for describing a given surficial aquifer monitor well. A surficial aquifer monitor well with a substantial suite of data is compared to a series of rainfall data sets from gauges ranging from meters to tens of kilometers in distance from the monitor well. The gauges vary in a wide range of directions from the monitor well in an attempt to identify both a method for rainfall gauge selection to be associated with the monitor well. Each rainfall gauge is described by a correlation coefficient with respect to the surficial aquifer water level data.

  1. Spatio-temporal trends of rainfall across Indian river basins

    NASA Astrophysics Data System (ADS)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  2. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  3. Exogenous factors matter when interpreting the results of an impact evaluation: a case study of rainfall and child health programme intervention in Rwanda.

    PubMed

    Mukabutera, Assumpta; Thomson, Dana R; Hedt-Gauthier, Bethany L; Atwood, Sidney; Basinga, Paulin; Nyirazinyoye, Laetitia; Savage, Kevin P; Habimana, Marcellin; Murray, Megan

    2017-12-01

    Public health interventions are often implemented at large scale, and their evaluation seems to be difficult because they are usually multiple and their pathways to effect are complex and subject to modification by contextual factors. We assessed whether controlling for rainfall-related variables altered estimates of the efficacy of a health programme in rural Rwanda and have a quantifiable effect on an intervention evaluation outcomes. We conducted a retrospective quasi-experimental study using previously collected cross-sectional data from the 2005 and 2010 Rwanda Demographic and Health Surveys (DHS), 2010 DHS oversampled data, monthly rainfall data collected from meteorological stations over the same period, and modelled output of long-term rainfall averages, soil moisture, and rain water run-off. Difference-in-difference models were used. Rainfall factors confounded the PIH intervention impact evaluation. When we adjusted our estimates of programme effect by controlling for a variety of rainfall variables, several effectiveness estimates changed by 10% or more. The analyses that did not adjust for rainfall-related variables underestimated the intervention effect on the prevalence of ARI by 14.3%, fever by 52.4% and stunting by 10.2%. Conversely, the unadjusted analysis overestimated the intervention's effect on diarrhoea by 56.5% and wasting by 80%. Rainfall-related patterns have a quantifiable effect on programme evaluation results and highlighted the importance and complexity of controlling for contextual factors in quasi-experimental design evaluations. © 2017 John Wiley & Sons Ltd.

  4. Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest.

    PubMed

    Câmara, Talita; Leal, Inara R; Blüthgen, Nico; Oliveira, Fernanda M P; Queiroz, Rubens T de; Arnan, Xavier

    2018-03-05

    Anthropogenic disturbance and climate change might negatively affect the ecosystem services provided by mutualistic networks. However, the effects of such forces remain poorly characterized. They may be especially important in dry forests, which (1) experience chronic anthropogenic disturbances (CADs) as human populations exploit forest resources, and (2) are predicted to face a 22% decline in rainfall under climate change. In this study, we investigated the separate and combined effects of CADs and rainfall levels on the specialization of mutualistic networks in the Caatinga, a seasonally dry tropical forest typical of north-eastern Brazil. More specifically, we examined interactions between plants bearing extrafloral nectaries (EFNs) and ants. We analysed whether differences in network specialization could arise from environmentally mediated variation in the species composition, namely via the replacement of specialist by generalist species. We characterized these ant-plant networks in 15 plots (20 × 20 m) that varied in CAD intensity and mean annual rainfall. We quantified CAD intensity by calculating three indices related to the main sources of disturbance in the Caatinga: livestock grazing (LG), wood extraction (WE) and miscellaneous resource use (MU). We determined the degree of ant-plant network specialization using four metrics: generality, vulnerability, interaction evenness and H 2 '. Our results indicate that CADs differentially influenced network specialization: we observed positive, negative, and neutral responses along LG, MU and WE gradients, respectively. The pattern was most pronounced with LG. Rainfall also shaped network specialization, markedly increasing it. While LG and rainfall were associated with changes in network species composition, this trend was not related to the degree of species specialization. This result suggests that shifts in network specialization might be related to changes in species behaviour, not species composition. Our study highlights the vulnerability of such dry forest ant-plant networks to climate change. Moreover, dry forests experience highly heterogeneous anthropogenic disturbances, creating a geographic mosaic of selective forces that may shape the co-evolution of interactions between ants and EFN-bearing plants. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  5. A new concept to study the effect of climate change on different flood types

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno

    2014-05-01

    Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.

  6. Choices Between... Community Study Unit, Grade 7.

    ERIC Educational Resources Information Center

    Lee County School District, Ft. Myers, FL. Dept. of Environmental Education and Instructional Development Services.

    Because of its geographical location, topography, and climate, South Florida has unique water problems. When the rainfall situation is combined with changing land use patterns and increasing population growth rates, the result is often water shortages in some areas and floods in others. This study unit looks at some of the reasons for the present…

  7. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota.

    PubMed

    Aslam, Shazia N; Dumbrell, Alex J; Sabir, Jamal S; Mutwakil, Mohammed H Z; Baeshen, Mohammed M N; Abo-Aba, Salah E M; Clark, Dave R; Yates, Steven A; Baeshen, Nabih A; Underwood, Graham J C; McGenity, Terry J

    2016-12-01

    Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Tree rings and rainfall in the equatorial Amazon

    NASA Astrophysics Data System (ADS)

    Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel

    2018-05-01

    The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.

  9. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  10. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities

    PubMed Central

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T.; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa, our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent. PMID:25914429

  11. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities.

    PubMed

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T; Escudero, Adrián; Valladares, Fernando

    2013-04-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa , our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent.

  12. Enhancement of seasonal prediction of East Asian summer rainfall related to western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, Doo Young; Ahn, Joong-Bae; Yoo, Jin-Ho

    2015-08-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone.

  13. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under grant project PJ009353 and Korea Meteorological Administration Research and Development Program under grant CATER 2012-3100, Republic of Korea.

  14. Evidence of Teleconnections between the Peruvian central Andes and Northeast Brazil during extreme rainfall events

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Silva, F. Y.; Takahashi, K.

    2013-12-01

    Knowledge about changes in regional circulation and physical processes associated with extreme rainfall events in South America is limited. Here we investigate such events over the Mantaro basin (MB) located at (10°S-13°S; 73°W-76°W) in the central Peruvian Andes and Northeastern Brazil (NEB), located at (9°S-15°S; 39°W-46°W). Occasional dry and wet spells can be observed in both areas during the austral summer season. The main goal of this study is to investigate potential teleconnections between extreme rainfall events in MB and NEB during austral summer. We define wet (dry) spells as periods that last for at least 3 (5) consecutive days with rainfall above (below) the 70 (30) percentile. To identify the dates of ocurrence of these events, we used daily accumulated rainfall data from 14 climate stations located in the Mantaro basin for the period 1965 to 2002. In NEB we defined a rainfall index which is based on average daily gridded rainfall data within the region for the same period. Dry (wet spells) in the MB are associated with positive (negative) OLR anomalies which extend over much of the tropical Andes, indicating the large-scale nature of these events. At 200 hPa anomalous easterly (westerly) zonal winds aloft accompany wet (dry) spells. Composite anomalies of dry spells in MB reveal significant contemporaneous precipitation anomalies of the opposite sign over NEB, which suggest that intraseasonal precipitation variability over the two regions may be dynamically linked. Indeed upper-tropospheric circulation anomalies over the central Andes extend across South America and appear to be tied to an adjustment in the Bolivian High-Nordeste Low system. Dry (wet) spells in NEB are equally associated with a large-scale pattern of positive (negative) OLR anomalies; however, there are no related significant OLR anomalies over the MB during these events. Dry (wet) spells are associated with robust patterns of anomalous wind fields at both low and upper levels, caused by a changing position of the South Atlantic Convergence Zone (SACZ) toward the southwest (northeast). But, there is no coincident robust pattern of wind anomalies over the Mantaro Basin. In conclusion, dry spells in the Mantaro basin appear to be dynamically linked to wet spells in NEB, since 62% of all dry events in MB coincide with wet spells in NEB (35% of all events). The dynamical link explaining the observed teleconnection and the resulting dipole pattern between precipitation extremes in the MB and NEB region, respectively, appears to be related to intraseasonal variability in the Bolivian High - Nordeste Low system. Only 26.53% of all wet spells, however, coincide with dry spells in NEB (12.15% of all events). While circulation anomalies that affect precipitation extremes in the MB have the potential to also affect the precipitation characteristics in NEB, the opposite is not the case. Extreme events in NEB are primarily affected by NE-SW displacement in the SACZ, a mechanism that is of little relevance for precipitation extremes in the MB.

  15. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

    PubMed

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.

  16. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    PubMed Central

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203

  17. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    PubMed

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.

  18. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    NASA Astrophysics Data System (ADS)

    Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.

    2018-06-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  19. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.

  20. Climate influence on dengue epidemics in Puerto Rico.

    PubMed

    Jury, Mark R

    2008-10-01

    The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.

  1. Global meteorological influences on the record UK rainfall of winter 2013-14

    NASA Astrophysics Data System (ADS)

    Knight, Jeff R.; Maidens, Anna; Watson, Peter A. G.; Andrews, Martin; Belcher, Stephen; Brunet, Gilbert; Fereday, David; Folland, Chris K.; Scaife, Adam A.; Slingo, Julia

    2017-07-01

    The UK experienced record average rainfall in winter 2013-14, leading to widespread and prolonged flooding. The immediate cause of this exceptional rainfall was a very strong and persistent cyclonic atmospheric circulation over the North East Atlantic Ocean. This was related to a very strong North Atlantic jet stream which resulted in numerous damaging wind storms. These exceptional meteorological conditions have led to renewed questions about whether anthropogenic climate change is noticeably influencing extreme weather. The regional weather pattern responsible for the extreme UK winter coincided with highly anomalous conditions across the globe. We assess the contributions from various possible remote forcing regions using sets of ocean-atmosphere model relaxation experiments, where winds and temperatures are constrained to be similar to those observed in winter 2013-14 within specified atmospheric domains. We find that influences from the tropics were likely to have played a significant role in the development of the unusual extra-tropical circulation, including a role for the tropical Atlantic sector. Additionally, a stronger and more stable stratospheric polar vortex, likely associated with a strong westerly phase of the stratospheric Quasi-Biennial Oscillation (QBO), appears to have contributed to the extreme conditions. While intrinsic climatic variability clearly has the largest effect on the generation of extremes, results from an analysis which segregates circulation-related and residual rainfall variability suggest that emerging climate change signals made a secondary contribution to extreme rainfall in winter 2013-14.

  2. Eddy-induced salinity pattern in the North Pacific

    NASA Astrophysics Data System (ADS)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  3. Markov chain decomposition of monthly rainfall into daily rainfall: Evaluation of climate change impact

    DOE PAGES

    Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun

    2016-01-01

    This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO 2) and 2x CO 2conditions. As a result of this study, the increase or decreasemore » in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.« less

  4. An investigation of the effects of an arterial drainage scheme on the rainfall-runoff transformation behaviour of the Brosna catchment in Ireland

    NASA Astrophysics Data System (ADS)

    Bhattarai, K. P.; O'Connor, K. M.

    2003-04-01

    Inefficient natural land drainage and the consequent frequent flooding of rivers are a problem of particular significance to the Irish economy. Such problems can be attributed less to the amount of annual rainfall, than to the topological configuration of Ireland. Its high maritime rim and relatively flat interior results in poor river gradients, intercepted by many lakes. As a remedial measure to tackle these problems, Arterial Drainage Schemes (ADSs) were started in Ireland from as early as the beginning of the nineteenth century. The major activities carried out under ADSs have been the deepening and widening of channels to increase their discharge-carrying capacity, which naturally affected the hydrological behaviour of the catchments involved. Earlier studies carried out in order to assess the effects of such ADSs on the hydrological behaviour of Irish catchments were concentrated mainly on comparisons of unit hydrographs and relationship between flood peaks of pre- and post-drainage periods. The present study, carried out on the River Brosna catchment in Ireland, concentrates on assessing the changes in the rainfall runoff transformation process, by using the conceptual Soil Moisture Accounting and Routing Model (SMAR), one of the constituent models of the "Galway River Flow Modelling and Forecasting System (GFMFS)" software package. Hydro-meteorological data of the pre-drainage (1942--1947) and post-drainage (1954--2000) periods have been used in this study. The results of the present study show that, for similar patterns of rainfall, the catchment produces higher annual maximum daily flows, and lower annual minimum daily flows in the post-drainage period than in the pre-drainage period. Moreover, the post-drainage unit hydrographs are more "peaky" and have quicker recessions than the pre-drainage counterparts, thus confirming the findings of the earlier studies. It is also observed that, apart from the expected pre-to-post-drainage change, the nature of the catchment response throughout the post-drainage period has not remained the same as it reverted to pre-drainage-like behaviour after the first one-and-a-half decades (around 1969), indicating that the effects of the ADS had died out over that time. This behaviour was also confirmed by comparing the evolving nature of the unit hydrograph produced for a five-year moving calibration window period from 1959 to 1974. It is unclear at this point whether this change was due to the observed reduction in rainfall in the mid-seventies, inefficient maintenance of the channels, land subsidence following drainage, changes in land use, urbanization, climate change, or some other factors or combinations. The results of the present study further show that, during the nineties, the response pattern changed back again to something akin to early post-drainage-like behaviour, the reason for which is even less clear but obviously can not be attributed to the ADS. Further investigations are currently underway to try to explain such changes in the catchment response to rainfall and also to establish if similar changes occurred on other Irish catchments which also underwent arterial drainage schemes.

  5. Observed changes in the characteristics of Active and Break Spells in the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N. S.

    2013-12-01

    South Asia is home to about 24% of the world's population and is one of the world's most disaster prone regions. The majority of the people in this region depend on agriculture for their livelihood. Substantial variability in the South Asian Summer Monsoon occurs on an intraseasonal timescale (30-60 day) during which it fluctuates between spells of heavy (active spells) and low rainfall (breaks or weak spells). Considering the potentially severe implications of such rainfall variations, we quantify historical changes in the active and break spell characteristics in an effort to understand how these events are likely to respond to future anthropogenic forcings using the 1degx1deg gridded rainfall dataset. We find a decreasing trend in peak season rainfall since 1951 and a statistically significant shift in the rainfall distribution, suggesting greater extremes. Consequently, our results suggest an intensification of the active spells and more frequent occurrence of break spells at the 95% significance level. To understand the cause of these changes, we explore the environmental parameters in the North Indian Ocean and the Western Pacific that influence the occurrence of such events over the core monsoon region. We use the NCEP/NCAR Reanalysis 1 (1948-present) to do a composite analysis for two periods - 1951-1980 and 1981-2011. First, we examine the energetics of the baroclinic instabilities that initiate cyclonic depressions in the northern Bay of Bengal and the net moisture flux into the region. Further, sea surface temperatures are known to influence the characteristics of active and break spells. Therefore, next, we study sea surface temperature patterns in the Bay of Bengal and the equatorial western Pacific preceding breaks. We also examine the persistence of breaks through the diabatic heating anomalies over this region.

  6. Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa.

    PubMed

    Ayanlade, Ayansina; Radeny, Maren; Morton, John F; Muchaba, Tabitha

    2018-07-15

    This paper examines drought characteristics as an evidence of climate change in two agro-climatic zones of Nigeria and farmers' climate change perceptions of impacts and adaptation strategies. The results show high spatial and temporal rainfall variability for the stations. Consequently, there are several anomalies in rainfall in recent years but much more in the locations around the Guinea savanna. The inter-station and seasonality statistics reveal less variable and wetter early growing seasons and late growing seasons in the Rainforest zone, and more variable and drier growing seasons in other stations. The probability (p) of dry spells exceeding 3, 5 and 10 consecutive days is very high with 0.62≤p≥0.8 in all the stations, though, the p-values for 10day spells drop below 0.6 in Ibadan and Osogbo. The results further show that rainfall is much more reliable from the month of May until July with the coefficient of variance for rainy days <0.30, but less reliable in the months of March, August and October (CV-RD>0.30), though CV-RD appears higher in the month of August for all the stations. It is apparent that farmers' perceptions of drought fundamentally mirror climatic patterns from historical weather data. The study concludes that the adaptation facilities and equipment, hybrids of crops and animals are to be provided to farmers, at a subsidized price by the government, for them to cope with the current condition of climate change. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Monitoring Multitemporal Soil Moisture, Rainfall, and ET in Lake Manatee Watershed, South Florida under Global Changes

    NASA Astrophysics Data System (ADS)

    Chang, N.

    2009-12-01

    Ni-Bin Chang1, Ammarin Daranpob 1, and Y. Jeffrey Yang2 1Civil, Environmental, and Construction Engineering Department, University of Central Florida, Orlando FL, USA 2Water Supply and Water Resources Division, National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA ASBTRACT: Global climate change and its related impacts on water supply are universally recognized. The Atlantic Multidecadal Oscillation (AMO), which is based on long term changes in the temperature of the surface of the North Atlantic Ocean, is a source of changes in river flow patterns in Florida. The AMO has a multi-decadal frequency. Under its impact, several distinct types of river patterns were identified within Florida, including a Southern River Pattern (SRP), a Northern River Pattern (NRP), a Bimodal River Pattern (BRP), etc. (Kelley and Gore, 2008). Some SRPs are present in the South Florida Water Management District (SFWMD). Changes in river flows occur because significant sea surface temperature (SST) changes affect continental rainfall patterns. It had been observed that, between AMO warm (i.e., from 1939 to 1968) and cold phases (i.e., from 1969 to 1993), the average daily inflow to Lake Okeechobee varies by 40% in the transition from the warm to cold phases in South Florida. The Manatee County is located in the Southern Water Use Caution Area (SWUCA) due to the depletion of the Upper Floridian Aquifer and its entire western portion of the County is designated as part of the Most Impacted Area (MIA) within the Eastern Tampa Bay Water Use Caution Area relative to the SWUCA. Major source of Manatee County’s water is an 332 Km2 (82,000-acre) watershed (i.e., Lake Manatee Watershed) that drains into the man-made Lake Manatee Reservoir. The lake has a total volume of 0.21 billion m3 (7.5 billion gallons) and will cover 7.3 Km2 (1,800 acres) when full. The proper use of remote sensing images and sensor network technologies can provide information on both spatial and temporal distributions of key variables in the hydrological cycle, such as soil moisture, evapotranspiration (ET) and precipitation. The multi-sensor platform may include not only in-situ sensor network, ground-based radar, air-borne aircraft, but also even space-borne satellites. The use of a decadal-scale historical record from 1998 to 2008 to support such a trend analysis via NEXRAD (Rainfall), GOES (ET), and MODIS (soil moisture) satellite images may uniquely support middle-term and long-term water resources management in the near future. This study confirms that the potential of using remotely sensed time-series biophysical and ecohydrological states of landscape to characterize soil moisture condition, ET, and other states should be further investigated based on the pros and cons of each type of satellite imageries so as to maximize the beneficial use of remote sensing.

  8. Nonstationary Intensity-Duration-Frequency Curves for Drainge Infrastructure Coping with Climate Change

    NASA Astrophysics Data System (ADS)

    Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk

    2015-04-01

    As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA

  9. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    PubMed

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Halper, E.; Shamir, E.

    2016-12-01

    In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood management. The end product of the research is to develop a test to guide selection of a precipitation projection method (including downscaling procedure) for a given region and objective.

  11. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land-use change affects climate.

  12. Satellite derived estimates of forest leaf area index in South-west Western Australia are not tightly coupled to inter-annual variations in rainfall: implications for groundwater decline in a drying climate.

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Waring, Richard; Callow, Nik; Wilson, Melissa; Mu, Qiaozhen

    2013-04-01

    There is increasing concern that widespread forest decline could occur in regions of the world where droughts are predicted to increase in frequency and severity as a result of climate change. Ecological optimality proposes that the long term average canopy size of undisturbed perennial vegetation is tightly coupled to climate. The average annual leaf area index (LAI) is an indicator of canopy cover and the difference between the annual maximum and minimum LAI is an indicator of annual leaf turnover. In this study we analysed satellite-derived estimates of monthly LAI across forested coastal catchments of South-west Western Australia over a 12 year period (2000-2011) that included the driest year on record for the last 60 years. We observed that over the 12 year study period, the spatial pattern of average annual satellite-derived LAI values was linearly related to mean annual rainfall. However, inter-annual changes to LAI in response to changes in annual rainfall were far less than expected from the long-term LAI-rainfall trend. This buffered response was investigated using a physiological growth model and attributed to availability of deep soil moisture and/or groundwater storage. The maintenance of high LAIs may be linked to a long term decline in areal average underground water storage storage and diminished summer flows, with a trend towards more ephemeral flow regimes.

  13. Concurrency and climate change signal in Scottish flooding

    NASA Astrophysics Data System (ADS)

    Harding, A. E.; Butler, A.; Goody, N.; Bertram, D.; Baggaley, N.; Tett, S. F.

    2013-12-01

    The Scottish Environment Protection Agency maintains a database of river gauging stations and intensity rain-gauges with a 3-hourly resolution that covers the majority of Scotland. Both SEPA and a number of other Scottish agencies are invested in climate change attribution in this data set. SEPA's main interest lies in trend detection and changes in river level (';stage') data throughout Scotland. Emergency response teams are more concerned with the concurrency of multiple flood events that might stretch their ability to respond effectively. Unfortunately, much of the rainfall signal within SEPA's river-gauge data is altered by land use changes, modified by artificial interventions such as reservoirs, compromised by tidal flow, or obscured by measurement issues. Data reduction techniques, indices of extreme rainfall, and hydrology-driven discrimination have been employed to produce a reduced set of flood-relevant information for 24-hour ';flashy' events. Links between this set and North Atlantic circulation have been explored, as have patterns of mutual occurrence across Scotland and location- and seasonally- dependent trends through time. Both frontal systems and summer convective storms have been characterised in terms of subsequent flood-inducing flow regime, their changing behaviour over the last fifty years, and their spatial extent. This is the first stage of an ongoing project that will intelligently expand to take less robust river and rain-gauge stations into account through statistical analysis and hydrological modelling. It is also the first study of its type to analyse a nation-scale dataset of both rainfall and river flow from multiple catchments for flood event concurrency. As rainfall events are expected to intensify across much of Europe, this kind of research is likely to have an increasing degree of relevance for policy-makers. This project demonstrates that productive, policy-relevant and mutually-rewarding partnerships are already underway.

  14. Effect of climate change on agriculture sustainability in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, S.

    2009-04-01

    Jordan is a vulnerable country in terms of climate change impact. In the latest assessment report published by the Intergovernmental Panel on Climate Change. Jordan will suffer from reduced agricultural productivity due to more erratic rainfall patterns, reduced freshwater resources and increased temperatures. The Initial National Communication (INC) to the United Nations Framework Convention to Climate Change (UNFCCC) foresees that over the next three decades, Jordan will witness a rise in temperature, drop in rainfall, reduced ground cover, reduced water availability, heat-waves, and more frequent dust storms. Coupled with the effect of continuing drought incidents, plant cover removal was greatly accelerated. Climate change can impact agricultural sustainability in Jordan in two interrelated ways: first, by diminishing the long-term ability of agroecosystems to provide food and fiber locally; and second, by inducing shifts in agricultural regions that may encroach upon natural habitats, at the expense of floral and faunal diversity. Global warming may encourage the expansion of agricultural activities into regions now occupied by natural ecosystems such as rangelands in the Badia region and forests. Such encroachment will have adverse effects on the fragile ecosystem in those areas (Badia and steppe areas). Primary model test results showed that the reduction of rainfall by 10 to 20% had a negative impact while the increase in rainfall by 10 to 20% had a positive impact on grain yield for both barley and wheat at the different temperature regimes. This is due to the fact that water is the main limiting growth factor for wheat and barley under rainfed agriculture on Jordan. The warming (increase in temperature by 1 to 4˚ C) had negative impact on barley grain yield while it had a positive impact on grain yield of wheat.

  15. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  16. Rain rate intensity model for communication link design across the Indian region

    NASA Astrophysics Data System (ADS)

    Kilaru, Aravind; Kotamraju, Sarat K.; Avlonitis, Nicholas; Sri Kavya, K. Ch.

    2016-07-01

    A study on rain statistical parameters such as one minute rain intensity, possible number of minute occurrences with respective percentage of time in a year has been evaluated for the purpose of communication link design at Ka, Q, V bands as well as at Free-Space Optical communication links (FSO). To understand possible outage period of a communication links due to rainfall and to investigate rainfall pattern, Automatic Weather Station (AWS) rainfall data is analysed due its ample presence across India. The climates of the examined AWS regions vary from desert to cold climate, heavy rainfall to variable rainfall regions, cyclone effective regions, mountain and coastal regions. In this way a complete and unbiased picture of the rainfall statistics for Indian region is evaluated. The analysed AWS data gives insight into yearly accumulated rainfall, maximum hourly accumulated rainfall, mean hourly accumulated rainfall, number of rainy days and number of rainy hours from 668 AWS locations. Using probability density function the one minute rainfall measurements at KL University is integrated with AWS measurements for estimating number of rain occurrences in terms of one minute rain intensity for annual rainfall accumulated between 100 mm and 5000 mm to give an insight into possible one minute accumulation pattern in an hour for comprehensive analysis of rainfall influence on a communication link for design engineers. So that low availability communications links at higher frequencies can be transformed into a reliable and economically feasible communication links for implementing High Throughput Services (HTS).

  17. Developing a methodology for the national-scale assessment of rainfall-induced landslide hazard in a changing climate

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta; Micu, Dana; Sima, Mihaela; Bălteanu, Dan; Bojariu, Roxana; Dumitrescu, Alexandru; Dragotă, Carmen; Micu, Mihai; Senzaconi, Francisc

    2017-04-01

    Landslides together with earthquakes and floods represent the main natural hazards in Romania, causing major impacts to human activities. The RO-RISK (Disaster Risk Evaluation at a National Level) project is a flagship project aimed to strengthen risk prevention and management in Romania, by evaluating - among the specific risks in the country - landslide hazard and risk at a national level. Landslide hazard is defined as "the probability of occurrence within a specified period of time and within a given area of a landslide of a given magnitude" (Varnes 1984; Guzzetti et al. 1999). Nevertheless, most landslide ʿhazardʾ maps only consist in susceptibility (i.e. spatial probability) zonations without considering temporal or magnitude information on the hazard. This study proposes a methodology for the assessment of landslide hazard at the national scale on a scenario basis, while also considering changes in hazard patterns and levels under climate change conditions. A national landslide database consisting of more than 3,000 records has been analyzed against a meteorological observation dataset in order to assess the relationship between precipitation and landslides. Various extreme climate indices were computed in order to account for the different rainfall patterns able to prepare/trigger landslides (e.g. extreme levels of seasonal rainfall, 3-days rainfall or number of consecutive rainy days with different return periods). In order to derive national rainfall thresholds, i.e. valid for diverse climatic environments across the country, values in the parameter maps were rendered comparable by means of normalization with the mean annual precipitation and the rainy-day-normal. A hazard assessment builds on a frequency-magnitude relationship. In the current hazard scenario approach, frequency was kept constant for each single map, while the magnitude of the expected geomorphic event was modeled in relation to the distributed magnitude of the triggering factor. Given the small-scale context, landslides were interpreted as multiple-occurrence regional landslide events (MORLE) (Crozier 2005) and consequently their magnitude was expressed by means of the number of triggered processes. In order to achieve acceptable relations between the intensity of the trigger and the magnitude of the MORLE for different morphological and lithological conditions, a prior distinction of homogenous territories in terms of landslide predisposing characteristics was considered. Since landslide data was statistically insufficient, empiric knowledge gained on rainfall thresholds was used to modulate expert judgment and build semi-quantitative hazard matrices. Climate projections (2021-2050) from EURO-CORDEX regional models (downscaled to a 1 km resolution) under RCP 4.5 and RCP 8.5 scenarios were considered to estimate future patterns and levels of landslide hazard across Romania and investigate expected changes. The established hazard scenarios allow the identification of the high-hazard 'hotspot' regions across the country as well as of those assigned to the medium-to-high hazard magnitudes under both current and future climates. Trends in the expected impact of climate change on landslide hazard are discussed with reference to related uncertainties. This study is part of the RO-RISK project coordinated by the Romanian General Inspectorate for Emergency Situations (IGSU) and supported by the European Social Fund through the Operational Programme for Administrative Capacity (POCA).

  18. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    PubMed

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  19. Impact of drought on morphological, physiological and nutrient use efficiency of elite Cacao genotypes from Bahia-Brazil, Tarapoto-Peru and Puerto Rico-USA

    USDA-ARS?s Scientific Manuscript database

    Worldwide, drought is considered one of the most limiting abiotic stress factors for cacao growth, development and production. Climatic changes that are occurring in the tropics such as inconsistent and reduced rainfall patterns, and high temperatures in many cacao growing regions has impacted yiel...

  20. A coupled synoptic-hydrological model for climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Wilby, Robert; Greenfield, Brian; Glenny, Cathy

    1994-01-01

    A coupled atmospheric-hydrological model is presented. Sequences of daily rainfall occurrence for the 20 year period 1971-1990 at sites in the British Isles are related to the Lamb's Weather Types (LWT) by using conditional probabilities. Time series of circulation patterns and hence rainfall were then generated using a Markov representation of matrices of transition probabilities between weather types. The resultant precipitation data were used as input to a semidistributed catchment model to simulate daily flows. The combined model successfully reproduced aspects of the daily weather, precipitation and flow regimes. A range of synoptic scenarios were further investigated with particular reference to low flows in the River Coln, UK. The modelling approach represents a means of translating general circulation model (GCM) climate change predictions at the macro-scale into hydrological concerns at the catchment scale.

  1. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  2. Diagnosing Possible Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Patricola, Christina; Wehner, Michael; Stone, Dáithí; Paciorek, Christopher; Collins, William

    2015-04-01

    Unusually heavy rainfall occurred over the Colorado Front Range during early September 2013, with record or near-record totals recorded in several locations. It was associated predominantly with a stationary large-scale weather pattern (akin to the North American Monsoon, which occurs earlier in the year) that drove a strong plume of deep moisture inland from the Gulf of Mexico against the Front Range foothills. The resulting floods across the South Platte River basin impacted several thousands of people and many homes, roads, and businesses. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall, we adapt an existing event attribution paradigm of modelling an 'event that was' for September 2013 and comparing it to a modelled 'event that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. Specifically, we first perform 'event that was' simulations with the regional Weather Research and Forecasting (WRF) model at 12 km resolution over North America, driven by NCEP2 re-analysis. We then re-simulate, having adjusted the re-analysis to 'event that might have been conditions' by modifying atmospheric greenhouse gas and other pollutant concentrations, temperature, humidity, and winds, as well as sea ice coverage, and sea-surface temperatures - all according to estimates from global climate model simulations. Thus our findings are highly conditional on the driving re-analysis and adjustments therein, but the setup allows us to elucidate possible mechanisms responsible for heavy Colorado rainfall in September 2013. Our model results suggests that, given an insignificant change in the pattern of large-scale driving weather, there is an increase in atmospheric water vapour under anthropogenic climate warming leading to a substantial increase in the probability of heavy rainfall occurring over the South Platte River basin in September 2013.

  3. Diagnosing Possible Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013

    NASA Astrophysics Data System (ADS)

    Pall, P.; Patricola, C. M.; Wehner, M. F.; Stone, D. A.; Paciorek, C. J.; Collins, W.

    2014-12-01

    Unusually heavy rainfall occurred over the Colorado Front Range during early September 2013, with record or near-record totals recorded in several locations. It was associated predominantly with a stationary large-scale weather pattern (akin to the North American Monsoon, which occurs earlier in the year) that drove a strong plume of deep moisture inland from the Gulf of Mexico against the Front Range foothills. The resulting floods impacted several thousands of people and many homes, roads, and businesses. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall, we adapt an existing event attribution paradigm of modelling a 'world that was' for September 2013 and comparing it to a modelled 'world that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. Specifically, we first perform 'world that was' simulations with the regional WRF model at 12 km resolution over North America, driven by NCEP2 re-analysis. We then re-simulate, having adjusted the re-analysis to 'world that might have been conditions' by modifying atmospheric greenhouse gas and other pollutant concentrations, temperature, humidity, and winds, as well as sea ice coverage, and sea-surface temperatures - all according to estimates from global climate model simulations. Thus our findings are highly conditional on the driving re-analysis and adjustments therein, but the setup allows us to elucidate possible mechanisms responsible for heavy Colorado rainfall in September 2013. For example, preliminary analysis suggests that, given no change in the pattern of large-scale driving weather, there is an increase in atmospheric water vapour under anthropogenic climate warming leading to a substantial increase in the odds of heavy rainfall over the Front Range.

  4. High Resolution Monthly Oceanic Rainfall Based on Microwave Brightness Temperature Histograms

    NASA Astrophysics Data System (ADS)

    Shin, D.; Chiu, L. S.

    2005-12-01

    A statistical emission-based passive microwave retrieval algorithm has been developed by Wilheit, Chang and Chiu (1991) to estimate space/time oceanic rainfall. The algorithm has been applied to Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellites to provide monthly oceanic rainfall over 2.5ox2.5o and 5ox5o latitude-longitude boxes by the Global Precipitation Climatology Project-Polar Satellite Precipitation Data Center (GPCP-PSPDC, URL: http://gpcp-pspdc.gmu.edu/) as part of NASA's contribution to the GPCP. The algorithm has been modified and applied to the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data to produce a TRMM Level 3 standard product (3A11) over 5ox5o latitude/longitude boxes. In this study, the algorithm code is modified to retrieve rain rates at 2.5ox2.5o and 1ox1o resolutions for TMI. Two months of TMI data have been tested and the results compared with the monthly mean rain rates derived from TRMM Level 2 TMI rain profile algorithm (2A12) and the original 5ox5o data from 3A11. The rainfall pattern is very similar to the monthly average of 2A12, although the intensity is slightly higher. Details in the rain pattern, such as rain shadow due to island blocking, which were not discernible from the low resolution products, are now easily discernible. The spatial average of the higher resolution rain rates are in general slightly higher than lower resolution rain rates, although a Student-t test shows no significant difference. This high resolution product will be useful for the calibration of IR rain estimates for the production of the GPCP merge rain product.

  5. What aspects of future rainfall changes matter for crop yields in West Africa?

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  6. Monsoon climate response in Indian teak (Tectona grandis L.f.) along a transect from coast to inland

    NASA Astrophysics Data System (ADS)

    Sengupta, Saikat; Borgaonkar, Hemant; Joy, Reji Mariya; Ram, Somaru

    2017-11-01

    Indian monsoon (June-September) and post monsoon (October-November) rainfall show a distinct trend from coast to inland primarily due to moisture availability. However, the response of this synoptic-scale variation of rainfall amount to annual ring growth of Indian teak has not been studied systematically yet. The study is important as (1) ring width of Indian teak is considered as a reliable proxy for studying monsoon climate variability in multi-centennial time scale and (2) observed meteorological data show systematic changes in rainfall variation from coast to inland since last three decades. Towards this, we present here tree-ring width data from two locations—Thatibanda (1747-1979) and Nagzira (1728-2000) and use similar published data from two other locations—Allapalli (1866-1897) and Edugurapalli (1827-2000). The locations fall along a southeast northwest transect from south east Indian coast to inland. Monthly mean data from nearest observatories show an increasing trend in monsoon rainfall and a pronounced decreasing trend in post monsoon rainfall towards inland. Ring width data show moderately positive response to monsoon rainfall and negative response to summer (March-May) temperature for all stations suggesting moisture deficit in hot summer and intense precipitation in monsoon affect ring growth pattern in different ways. Ring width indices also exhibit significantly positive response with post monsoon rainfall at coastal location. The response gradually reduces towards inland. This preliminary study, thus, suggests that Indian teak has a potential to capture signals of the synoptic variation of post monsoon rainfall from coast to inland.

  7. The association of weather and mortality in Bangladesh from 1983–2009

    PubMed Central

    Alam, Nurul; Begum, Dilruba; Streatfield, Peter Kim

    2012-01-01

    Introduction The association of weather and mortality have not been widely studied in subtropical monsoon regions, particularly in Bangladesh. This study aims to assess the association of weather and mortality (measured with temperature and rainfall), adjusting for time trend and seasonal patterns in Abhoynagar, Bangladesh. Material and methods A sample vital registration system (SVRS) was set up in 1982 to facilitate operational research in family planning and maternal and child health. SVRS provided data on death counts and population from 1983–2009. The Bangladesh Meteorological Department provided data on daily temperature and rainfall for the same period. Time series Poisson regression with cubic spline functions was used, allowing for over-dispersion, including lagged weather parameters, and adjusting for time trends and seasonal patterns. Analysis was carried out using R statistical software. Results Both weekly mean temperature and rainfall showed strong seasonal patterns. After adjusting for seasonal pattern and time trend, weekly mean temperatures (lag 0) below the 25th percentile and between the 25th and 75th percentiles were associated with increased mortality risk, particularly in females and adults aged 20–59 years by 2.3–2.4% for every 1°C decrease. Temperature above the 75th percentile did not increase the risk. Every 1 mm increase in rainfall up to 14 mm of weekly average rainfall over lag 0–4 weeks was associated with decreased mortality risks. Rainfall above 14 mm was associated with increased mortality risk. Conclusion The relationships between temperature, rainfall and mortality reveal the importance of understanding the current factors contributing to adaptation and acclimatization, and how these can be enhanced to reduce negative impacts from weather. PMID:23195512

  8. Numerical Study on Interdecadal Modulations of ENSO-related Spring Rainfall over South China by the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    MAO, J.; WU, X.

    2017-12-01

    The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958-2013 (1920-2013). The interannual variations of the first two leading EOF modes are linked with the El Niño-Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO-ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northwards to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO-ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest-northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.

  9. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    NASA Astrophysics Data System (ADS)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  10. Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness

    PubMed Central

    Saracco, James F.; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren

    2016-01-01

    Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades. PMID:26863013

  11. Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.

    PubMed

    Saracco, James F; Radley, Paul; Pyle, Peter; Rowan, Erin; Taylor, Ron; Helton, Lauren

    2016-01-01

    Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades.

  12. Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...

    2016-02-01

    This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvementsmore » in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM’s low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. Lastly, these results are discussed in light of their implication for future rainfall changes in response to climate forcing.« less

  13. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  14. Applying Customized Climate Advisory Information to Translate Extreme Rainfall Events into Farming Options in the Sudan-Sahel of West Africa

    NASA Astrophysics Data System (ADS)

    Salack, S.; Worou, N. O.; Sanfo, S.; Nikiema, M. P.; Boubacar, I.; Paturel, J. E.; Tondoh, E. J.

    2017-12-01

    In West Africa, the risk of food insecurity linked to the low productivity of small holder farming increases as a result of rainfall extremes. In its recent evolution, the rainy season in the Sudan-Sahel zone presents mixed patterns of extreme climatic events. In addition to intense rain events, the distribution of events is associated with pockets of intra-seasonal long dry spells. The negative consequences of these mixed patterns are obvious on the farm: soil water logging, erosion of arable land, dwartness and dessication of crops, and loss in production. The capacity of local farming communities to respond accordingly to rainfall extreme events is often constrained by lack of access to climate information and advisory on smart crop management practices that can help translate extreme rainfall events into farming options. The objective of this work is to expose the framework and the pre-liminary results of a scheme that customizes climate-advisory information package delivery to subsistence farmers in Bakel (Senegal), Ouahigouya & Dano (Burkina Faso) and Bolgatanga (Ghana) for sustainable family agriculture. The package is based on the provision of timely climate information (48-hours, dekadal & seasonal) embedded with smart crop management practices to explore and exploite the potential advantage of intense rainfall and extreme dry spells in millet, maize, sorghum and cowpea farming communities. It is sent via mobile phones and used on selected farms (i.e agro-climatic farm schools) on which some small on-farm infrastructure were built to alleviate negative impacts of weather. Results provide prominent insight on how co-production of weather/climate information, customized access and guidiance on its use can induce fast learning (capacity building of actors), motivation for adaptation, sustainability, potential changes in cropping system, yields and family income in the face of a rainfall extremes at local scales of Sudan-Sahel of West Africa. Keywords: Climate Information, Smart Practices, Farming Options, Agro-Climatic Farm Schools, Sudan-Sahel

  15. Quantifying aquifer properties and freshwater resource in coastal barriers: a hydrogeophysical approach applied at Sasihithlu (Karnataka state, India)

    NASA Astrophysics Data System (ADS)

    Vouillamoz, J.-M.; Hoareau, J.; Grammare, M.; Caron, D.; Nandagiri, L.; Legchenko, A.

    2012-11-01

    Many human communities living in coastal areas in Africa and Asia rely on thin freshwater lenses for their domestic supply. Population growth together with change in rainfall patterns and sea level will probably impact these vulnerable groundwater resources. Spatial knowledge of the aquifer properties and creation of a groundwater model are required for achieving a sustainable management of the resource. This paper presents a ready-to-use methodology for estimating the key aquifer properties and the freshwater resource based on the joint use of two non-invasive geophysical tools together with common hydrological measurements. We applied the proposed methodology in an unconfined aquifer of a coastal sandy barrier in South-Western India. We jointly used magnetic resonance and transient electromagnetic soundings and we monitored rainfall, groundwater level and groundwater electrical conductivity. The combined interpretation of geophysical and hydrological results allowed estimating the aquifer properties and mapping the freshwater lens. Depending on the location and season, we estimate the freshwater reserve to range between 400 and 700 L m-2 of surface area (± 50%). We also estimate the recharge using time lapse geophysical measurements with hydrological monitoring. After a rainy event close to 100% of the rain is reaching the water table, but the net recharge at the end of the monsoon is less than 10% of the rain. Thus, we conclude that a change in rainfall patterns will probably not impact the groundwater resource since most of the rain water recharging the aquifer is flowing towards the sea and the river. However, a change in sea level will impact both the groundwater reserve and net recharge.

  16. Projected rainfall and temperature changes over Malaysia at the end of the 21st century based on PRECIS modelling system

    NASA Astrophysics Data System (ADS)

    Loh, Jui Le; Tangang, Fredolin; Juneng, Liew; Hein, David; Lee, Dong-In

    2016-05-01

    This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of regional moisture convergences in the region.

  17. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE PAGES

    Li, Xia; Mitra, Chandana; Dong, Li; ...

    2017-02-02

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  18. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  19. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, butmore » expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region. (C) 2017 Elsevier Ltd. All rights reserved.« less

  20. CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India

    NASA Astrophysics Data System (ADS)

    Akhter, Javed; Das, Lalu; Deb, Argha

    2017-09-01

    Performances of the state-of-the-art CMIP5 models in reproducing the spatial rainfall patterns over seven homogeneous rainfall zones of India viz. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), Northeast India (NEI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI) have been assessed using different conventional performance metrics namely spatial correlation (R), index of agreement (d-index), Nash-Sutcliffe efficiency (NSE), Ratio of RMSE to the standard deviation of the observations (RSR) and mean bias (MB). The results based on these indices revealed that majority of the models are unable to reproduce finer-scaled spatial patterns over most of the zones. Thereafter, four bias correction methods i.e. Scaling, Standardized Reconstruction, Empirical Quantile Mapping and Gamma Quantile Mapping have been applied on GCM simulations to enhance the skills of the GCM projections. It has been found that scaling method compared to other three methods shown its better skill in capturing mean spatial patterns. Multi-model ensemble (MME) comprising 25 numbers of better performing bias corrected (Scaled) GCMs, have been considered for developing future rainfall patterns over seven zones. Models' spread from ensemble mean (uncertainty) has been found to be larger in RCP 8.5 than RCP4.5 ensemble. In general, future rainfall projections from RCP 4.5 and RCP 8.5 revealed an increasing rainfall over seven zones during 2020s, 2050s, and 2080s. The maximum increase has been found over southwestern part of NWI (12-30%), northwestern part of WPI (3-30%), southeastern part of NEI (5-18%) and northern and eastern part of SPI (6-24%). However, the contiguous region comprising by the southeastern part of NCI and northeastern part of EPI, may experience slight decreasing rainfall (about 3%) during 2020s whereas the western part of NMI may also receive around 3% reduction in rainfall during both 2050s and 2080s.

  1. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    NASA Astrophysics Data System (ADS)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation, and to (b) decompose the NDVI signal into partial primary production components for herbaceous vegetation and shrubs across the study site. We further apply remote-sensed annual net primary production (ANPP) estimations and landscape type classification to explore the influence of inter-annual variations in seasonal precipitation on the production of herbaceous and shrub vegetation. Our results suggest that changes in the amount and temporal pattern of precipitation comprising reductions in monsoonal summer rainfall and/or increases in winter precipitation may enhance the shrub-encroachment process in desert grasslands of the American Southwest.

  2. Wind erodibility response of physical and biological crusts to rain and flooding

    NASA Astrophysics Data System (ADS)

    Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.

    2015-12-01

    Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.

  3. Variations in Global Precipitation: Climate-scale to Floods

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2006-01-01

    Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.

  4. Climate change impact assessment on food security in Indonesia

    NASA Astrophysics Data System (ADS)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  5. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953, Republic of Korea.

  6. Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods.

    PubMed

    Petrie, Matthew D; Peters, Debra P C; Yao, Jin; Blair, John M; Burruss, Nathan D; Collins, Scott L; Derner, Justin D; Gherardi, Laureano A; Hendrickson, John R; Sala, Osvaldo E; Starks, Patrick J; Steiner, Jean L

    2018-05-01

    There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns. © 2018 John Wiley & Sons Ltd.

  7. Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant

    2018-01-01

    This study explores the possibility of southern Indian Ocean (SIO) sea surface temperature (SST) as a modulator for the early phase of Indian summer monsoon and its possible physical mechanism. A dipole-like structure is obtained from the empirical orthogonal function (EOF) analysis which is similar to an Indian Ocean subtropical dipole (IOSD) found earlier. A subtropical dipole index (SDI) is defined based on the SST anomaly over the positive and negative poles. The regression map of rainfall over India in the month of June corresponding to the SDI during 1983-2013 shows negative patterns along the Western Ghats and Central India. However, the regression pattern is insignificant during 1952-1982. The multiple linear regression models and partial correlation analysis also indicate that the SDI acts as a dominant factor to influence the rainfall over India in the month of June during 1983-2013. The similar result is also obtained with the help of composite rainfall over the land points of India in the month of June for positive (negative) SDI events. It is also observed that the positive (negative) SDI delays (early) the onset dates of Indian monsoon over Kerala during the time domain of our study. The study is further extended to identify the physical mechanism of this impact, and it is found that the heating (cooling) in the region covering SDI changes the circulation pattern in the SIO and hence impacts the progression of monsoon in India.

  8. ENSO variability over the last 2000 years from a sub-decadal lacustrine lipid biomarker record from Isabel Island, Mexico

    NASA Astrophysics Data System (ADS)

    Sachse, D.; Romero, L.; Kienel, U.; Haug, G. H.

    2016-12-01

    ENSO is one of the major drivers of inter-annual climate variability and its effects extend far beyond the Tropical Pacific. However, our knowledge about the stability and linearity of ENSO teleconnections is limited due to the short temporal coverage of observational data, in particular of well dated paleo-ENSO records. Here we present a high-resolution record of rainfall variability on the Pacific coast of Mexico, which today is significantly correlated to ENSO variability (NINO 3.4 index), with dryer conditions during an El Niño phase and wetter conditions during a La Niña phase. The lake, situated in a volcanic crater on Isabel Island, is strongly influenced by rainfall intensity, i.e. freshwater and saline sea water input. A halophile bacterial community dominates during dry phases and an algal community dominates in a freshwater lens which develops during the wet season. Specific lipid biomarkers in the sediments indicate the dominant bacterial community (tetrahymanol and long-chain diols, respectively) in an annually laminated sediment core and record the timing and direction of ENSO mean state changes. We find the region was dry before 825 AD, indicating dominant El Niño. Between 825 and 950 AD, wetter conditions provide evidence for a dominating La Niña like pattern. During the early Medieval Climate Anomaly (MCA, 925-1100 AD) we reconstruct a dryer (El Niño like) environment, changing into a La Niña dominated pattern, prevailing until 1700 AD. The late Little Ice Age (LIA, 1700-1850AD) was initially dry and changed into a wetter climate at 1750 AD. Afterwards El Niño dominated in the region. The overall pattern of these changes agrees with other paleoclimate records from the Pacific region. However, our well dated (±20 years) high-resolution record identifies a number of short-lived episodes of deviations from this pattern, in particular during the MCA and the LIA. We also find strong similarities in the timing of these episodes with North Pacific and North Atlantic records, indicating that ENSO-Northern Hemisphere teleconnections existed throughout the last 2000 years. We find that changes in ENSO pattern during the MCA and the LIA predate changes in the Northern Hemisphere, indicating that ENSO changes affected atmospheric circulation patterns and so directly influenced Northern hemispheric climate.

  9. Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation

    USGS Publications Warehouse

    Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.

    2001-01-01

    Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.

  10. A possible abrupt change in summer precipitation over eastern China around 2009

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Wang, Zunya; Xiao, Ying; Zhou, Bing

    2017-04-01

    Historical studies have shown that summer rainfall in eastern China undergoes decadal variations, with three apparent changes in the late 1970s, 1992, and the late 1990s. The present observational study indicates that summer precipitation over eastern China likely underwent a change in the late 2000s, during which the main spatial pattern changed from negative-positive-negative to positive-negative in the meridional direction. This change in summer precipitation over eastern China may have been associated with circulation anomalies in the middle/upper troposphere. A strong trough over Lake Baikal created a southward flow of cold air during 2009-15, compared with 1999-2008, while the westward recession of the western Pacific subtropical high strengthened the moisture transport to the north, creating conditions that were conducive for more rainfall in the north during this period. The phase shift of the Pacific Decadal Oscillation in the late 2000s led to the Pacific-Japan-type teleconnection wave train shifting from negative to positive phases, resulting in varied summer precipitation over eastern China.

  11. The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective

    NASA Astrophysics Data System (ADS)

    Saft, Margarita; Western, Andrew W.; Zhang, Lu; Peel, Murray C.; Potter, Nick J.

    2015-04-01

    Most current long-term (decadal and longer) hydrological predictions implicitly assume that hydrological processes are stationary even under changing climate. However, in practice, we suspect that changing climatic conditions may affect runoff generation processes and cause changes in the rainfall-runoff relationship. In this article, we investigate whether temporary but prolonged (i.e., of the order of a decade) shifts in rainfall result in changes in rainfall-runoff relationships at the catchment scale. Annual rainfall and runoff records from south-eastern Australia are used to examine whether interdecadal climate variability induces changes in hydrological behavior. We test statistically whether annual rainfall-runoff relationships are significantly different during extended dry periods, compared with the historical norm. The results demonstrate that protracted drought led to a significant shift in the rainfall-runoff relationship in ˜44% of the catchment-dry periods studied. The shift led to less annual runoff for a given annual rainfall, compared with the historical relationship. We explore linkages between cases where statistically significant changes occurred and potential explanatory factors, including catchment properties and characteristics of the dry period (e.g., length, precipitation anomalies). We find that long-term drought is more likely to affect transformation of rainfall to runoff in drier, flatter, and less forested catchments. Understanding changes in the rainfall-runoff relationship is important for accurate streamflow projections and to help develop adaptation strategies to deal with multiyear droughts.

  12. Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies: a case study for the Red River Basin

    USDA-ARS?s Scientific Manuscript database

    With changes in weather patterns and intensifying anthropogenic water use, there is an increasing need for spatio-temporal information on water fluxes and stocks in river basins. The assortment of satellite-derived open-access information sources on rainfall (P) and land use / land cover (LULC) is c...

  13. Combined effects of constant versus variable intensity simulated rainfall and reduced tillage management on cotton preemergence herbicide runoff.

    PubMed

    Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W

    2006-01-01

    Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.

  14. A Quantitative Analysis of the Effects of Human Activities and Climate Change on Rainfall-Runoff in Xiaoqing River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Cao, S.; Liu, C.; Liu, Y.

    2017-12-01

    It is a hot topic to study the effects of human activities on the rainfall-runoff relationship and quantitatively analyze the influencing factors. According to the flexibility of Copula function to capture multivariate interdependent structure, the Copula structure between rainfall and runoff was analyzed by using the rainfall-runoff variation test method based on Archimedean Copula function to diagnose the variation of rainfall-runoff relationship. The correlation of rainfall-runoff relationship could be directly analyzed by Copula function, which could intuitively display the change of runoff in the same rainfall before and after the mutation period. The statistical method was used to simulate the underlying surface conditions before the abrupt point, and the effects of climate change and human activities on runoff changes were calculated. It can finally figure out the effects of human activities on the rainfall-runoff relationship. Taking xiaoqing river for example, the results showed that the rainfall-runoff relationship in the Xiaoqing River Basin variated in 1996 mainly due to the continuous increase of water consumption in the watershed and the change of the runoff attenuation caused by the large-scale water conservancy projects. And interannual or annual change of rainfall was not obvious; compared with the year before the variation , the runoff capacity of the basin was weakened under the same rainfall conditions after the variation ; Rainfall and runoff distribution were significantly changed and the same magnitude of rainfall and probability of runoff change were significantly different in different periods; The statistical method was used to simulate the runoff from 1996 to 2016. Compared with that from 1960 to 1995, the result showed that the contribution rate of human activities to runoff reduction was 46.8% and that of climate change was 53.2%. By relevant reference, rainfall-runoff correlation and analysis of human activities, the result was verified to be reasonable. The study can be applied to other watersheds, or used to diagnose the variation of the relationship between meteorological elements and hydrological elements so as to provide scientific basis for rational exploitation and utilization of river water resources, as well as soil and water conservation.

  15. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-07-01

    Litterfall is one of the major pathways connecting above- and belowground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. On the southern slope of Mt. Kilimanjaro, the annual pattern of litterfall depends on seasonal climatic conditions. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  16. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  17. Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000 years

    PubMed Central

    Niedermeyer, Eva M.; Sessions, Alex L.; Feakins, Sarah J.; Mohtadi, Mahyar

    2014-01-01

    The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (δD and δ13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years. PMID:24979768

  18. Projected Changes in Seasonal Mean Temperature and Rainfall (2011-2040) in Cagayan Valley, Philippines

    NASA Astrophysics Data System (ADS)

    Basconcillo, J. Q.; Lucero, A. J. R.; Solis, A. S.; Kanamaru, H.; Sandoval, R. S.; Bautista, E. U.

    2014-12-01

    Among Filipinos, a meal is most often considered incomplete without rice. There is a high regard for rice in the entire archipelago that in 2012, the country's rice production was accounted to more than 18 million tons with an equivalent harvested area of 4.7 million hectares. This means that from the 5.4 million hectares of arable land in the Philippines, 11 percent are found and being utilized for rice production in Cagayan Valley (CV). In the same year, more than 13 percent of the country's total annual rice production was produced in CV. Rice production also provides employment to 844,000 persons (out of 1.4 million persons) which suggest that occupation and livelihood in Cagayan Valley are strongly anchored in rice production. These figures outline the imaginable vulnerability of rice production in CV amidst varying issues such as land conversion, urbanization, increase in population, retention of farming households, and climate change. While all these issues are of equal importance, this paper is directed towards the understanding the projected changes in seasonal rainfall and mean temperature (2011-2040). It is envisioned by this study that a successful climate change adaptation starts with the provision of climate projections hence this paper's objective to investigate on the changes in climate patterns and extreme events. Projected changes are zonally limited to the Provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino based on the statistical downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). With the idea that rainfall and temperature varies with topography, the AURELHY technique was utilized in interpolating climate projections. Results obtained from the statistical downscaling showed that there will be significant climate changes from 2011-2040 in terms of rainfall and mean temperature. There are also indications of increasing frequency of extreme 24-hour rainfall and number of dry days (especially in Tuguegarao City). This study was forged in a partnership of PAGASA and FAO AMICAF. Further efforts to improve climate change adaptations in CV are directed towards provision of climate projections as input to crop and water resources modeling, market modeling, hunger and poverty reduction, and policy formulation.

  19. Spatio-Temporal Variability of Summer Precipitation in Mexico under the Influence of the MJO, with Emphasis on the Bimodal Pattern

    NASA Astrophysics Data System (ADS)

    Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.

    2017-12-01

    In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.

  20. Determining the resilience of carbon dynamics in semi-arid biomes of the Southwestern US to severe drought and altered rainfall patterns

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Hilton, T. W.; Fox, A. M.; Osuna, J. L.

    2011-12-01

    Water is critically important for biotic processes in semi-arid ecosystems and 2011 is developing as one of the most severe drought years on record for many parts of the Southwestern US. To quantify the impact of this severe drought on regional carbon and energy balance, we need a more detailed understanding of how water limitation alters ecosystem processes across a range of semi-arid biomes. We quantified the impact of severe drought and changes in both the quantity and distribution of precipitation on ecosystem biotic structure and function across the range of biomes represented in the NM elevation gradient network (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine forest and subalpine mixed conifer forest). We compared how daily, seasonal and annual carbon and energy balance and their components in each of these biomes respond to changes in rainfall patterns using continuous measurements of carbon, water and energy exchange and associated measurements in each of these biomes during a 5 year period (2006-2011) that included a severe drought, and large variability in both winter precipitation and the timing and intensity of the monsoon. To understand the underlying mechanisms, we used time series of radiation absorbed by vegetation, surface albedo, soil moisture storage, phenology, gross primary productivity (GPP), ecosystem respiration (Re), and WorldView-2 images acquired pre- and post-monsoon in each of these biomes. In all of the biomes except the desert grassland site, the strength and timing of both winter and monsoon precipitation are important controls over carbon and energy dynamics in this region, though we see site-specific sensitivities across the elevation gradient. Over the past 5 years, carbon dynamics in the desert grassland site appears to be decoupled from winter precipitation. In addition, carbon dynamics in disturbed grassland and pinon-juniper ecosystems were more sensitive to severe drought than their undisturbed counterparts. We use the results to extend theory related to the vulnerability of semi-arid ecosystems to climate change and to understand biotic feedbacks within these biomes that may help to maintain resilience against structural and functional change. We also used the NCAR Community Land Model (CLM) parameterized for each biome and run in point mode to quantify the implications these changes in rainfall patterns have on ecosystem physiology, and regional carbon balance.

  1. Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function

    NASA Astrophysics Data System (ADS)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2016-12-01

    The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.

  2. Different impacts of mega-ENSO and conventional ENSO on the Indian summer rainfall: developing phase

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Zhiwei; Zhou, Yefan

    2016-04-01

    Mega-El Niño-Southern Oscillation (ENSO), a boarder version of conventional ENSO, is found to be a main driving force of Northern Hemisphere summer monsoon rainfall including the Indian summer rainfall (ISR). The simultaneous impacts of "pure" mega-ENSO and "pure" conventional ENSO events on the ISR in its developing summer remains unclear. This study examines the different linkages between mega-ENSO-ISR and conventional ENSO-ISR. During the developing summer of mega-El Niño, negative rainfall anomalies are seen over the northeastern Indian subcontinent, while the anomalous rainfall pattern is almost the opposite for mega-La Niña; as for the conventional ENSO, the approximate "linear opposite" phenomenon vanishes. Furthermore, the global zonal wave trains anomalous are found at mid-latitude zones, with a local triple circulation pattern over the central-east Eurasia during mega-ENSO events, which might be an explanation of corresponding rainfall response over the Indian Peninsula. Among 106-year historical run (1900-2005) of 9 state-of-the-art models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), HadGEM2-ES performs a promising skill in simulating the anomalous circulation pattern over mid-latitude and central-east Eurasia while CanESM2 cannot. Probably, it is the models' ability of capturing the mega-ENSO-ISR linkage and the characteristic of mega-ENSO that make the difference.

  3. Area and shape metrics of rainfall fields associated with tropical cyclones landfalling over the western Gulf of Mexico and Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    The rainfall associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast caused numerous fatalities and divesting damage, however, few studies have been done over these regions. This study examines spatial pattern of rain fields associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast during 1998-2015 through a Geographic Information System (GIS)-based analysis of satellite-estimated rain rates. Regions of light rainfall (rain rate > 2.5 mm/h) and moderate rainfall (rain rate > 5.0 mm/h) during entire life cycle of each TC are converted into polygons and measurements are made of their area, dispersion and displacement during entire life cycle. The metric of dispersion is calculated for the entire rain field as defined by outlining light and moderate rain rates. The displacement to east and north is calculated by area weighted methods. There are three main objectives of this study. The first goal is to measure the area and spatial distribution of rain fields of TCs making landfall over the western Gulf and Caribbean Sea coastlines. We examine in which regions, the light and moderate rainfall area, dispersion and displacement of rainfall have higher values, and how they change during the entire TC life cycle. The second goal is to determine to determine which environmental conditions are associated with the spatial configuration of light and moderate rain rates. The conditions include storm intensity, motion direction and speed, total precipitable water and wind shear. Last, we determine the time that rainfall reaches land relative to the time that the storm's center makes landfall and durations of rainfall from TCs over land.

  4. Effects of ocean-atmosphere coupling on rainfall over the Indian Ocean and northwestern Pacific Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Q.; Xie, S. P.; Zhou, W.

    2016-12-01

    Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.

  5. Errors and uncertainties in regional climate simulations of rainfall variability over Tunisia: a multi-model and multi-member approach

    NASA Astrophysics Data System (ADS)

    Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa

    2018-02-01

    Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.

  6. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  7. Agricultural intensification and drought frequency increases may have landscape-level consequences for ephemeral ecosystems.

    PubMed

    Dalu, Tatenda; Wasserman, Ryan J; Dalu, Mwazvita T B

    2017-03-01

    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition. © 2016 John Wiley & Sons Ltd.

  8. Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.

  9. Trend analysis and forecast of precipitation, reference evapotranspiration and rainfall deficit in the Blackland Prairie of eastern Mississippi

    USDA-ARS?s Scientific Manuscript database

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration (ETo) and rainfall deficit are essential for water resources management and cropping system design. Rainfall, ETo, and water deficit patterns and trends in eastern Mississippi USA for a 120-year period (1...

  10. Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection

    NASA Astrophysics Data System (ADS)

    Kashid, S. S.; Ghosh, Subimal; Maity, Rajib

    2010-12-01

    SummarySimultaneous variations in weather and climate over widely separated regions are commonly known as "hydroclimatic teleconnections". Rainfall and runoff patterns, over continents, are found to be significantly teleconnected, with large-scale circulation patterns, through such hydroclimatic teleconnections. Though such teleconnections exist in nature, it is very difficult to model them, due to their inherent complexity. Statistical techniques and Artificial Intelligence (AI) tools gain popularity in modeling hydroclimatic teleconnection, based on their ability, in capturing the complicated relationship between the predictors (e.g. sea surface temperatures) and predictand (e.g., rainfall). Genetic Programming is such an AI tool, which is capable of capturing nonlinear relationship, between predictor and predictand, due to its flexible functional structure. In the present study, gridded multi-site weekly rainfall is predicted from El Niño Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation (EQUINOO) indices, Outgoing Longwave Radiation (OLR) and lag rainfall at grid points, over the catchment, using Genetic Programming. The predicted rainfall is further used in a Genetic Programming model to predict streamflows. The model is applied for weekly forecasting of streamflow in Mahanadi River, India, and satisfactory performance is observed.

  11. Beamwidth effects on Z-R relations and area-integrated rainfall

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Atlas, David; Wolff, David B.; Amitai, Eyal

    1992-01-01

    The effective radar reflectivity Ze measured by a radar is the convolution of the actual distribution of reflectivity with the beam radiation pattern. Because of the nonlinearity between Z and rain rate R, Ze gives a biased estimator of R whenever the reflectivity field is nonuniform. In the presence of sharp horizontal reflectivity gradients, the measured pattern of Ze extends beyond the actual precipitation boundaries to produce false precipitation echoes. When integrated across the radar image of the storm, the false echo areas contribute to the sum to produce overestimates of the areal rainfall. As the range or beamwidth increases, the ratio of measured to actual rainfall increases. Beyond some range, the normal decrease of reflectivity with height dominates and the measured rainfall underestimates the actual amount.

  12. Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August

    NASA Astrophysics Data System (ADS)

    He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei

    2018-01-01

    In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

  13. Teleconnection between Sea Ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian Rainfall Patterns in August

    NASA Astrophysics Data System (ADS)

    He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.

    2017-12-01

    In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

  14. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  15. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  16. Activity of wild Japanese macaques in Yakushima revealed by camera trapping: Patterns with respect to season, daily period and rainfall

    PubMed Central

    Otani, Yosuke; Hongo, Shun; Honda, Takeaki; Okamura, Hiroki; Higo, Yuma

    2018-01-01

    Animals are subject to various scales of temporal environmental fluctuations, among which daily and seasonal variations are two of the most widespread and significant ones. Many biotic and abiotic factors change temporally, and climatic factors are particularly important because they directly affect the cost of thermoregulation. The purpose of the present study was to determine the activity patterns of wild Japanese macaques (Macaca fuscata) with a special emphasis on the effect of thermal conditions. We set 30 camera traps in the coniferous forest of Yakushima and monitored them for a total of 8658 camera-days between July 2014 and July 2015. Over the one-year period, temperature had a positive effect, and rainfall had a negative effect on the activity of macaques during the day. Capture rate was significantly higher during the time period of one hour after sunrise and during midday. During winter days, macaques concentrated their activity around noon, and activity shifted from the morning toward the afternoon. This could be interpreted as macaques shifting their activity to warmer time periods within a single day. Japanese macaques decreased their activity during the time before sunrise in seasons with lower temperatures. It was beneficial for macaques to be less active during cooler time periods in a cold season. Even small amounts of rainfall negatively affected the activity of Japanese macaques, with capture rates decreasing significantly even when rainfall was only 0.5–1 mm/min. In conclusion, thermal conditions significantly affected the activity of wild Japanese macaques at various time scales. PMID:29293657

  17. Application of RUSLE method to assess the intensity of erosion due to land use changes in a small Polish Carpathians catchment

    NASA Astrophysics Data System (ADS)

    Bucała-Hrabia, Anna; Kijowska-Strugała, Małgorzata; Demczuk, Piotr

    2017-04-01

    Intensity of soil erosion is mainly depends on land cover changes, soil properties, heavy rainfalls and slope gradients. This study compared the influence of land use changes on soil erosion in the Homerka catchment, an area of 19.3 km2 located in the West Polish Carpathians, using GIS techniques such the Revised Universal Soil Loss Equation (RUSLE) method and cartographic materials from 1977, 1987, 1996 and 2009. RUSLE is the most common method which allows to predict the average size of the soil erosion due to specific soil properties, relief as well as rainfall erosivity factor. The period between 1977 and 2009 covers the transformation of the Polish economy from a communist system to a free-market economy after 1989. The analysis indicates an increase in the forest area of the Homerka catchment by 18.14% and a decrease of cultivated land by 82.64%. The grasslands did not change significantly in their area, however, their spatial pattern was very dynamic related to their reduction due to forest expansion and enlargement due to cultivated land abandonment.

  18. Population dynamics of two species of dragon lizards in arid Australia: the effects of rainfall.

    PubMed

    Dickman, Christopher R; Letnic, Mike; Mahon, Paul S

    1999-05-01

    The population dynamics of two species of agamid (dragon) lizards were studied in the Simpson Desert, central Australia, over a period of 7 years, and modelled in relation to rainfall. Both species have annual life cycles, with adults predominating during the breeding season in spring and summer and juveniles predominating in other seasons. Within years, juvenile abundance in both species in autumn and winter was related most strongly to rainfall in the preceding summer and autumn. This pattern suggests that rainfall enhances survival, growth and possibly clutch size and hatching success. Between years, however, rainfall drove successional change in the dominant plant species in the study area, spinifex Triodia basedowii, causing in turn a shift in the relative abundance of the two species. Thus, the central netted dragon Ctenophorus nuchalis was most numerous in 1990 when vegetation cover was <10%, but declined dramatically in abundance after heavy rainfall at the end of that year. In contrast, the military dragon C. isolepis achieved greatest abundance following heavy rains in the summers of 1990 and 1994, when spinifex cover increased to >20%, and remained numerically dominant for much of the study. We suggest that drought-wet cycles periodically reverse the dominance of the two species of Ctenophorus, and perhaps of other lizard species also, thus enhancing local species diversity over time. Further long-term studies are needed to document the population dynamics of other species, and to identify the factors that influence them.

  19. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.

  20. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  1. Western Africa to c/1860 A.D.: A Provisional Historical Schema Based on Climate Periods. Indiana University African Studies Program Working Papers Series, No. 1.

    ERIC Educational Resources Information Center

    Brooks, George E.

    An examination of historical developments in western Africa during six climate periods extending over two millennia, this study demonstrates that numerous historical developments correlate with climate periods and/or were influenced by changes in rainfall patterns and ecological conditions. These include such diverse topics as the diffusion of…

  2. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  3. Identification of deficiencies in seasonal rainfall simulated by CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Dunning, Caroline M.; Allan, Richard P.; Black, Emily

    2017-11-01

    An objective technique for analysing seasonality, in terms of regime, progression and timing of the wet seasons, is applied in the evaluation of CMIP5 simulations across continental Africa. Atmosphere-only and coupled integrations capture the gross observed patterns of seasonal progression and give mean onset/cessation dates within 18 days of the observational dates for 11 of the 13 regions considered. Accurate representation of seasonality over central-southern Africa and West Africa (excluding the southern coastline) adds credence for future projected changes in seasonality here. However, coupled simulations exhibit timing biases over the Horn of Africa, with the long rains 20 days late on average. Although both sets of simulations detect biannual rainfall seasonal cycles for East and Central Africa, coupled simulations fail to capture the biannual regime over the southern West African coastline. This is linked with errors in the Gulf of Guinea sea surface temperature (SST) and deficient representation of the SST/rainfall relationship.

  4. A Global-Scale Examination of Monsoon-Related Precipitation.

    NASA Astrophysics Data System (ADS)

    Janowiak, John E.; Xie, Pingping

    2003-12-01

    A pentad version of the Global Precipitation Climatology Project global precipitation dataset is used to document the annual and interannual variations in precipitation over monsoon regions around the globe. An algorithm is described that determines objectively wet season onset and withdrawal for individual years, and this tool is used to examine the behavior of various characteristics of the major monsoon systems. The definition of onset and withdrawal are determined by examining the ramp-up and diminution of rainfall within the context of the climatological rainfall at each location. Also examined are interannual variations in onset and withdrawal and their relationship to rainy season precipitation accumulations. Changes in the distribution of “heavy” and “light” precipitation events are examined for years in which “abundant” and “poor” wet seasons are observed, and associations with variations in large-scale atmospheric general circulation features are also examined. In particular, some regions of the world have strong associations between wet season rainfall and global-scale patterns of 200-hPa streamfunction anomalies.

  5. The Costs of Climate Change: A Study of Cholera in Tanzania

    PubMed Central

    Trærup, Sara L. M.; Ortiz, Ramon A.; Markandya, Anil

    2011-01-01

    Increased temperatures and changes in rainfall patterns as a result of climate change are widely recognized to entail potentially serious consequences for human health, including an increased risk of diarrheal diseases. This study integrates historical data on temperature and rainfall with the burden of disease from cholera in Tanzania and uses socioeconomic data to control for the impacts of general development on the risk of cholera. The results show a significant relationship between temperature and the incidence of cholera. For a 1 degree Celsius temperature increase the initial relative risk of cholera increases by 15 to 29 percent. Based on the modeling results, we project the number and costs of additional cases of cholera that can be attributed to climate change by 2030 in Tanzania for a 1 and 2 degree increase in temperatures, respectively. The total costs of cholera attributable to climate change are shown to be in the range of 0.32 to 1.4 percent of GDP in Tanzania 2030. The results provide useful insights into national-level estimates of the implications of climate change on the health sector and offer information which can feed into both national and international debates on financing and planning adaptation. PMID:22408580

  6. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

  7. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  8. Predicting watershed acidification under alternate rainfall conditions

    USGS Publications Warehouse

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, U.S.A. using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soil water flux will result in larger increases in soil- adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distribution of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading.

  9. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    PubMed Central

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2012-01-01

    Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093

  10. Climate teleconnections and recent patterns of human and animal disease outbreaks.

    PubMed

    Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L

    2012-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.

  11. Role of moisture transport for Central American precipitation

    NASA Astrophysics Data System (ADS)

    María Durán-Quesada, Ana; Gimeno, Luis; Amador, Jorge

    2017-02-01

    A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980-2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.

  12. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China

    USDA-ARS?s Scientific Manuscript database

    Future changes in precipitation will induce changes in the erosive power of rainfall and hence changes in soil erosion rates. In this study we calculated downscaled mean annual precipitation and USLE rainfall erosivity (R) for time periods 2030 through 2059 and 2070 through 2099 in Northeast China u...

  13. Climate change and precipitation evolution in Ifran region (Middle Atlas of Morocco).

    NASA Astrophysics Data System (ADS)

    Reddad, H.; Bakhat, M.; Damnati, B.

    2012-04-01

    Climate variability and extreme climatic events pose significant risks to human beings and generate terrestrial ecosystem dysfunctions. These effects are usually amplified by an inappropriate use of the existing natural resources. To face the new context of climate change, a rational and efficient use of these resources - particularly, water resource - on a global and regional scale must be implemented. Annual precipitation provides an overall amount of water, the assessment and management of this water is complicated due to the spatio-temporal variation of disturbance (aridity, rainfall intensity, length of dry season...). Therefore, understanding rainfall behavior would at least help to plan interventions to manage this resource and protect ecosystems that depend on it. Time-series analysis has become one of the major tools in hydrology. It is used for building mathematical models to detect trends and shifts in hydrologic records and to forecast hydrologic events. In this paper we present a case study of IFRAN region, which is situated in the Middle Atlas Mountains in Morocco. This study deals with modeling and forecasting rainfall time series using monthly rainfall data for the period 1970-2005. To determine the seasonal properties of this series we used first the Box-Jenkins methodology to build ARIMA model, and we expended the analysis with the Hylleberg-Engle-Granger-Yoo (HEGY) tests. The results of time series modeling showed the presence of significant deterministic seasonal pattern and no seasonal unit roots. This means that the series is stationary in all frequencies. The model can be used to predict rainfall in IFRAN and near sites; this prediction is not without interest in so far as any information about these random variables could provide a contribution to the researches made in domain for fighting against climate change. It doesn't give solutions to eradicate the precipitation variability phenomenon, but just to adapt to it.

  14. How certain is desiccation in west African Sahel rainfall (1930-1990)?

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Agnew, Clive T.

    2008-04-01

    Hypotheses for the late 1960s to 1990 period of desiccation (secular decrease in rainfall) in the west African Sahel (WAS) are typically tested by comparing empirical evidence or model predictions against "observations" of Sahelian rainfall. The outcomes of those comparisons can have considerable influence on the understanding of regional and global environmental systems. Inverse-distance squared area-weighted (IDW) estimates of WAS rainfall observations are commonly aggregated over space to provide temporal patterns without uncertainty. Spatial uncertainty of WAS rainfall was determined using the median approximation sequential indicator simulation. Every year (1930-1990) 300 equally probable realizations of annual summer rainfall were produced to honor station observations, match percentiles of the observed cumulative distributions and indicator variograms and perform adequately during cross validation. More than 49% of the IDW mean annual rainfall fell outside the 5th and 95th percentiles for annual rainfall realization means. The IDW means represented an extreme realization. Uncertainty in desiccation was determined by repeatedly (100,000) sampling the annual distribution of rainfall realization means and by applying Mann-Kendall nonparametric slope detection and significance testing. All of the negative gradients for the entire period were statistically significant. None of the negative gradients for the expected desiccation period were statistically significant. The results support the presence of a long-term decline in annual rainfall but demonstrate that short-term desiccation (1965-1990) cannot be detected. Estimates of uncertainty for precipitation and other climate variables in this or other regions, or across the globe, are essential for the rigorous detection of spatial patterns and time series trends.

  15. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM

    NASA Technical Reports Server (NTRS)

    Yang, Song; Smith, Eric A.

    2004-01-01

    The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

  16. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    PubMed

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  17. A comparison of methods to estimate future sub-daily design rainfall

    NASA Astrophysics Data System (ADS)

    Li, J.; Johnson, F.; Evans, J.; Sharma, A.

    2017-12-01

    Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.

  18. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  19. Potential effects of climate change on Florida's Everglades.

    PubMed

    Nungesser, M; Saunders, C; Coronado-Molina, C; Obeysekera, J; Johnson, J; McVoy, C; Benscoter, B

    2015-04-01

    Restoration efforts in Florida's Everglades focus on preserving and restoring this unique wetland's natural landscape. Because most of the Everglades is a freshwater peatland, it requires surplus rainfall to remain a peatland. Restoration plans generally assume a stable climate, yet projections of altered climate over a 50-year time horizon suggest that this assumption may be inappropriate. Using a legacy regional hydrological model, we simulated combinations of a temperature rise of 1.5 °C, a ± 10% change in rainfall, and a 0.46 m sea level rise relative to base conditions. The scenario of increased evapotranspiration and increased rainfall produced a slight increase in available water. In contrast, the more likely scenario of increased evapotranspiration and decreased rainfall lowered median water depths by 5-114 cm and shortened inundation duration periods by 5-45%. Sea level rise increased stages and inundation duration in southern Everglades National Park. These ecologically significant decreases in water depths and inundation duration periods would greatly alter current ecosystems through severe droughts, peat loss and carbon emissions, wildfires, loss of the unique ridge and slough patterns, large shifts in plant and animal communities, and increased exotic species invasions. These results suggest using adaptive restoration planning, a method that explicitly incorporates large climatic and environmental uncertainties into long-term ecosystem restoration plans, structural design, and management. Anticipated water constraints necessitate alternative approaches to restoration, including maintaining critical landscapes and facilitating transitions in others. Accommodating these uncertainties may improve the likelihood of restoration success.

  20. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    NASA Astrophysics Data System (ADS)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i.e. uncoupled over India and coupled elsewhere, preliminary results suggest an increase in rainfall, surface temperature and pressure over northern India and the Himalayas, as well as a decrease in rainfall over the Bay of Bengal and the Maritime Continent. Other metrics, such as the northward propagation of intraseasonal rainfall variability and sensible and latent heat fluxes, are also discussed.

  1. Volcanically-Triggered Rainfall and the Effect on Volcanological Hazards at Soufriere Hills, Montserrat

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.

  2. Implications of altered rainfall and exotic plants on soil microbial communities and carbon biomass

    NASA Astrophysics Data System (ADS)

    Castro, S.; Lipson, D.; Cleland, E. E.

    2016-12-01

    Climate and exotic plant disturbances are among the most significant threats to Mediterranean-type ecosystems, compromising their renowned biodiversity and role in the global carbon cycle. Predicted shifts in rainfall patterns have become a particular concern, especially when interactions with other stressors and effects on biogeochemical processes remain poorly understood. To understand the impacts of altered rainfall on belowground dynamics as well as the role of inter- and intra-annual variation and plant community composition, we monitored soil microbial communities under native and exotic plant dominated plots with rainfall manipulation treatments in a semi-arid Mediterranean-type ecosystem. We measured microbial biomass, respiration rates, and community structure across treatments and vegetation types. Soil moisture and dissolved organic carbon were also measured to characterize abiotic soil properties. The soil moisture gradient established by the rainfall treatments had a positive correlation with microbial biomass carbon under native- and exotic-dominated plots but had no effect on respiration rates. A significant reduction in microbial biomass under exotic plants was found in 2013 but not in 2014 and 2015. Substrate-induced respiration values were higher in the exotic-dominated plots during the spring seasons, resulting in a significant interaction between plant community type and season. Bacterial communities showed little variation except in the Proteobacteria phyla, which was lower in exotic plants-dominated plots. Dissolved organic carbon was significantly reduced in exotic-dominated plots by approximately 26% based on average values of all plots throughout. Our results illustrate that rainfall quantity and exotic plants can cause changes in microbial biomass, community composition and respiration rates jeopardizing soil carbon storage. They also reinforce the importance of temporal variability and the need for repeated sampling to correctly interpret environmental changes in semi-arid ecosystems. We conclude that to improve predictions of the implications of global stressors on biogeochemical cycles in semi-arid ecosystems, there is a need to incorporate microbial data with the understanding that it is highly dependent on temporal dynamics and plant community.

  3. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  4. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    NASA Astrophysics Data System (ADS)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.

  5. Rainfall and cave water isotopic relationships in two South-France sites

    NASA Astrophysics Data System (ADS)

    Genty, D.; Labuhn, I.; Hoffmann, G.; Danis, P. A.; Mestre, O.; Bourges, F.; Wainer, K.; Massault, M.; Van Exter, S.; Régnier, E.; Orengo, Ph.; Falourd, S.; Minster, B.

    2014-04-01

    This article presents isotopic measurements (δ18O and δD) of precipitation and cave drip water from two sites in southern France in order to investigate the link between rainfall and seepage water, and to characterize regional rainfall isotopic variability. These data, which are among the longest series in France, come from two rainfall stations in south-west France (Le Mas 1996-2012, and Villars 1998-2012; typically under Atlantic influence), and from one station in the south-east (Orgnac 2000-2012; under both Mediterranean and Atlantic influence). Rainfall isotopic composition is compared to drip water collected under stalactites from the same sites: Villars Cave (four drip stations 1999-2012) in the south-west, and Chauvet Cave (two drip stations 2000-2012) in the south-east, near Orgnac. The study of these isotopic data sets allows the following conclusions to be drawn about the rainfall/drip water relationships and about rainfall variability: (1) the cave drip water isotopic composition does not show any significant changes since the beginning of measurements; in order to explain its isotopic signature it is necessary to integrate weighted rainfall δ18O of all months during several years, which demonstrates that, even at shallow depths (10-50 m), cave drip water is a mixture of rain water integrated over relatively long periods, which give an apparent time residence from several months to up to several years. These results have important consequences on the interpretation of proxies like speleothem fluid inclusions and tree-ring cellulose isotopic composition, which are used for paleoclimatic studies; (2) in the Villars Cave, where drip stations at two different depths were studied, lower δ18O values were observed in the lower galleries, which might be due to winter season overflows during infiltration and/or to older rain water with a different isotopic composition that reaches the lower galleries after years; (3) local precipitation is characterized by local meteoric water lines, LMWL, with δ18O/δD slopes close to 7 in both areas, and correlations between air temperature and precipitation δ18O are low at both monthly and annual scales, even with temperature weighted by the amount of precipitation; (4) the mesoscale climate model REMOiso, equipped with a water isotope module, allows the direct comparison of modeled and observed long term water isotope records. The model slightly overestimates rainfall δ18O at the respective sampling stations. However, it simulates very well not only the seasonal rainfall isotopic signal but also some intra-seasonal patterns such as a typical double-peak δ18O pattern in winter time.

  6. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Luk, K. C.; Ball, J. E.; Sharma, A.

    2000-01-01

    Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.

  7. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  8. Impacts of climate change on rainfall, seasonal flooding, and evapotranspiration in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.

    2016-12-01

    The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture sources and transport characteristics during 2016's unusually-late wet season, using both in situ and satellite data. Implications are discussed for the large-scale water cycling over the southern African continental interior. These data serve as a baseline for future monitoring under climate change.

  9. How to introduce climate change into extreme precipitation predetermination? First attempts to tamper with the MEWP method.

    NASA Astrophysics Data System (ADS)

    Gérardin, Maxime; Brigode, Pierre; Bernardara, Pietro; Gailhard, Joël; Garçon, Rémy; Paquet, Emmanuel; Ribstein, Pierre

    2013-04-01

    The MEWP (Multi-Exponential Weather Pattern, Garavaglia et al. 2010) distribution is part of the operational method in use at EDF (Electricité de France) for computing dam spillways design floods, i.e. the magnitude of the flood that occurs at a given return period. The return periods of interest lie in the 100 - 10,000 years range. Relying on a purposely-designed classification of atmospheric circulations into weather patterns, and assigning a catchment-specific asymptotical coefficient to each of these patterns, the MEWP distribution provides the daily areal rainfall as a function of the return period. In its current state, the method relies on the implicit assumption of climate stationnarity. In this work we seek to introduce climate change into the MEWP framework. Since the MEWP distribution basically contains two sorts of parameters, namely frequencies of the weather patterns, and magnitudes of the events occurring within each of these patterns, we examine the plausible evolution of these two sets of parameters under climate change, and the sensitivity of the final result to these two sorts of changes. On the one hand, the future frequencies are assessed thanks to GCM outputs from CMIP5, and significant, albeit not greater than the internal variability, changes are observed. On the other hand, the future magnitudes can be suspected to follow the Clausius-Clapeyron relationship (e.g. Pall et al., 2007, and Lenderink et van Meijgaard, 2008). We assess the validity of this hypothesis on the observed daily areal precipitation series for more than a hundred catchments in France. The sensitivity analysis shows that, for the return periods at stake, the impact of frequency changes is small relative to that of magnitude changes, while this would not be true for smaller return periods. Therefore, we propose to incorporate climate change into the MEWP distribution in a simple but realistic way, by taking account of the magnitude change only. We conclude with some insights into the next steps that will allow a more sophisticated representation of climate change in the MEWP distribution. References: Garavaglia, F., J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. 2010. "Introducing a Rainfall Compound Distribution Model Based on Weather Patterns Sub-sampling." Hydrology and Earth System Sciences 14 (6): 951-964. doi:10.5194/hess-14-951-2010. Lenderink, Geert, and Erik van Meijgaard. 2008. "Increase in Hourly Precipitation Extremes Beyond Expectations from Temperature Changes." Nature Geoscience 1 (8) (July 20): 511-514. doi:10.1038/ngeo262. Pall, P., MR Allen, and DA Stone. 2007. "Testing the Clausius-Clapeyron Constraint on Changes in Extreme Precipitation Under CO 2 Warming." Climate Dynamics 28 (4): 351-363.

  10. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results demonstrate that information about the seasonality and intermittency of rainfall has the potential to improve our understanding of malaria epidemiology and improve our ability to forecast malaria outbreaks.

  11. Rainfall-induced soil aggregate breakdown in field experiments at different rainfall intensities and initial soil moisture conditions

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer

    2017-04-01

    Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case-specific manner in modelling sediment mobilization and transport during water erosion events.

  12. Multiscaling properties of tropical rainfall: Analysis of rain gauge datasets in Lesser Antilles island environment

    NASA Astrophysics Data System (ADS)

    Bernard, Didier C.; Pasquier, Raphaël; Cécé, Raphaël; Dorville, Jean-François

    2014-05-01

    Changes in rainfall seem to be the main impact of climate change in the Caribbean area. The last conclusions of IPCC (2013), indicate that the end of this century will be marked by a rise of extreme rainfalls in tropical areas, linked with increase of the mean surface temperature. Moreover, most of the Lesser Antilles islands are characterized by a complex topography which tends to enhance the rainfall from synoptic disturbances by orographic effects. In the past five years, out of hurricanes passage, several extreme rainy events (approx. 16 mm in 6 minutes), including fatal cases, occurred in the Lesser Antilles Arc: in Guadeloupe (January 2011, May 2012 and 2013), in Martinique (May 2009, April 2011 and 2013), in Saint-Lucia (December 2013). These phenomena inducing floods, loss of life and material damages (agriculture sector and public infrastructures), inhibit the development of the islands. At this time, numerical weather prediction models as WRF, which are based on the equations of the atmospheric physics, do not show great results in the focused area (Bernard et al., 2013). Statistical methods may be used to examine explicitly local rainy updrafts, thermally and orographically induced at micro-scale. The main goal of the present insular tropical study is to characterize the multifractal symmetries occurring in the 6-min rainfall time series, registered since 2006 by the French Met. Office network weather stations. The universal multifractal model (Schertzer and Lovejoy, 1991) is used to define the statistical properties of measured rainfalls at meso-scale and micro-scale. This model is parametrized by a fundamental exponents set (H,a,C1,q) which are determined and compared with values found in the literature. The first three parameters characterize the mean pattern and the last parameter q, the extreme pattern. The occurrence ranges of multifractal regime are examined. The suggested links between the internal variability of the tropical rainy events and the multifractal properties found, are preliminary discussed. References Bernard, D., R. Cécé and J.-F. Dorville (2013). High resolution numerical simulation (WRF V3) of an extrem rainy event over the Guadeloupe archipelago: Case of 3-5 January 2011. EGU General Assembly 2013, Geophysical Research Abstracts, Vol. 15, EGU2013-9988, Vienna, April 2013. Schertzer, D., S. Lovejoy (1991). Nonlinear geodynamical variability: Multiple singularities, universality and observables. Scaling, fractals and non-linear variability in geophysics, D. Schertzer, S. Lovejoy eds.,41-82, Kluwer.

  13. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United States Environmental Protection Agency (USEPA) total maximum daily load (TMDL) program, as well as those addressing coastal population dynamics and sea level rise. Our approach has several advantages, including the propagation of parameter uncertainty through a nonparametric probability distribution which avoids common pitfalls of fitting parameters and model error structure to a predetermined parametric distribution function. In addition, by explicitly acknowledging correlation between model parameters (and reflecting those correlations in our predictive model) our model yields relatively efficient prediction intervals (unlike those in the current literature which are often unnecessarily large, and may lead to overly-conservative management actions). Finally, our model helps improve understanding of the rainfall-runoff process by identifying model parameters (and associated catchment attributes) which are most sensitive to current and future land use change patterns. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  14. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  15. Observations of climate change among subsistence-oriented communities around the world

    NASA Astrophysics Data System (ADS)

    Savo, V.; Lepofsky, D.; Benner, J. P.; Kohfeld, K. E.; Bailey, J.; Lertzman, K.

    2016-05-01

    The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (~70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955-2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.

  16. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  17. Influence of different rates of rainfall in the basin of the Uruguay River

    NASA Astrophysics Data System (ADS)

    Bohrer, M.; Zaparoli, B.; Saldanha, C. B.

    2013-04-01

    In the state of Rio Grande do Sul, the rainfall pattern is fairly regular and precipitation is well distributed throughout the year. The aim of this study was to evaluate the spatial and temporal distribution of precipitation in the Uruguay River basin from the determination of homogeneous regions based on the rainfall pattern. Values of 47 meteorological stations of the ANA (National Water Agency) from 1975 to 2005 were used, and values of Pacific sea surface temperature were collected from the National Oceanic and Atmospheric Administration, which is based on observed anomalies for different regions' niños (1 + niño 2, 3 niño, niño 4, niño 3 + 4). From the analysis of the results it was found that the study region showed five homogeneous regions. Knowing the time series of each region, it was possible to verify the regional variability in precipitation, indicating which regions have values above and below the climatological normal, and how the different indexes influence the rainfall pattern in the region.

  18. An Investigation of the Influence of Urban Areas on Rainfall Using the TRMM Satellite and a Cloud-Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; OCStarr, David (Technical Monitor)

    2002-01-01

    A recent paper by Shepherd and Pierce (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of approx. 28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  19. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  20. Link between Indian monsoon rainfall and physical erosion in the Himalayan system during the Holocene

    NASA Astrophysics Data System (ADS)

    Joussain, Ronan; Liu, Zhifei; Colin, Christophe; Duchamp-Alphonse, Stéphanie; Yu, Zhaojie; Moréno, Eva; Fournier, Léa.; Zaragosi, Sébastien; Dapoigny, Arnaud; Meynadier, Laure; Bassinot, Franck

    2017-09-01

    Mineralogical and geochemical analyses conducted on cores located on the active channel-levee system of the northern Bengal Fan are used to establish changes in the weathering pattern and the sediment transport of the Himalayan system, and evaluate the effect of Indian summer monsoon rainfall during the Holocene. Our data indicate that during the Holocene, sediments from the northern Bengal Fan originate mainly from the G-B river system without any significant changes in the relative contribution of these rivers. From 9.8 to around 6 ka, relatively low smectite/(illite+chlorite) ratios and relatively high K/Si* ratios indicate high physical denudation rates of the Himalayan highlands together with a rapid transfer of the detrital material to the Bengal Fan. The period between 9.2 and 7 ka is associated to lower values of K/Si* and corresponds to the maximum of Indian monsoon rainfall which indicates a more important chemical weathering material that rapidly transits by the G-B river system without a long storage in the Indo-Gangetic plain. From 6.0 ka to present day, higher smectite/(illite+chlorite) ratio and lower K/Si* ratio document a gradual increase of sediments originated from the Indo-Gangetic plain, characterized by higher degree of chemical weathering. During the last 2.5 ka, the drastic increase in the smectite/(illite+chlorite) ratio could be associated to enhanced alteration of the plain soils due to anthropogenic activity. The comparison of mineralogical and geochemical data with previous reconstructions of the Indian monsoon dynamic indicates a rapid response of erosion and sediment transfer of the G-B river system to changes of monsoon rainfall intensity.

  1. NASA Applied Sciences' DEVELOP National Program: Summer 2010 Florida Agriculture

    NASA Technical Reports Server (NTRS)

    Cooley, Zachary C.; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    The main agricultural areas in South Florida are located within the fertile land surrounding Lake Okeechobee. The Atlantic Watershed monthly rainfall anomalies showed a weak but statistically significant correlation to the Oceanic Nino Index (ONI). No other watershed s anomalies showed significant correlations with ONI or the Southern Oscillation Index (SOI). During La Nina months, less sea breeze days and more disturbed days were found to occur compared to El Nino and neutral months. The increase in disturbed days can likely by attributed to the synoptic pattern during La Nina, which is known to be favorable for tropical systems to follow paths that affect South Florida. Overall, neither sea breeze rainfall patterns nor total rainfall patterns in South Florida s main agricultural areas were found to be strongly influenced by the El Nino Southern Oscillation during our study time.

  2. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii.

    PubMed

    Kramer, Marc G; Chadwick, Oliver A

    2016-09-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of ecosystem development are not well understood. We examined soil organic matter dynamics and soil development across a high-altitude (3,560-3,030 m) 20-kyr climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected (~250-500 mm rainfall), which range from sparsely vegetated to sites that contain a mix of shrubs and grasses. At each site, two or three pits were dug and major diagnostic horizons down to bedrock (intact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption, and major elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al, and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation. Reactive-phase (SRO) minerals show a general trend of increasing abundance with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20 kyr, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall are severely limited. Carbon storage comparisons with lower-elevation soils on Mauna Kea and other moist mesic (2,500 mm rainfall) sites on Hawaii suggest that these soils have reached only between 1% and 15% of their capacity to retain carbon. Our results suggest that, after 20 kyr in low rainfall and a cold climate, weathering was decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Overall, we conclude that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform. © 2016 by the Ecological Society of America.

  3. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  4. Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region

    NASA Astrophysics Data System (ADS)

    Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg

    2015-04-01

    Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.

  5. Climate change effects on above- and below-ground interactions in a dryland ecosystem.

    PubMed

    González-Megías, Adela; Menéndez, Rosa

    2012-11-19

    Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.

  6. Implications of climate change on landslide hazard in Central Italy.

    PubMed

    Alvioli, Massimiliano; Melillo, Massimo; Guzzetti, Fausto; Rossi, Mauro; Palazzi, Elisa; von Hardenberg, Jost; Brunetti, Maria Teresa; Peruccacci, Silvia

    2018-07-15

    The relation between climate change and its potential effects on the stability of slopes remains an open issue. For rainfall induced landslides, the point consists in determining the effects of the projected changes in the duration and amounts of rainfall that can initiate slope failures. We investigated the relationship between fine-scale climate projections obtained by downscaling and the expected modifications in landslide occurrence in Central Italy. We used rainfall measurements taken by 56 rain gauges in the 9-year period 2003-2011, and the RainFARM technique to generate downscaled synthetic rainfall fields from regional climate model projections for the 14-year calibration period 2002-2015, and for the 40-year projection period 2010-2049. Using a specific algorithm, we extracted a number of rainfall events, i.e. rainfall periods separated by dry periods of no or negligible amount of rain, from the measured and the synthetic rainfall series. Then, we used the selected rainfall events to forcethe Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model TRIGRS v. 2.1. We analyzed the results in terms of variations (or lack of variations) in the rainfall thresholds for the possible initiation of landslides, in the probability distribution of landslide size (area), and in landslide hazard. Results showed that the downscaled rainfall fields obtained by RainFARM can be used to single out rainfall events, and to force the slope stability model. Results further showed that while the rainfall thresholds for landslide occurrence are expected to change in future scenarios, the probability distribution of landslide areas are not. We infer that landslide hazard in the study area is expected to change in response to the projected variations in the rainfall conditions. We expect our results to contribute to regional investigations of the expected impact of projected climate variations on slope stability conditions and on landslide hazards. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Trend analysis and forecast of precipitation, reference evapotranspiration, and rainfall deficit in the Blackland Prairie of eastern Mississippi

    Treesearch

    Gary Feng; Stacy Cobb; Zaid Abdo; Daniel K. Fisher; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins

    2016-01-01

    Trend analysis and estimation of monthly and annual precipitation, reference evapotranspiration ET, and rainfall deficit are essential for water-resources management and cropping-system design. Rainfall, ET, and water-deficit patterns and trends at Macon in eastern Mississippi for a 120-yr period (1894-2014) were analyzed for annual, seasonal, and monthly...

  8. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  9. Assessment of the impact of climate shifts on malaria transmission in the Sahel.

    PubMed

    Bomblies, Arne; Eltahir, Elfatih A B

    2009-09-01

    Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.

  10. Is the Aquarius sea surface salinity variability representative?

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S.

    2016-12-01

    The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.

  11. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    PubMed

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.

  12. A comparison of three methods to estimate evapotranspiration in two contrasting loblolly pine plantations: age-related changes in water use and drought sensitivity of evapotranspiration components

    Treesearch

    Jean-Christophe Domec; Ge Sun; Asko Noormets; Michael J. Gavazzi; Emrys A. Treasure; Erika Cohen; Jennifer J. Swenson; Steve G. McNulty; John S. King

    2012-01-01

    Increasing variability of rainfall patterns requires detailed understanding of the pathways of water loss from ecosystems to optimize carbon uptake and management choices. In the current study we characterized the usability of three alternative methods of different rigor for quantifying stand-level evapotranspiration (ET), partitioned ET into tree transpiration (T),...

  13. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-10-01

    Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  14. A Study of Heavy Precipitation Events in Taiwan During 10-13 August, 1994. Part 2; Mesoscale Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.

    2001-01-01

    Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.

  15. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: a case study in a Mediterranean climate (Araucanía Region, south central Chile).

    PubMed

    Orrego, R; Abarca-Del-Río, R; Ávila, A; Morales, L

    2016-01-01

    Climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962-1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070-2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°-40°S and 71°-74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns such as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.

  16. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: a case study in a Mediterranean climate (Araucanía Region, south central Chile)

    DOE PAGES

    Orrego, R.; Abarca-del-Rio, R.; Avila, A.; ...

    2016-09-28

    Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less

  17. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: a case study in a Mediterranean climate (Araucanía Region, south central Chile)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrego, R.; Abarca-del-Rio, R.; Avila, A.

    Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less

  18. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities.

    PubMed

    Deveautour, Coline; Donn, Suzanne; Power, Sally A; Bennett, Alison E; Powell, Jeff R

    2018-04-01

    Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem. © 2018 John Wiley & Sons Ltd.

  19. Pattern formation--A missing link in the study of ecosystem response to environmental changes.

    PubMed

    Meron, Ehud

    2016-01-01

    Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  1. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.; Hannachi, A.

    2017-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  2. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    PubMed

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  3. Estimating urban flood risk - uncertainty in design criteria

    NASA Astrophysics Data System (ADS)

    Newby, M.; Franks, S. W.; White, C. J.

    2015-06-01

    The design of urban stormwater infrastructure is generally performed assuming that climate is static. For engineering practitioners, stormwater infrastructure is designed using a peak flow method, such as the Rational Method as outlined in the Australian Rainfall and Runoff (AR&R) guidelines and estimates of design rainfall intensities. Changes to Australian rainfall intensity design criteria have been made through updated releases of the AR&R77, AR&R87 and the recent 2013 AR&R Intensity Frequency Distributions (IFDs). The primary focus of this study is to compare the three IFD sets from 51 locations Australia wide. Since the release of the AR&R77 IFDs, the duration and number of locations for rainfall data has increased and techniques for data analysis have changed. Updated terminology coinciding with the 2013 IFD release has also resulted in a practical change to the design rainfall. For example, infrastructure that is designed for a 1 : 5 year ARI correlates with an 18.13% AEP, however for practical purposes, hydraulic guidelines have been updated with the more intuitive 20% AEP. The evaluation of design rainfall variation across Australia has indicated that the changes are dependent upon location, recurrence interval and rainfall duration. The changes to design rainfall IFDs are due to the application of differing data analysis techniques, the length and number of data sets and the change in terminology from ARI to AEP. Such changes mean that developed infrastructure has been designed to a range of different design criteria indicating the likely inadequacy of earlier developments to the current estimates of flood risk. In many cases, the under-design of infrastructure is greater than the expected impact of increased rainfall intensity under climate change scenarios.

  4. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.

  5. Regional changes in extreme monsoon rainfall deficit and excess in India

    NASA Astrophysics Data System (ADS)

    Pal, Indrani; Al-Tabbaa, Abir

    2010-04-01

    With increasing concerns about climate change, the need to understand the nature and variability of monsoon climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with the changes in frequency and magnitudes of extreme monsoon rainfall deficiency and excess in India from 1871 to 2005. Five regions across India comprising variable climates were selected for the study. Apart from changes in individual regions, changing tendencies in extreme monsoon rainfall deficit and excess were also determined for the Indian region as a whole. The trends and their significance were assessed using non-parametric Mann-Kendall technique. The results show that intra-region variability for extreme monsoon seasonal precipitation is large and mostly exhibited a negative tendency leading to increasing frequency and magnitude of monsoon rainfall deficit and decreasing frequency and magnitude of monsoon rainfall excess.

  6. Do Rainfall Deficits Predict U.S.-bound Migration from Rural Mexico? Evidence from the Mexican Census

    PubMed Central

    Nawrotzki, Raphael J.; Riosmena, Fernando; Hunter, Lori M.

    2013-01-01

    Environmental and climatic changes have shaped human mobility for thousands of years and research on the migration-environment connection has proliferated in the past several years. Even so, little work has focused on Latin America or on international movement. Given rural Mexico’s dependency on primary sector activities involving various natural resources, and the existence of well-established transnational migrant networks, we investigate the association between rainfall patterns and U.S.-bound migration from rural locales, a topic of increasing policy relevance. The New Economics of Labor Migration (NELM) theory provides background, positing that migration represents a household-level risk management strategy. We use data from the year 2000 Mexican census for rural localities and socioeconomic and state-level precipitation data provided by the Mexican National Institute for Statistics and Geography. Multilevel models assess the impact of rainfall change on household-level international out-migration while controlling for relevant sociodemographic and economic factors. A decrease in precipitation is significantly associated with U.S.-bound migration, but only for dry Mexican states. This finding suggests that programs and policies aimed at reducing Mexico-U.S. migration should seek to diminish the climate/weather vulnerability of rural Mexican households, for example by supporting sustainable irrigation systems and subsidizing drought-resistant crops. PMID:23913999

  7. The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events.

    PubMed

    Filazzola, Alessandro; Liczner, Amanda Rae; Westphal, Michael; Lortie, Christopher J

    2018-01-01

    Environmental extremes resulting from a changing climate can have profound implications for plant interactions in desert communities. Positive interactions can buffer plant communities from abiotic stress and consumer pressure caused by climatic extremes, but limited research has explored this empirically. We tested the hypothesis that the mechanism of shrub facilitation on an annual plant community can change with precipitation extremes in deserts. During years of extreme drought and above-average rainfall in a desert, we measured plant interactions and biomass while manipulating a soil moisture gradient and reducing consumer pressure. Shrubs facilitated the annual plant community at all levels of soil moisture through reductions in microclimatic stress in both years and herbivore protection in the wet year only. Shrub facilitation and the high rainfall year contributed to the dominance of a competitive annual species in the plant community. Precipitation patterns in deserts determine the magnitude and type of facilitation mechanisms. Moreover, shrub facilitation mediates the interspecific competition within the associated annual community between years with different rainfall amounts. Examining multiple drivers during extreme climate events is a challenging area of research, but it is a necessary consideration given forecasts predicting that these events will increase in frequency and magnitude. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. The cross wavelet analysis of dengue fever variability influenced by meteorological conditions

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han

    2015-04-01

    The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor

  9. Do Rainfall Deficits Predict U.S.-bound Migration from Rural Mexico? Evidence from the Mexican Census.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M

    2013-02-01

    Environmental and climatic changes have shaped human mobility for thousands of years and research on the migration-environment connection has proliferated in the past several years. Even so, little work has focused on Latin America or on international movement. Given rural Mexico's dependency on primary sector activities involving various natural resources, and the existence of well-established transnational migrant networks, we investigate the association between rainfall patterns and U.S.-bound migration from rural locales, a topic of increasing policy relevance. The New Economics of Labor Migration (NELM) theory provides background, positing that migration represents a household-level risk management strategy. We use data from the year 2000 Mexican census for rural localities and socioeconomic and state-level precipitation data provided by the Mexican National Institute for Statistics and Geography. Multilevel models assess the impact of rainfall change on household-level international out-migration while controlling for relevant sociodemographic and economic factors. A decrease in precipitation is significantly associated with U.S.-bound migration, but only for dry Mexican states. This finding suggests that programs and policies aimed at reducing Mexico-U.S. migration should seek to diminish the climate/weather vulnerability of rural Mexican households, for example by supporting sustainable irrigation systems and subsidizing drought-resistant crops.

  10. Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.

    PubMed

    Waring, Bonnie G; Hawkes, Christine V

    2015-05-01

    Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.

  11. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N concentrations are more variable in grasses which could indicate higher plasticity in grass N uptake compared to shrubs. Resin N supports the 15N patterns. Resin N declined more rapidly under grasses and was lower than under shrubs, presumably due to high grass N uptake. Resin N was particularly high under shrubs in wetter conditions indicating that shrubs could not take advantage of high N supply. Together the 15N and resin N patterns indicate that grasses accumulate more N and begin N uptake earlier in the season than shrubs. Although 15N did not differ in response to rainfall, invasion alters the distribution of N in the system. Rain was only manipulated for one growing season; multiple years of altered precipitation may yield significant differences. Early season N uptake by grasses, the low variability in shrub 15N and low shrub 15N in wetter conditions, despite high resin N, indicates that N competition between invasive grasses and native shrubs is weak. If N supply is sufficient for shrub demands, invasive grasses and shrubs could coexist. This study contributes to a broader understanding of how changes in resource supply, plant phenology and functional type interact and respond to climate change.

  12. Hydrological Cycle in the Western Equatorial Warm Pool over the Past 220 k years

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.

    2008-12-01

    The Western Pacific Warm Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, warm and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (ENSO). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past ENSO activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than ENSO-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.

  13. Changing Pattern of Indian Monsoon Extremes: Global and Local Factors

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha

    2017-04-01

    Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).

  14. Divergent ecological effects of oceanographic anomalies on terrestrial ecosystems of the Mexican Pacific coast

    PubMed Central

    Caso, Margarita; González-Abraham, Charlotte; Ezcurra, Exequiel

    2007-01-01

    Precipitation pulses are essential for the regeneration of drylands and have been shown to be related to oceanographic anomalies. However, whereas some studies report increased precipitation in drylands in northern Mexico during El Niño years, others report increased drought in the southern drylands. To elucidate the effect of oceanographic/atmospheric anomalies on moisture pulses along the whole Pacific coast of Mexico, we correlated the average Southern Oscillation Index values with total annual precipitation for 117 weather stations. We also analyzed this relationship for three separate rainfall signals: winter-spring, summer monsoon, and fall precipitation. The results showed a distinct but divergent seasonal pattern: El Niño events tend to bring increased rainfall in the Mexican northwest but tend to increase aridity in the ecosystems of the southern tropical Pacific slope. The analysis for the separated rainfall seasons showed that El Niño conditions produce a marked increase in winter rainfall above 22° latitude, whereas La Niña conditions tend to produce an increase in the summer monsoon-type rainfall that predominates in the tropical south. Because these dryland ecosystems are dependent on rainfall pulses for their renewal, understanding the complex effect of ocean conditions may be critical for their management in the future. Restoration ecology, grazing regimes, carrying capacities, fire risks, and continental runoff into the oceans could be predicted from oceanographic conditions. Monitoring the coupled atmosphere–ocean system may prove to be important in managing and mitigating the effects of large-scale climatic change on coastal drylands in the future. PMID:17563355

  15. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  16. To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm

    NASA Astrophysics Data System (ADS)

    Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.

    2017-12-01

    The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.

  17. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover

    PubMed Central

    Paul, Supantha; Ghosh, Subimal; Oglesby, Robert; Pathak, Amey; Chandrasekharan, Anita; Ramsankaran, RAAJ

    2016-01-01

    Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000–2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though the magnitude of such conversion is uncertain because of the coarse resolution of satellite images and use of differential sources and methods for data extraction. We performed a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon precipitation and found such impacts are similar to the observed changes in terms of spatial patterns and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease in evapotranspiration and subsequent decrease in the recycled component of precipitation. PMID:27553384

  18. Modeling adaptation of wetland plants under changing environments

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, R.; Muneepeerakul, C. P.

    2010-12-01

    An evolutionary-game-theoretic approach is used to study the changes in traits of wetland plants in response to environmental changes, e.g., altered patterns of rainfall and nutrients. Here, a wetland is considered as a complex adaptive system where plants can adapt their strategies and influence one another. The system is subject to stochastic rainfall, which controls the dynamics of water level, soil moisture, and alternation between aerobic and anaerobic conditions in soil. Based on our previous work, a plant unit is characterized by three traits, namely biomass nitrogen content, specific leaf area, and allocation to rhizome. These traits control the basic functions of plants such as assimilation, respiration, and nutrient uptake, while affecting their environment through litter chemistry, root oxygenation, and thus soil microbial dynamics. The outcome of this evolutionary game, i.e., the best-performing plant traits against the backdrop of these interactions and feedbacks, is analyzed and its implications on important roles of wetlands in supporting our sustainability such as carbon sequestration in biosphere, nutrient cycling, and repository of biodiversity are discussed.

  19. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.

  20. Non-equilbrium dynamics of ecosystem processes in a changing world

    NASA Astrophysics Data System (ADS)

    Reid, Joseph Pignatello

    The relatively mild and stable climate of the last 10,000 years betrays a history of environmental variability and rapid changes. Humans have recently accelerated global environmental change, ushering in the Anthropocene. Meeting accelerating demands for food, energy, and goods and services has accelerated species extinctions, shows of reactive nitrogen and phosphorus, and warming of the atmosphere. I address the over- arching question of how ecosystems will respond to changing and variable environments through several focused studies. Each study examines an ecosystem response to ex- pected environmental changes in the future. To address how the changing environment affects the sizes and turnover rates of slowly and quickly cycling soil carbon pools, I analyzed the responses of grassland soils to simulated species diversity loss, increased deposition of nitrogen and increased atmospheric CO2. I used a soil respiration experiment to fit models of soil carbon pool turnover to respired carbon dioxide. Species diversity, nitrogen deposition and atmospheric CO2 had no effect on the total soil carbon after 8 years of treatments. Although total soil carbon did not change, the rates of cycling in the fast and slow pools changed in response to elevated CO2 and diversity loss treatments. Nitrogen treatments increased the size of the slowly cycling carbon pool. Precipitation variability has increased around most of the world since the industrial revolution. I used plant mesocosms in a greenhouse experiment to manipulate rainfall variability and mycorrhizal associations. I hypothesized that 1) rewetting events re- sult in higher nitrogen uxes from dry soils than moist soils, 2) a repeated pattern of events caused by low-frequency simulated rainfall results in higher nitrogen uxes and 3) the better ability of ectomycorrhizal fungi relative to arbuscular mycorrhizal fungi to decompose and assimilate organic nitrogen reduces leaching losses of nitrogen caused by both rewetting events and patterns of repeated events. In response to individual rewetting events, drier soils released more nitrate and total nitrogen than wetter soils. Ectomycorrhizal treatments slightly reduced the effect of antecedent soil moisture on total nitrogen and nitrate losses from rewetting events. This supports my hypotheses iii that drier soils release more nitrogen after rainfall events and that ectomycorrhizal asso- ciations can reduce nitrogen losses associated with soil rewetting events. However, only ammonium increased in proportion to the variance in rainfall quantity and mycorrhizal treatments had no effect, largely refuting my hypothesis that soils would release more nitrogen when exposed to higher variability patterns of rainfall. The current pressures that humans place on the environment are only expected to increase as populations and incomes continue to climb. The more than 9 billion peo- ple expected on the planet by 2050 require food, energy, shelter and other goods and services. Historically, producing those benefits has resulted in environmental damage, especially nitrogen pollution through agricultural fertilizers, atmospheric nitrogen de- position and human waste. I developed a model to test the effectiveness of various technologies and strategies to reduce the environmental harms associated with meeting the needs of human well-being. I tested the effects of increased crop yields through genetic gains, increased nutrient efficiency in agricultural systems, reduced meat con- sumption, reduced food waste and improved wastewater treatment on nitrogen yield. The tested levers were mildly effective at reducing nitrogen yield from the baseline busi- ness as usual (BAU) scenario, but still resulted in at least 15% greater nitrogen yield than the present. Applied in combination, in the 'Super Ag' scenario, the levers out performed the sum of their contributions when applied singly. Some levers were more effective in some places than others. Taken together, these results suggest that there is no one solution, and that solutions will be most effective when developed for local conditions and applied in combination.

  1. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA

    Treesearch

    Ileana La Torre Torres; Devendra Amatya; Ge Sun; Timothy Callahan

    2011-01-01

    Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low...

  2. Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico

    Treesearch

    Tamara Heartsill Scalley; F.N. Scatena; C. Estrada Ruiz; W.H. McDowell; Ariel Lugo

    2007-01-01

    Nutrient fluxes in rainfall and throughfall were measured weekly in a mature subtropical wet forest in NE Puerto Rico over a 15-year period that included the effects of 10 named tropical storms, several prolonged dry periods, and volcanic activity in the region. Mean annual rainfall and throughfall were 3482 and 2131 mm yr

  3. Diurnal Patterns of Direct Light Extinction in Two Tropical Forest Canopies

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Silva, C. E.; Kellner, J. R.

    2016-12-01

    The extent to which net ecosystem production is light-limited in Neotropical forests is poorly understood. This is due in part to our limited knowledge of how light moves through complex canopies to different layers of leaves, and the extent to which structural changes in canopies modify the amount of light absorbed by the landscape to drive photosynthesis. Systematic diurnal changes in solar angle, leaf angle, and wind speed suggest that patterns of light attenuation change over the course of the day in tropical forests. In this study, we characterize the extinction of direct light through the canopies of two forests in Panama using high-resolution, three-dimensional measurements from a small footprint, discrete return airborne laser scanner mounted on the gondola of a canopy crane. We hypothesized that light penetrates deeper into canopies during the middle of the day because changes in leaf angle by light-saturated leaves temporarily reduce effective canopy leaf area, and because greater wind speeds increase sunflecks. Also, we hypothesized that rates of light extinction are greater in the wetter forest that receives less direct sunlight because light saturation in upper leaves is less prevalent. We collected laser measurements with resolution of approximately 5,000 points per square meter of ground every 90 minutes over the course of one day each at Parque Natural Metropolitano (1740 mm annual rainfall) and Parque Nacional San Lorenzo (3300 mm annual rainfall) during the dry season in April, 2016. Using a voxel-based approach, we compared the actual versus potential distance traveled by laser beams through each volume of the canopy. We fit an exponential model to quantify the rate of light extinction. We found that rates of light extinction vary spatially, temporally, and by site. These results indicate that variation in forest structure changes patterns of light attenuation through the canopy over multiple scales.

  4. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the their coefficients are quantified. For necessary future predictions, data obtained from climate regional models starting 2040 to 2069 will be utilized. To accommodate the inherent uncertainty of climate projections, an ensemble of regional climate models will be used to assess changes of rainfall and potential evaporation. Then, the climate change impact on seasonal and annual runoff, evaporation, and water storage changes will be projected.

  5. Implications of climate change for potamodromous fishes.

    PubMed

    Beatty, Stephen J; Morgan, David L; Lymbery, Alan J

    2014-06-01

    There is little understanding of how climate change will impact potamodromous freshwater fishes. Since the mid 1970s, a decline in annual rainfall in south-western Australia (a globally recognized biodiversity hotspot) has resulted in the rivers of the region undergoing severe reductions in surface flows (ca. 50%). There is universal agreement amongst Global Climate Models that rainfall will continue to decline in this region. Limited data are available on the movement patterns of the endemic freshwater fishes of south-western Australia or on the relationship between their life histories and hydrology. We used this region as a model to determine how dramatic hydrological change may impact potamodromous freshwater fishes. Migration patterns of fishes in the largest river in south-western Australia were quantified over a 4 year period and were related to a number of key environmental variables including discharge, temperature, pH, conductivity and dissolved oxygen. Most of the endemic freshwater fishes were potamodromous, displaying lateral seasonal spawning migrations from the main channel into tributaries, and there were significant temporal differences in movement patterns between species. Using a model averaging approach, amount of discharge was clearly the best predictor of upstream and downstream movement for most species. Given past and projected reductions in surface flow and groundwater, the findings have major implications for future recruitment rates and population viabilities of potamodromous fishes. Freshwater ecosystems in drying climatic regions can only be managed effectively if such hydro-ecological relationships are considered. Proactive management and addressing existing anthropogenic stressors on aquatic ecosystems associated with the development of surface and groundwater resources and land use is required to increase the resistance and resilience of potamodromous fishes to ongoing flow reductions. © 2013 John Wiley & Sons Ltd.

  6. Sensitivity of CONUS Summer Rainfall to the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal Simulations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert; hide

    2017-01-01

    This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.

  7. Contrasting response of coexisting plant's water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China.

    PubMed

    Wu, Huawu; Li, Jing; Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng

    2018-01-01

    Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake.

  8. Contrasting response of coexisting plant’s water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China

    PubMed Central

    Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng

    2018-01-01

    Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0–10cm) when it was available but shifted to absorbing deep soil water (30–60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake. PMID:29677195

  9. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    NASA Astrophysics Data System (ADS)

    von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani

    2017-04-01

    Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.

  10. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  11. Coupling loss characteristics of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope.

    PubMed

    Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi

    2018-05-01

    Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.

  12. On the biogeography of salt limitation: A study of ant communities

    PubMed Central

    Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert

    2008-01-01

    Sodium is an essential nutrient whose deposition in rainfall decreases with distance inland. The herbivores and microbial decomposers that feed on sodium-poor vegetation should be particularly constrained along gradients of decreasing sodium. We studied the use of sucrose and NaCl baits in 17 New World ant communities located 4–2757 km inland. Sodium use was higher in genera and subfamilies characterized as omnivores/herbivores compared with those classified as carnivores and was lower in communities embedded in forest litter than in those embedded in abundant vegetation. Sodium use was increased in ant communities further inland, as was preference for the baits with the highest sodium concentration. Sucrose use, a measure of ant activity, peaked in communities 10–100 km inland. We suggest that the geography of ant activity is shaped by sodium toxicity near the shore and by sodium deficit farther inland. Given the importance of ants in terrestrial ecosystems, changing patterns of rainfall with global change may ramify through inland food webs. PMID:19004798

  13. Antiphasing Between Rainfall in Africa's Rift Valley and North America's Great Basin

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Pettet, Dorothy; Hajdas, Irena; Lin, Jo; Clark, Elizabeth

    1998-01-01

    The beginning of the Bolling-Allerod warm period is marked in Greenland ice by an abrupt rise in (Delta)O-18, an abrupt drop in dust rain, and an abrupt increase in atmospheric methane content. The surface waters in the Norwegian Sea underwent a simultaneous abrupt warming. At about this time, a major change in the pattern of global rainfall occurred. Lake Victoria (latitude 0deg), which prior to this time was dry, was rejuvenated. The Red Sea, which prior to this time was hypersaline, freshened. Lake Lahontan, which prior to this time had achieved its largest size, desiccated. Whereas the chronologic support for the abruptness of the hydrologic changes is firm only for the Red Sea, in keeping with evidence obtained well away from the nor-them Atlantic in the Santa Barbara basin and the Cariaco Trench, the onset and end of the millennial-duration climate events were globally abrupt. If so, the proposed linkage between the size of African closed basin lakes and insolation cycles must be reexamined.

  14. From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study

    NASA Astrophysics Data System (ADS)

    Meron, Ehud

    2018-03-01

    Spatial patterns are ubiquitous in animate matter. Besides their intricate structure and beauty they generally play functional roles. The capacity of living systems to remain functional in changing environments is a question of utmost importance, but its intimate relationship to pattern formation is largely unexplored. Here, we address this relationship using dryland vegetation as a case study. Following a brief introduction to pattern-formation theory, we describe a mathematical model that captures several mechanisms of vegetation pattern formation and discuss ecological contexts that showcase different mechanisms. Using this model, we unravel the different vegetation patterns that keep dryland ecosystems viable along the rainfall gradient, identify multistability ranges where fronts separating domains of alternative stable states exist, and highlight the roles of front dynamics in mitigating or reversing desertification. The utility of satellite images in testing model predictions is discussed. An outlook on outstanding open problems concludes this paper.

  15. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    PubMed

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  16. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    NASA Astrophysics Data System (ADS)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  17. New features of global climatology revealed by satellite-derived oceanic rainfall maps

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1977-01-01

    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.

  18. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  19. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  20. Synergistic effects of seasonal rainfall, parasites and demography on fluctuations in springbok body condition

    PubMed Central

    Turner, Wendy C.; Versfeld, Wilferd D.; Kilian, J. Werner; Getz, Wayne M.

    2011-01-01

    Summary 1. Seasonality of rainfall can exert a strong influence on animal condition and on host-parasite interactions. The body condition of ruminants fluctuates seasonally in response to changes in energy requirements, foraging patterns and resource availability, and seasonal variation in parasite infections may further alter ruminant body condition. 2. This study disentangles effects of rainfall and gastrointestinal parasite infections on springbok (Antidorcas marsupialis) body condition and determines how these factors vary among demographic groups. 3. Using data from four years and three study areas, we investigated i) the influence of rainfall variation, demographic factors and parasite interactions on parasite prevalence or infection intensity, ii) whether parasitism or rainfall is a more important predictor of springbok body condition and iii) how parasitism and condition vary among study areas along a rainfall gradient. 4. We found that increased parasite intensity is associated with reduced body condition only for adult females. For all other demographic groups, body condition was significantly related to prior rainfall and not to parasitism. Rainfall lagged by two months had a positive effect on body condition. 5. Adult females showed evidence of a “periparturient rise” in parasite intensity, and had higher parasite intensity and lower body condition than adult males after parturition and during early lactation. After juveniles were weaned, adult females had lower parasite intensity than adult males. Sex differences in parasitism and condition may be due to differences between adult females and males in the seasonal timing of reproductive effort and its effects on host immunity, as well as documented sex differences in vulnerability to predation. 6. Our results highlight that parasites and the environment can synergistically affect host populations, but that these interactions might be masked by their interwoven relationships, their differential impacts on demographic groups, and the different time scales at which they operate. PMID:21831195

Top