NASA Astrophysics Data System (ADS)
Brown, M.
2006-12-01
Essene's contributions began pre-plate tectonics more than 40 years ago; they range from mineralogy to tectonics, from experiments and thermobarometry to elements and isotopes, and from the Phanerozoic to the Precambrian. Eric is a true polymath! Assessing the P-T conditions and age distribution of crustal metamorphism is an important step in evaluating secular change in tectonic regimes and geodynamics. In general, Archean rocks exhibit moderate-P - moderate-to-high-T facies series metamorphism (greenstone belts and granulite terranes); neither blueschists nor any record of deep continental subduction and return are documented and only one example of granulite facies ultrahigh-temperature metamorphism is reported. Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian, although G-UHTM facies series rocks may be inferred at depth in younger orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the formation and breakup of supercontinents, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those around the modern Pacific rim. Medium-temperature eclogite - high-pressure granulite metamorphism (E-HPGM) also is first recognized in the Neoarchean rock record, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E- HPGM belts are complementary to G-UHTM belts, and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; lawsonite blueschists and eclogites (high-pressure metamorphism, HPM), and ultrahigh pressure metamorphism (UHPM) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts - reflecting a duality of thermal regimes - appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G- UHTM and E-HPGM belts since the Neoarchean manifests the onset of a `Proterozoic plate tectonics regime', although the style of tectonics likely involved differences from modern Earth. Although the style of Proterozoic subduction remains cryptic, the change in tectonic regime whereby interactions between discrete lithospheric plates generated tectonic settings with contrasting thermal regimes was a landmark event in Earth history. The `Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the `modern plate tectonics regime' characterized by colder subduction, and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of blueschists and HPM-UHPM in the rock record.
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.; O'Neill, C.
2015-06-01
We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.
NASA Astrophysics Data System (ADS)
Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed
2015-06-01
We compiled 123 focal mechanisms from various sources for Tunisia and adjacent regions up to Sicily, to image the current stress field in the Maghrebides chain (from Tunisia to Sicily) and its foreland. Stress inversion of all the available data provides a first-order stress field with a N150°E horizontal compression (SHmax) and a transpressional tectonic regime, but the obtained stress tensor poorly fit to the data set. We separated them into regional subsets (boxes) in function of their geographical proximity, kinematic regime, homogeneity of kinematic orientations, and tectonic setting. Their respective inversion evidences second- and third-order spatial variations in tectonic regime and horizontal stress directions. The stress field gradually changes from compression in the Maghrebides thrust belt to transpression and strike slip in the Atlassic and Pelagian foreland, respectively, where preexisting NW-SE to E-W deep faults system are reactivated. This spatial variation of the sismotectonic stress field and tectonic regime is consistent with the neotectonic stress field determined by others from fault slip data. The major Slab Transfer Edge Propagator faults (i.e., North-South Axis-Hammamet relay and Malte Escarpment), which laterally delimit the subducting slabs, play an active role in second- and third-order lateral variations of the tectonic regime and stress field orientations over the Tunisian/Sicilian domain. The past and current tectonic deformations and kinematics of the central Mediterranean are subordinately guided by the plate convergence (i.e., Africa-Eurasia), controlled or influenced by lateral slab migration/segmentation and by deep dynamics such as lithosphere-mantle interaction.
NASA Astrophysics Data System (ADS)
De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca
2015-04-01
Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.
Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.
Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J
2012-05-30
Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.
NASA Astrophysics Data System (ADS)
Giambiagi, Laura; Álvarez, Patricia Pamela; Creixell, Christian; Mardonez, Diego; Murillo, Ismael; Velásquez, Ricardo; Lossada, Ana; Suriano, Julieta; Mescua, José; Barrionuevo, Matías
2017-11-01
In the High Andes of central Chile, above the flat-slab segment, analysis of more than 1,000 fault slip data from Miocene outcrops provides evidence for a change of the regional tectonic regime from compressional to strike slip. This shift in tectonic regime occurred during the waning stages of arc volcanism between 14 and 11 Ma, as a result of the shallowing of the Nazca plate, in conjunction with the migration of deformation to the Precordillera. During the early to middle Miocene, a compressive regime with horizontal σ1 axis (N86°E) was responsible for reverse slip along NNE to N-striking faults. During the late Miocene, a shift to strike-slip tectonics took place due to an increase in the absolute magnitude of the vertical stress component as the crust thickened and the gravitational potential energy increase. We argue that instead of the previously accepted highly compressional setting in the arc region during the slab flattening, the change to a strike-slip regime was the main control on mineralization. Mineralization was controlled by the promotion of fluid expulsion from the magma chambers along active, subvertical strike-slip fault systems with a high slip tendency, and focusing of fluids in localized areas undergoing extension. Under this strike-slip regime, the El Indio, Tambo, and La Despensa fault systems formed as dextral strike-slip systems. The tips and jogsites along these faults experienced local extensional stress fields, forming the El Indio and Tambo mineral districts.
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Head, J. W.
2018-03-01
This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.
Searching for Hysteresis in Models of Mantle Convection with Grain-Damage
NASA Astrophysics Data System (ADS)
Lamichhane, R.; Foley, B. J.
2017-12-01
The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical steady-state. Scaling analysis is performed to quantify how subduction initiation from a stagnant lid differs from sustaining subduction in a mobile lid. The implications of our results for the evolution of the mode of surface tectonics on terrestrial planets will also be discussed.
On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.
2015-12-01
Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL
NASA Astrophysics Data System (ADS)
Weller, M. B.; Lenardic, A.
2017-12-01
Of all the Solar System bodies, the Earth is the only one for which significant observation and constraints are accessible such that they can be used to discriminate between competing models of Earth's tectonic evolution. Therefore, it is a natural tendency to use these observations to inform more general models of planetary evolution. Yet, our understating of Earth's evolution is far from complete. Geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. In recent years, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. The indication is that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. Further, there exists the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution), acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. Implied here is that terrestrial planets have the potential to migrate through tectonic regimes at similar `thermal evolutionary times' - points were planets have a similar bulk mantle temperature and energies -, but at very different `temporal times' - time since planetary formation. It can then be shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random fluctuations. A new framework of planetary evolution that moves toward probabilistic arguments based on general physical principals, as opposed to particular rheologies, and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable at equivalent physical and chemical conditions, will be discussed.
Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting
NASA Astrophysics Data System (ADS)
Navabpour, Payman; Barrier, Eric
2012-12-01
The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.
NASA Astrophysics Data System (ADS)
Eichhubl, P.; O'Brien, C. M.; Elliott, S. J.
2016-12-01
Mechanisms of brittle deformation of sediments and sedimentary rock change with burial because of increasing confining stress, change in pore fluid chemical and temperature conditions, and diagenetic state. In the field, these changes are observed in a transition from early non-cataclastic to later cataclastic deformation bands and to joint-based structures. Jurassic eolian sandstones in the San Rafael monocline and adjacent San Rafael Desert region, Utah, allow comparison of deformation band structures and their diagenetic attributes in contractional and extensional tectonic settings in close proximity. In the Entrada and Navajo Sandstones, we observe up to six generations of deformation bands, with earliest non-cataclastic bands having diffuse boundaries to host rock, and short and irregular traces. Later bands are cataclastic, more sharply defined, with long and straight traces. Cataclastic bands in the San Rafael monocline are interpreted to form as reverse faults during progressive rotation of the steeply dipping fold limb, resulting in an array of bands of varying dip. Bands in the San Rafael Desert form as normal faults with a narrower dip range. Although structural characteristics of bands differ in extensional and contractional tectonic regimes, cataclastic bands in either regime have comparable amount of porosity loss and quartz cementation indicating that tectonic regime does not influence band diagenesis. Abundance of quartz cement in bands, determined by point counting of SEM images, increases from earlier to later generations of bands and, within a single generation, with increasing slip along the band, reaching up to 24% of band volume. This trend is attributed to an increase in cataclasis with increasing host rock cementation and confining stress during burial, and, within the same generation, with increasing slip. Porosity loss by cementation tends to dominate over porosity loss by mechanical compaction. These findings demonstrate that quartz cementation and thus band permeability are primarily controlled by the degree of cataclasis in the bands, and highlight the interdependence of mechanical deformation and chemical diagenetic processes in deformation bands.
Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges
NASA Astrophysics Data System (ADS)
Shabanian, Esmaeil; Bellier, Olivier; Abbassi, Mohammad R.; Siame, Lionel; Farbod, Yassaman
2010-01-01
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia-Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ˜ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis ( σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia-Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.
Continental crust formation on early Earth controlled by intrusive magmatism
NASA Astrophysics Data System (ADS)
Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.
2017-05-01
The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
Continental crust formation on early Earth controlled by intrusive magmatism.
Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T
2017-05-18
The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
Seismic evidence for change of the tectonic regime in Messinian, northern Marmara Sea, Turkey
NASA Astrophysics Data System (ADS)
Alp, Hakan; Vardar, Denizhan; Alpar, Bedri; Ustaömer, Timur
2018-01-01
New Chirp seismic data collected from the northern margin of the Marmara Sea in June 2015 and previous Sparker seismic profiles recorded in 1999 suggest a change in tectonic regime in Messinian. New tectonic lineaments and fault segments were detected at offshore the Çekmece lagoons region that is located on one of the possible water corridors with the Paratethys. The faults only affect the older seismic unit (U1), which can be best outlined on the Chirp data. The E-W trending fault offshore Avcılar (OAF) borders the northern edge of a tightly folded sedimentary zone. The NNE-SSW trending fault, namely the Büyükçekmece Fault (BF), passing through the Büyükçekmece Bay, follows a buried valley. Its evolution must be related to the development of the Early Miocene - Early Pliocene Thrace-Eskişehir fault zone (TEFZ). BF and OAF indicate old tectonic activities in the region, which continued to the North Anatolian fault becoming the most dominant tectonic element in the region. The upper surface of the stratigraphic unit U1 and its terraces define the thickness of younger deposits (U2), which is thinner in the middle of the shelf. The morphology of the tightly folded zone controls those terraces, which correspond to the Bakırköy Formation and Kıraç member on land. The topmost parts of the terraces must have been eroded during sea level low-stands and cutting of the paleo-valleys. There is no evidence of any tectonic deformation or active fault in the younger seismic unit (U2).
Extending Whole-earth Tectonics To The Terrestrial Planets
NASA Astrophysics Data System (ADS)
Baker, V. R.; Maruyama, S.; Dohm, J. M.
Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.
How did Earth not End up like Venus?
NASA Astrophysics Data System (ADS)
Jellinek, M.; Lenardic, A.; Weller, M. B.
2017-12-01
Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).
Maldonado, A.; Nelson, C.H.
1999-01-01
This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and oceanographic controls dominated the evolution of the Cadiz margin during the Cenozoic. Depositional sequences formed where the tectonic setting provided the accommodation space and the shape of the deposits has been greatly influenced by the strong unidirectional Atlantic inflow currents on the shelf and Mediterranean outflow currents on the slope. The entire cycle of the inflow and outflow deposition along the margin has been controlled first by the tectonic evolution of the Betic and Rif gateways, which become closed during the Late Miocene, and after the Messinian by the opening of the Strait of Gibraltar. Strong current development during eustatic sea level highstands of the Pliocene and Quaternary has controlled deposition because of maximum sill depths at Gibraltar for water circulation. Lowstand sea levels slowed circulation and resulted in mud drapes over the slope and regressive stratigraphic sequences over the shelf. More recently, the human industrial revolution has caused heavy metal contamination of sediment and water over the Cadiz margin. Human activity also has affected sedimentation rates because of deforestation that caused increased depositional rates near undammed rivers and decreased rates where rivers have been dammed. Future research efforts will need to focus on: (1) the effect of increased Mediterranean outflow caused by river damming plus global warming and the increased outflow as a potential trigger for new ice ages; (2) assessments of geologic hazards for planning man-made shoreline structures, developing offshore petroleum resources and maintaining undersea communications cables; and (3) confirmation of the general geologic history of the Cadiz margin.
Mid-tertiary volcano-tectonic development of the Southwestern Cordillera of North America
NASA Technical Reports Server (NTRS)
Nelson, Kerri L.
1987-01-01
In the Southwestern Cordillera (SC) of North America, volcanic style changed from dominantly calcalkaline stratovolcanoes to caldera-related magmatism during the mid-Tertiary. The dominant tectonic process affecting the region during this time was convergence of the Farallon and North American Plates. The change in style of volcanism indicates a change in the operative stress regime: compressional for the earlier calcalkaline volcanism and tensional for development of the calderas. The development of the centers were compared to evaluate the volcano-tectonic relationship of caldera development within and between centers and determine the relationships between the earlier calcalkaline and later caldera-style volcanisms. The calderas exhibit three distinct stages of development that are closely associated with the East Pacific Rise/trench collision. The spatial and temporal association of the calcalkaline and caldera-related volcanism argues for the SC representing a region of continued arc magnetism in which the style of volcanism varied in response to differences in regional stresses.
NASA Astrophysics Data System (ADS)
Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie
2017-04-01
In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally tabular structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone formation, maastrichtian in age, localized on the front of the Boixols thrust, on the southern side of the Sant Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations, and 3) take oriented cores in order to study the magnetic fabric giving informations on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the microstructures scale, DBs are characterized by grain crushing with hertzian fractures associated with pore collapse. All these evidences allow us to define these structures as compaction bands. Further microscopical investigation, grain size distribution and initial porosity are determined by image analysis. These data are confronted to geomechanical models in order to investigate the relationship between the occurrences of DBs in the burial history and the diagenesis of the rock during the compressive event.
A Regime Diagram for Subduction
NASA Astrophysics Data System (ADS)
Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.
2009-12-01
Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction regimes are generated primarily as a product of two mechanisms. The first mechanism is that of the competition between the weight of the slab and the strength of the plate, which can be understood in terms of the applied bending moment, and this competition results in a particular radius of curvature (for which we provide a simple scaling theory). The second mechanism is the interaction between the slab and the more viscous lower mantle, which produces each regime's distinct slab morphology. Thus, the emergence of five distinct styles of subduction is a direct consequence of the presence of the modest barrier to flow into the lower mantle. Although only 2 of these styles presently operate on Earth, the possibility exists that other modes may have been the predominant mode in the past. Based on these models, we propose that the lithosphere is the primary factor in describing key elements of the plate tectonics system over time, rather than the convecting mantle. We discuss the various factors that may have influenced secular changes in Earth's tectonic behavior, some of which may have interesting consequences for the geochemical evolution of the Earth.
NASA Astrophysics Data System (ADS)
Sachse, Victoria; Anka, Zahie; Pagan, Facundo; Kohler, Guillermina; Cagnolatti, Marcelo; di Primio, Rolando; Rodriguez, Jorge
2013-04-01
The Austral Basin is situated in a formerly and recently high active tectonic zone in southern Argentina. The opening of the South Atlantic to the east, the opening of the Drake Passage in the south, and the subduction related to the rise of the Andes to the west, had major influence on the study area. To identify the impact of the tectonic events on basin geometry, sediment thickness and depocenter migration through time, 2D seismic interpretation was performed for an area of approx. 180.000 km² covering the onshore northern Austral Basin. A total of 10 seismic horizons were mapped and tied to the stratigraphy from well reports, representing 9 syn- and post- rift sequences. The main units are: Basement (U1), Jurassic Tobifera Formation (U2), Early Cretaceous (U3), Late Cretaceous (U4), sub-unit Campanian (U4A), Paleocene (U5), Eocene (U6), Oligocene (U7), Miocene (U8), and Plio-Pleistocene (U9). Main tectonic events are identified representing the break-up phase forming graben systems and the evolution from the ancient backarc Rocas Verdes Basin to the foreland Austral Basin. Inversion and changes in the tectonic regime are concomitant with onlapping and thinning of the base of the Upper Cretaceous to Campanian sediments, while the Top of the Upper Cretaceous represents a Maastrichtian unconformity. Units depth maps show a triangular geometry since the Jurassic, tracing the north-eastern basement high and deepening to the south. Since the Campanian the former geometry of basin fill changed and deepening to the south stopped. Beginning of the foreland phase is assigned to this time as well as changes in the stress regime. Paleogene times are marked by a relatively high sedimentation rate coupled with enduring thermal subsidence, on-going rise of the Andes and changes in the convergence rates of the Nazca relative to the South American plate. Onset of sediment supply from the Andes (Incaic phase) resulted in enhanced sedimentation rates during the Paleocene, coupled with important basin subsidence at Andes foothills. An E-W transpressive deformation occurred during late Oligocene and Miocene, initiated by significant changes of plate motion between Nazca and South American plate, driving the Quechua phase of the Andean uplift. Hence, enhanced sedimentation from the rising Andes was renewed since a late Miocene unconformity.
Metamorphism, Plate Tectonics, and the Supercontinent Cycle
NASA Astrophysics Data System (ADS)
Brown, Michael
Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).
NASA Astrophysics Data System (ADS)
Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio
2018-01-01
Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left-lateral kinematics to a change of principal horizontal stress direction starting from Late Pliocene.
Hill, David P.
2015-01-01
Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.
NASA Astrophysics Data System (ADS)
Lavenu, A.; Noblet, C.; Winter, T. H.
1995-01-01
Microtectonic analysis of infilling deposits in South Ecuadorian Neogene basins brings to light a compressive stress field with σ1 along a NNE-SSW to NE-SW direction in the early Miocene, changing to an E-W direction in the Middle and Late Miocene. The syn-sedimentary deformations which affect the deposits of the basins suggest similar stress regimes due to a compressive ongoing tectonic system in the Miocene, for at least 15 Ma. There is a good correlation between rapid convergence in the Neogene and the time period during which the continental South Ecuadorian basins were deformed by compression (Quechua period).
The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region
NASA Astrophysics Data System (ADS)
Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.
2018-03-01
Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.
Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey
NASA Astrophysics Data System (ADS)
Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali
2018-04-01
The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.
NASA Astrophysics Data System (ADS)
Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.
2016-10-01
Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.
Tectonic evolution, structural styles, and oil habitat in Campeche Sound, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeles-Aquino, F.J.; Reyes-Nunez, J.; Quezada-Muneton, J.M.
1994-12-31
Campeche Sound is located in the southern part of the Gulf of Mexico. This area is Mexico`s most important petroleum province. The Mesozoic section includes Callovian salt deposits; Upper Jurassic sandstones, anhydrites, limestones, and shales; and Cretaceous limestones, dolomites, shales, and carbonate breccias. The Cenozoic section is formed by bentonitic shales and minor sandstones and carbonate breccias. Campeche Sound has been affected by three episodes of deformation: first extensional tectonism, then compressional tectonism, and finally extensional tectonism again. The first period of deformation extended from the middle Jurassic to late Jurassic and is related to the opening of the Gulfmore » of Mexico. During this regime, tilted block faults trending northwest-southwest were dominant. The subsequent compressional regime occurred during the middle Miocene, and it was related to northeast tangential stresses that induced further flow of Callovian salt and gave rise to large faulted, and commonly overturned, anticlines. The last extensional regime lasted throughout the middle and late Miocene, and it is related to salt tectonics and growth faults that have a middle Miocene shaly horizon as the main detachment surface. The main source rocks are Tithonian shales and shaly limestones. Oolite bars, slope and shelf carbonates, and regressive sandstones form the main reservoirs. Evaporites and shales are the regional seals. Recent information indicates that Oxfordian shaly limestones are also important source rocks.« less
NASA Astrophysics Data System (ADS)
Kraus, St.; Miller, H.
2003-04-01
Magmatic dykes are essential components of volcanic arcs, following joint systems and fracture zones. This work aims to reconstruct the deformational and intrusive history of the northern part of the Antarctic Peninsula by combining structural information with the geochemistry, isotopy and age of the dykes. On the South Shetland Islands volcanic activity began about 130 Ma ago. From Mid to Late Eocene (49-34 Ma) the northern Antarctic Peninsula and southern South America underwent extensional tectonics, which led to sea-floor spreading in the Drake Passage 28 Ma ago. Subsequent slab-rollback caused arc-extension and the opening of the Bransfield Rift as a backarc-basin between 4 and 1.3 Ma ago. Very slow subduction (1mm/a) at the South Shetland trench continues until the present day. Several changes of subduction direction caused crucial variations regarding the tectonic regime in the overlying South Shetland block, being the reason for the shifting strike of the dykes. Several dyke systems were mapped in areas of up to 100000m2, with the outcrop situation being good enough to observe plenty of relative age relationships. ICP-MS geochemical analysis on 132 dykes shows, as expected, that the majority of them correspond to a typical subduction-related calcalcalic suite, ranging from basalts to rhyolites. Nevertheless, some dykes show shoshonitic characteristics and are maybe related to an early stage extensional crustal regime. This is supported by the relative ages observed in the field, indicating, that these dykes belong to the oldest ones outcropping in the investigated area. In one case, the geochemical behaviour of the dyke corresponds clearly to adacitic conditions, being a hint on partially molten subducted oceanic crust. In several areas (e.g. Potter Peninsula, King George Island, and Hurd Peninsula, Livingston Island) a strong correlation between chemism and strike of the dykes - and therefore the tectonic regime at the time of intrusion - is observed. Ce/Pb, Zr/Hf and also some Ba/HFSE ratios have been used as a powerful means to distinguish the different intrusive events. Thus, combining the relative ages observed in the field with the geochemical information, on Hurd Peninsula (Livingston Island) 6 different intrusive events are traceable. In contrast to the subduction-related, mostly calcalcalic dykes outcropping on the rest of the South Shetland Islands, the quaternary dykes of Penguin Island are composed of Ol-bearing basalt of slightly more alcalic chemism. They are not related to the island arc part of subduction in that area but to the recent opening of the Bransfield Strait as a backarc-basin. The results prove the good suitability of magmatic dyke systems for tracing the change of the tectonic regime over time and space. Present work includes extensive isotope geochemical analysis (Sr, Nd, Pb) to get a hint on the magma sources and their possible changes as a result of changing geodynamic parameters.
NASA Astrophysics Data System (ADS)
Louro Lourenço, Diogo; Rozel, Antoine; Ballmer, Maxim; Tackley, Paul
2017-04-01
It is now well established that compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. Mechanisms that have been found to facilitate plate tectonics include: water circulation [Regenauer-Lieb et al., Science 2001; Dymkova and Gerya, GRL 2013], presence of continents [Rolf and Tackley, GRL 2011], and melting [Korenaga, GJI 2009; Armann and Tackley, JGR 2012]. In a recent work by Lourenço et al. [EPSL 2016], it has been shown that Earth-like plate tectonics is more likely to occur in planets that can produce a crust of variable thickness and density through melt extraction from the mantle. The authors employed a first-order approximation by assuming that all magmatism was extrusive. However, volumes of intruded magmas are observed to be around 4- 9 times more present on Earth than erupted magmas [Crisp, J. Volcanol. Geotherm. Res. 1984]. Therefore, intrusive magmatism is thought to play a role in the dynamics of the lithosphere on Earth [Cawood et al., Geol. Soc. Am. Bull. 2013] and other Earth-like planets. We extend the work of Lourenço et al. [2016] by taking into account intrusive magmatism, and systematically investigate the effect of plutonism, in conjugation with eruptive volcanism. We present a set of 2D spherical annulus simulations of thermo-compositional global mantle convection using StagYY [Tackley, PEPI 2008], which uses a finite-volume discretization of the governing compressible anelastic Stokes equations. Tracers are used to track composition and to allow for the treatment of partial melting and crustal formation. A direct solver is employed to obtain a solution of the Stokes and continuity equations, using the PETSc toolkit. The heat equation is solved in two steps: advection is performed using the MPDATA scheme and diffusion is then solved implicitly using a PETSc solver. Results show that three common convection regimes are usually reached in simulations when using a visco-plastic rheology: stagnant-lid regime (a one-plate planet), episodic lid (where the lithosphere is unstable and frequently overturns into the mantle), and mobile-lid regime (similar to plate tectonics). At high intrusion efficiencies, we observe and characterise a new additional regime called here "plutonic-squishy lid". This regime is characterised by a set of strong plates separated by warm and weak regions due to plutonism. Eclogitic drippings and lithospheric delaminations often occur around these weak regions. These processes lead to significant surface velocities, even if subduction is not active. The location of plate boundaries is strongly time-dependent and mainly occurs in magma intrusion regions. This regime is also distinctive because it generates a thin lithosphere, which results in high conductive heat fluxes and lower internal temperatures when compared to a stagnant lid. The plutonic-squishy-lid regime has the potential to be applicable to the Archean Earth and Venus, as it combines elements of both protoplate tectonic and vertical tectonic models, such as horizontal plate motion and reprocessing of the lithosphere for the former, and lithospheric diapirism, volcanism, and basal delamination for the later.
Tipping Points in Texas Rivers
NASA Astrophysics Data System (ADS)
Phillips, Jonathan
2016-04-01
Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.
On the use of imaginary faults in palaeostress analysis
NASA Astrophysics Data System (ADS)
Shan, Yehua; Liang, Xinquan
2017-11-01
The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.
David Coblentz
2005-01-01
While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky...
Wright, David F; Stigall, Alycia L
2013-01-01
Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.
Neotectonic deformation in Tunisia (North of the African plate)
NASA Astrophysics Data System (ADS)
Soumaya, Abdelkader; Ben Ayed, Noureddine; Kadri, Ali; Delvaux, Damien; Khayati Ammar, Hayet; Braham, Ahmed
2017-04-01
In Tunisia, at the extreme North of the African plate, the neotectonic context is largely influenced by the Eurasia-Africa convergence. The aim of this work is to characterize the neotectonic regime that affected this region during Quaternary. Field work investigations integrated with published data allowed to evidence a spatial-temporal variation of the tectonic stress regime during this period. The spatial repartition of the different types of Quaternary to historical deformation shows a North-South neotectonic zoning in Tunisia. After lower Pleistocene, the Tellian domain (Maghrebides) in the North and its Atlassic foreland in central Tunisia are affected by NNW-SSE compression. It generated E-W to NE-SW folds and reverse faults, well developed in the Plio-Quaternary molassic basins of Kechabta and Jendouba (Northern Tunisia). In the Atlas, the major E-W and N-S pre-existing faults have been reactivated with dextral and sinistral strike-slip kinematic respectively, associated to en-echelon folds (Kasserine, N-S Axis, Northern Chott belt...). After the Tyrrhenian, a submeridian compressional regime affected Northern Tunisia (e.g., Bizerte region) and was responsible for the E-W folding of marine strata. More to the South, in the Tunisian Sahel, transtensional tectonics with a NW-SE horizontal maximal compression (SHmax) deformed the Tyrrhenian marine series (Khénis, Skanès, Monastir…). During the Holocene and up to present-day times, N-S compressional tectonics reactivated the E-W pre-existing faults with a reverse movement in Northern Tunisia (Bulla Regia, Utica …), generating historical earthquakes. In Central Tunisia, the Aqueduct of Cherichira (built around AD 850) is displaced by a N-S normal fault. Similarly, a mosaic of a roman house is shifted by 10 cm, along a N-S sinistral normal fault. These deformations evidence a transtensional tectonic regime. During the Quaternary, all the NW-SE oriented grabens are subsiding (e.g., Bizerte Lake, Grombalia, and others in central Atlas). They can be explained by the coexistence of extensional and compressional structures in a general compressional tectonic regime with NNW-SSE SHmax.
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Armitage, P. J.
2011-12-01
Geothermal fields rely on permeable fracture networks that can act for significant periods of time. In crystalline rocks, permeability may be stimulated by injections of fluid pressure at depth. We show how high-pressure laboratory experiments can be used to quantify the effects of different stress states on the permeability of two rocks; Darley Dale sandstone (~10-16 m2 permeability) and Westerly granite (~10-20 m2 permeability). It is well known that microfractures start to grow at stresses around one half of the failure stress. Failure in the experiments was reproduced in several ways: (1) by fixing σ3 and increasing σ1 - equivalent to a compressive or strike-slip tectonic regime (2) by fixing σ1 and decreasing σ3 - equivalent to an extensional tectonic regime (3) by increasing the pore fluid pressure at a fixed differential stress to simulate high pore fluid pressure failure, and (4) by fixing the mean stress while increasing σ1 and decreasing σ3 in sympathy. Permeability was monitored during all of these tests. From these tests we are able to quantify the relative contributions of mean stress, differential stress and pore fluid pressure on the permeability in the pre-failure region. This provides key data on the development of microfracture permeability that might be produced during the stimulation of geothermal fields during injection within different tectonic environments.
The influence of water on mantle convection and plate tectonics
NASA Astrophysics Data System (ADS)
Brändli, S.; Tackley, P. J.
2017-12-01
Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present in the mantle. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. This two effects of water in the mantle have a significant influence to mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle and then brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the amount of water in the oceans. To model this water cycle multiple additions to StagYY are necessary. With the enhanced code we calculated multiple steady state models with a wide range of parameters to study the effect of water on the mantle rheology and the behavior of the lithosphere. The results will help us to understand the earths interior and its reaction and behavior under partially hydrated conditions.
NASA Astrophysics Data System (ADS)
Modenesi-Gauttieri, May Christine; Takashi Hiruma, Silvio; Riccomini, Claudio
2002-03-01
Integration of landform and structural analysis allowed the identification of Late Pleistocene-Holocene pulses of tectonic activity in the Campos do Jordão Plateau with ages and regimes similar to the ones from the continental rift. Fault reactivation along Precambrian shear zones give rise to a series of conspicuous morphotectonic features, determine the formation of stream piracy phenomena, and divide the plateau into smaller blocks. Recognition of these tectonic pulses as well as of their effects in landform development—particularly clear on the Campos de São Francisco at the highest area of the SE edge of the plateau—show that besides the climate-related Quaternary environmental changes significant neotectonic instability should be considered in the geomorphic evolution of the Campos do Jordão Plateau.
Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M. S.
2012-12-01
We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a 3D calculation of the Shoal underground nuclear explosion including tectonic prestress. Shoal was a 12.5 kiloton nuclear explosion detonated near Fallon, Nevada. This event had strong heterogeneity in near field waveforms and is in a region under primarily extensional tectonic stress. There were three near-field shot level recording stations located in three directions each at about 590 meters from the shot. Including prestress consistent with the regional stress field causes variations in the calculated near-field waveforms similar to those observed in the Shoal data.
NASA Astrophysics Data System (ADS)
Schweig, E. S.; Muhs, D. R.; Simmons, K. R.; Halley, R. B.
2015-12-01
Guantanamo Bay, Cuba is an area dominated by a strike-slip tectonic regime and is therefore expected to have very low Quaternary uplift rates. We tested this hypothesis by study of an unusually well preserved emergent reef terrace around the bay. Up to 12 m of unaltered, growth-position reef corals are exposed at about 40 sections examined around ˜40 km of coastline. Maximum reef elevations in the protected, inner part of the bay are ˜11-12 m, whereas outer-coast shoreline angles of wave-cut benches are as high as ˜14 m. Fifty uranium-series analyses of unrecrystallized corals from six localities yield ages ranging from ˜134 ka to ˜115 ka, when adjusted for small biases due to slightly elevated initial 234U/238U values. Thus, ages of corals correlate this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Previously, we dated the Key Largo Limestone to the same high-sea stand in the tectonically stable Florida Keys. Estimates of paleo-sea level during MIS 5.5 in the Florida Keys are ~6.6 to 8.3 m above present. Assuming a similar paleo-sea level in Cuba, this yields a long-term tectonic uplift rate of 0.04-0.06 m/ka over the past ~120 ka. This estimate supports the hypothesis that the tectonic uplift rate should be low in this strike-slip regime. Nevertheless, on the southeast coast of Cuba, east of our study area, we have observed flights of multiple marine terraces, suggesting either (1) a higher uplift rate or (2) an unusually well-preserved record of pre-MIS 5.5 terraces not observed at Guantanamo Bay.
Dynamic stresses, Coulomb failure, and remote triggering
Hill, D.P.
2008-01-01
Dynamic stresses associated with crustal surface waves with 15-30-sec periods and peak amplitudes 5 km). The latter is consistent with the observation that extensional or transtensional tectonic regimes are more susceptible to remote triggering by Rayleigh-wave dynamic stresses than compressional or transpressional regimes. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems.
NASA Astrophysics Data System (ADS)
Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben-Avraham, Zvi
2017-04-01
Despite the global, social and scientific impact of earthquakes, their triggering mechanisms remain often poorly defined. We suggest that dynamic changes in the levels of the historic water bodies occupying tectonic depressions at the Dead Sea Rift cause significant variations in the shallow crustal stress field and affect local fault systems in a way that may promote or suppress earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. We use analytical and numerical poroelastic models to simulate immediate and delayed seismic responses resulting from the observed historic water level changes. The role of variability in the poroelastic and the elastic properties of the rocks composing the upper crust in inducing or retarding deformations under a strike-slip faulting regime is studied. The solution allows estimating a possible reduction in a seismic recurrence interval. Considering the historic water level fluctuation, our preliminary simulations show a promising agreement with paleo-seismic rates identified in the field.
Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.
2014-01-01
The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron
2016-01-01
Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.
NASA Astrophysics Data System (ADS)
Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel
2017-04-01
In addition to tectonics and climatic changes, humans have exerted a significant impact on surface erosion over timescales ranging from years to centuries. However, such kind of impact over millennial timescales remains unsubstantiated. The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.
NASA Astrophysics Data System (ADS)
Bellier, Olivier; Zoback, Mary Lou
1995-06-01
The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.
The Essence of Cooperation: Establishing a Framework for Success in Military Regimes
2015-06-01
illustrate this point, Krasner rejects the conventional realist’s billiard ball analogy in favor of an image of tectonic plates . In this metaphor...regimes and states act as the plates in contact with one another, putting pressure on each other over time and moving at different rates of speed.43
Plate-tectonic boundary formation by grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, David
2015-04-01
Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.
NASA Astrophysics Data System (ADS)
Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang
2018-04-01
This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.
NASA Astrophysics Data System (ADS)
Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad
2016-07-01
Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.
NASA Astrophysics Data System (ADS)
Sleeper, Jonathan D.
This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.
Melting-induced crustal production helps plate tectonics on Earth-like planets
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.
2016-04-01
Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical annulus simulations (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. We address the question of whether melting-induced crustal production changes the critical yield stress needed to obtain mobile-lid behaviour (plate tectonics). Our results show that melting-induced crustal production strongly influences plate tectonics on Earth-like planets by strongly enhancing the mobility of the lid, replacing a stagnant lid with an episodic lid, or greatly extending the time in which a smoothly evolving mobile lid is present in a planet. Finally, we show that our results are consistent with analytically predicted critical yield stress obtained with boundary layer theory, whether melting-induced crustal production is considered or not.
Drainage Evolution during the Uplift of the Central Anatolia Plateau
NASA Astrophysics Data System (ADS)
Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.
2015-12-01
The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.
NASA Astrophysics Data System (ADS)
Ruch, Joel; Di Lorenzo, Riccardo; Vezzoli, Luigina Maria; De Rosa, Rosanna; Acocella, Valerio; Catalano, Stefano; Romagnoli, Gino
2014-05-01
The prevalent influence of magma versus tectonics for the edification and the evolution of volcanic zones is matter of debate. Here we focus on Vulcano and Lipari, two active volcanic islands located in the central sector of the Eolian arc (North of Sicily). Both systems are influenced by regional tectonics and affected by historical magmatic events taking place along a NS oriented structure, connecting both islands. We revisit and implement previous structural studies performed during the 1980's considering several new geophysical, geochemical and geodynamical findings. Four extensive structural campaigns have been performed on both islands and along the shorelines in 2012-2013 covering about 80% of the possible accessible outcrops. We collected ~500 measurements (e.g. faults, fractures and dikes) at 40 sites. Overall, most of the observed structures are oriented N-S and NNW-SSE, confirming previous studies, however, almost all features are strikingly dominated by an EW-oriented extensive regime, which is a novelty. These findings are supported by kinematic indicators and suggest a predominant dip-slip component (pitch from 80 and 130°) with alternating left and right kinematics. Marginal faulting in most recent formations have been observed, suggesting that the deformation may occur preferentially during transient deformation related to periods of magmatic activity, instead of resulting from continuous regional tectonic processes. Overall, fault and dike planes are characterized by a dominant eastward immersion, suggesting an asymmetric graben-like structure of the entire area. This may be explained by the presence of a topographic gradient connecting both islands to the deep Gioia basin to the East, leading to a preferential ample gravitational collapse. Finally, we propose a model in which the stress field rotates northward. It transits from a pure right lateral strike-slip regime along the Tindari fault zone (tectonic-dominant) to an extensive regime explained by the presence of magma at depth inducing a local magmatic stress field affecting structures on Vulcano and Lipari islands (magmatic dominant).
NASA Astrophysics Data System (ADS)
Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.
2017-12-01
Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.
NASA Astrophysics Data System (ADS)
Calvet, Marc; Gunnell, Yanni; Farines, Bernard
2015-07-01
Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.
du Bray, Edward A.; John, David A.; Cousens, Brian L.
2013-01-01
Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.
Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)
NASA Astrophysics Data System (ADS)
Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni
2018-06-01
The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and the pattern of tectonic subsidence curves allowed us to interpret the tectonic signature recorded by the sedimentary sequences of the Potiguar Basin during its evolution. In the onshore rift area, the tectonic subsidence curves presented subsidence rates up to 300 m/My during a long-term rift phase (13 Ma), which confirmed that this portion had an extensional tectonic regime. In the offshore rift, the curves presented high subsidence rates of over 300 m/My in a shorter period (5-10 My), typical of basins formed in a transtensional tectonic regime.
Increased sedimentation following the Neolithic Revolution in the Southern Levant
NASA Astrophysics Data System (ADS)
Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel
2017-05-01
The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.
Initial Results from the New Stress Map of Texas Project
NASA Astrophysics Data System (ADS)
Lund Snee, J. E.; Zoback, M. D.
2015-12-01
Modern techniques for characterizing tectonic stress orientation and relative magnitude have been successfully used for more than 35 years. Nevertheless, large areas of North America lack high spatial resolution maps of stress orientation, magnitude, and faulting regime. In Texas, for example, <30 A-C-quality stress orientations are currently registered on the World Stress Map and only 7 of these points also describe the stress regime. Stress data are foundational elements of attempts to characterize tectonic driving forces, understand hazards associated with induced seismicity, and optimize production of oil, gas, and geothermal resources. This year, we launched the Texas Stress Map project to characterize tectonic stress patterns at higher spatial resolution across Texas and nearby areas. Following a successful effort just completed in Oklahoma, we will evaluate borehole breakouts, drilling-induced tensile fractures, shear wave anisotropy, and earthquake data. The principal data source will be FMI (fullbore formation microimager), UBI (ultrasonic borehole imager), cross-dipole sonic, density, and caliper logs provided by private industry. Earthquake moment tensor solutions from the U.S. Geological Survey, Saint Louis University and other sources will also be used. Our initial focus is on the Permian Basin and Barnett Shale petroleum plays due to the availability of data, but we will expand our analysis across the state as the project progresses. In addition, we hope to eventually apply the higher spatial resolution data coverage to understanding tectonic and geodynamic characteristics of the southwestern United States and northeastern Mexico. Here we present early results from our work to constrain stress orientations and faulting regime in and near Texas, and we also provide a roadmap for the ongoing research.
Simulation of active tectonic processes for a convecting mantle with moving continents
Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.
2006-01-01
Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.
GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements
Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım
2009-01-01
Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998
History and Evolution of Precambrian plate tectonics
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2014-05-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.
NASA Astrophysics Data System (ADS)
Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin
2015-12-01
The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.
Palaeoclimate dynamics : a voyage through scales
NASA Astrophysics Data System (ADS)
Crucifix, Michel; Mitsui, Takahito
2015-04-01
Our knowledge of climate dynamics depends on indirect observations of past climate evolution, as well as on what can be inferred from theoretical arguments. At the scale of the Cenozoic, it is common to define a framework of nested time scales, the longest time scale of interest being related to the slow tectonic evolution, then variability associated with or controlled by the astronomical forcing, and finally the fastest dynamics associated with the natural modes of variability of the ocean and the atmosphere. For example, in a model, the astronomical modes of variability may be simulated with deterministic equations under fixed boundary conditions representing the tectonic state, and associated with stochastic parameterisations of the ocean-atmosphere (chaotic) modes of motion. Bifurcations or, more generally, qualitative changes in climate dynamics may be scanned by changing slowly the tectonic state, in order to provide explanations to observed changes in regimes such as the appearance of ice ages and their changes in length or amplitude. The above framework, largely theorized by B. Saltzman, may still be partly justified but is in need of a review. We address here specifically three questions: To what extent astronomical variability interacts with natural modes of ocean - atmosphere variability ? Specifically, how does millennial variability (e.g.: Dansgaard-Oeschger events) fit the Saltzman scheme ? The astronomical forcing is quasi-periodic, and we recently showed that it may produce somewhat counter-intuitive dynamics associated with the emergence of strange non-chaotic attractors. What are the consequences on the spectrum of climate variability ? What are the effects of centennial climate variability on the slow variability of climate ? These three questions are addressed by reference to recently published material, with the objective of emphasising research questions to be explored in the near future.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
NASA Astrophysics Data System (ADS)
Fisher, G. B.; Amidon, W. H.; Luna, L. V.; Burbank, D. W.
2015-12-01
One fundamental hypothesis that underpins tectonic geomorphology is that climate can modify the pattern and magnitude of erosion in orogenic landscapes and in turn control deformation. While conceptually appealing, empirical evidence is often ambiguous owing to the inherent spatial coupling between present-day tectonic and precipitation maxima and/or the long-term blurring of climate signals by thermochronologic techniques. Although cosmogenic nuclides provide considerable insight into centennial to millennial scale tectonic-erosion-climate linkages, extracting long-term records of erosion from older sedimentary deposits has proved challenging. If successful, such records have the potential to reveal long-term relationships between erosion, uplift, and climate, which should integrate over time to match long term exhumation rates obtained from low temperature thermochronology. Here we utilize a unique field setting along a 100-m deep, young canyon (~100 years old) along the Rio Iruya in northwestern Argentina to create a high-resolution (~100 kyr) terrestrial record of paleo-erosion rates in the eastern Cordillera spanning the late Miocene to Pleistocene (5.8-1.8 Mya). In total, 49 cosmogenic 10Be samples were analyzed along with detailed magnetostratigraphy, U-Pb tephra ages, detrital zircon, and quartz trace elements to yield a detailed paleo-erosion rate, chronology, and provenance record for the Rio Iruya section. Apparent erosion rates occur in three different regimes: from 5.8-4.0 Ma rates are high with little variability, from 4.0- 2.3 Ma rates oscillate by a factor of 5 on a ~400 kyr timescale, and from 2.3-1.8 Ma they are again high without clear oscillations. These three regimes correspond to changes in provenance recorded by detrital zircons and quartz chemistry, and suggest that during the late Pliocene the eastern Cordillera was responding strongly to the 400 kyr eccentricity paced orbital frequency. This unique finding is both perplexing and encouraging as it argues for a coupling of sediment flux to broad-scale climate teleconnections and may evidence a frequency dependent response of the Andean orogen to climate oscillations, consistent with recent numerical and theoretical models.
Nebel-Jacobsen, Yona; Nebel, Oliver; Wille, Martin; Cawood, Peter A
2018-01-17
Plate tectonics and associated subduction are unique to the Earth. Studies of Archean rocks show significant changes in composition and structural style around 3.0 to 2.5 Ga that are related to changing tectonic regime, possibly associated with the onset of subduction. Whole rock Hf isotope systematics of black shales from the Australian Pilbara craton, selected to exclude detrital zircon components, are employed to evaluate the evolution of the Archean crust. This approach avoids limitations of Hf-in-zircon analyses, which only provide input from rocks of sufficient Zr-concentration, and therefore usually represent domains that already underwent a degree of differentiation. In this study, we demonstrate the applicability of this method through analysis of shales that range in age from 3.5 to 2.8 Ga, and serve as representatives of their crustal sources through time. Their Hf isotopic compositions show a trend from strongly positive εHf initial values for the oldest samples, to strongly negative values for the younger samples, indicating a shift from juvenile to differentiated material. These results confirm a significant change in the character of the source region of the black shales by 3 Ga, consistent with models invoking a change in global dynamics from crustal growth towards crustal reworking around this time.
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2016-10-01
Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.
NASA Astrophysics Data System (ADS)
Sepúlveda, J.; Roquer, T.; Arancibia, G.; Veloso, E. A.; Morata, D.; Molina Piernas, E.
2017-12-01
Oblique subduction between the Nazca and South American plates produces the Southern Volcanic Zone (33-46°S) (SVZ), an active tectono-magmatic-hydrothermal setting. Tectonics of the SVZ is controlled by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). The LOFS is an active intra-arc 1200-km-long fault system, with dextral and dextral-normal faults that strike NS-NNE to NE-ENE. The ATF include a group of active NW-striking sinistral faults and morphotectonic lineaments. Here, deformation is partitioned into a margin-parallel and a margin-orthogonal components, accommodated along and across the arc and forearc, respectively. In the inter-seismic period, shortening in the arc is NE-trending, whereas in the co- and post-seismic periods shortening switches to NW-trending. In order to determine the kinematics and style of deformation in the northern termination of the LOFS and its interaction with the ATF, we measured 81 fault-slip data at the Liquiñe (39ºS) and Maihue (40ºS) areas. Here, hot springs occur above fractured granitic rocks, where structural permeability given by fracture meshes is the main hydraulic conductivity. Considering the high sensitivity of fault systems regarding the rupture under prevailing stress and/or fluid overpressure conditions, to stablish past and present strain conditions is critical to assess a potential fractured geothermal system. Results at Liquiñe display two strain regimes (P and T axes): 1) P=259/01, T=169/01; 2) P= 182/23, T= 275/07. Likewise, Maihue shows two regimes: 1) P= 143/12, T=235/07; 2) P=228/12, T= 136/07. In both areas, the first solutions agree with the regional regime within the SVZ, i.e. NE-trending shortening in the arc. However, the second solutions seem to be anomalous with respect to the regional strain regime. At Liquiñe, NS-trending shortening may be associated with a buttress effect at the northern termination of the LOFS. At Maihue, NW-trending shortening may be related to strain changes during the co-seismic period or it is a reminiscence of local strain switches. These anomalous strain solutions should be considered when constraining the tectonics of the SVZ and its role to enhance the subsurface hydraulic conductivity. ACKNOWLEDGEMENTS: FONDAP-CONICYT Project 15090013 (CEGA), VRI-PUENTE P1703/2017 Project.
NASA Astrophysics Data System (ADS)
Yusufoğlu, H.
2013-04-01
The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.
NASA Astrophysics Data System (ADS)
Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias
2017-04-01
The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and the deformational pattern of the evolving system.
Active stress field and seismotectonic features in Intra-Carpathian region of Romania
NASA Astrophysics Data System (ADS)
Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea
2017-04-01
The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.
Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil; Zafarmand, Bahareh
2017-08-01
The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.
Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India
NASA Astrophysics Data System (ADS)
Chetty, T. R. K.; Yellappa, T.; Santosh, M.
2016-11-01
The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.
The Pan-African nappe tectonics in the Shackleton Range
Buggisch, W.; Kleinschmidt, G.
2007-01-01
In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.
Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines
NASA Astrophysics Data System (ADS)
Marchadier, Yves; Rangin, Claude
1990-11-01
The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.
Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran
NASA Astrophysics Data System (ADS)
Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.
2014-04-01
Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in the climate regime of Central Iran that influences the nature of fan sequences and how they interrelate to associated facies.
Crustal deformation: Earth vs Venus
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1989-01-01
It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.
NASA Astrophysics Data System (ADS)
Scarfì, Luciano; Barberi, Graziella; Musumeci, Carla; Patanè, Domenico
2016-04-01
The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria and northeastern Sicily, where the convergence between Eurasian and African plates has given rise to a complicated collisional/subduction complex. A high quality dataset of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation. Results depict undiscovered details of a network of faults which enables the contemporary existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterising the northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, NW gently dipping, and inverse fault solutions indicate a still active contractional deformation in the eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.
Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter
2017-11-01
Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.
Relationships between tectonism, volcano-tectonism and volcanism: the Ischia island (Italy) case.
NASA Astrophysics Data System (ADS)
Marotta, E.; de Vita, S.; Orsi, G.; Sansivero, F.
2005-12-01
The resurgent calderas of Ischia, Campi Flegrei and Pantelleria are characterized by differentially displaced blocks, and distribution of later eruption vents in a well defined sector of the resurgent area. These features suggest a simple shearing block resurgence mechanism. Moreover, the studies carried out on Ischia and Campi Flegrei evidenced a very complex structural pattern due to deformation related to the local stress regime induced by magmatism and volcanism and also to reactivation of regional structures. In order to better define the relationships among tectonic, volcano-tectonic and caldera resurgence mechanism, a structural study has been carried out at Ischia, where the Mt. Epomeo has been uplifted of about 900 m in the past 30 ka. The measures taken on 1,400 planar surfaces (faults, joints and fracture cleavages) show that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcano-tectonism. The limit of the resurgent area is not defined towards the north, as beach deposits displaced at variable elevation by E-W and NW-SE trending faults, are exposed along the coastline. The western sector is bordered by inward-dipping, high-angle reverse faults, whose directions vary from N40E to NS and N50W from NW to SW of the block, testifying a compressional stress regime active in this area. These features are cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. Vertical faults border the block at NE ad SW with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block, characterized by a tensile stress regime, has been deformed by N-S, N40-70E and N15W trending normal faults, with maximum elongation direction along N50W. The results of our study and the volcanological data of the past 3 ka, suggest that the eastern part of the resurgent block is the area with highest probability of vent opening in case of renewal of volcanism. Occurrence of landslides just before and after eruptions, suggest that resurgence occurs through discontinuous vertical movements which likely trigger the volcanic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com
2012-08-20
A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less
Unzipping of the volcano arc, Japan
Stern, R.J.; Smoot, N.C.; Rubin, M.
1984-01-01
A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.
NASA Astrophysics Data System (ADS)
Holcová, Katarína
2017-06-01
The reactions of foraminiferal and calcareous nannoplankton assemblages to global warming and cooling events in the time intervals of ca. 27 to 19 Ma and 13.5 to 15 Ma (Oligocene and Miocene) were studied in subtropical epicontinental seas influenced by local tectonic and palaeogeographic events (the Central Paratethys). Regardless of these local events, global climatic processes significantly influenced the palaeoenvironment within the marine basin. Warm intervals are characterized by a stable, humid climate and a high-nutrient regime, due primarily to increased continental input of phytodetritus and also locally due to seasonal upwelling. Coarse clastics deposited in a hyposaline environment characterize the marginal part of the basin. Aridification events causing decreased riverine input and consequent nutrient decreases, characterized cold intervals. Apparent seasonality, as well as catastrophic climatic events, induced stress conditions and the expansion of opportunistic taxa. Carbonate production and hypersaline facies characterize the marginal part of the basins. Hypersaline surface water triggered downwelling circulation and mixing of water masses. Decreased abundance or extinction of K-specialists during each cold interval accelerated their speciation in the subsequent warm interval. Local tectonic events led to discordances between local and global sea-level changes (tectonically triggered uplift or subsidence) or to local salt formation (in the rain shadows of newly-created mountains).
Modern Geodynamics of South Yenisei Ridge to Result of the GPS/GLONASS Observations
NASA Astrophysics Data System (ADS)
Tatarinov, Viktor; Kaftan, Vladimir; Tatarinova, Tatiana; Manevich, Alexander
2017-12-01
Yenisei Ridge is located at the junction of major tectonic structures - Siberian Platform and West Siberian Plate. Its southern part is characterized by stable tectonic regime, the average speed of uplift according to geological data is 0.2-0.3 mm per year with the total amplitude of 400-500 m. However, the speed of modern movements of the Earth’s crust is by more than an order of magnitude higher due to the temporary effect of large-scale geodynamic movements. The Yenisei river divides the area into two parts. The left bank is characterized by predominantly negative vertical movements and the right bank by positive ones. The major tectonic disturbances occur in the areas of the Muratovsky, Atamanovsky, Pravoberezhny and Bolshetelsky submeridional faults. It was investigated the dynamics of changes in the lengths of ΔL baselines for separate epochs of observations. In 2010-2013 the absolute values of ΔL were significantly lower than for the periods 2013-2014 and 2014-2015. For the entire observation period the average value of the differences of the line lengths is 3.8 mm. This suggests that in general the area experienced strain during the period 2010-2015. Maps of the Earth’s surface dilatation zones (deformation rate) showed that the maximum deformations were recorded in the area of Muratovsky and Atamanovsky faults located at the junction of Siberian Platform and West Siberian plate.
NASA Astrophysics Data System (ADS)
Stern, R.
2003-04-01
It is now clear that the motive force for plate tectonics is provided by the sinking of dense lithosphere in subduction zones. Correspondingly, the modern tectonic regime is more aptly called ``subduction tectonics" than plate tectonics, which only describes the way Earth's thermal boundary layer adjusts to subduction. The absence of subduction tectonics on Mars and Venus implies that special circumstances are required for subduction to occur on a silicate planet. This begs the question: When did Earth's oceanic lithosphere cool sufficiently for subduction to began? This must be inferred from indirect lines of evidence; the focus here is on the temporal distribution of ophiolites. Well-preserved ophiolites with ``supra-subduction zone" (SSZ) affinities are increasingly regarded as forming when subduction initiates as a result of lithospheric collapse (± a nudge to get it started), and the formation of ophiolitic lithosphere in evolving forearcs favors their emplacement and preservation. The question now is what percentage of ophiolites with ``supra-subduction zone" (SSZ) chemical signatures formed in forearcs during subduction initiation events? Most of the large, well-preserved ophiolites (e.g., Oman, Cyprus, California, Newfoundland) may have this origin. If so, the distribution in space and time of such ophiolites can be used to identify ``subduction initiation" events, which are important events in the evolution of plate tectonics. Such events first occurred at the end of the Archean (˜2.5Ga) and again in the Paleoproterozoic (˜1.8 Ga), but ophiolites become uncommon after this. Well-preserved ophiolites become abundant in Neoproterozoic time, at about 800±50 Ma. Ophiolites of this age are common and well-preserved in the Arabian-Nubian Shield (ANS) of Egypt, Sudan, Ethiopia, Eritrea, and Saudi Arabia. ANS ophiolites mostly contain spinels with high Cr#, indicating SSZ affinities. Limited trace element data on pillowed lavas supports this interpretation. Boninites are unusual melts of harzburgite that result from asthenospheric upwelling interactng with slab-derived water. This environment is only common during subduction initiation events. Boninites associated with ophiolites have been reported from Egypt, Ethiopia and Eritrea, but most of the geochemical studies of ANS ophiolitic basalts are based on studies that are a decade or more old. The abundance of ANS ophiolites implies an episode of subduction initiation occurred in Neoproterozoic time.
2000-2002 Sultandağı-Afyon Earthquake Activity in Western Anatolia, Turkey
NASA Astrophysics Data System (ADS)
Kalafat, D.
2016-12-01
Western Anatolia is one of the seismically active region in Turkey. The high seismic activity is a result of the complex tectonic deformation of the Anatolian plate which has been dominated by the N-S extensional tectonic regime in the western edge. This extensional tectonic regime is partially maintained by a relative movement of the African-Arabian plates to north, average 2.5 cm per year. In western Turkey, relatively 3 major earthquakes (Mw≥6.0) were identified on the Sultandağı Fault zone (Afyon-Akşehir Graben) between years of 2000-2002. First event occurred at the year of 2000 (Eber-Sultandagi Earthquake, Mw=6.0) , and both events were occurred at February 3, 2002 Sultandağı (Mw=6.5) and Cay-Sultandagi (Mw=6.0). In this study, mentioned local earthquake activity, have been investigated to understand their nature and relation of the regional seismic activity and tectonic deformation on the Sultandağı Fault Zone (Afyon-Akşehir Graben) in western Anatolia. At first, we analyzed the distribution of mainshock and aftershocks of the two earthquakes which occurred in February 3, 2002 in the region. Fault mechanism solutions of the selected earthquakes and detailed stress regime analyses performed for the mainshock and aftershock sequences of two earthquakes. In regard with mentioned earthquakes, the identified surface ruptures have been investigated by detailed geological field study in the region. Also source mechanism solutions of the selected 17 regional earthquakes between years of 2000 and 2009 years in the region provided to understand the relation of the Sultandagi earthquakes sequences and regional seismic activity. Regional and local seismic investigations shows that, consecutive seismic activity is a result of the disturbance of stress balance in the region which has been triggered by sequentially occuring of earthquakes and triggering in short interval in years of 2000-2002. Also all seismic source studies approved that extensional deformation and normal faulting is dominant in the region. This study was supported by the Department of Science Fellowship and Grant programs (2014-2219) of TUBITAK (The Scientific and Technological Research Council of Turkey) and by Massachusetts Institute of Technology (MIT) The Earth Resources Laboratory (ERL).
NASA Astrophysics Data System (ADS)
Cammarata, Laura; Catalano, Stefano; Gambino, Salvatore; Palano, Mimmo; Pavano, Francesco; Romagnoli, Gino; Scaltrito, Antonio; Tortorici, Giuseppe
2018-01-01
Between June 2011 and September 2013, the Nebrodi Mountains region was affected by a seismic swarm consisting of > 2700 events with local magnitude 1.3 ≤ ML ≤ 4.6 and located in the 5-9 km depth interval. The seismic swarm defines a seismogenetic volume elongated along the E-W direction and encompasses the NW-SE-oriented tectonic boundary between the Calabrian arc (north-eastward) and the Sicilide units (south-westward). By exploring the recent tectonic deformation and the seismic behavior of the region, this study aims at providing additional constraints on the seismogenetic faults at the southern termination of the Calabrian arc. Waveform similarities analysis allowed observing that 45% of the whole dataset can be grouped into six different families of seismic events. Earthquake multiplet families are mainly located in the eastern part of the seismogenetic volume. We suggest that such a feature is responsive to the lateral lithological variations as highlighted by geology (at the surface) and P-wave seismic tomography (at depth of 10 km). Stress tensor inversions performed on FPSs indicate that the investigated region is currently subject to a nearly biaxial stress state in an extensional regime, such that crustal stretching occurs along both NW-SE and NE-SW directions. Accordingly, mesoscale fault geometries and kinematics analyses evidence that a younger normal faulting stress regime led to a tectonic negative inversion by replacing the pre-existing strike-slip one. Based on our results and findings reported in recent literature, we refer such a crustal stretching to mantle upwelling process (as evidenced by diffuse mantle-derived gas emissions) coupled with a tectonic uplift involving north-eastern Sicily since Middle Pleistocene. Moreover, seismic swarms striking the region would be related to the migration of mantle and sub-crustal fluids toward the surface along the complex network of tectonic structures cutting the crust and acting as pathways.
The role of Late Veneer impacts in the evolution of Venus
NASA Astrophysics Data System (ADS)
Gillmann, C.; Golabek, G.; Tackley, P.; Raymond, S.
2017-09-01
We study how different mechanisms contribute to changes in long term evolution. In particular, the primitive history (the first Gy) of terrestrial planets is heavily influenced by collisions. We investigate how the coupled evolution of Venus' atmosphere and mantle is modified by those impacts. We focus on volatile fluxes: atmospheric escape and mantle degassing. We observe that large impacts are unlikely to erode the atmosphere significantly. They are, on the contrary, an important source of volatiles for the primitive planet. Collisions also generate a lot of melting and rapidly dries the mantle through degassing. Without recycling of volatiles into the mantle (like in plate tectonics regime), the mantle is efficiently depleted.
NASA Astrophysics Data System (ADS)
Scarfı, L.; Barberi, G.; Musumeci, C.; Patanè, D.
2016-03-01
The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria, and northeastern Sicily, where the convergence between Eurasian and African Plates has given rise to a complicated collisional/subduction complex. A high-quality data set of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation together with available source mechanisms from published catalogues. The results depict new details of a network of faults which enables the concurrent existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution, and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterizing the southern Calabria and northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, gently dipping NW, and inverse fault solutions indicate a still active contractional deformation in eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.
2013-06-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.
The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska
Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger
2013-01-01
An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.
Bourgois, J.; Pautot, G.; Bandy, W.; Boinet, T.; Chotin, P.; Huchon, P.; Mercier de Lepinay, B.; Monge, F.; Monlau, J.; Pelletier, B.; Sosson, M.; von Huene, Roland E.
1988-01-01
The Andean margin off Peru is an “extensional active margin” or a “collapsing active margin” developing a subordinated accretionary complex induced by massive collapse of the middle slope area.
The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system
NASA Astrophysics Data System (ADS)
Storetvedt, K. M.
Analysis of Meso-Cainozoic palaeomagnetic data for Africa, India and Eurasia has led to the development of a new mobilistic Alpine plate tectonic model characterized by a hierarchical system of plates in relative rotation. The new model, which discounts seafloor spreading, implies that there have been no significant palaeogeographic changes in the overall distribution of continental and oceanic regions. The mid-oceanic ridges are interpreted as transpressive tectonic features caused by rotation of megaplates (containing both continental and oceanic crust), the isostatic uplift due to crustal/lithospheric thickening giving rise to the general ridge topography as well as to the ridge-parallel structural grain. The new plate tectonic theory gains strong support from a variety of geophysical, geological and palaeoclimatological evidence, and several observations that have remained enigmatic or awkward within the context of the orthodox model can be readily accounted for in the new tectonic framework. The model maintains the Tethys as a relatively narrow epicontinental sea which, during its maximum extent, stretched latitudinally from the Caribbean, across the Central Atlantic to SE Asia. The Alpine-Himalayan orogenic belt developed along the boundary of two megaplates in relative rotation, which provided a transpressive tectonic regime. The location of the plate boundary to the north of the Mediterranean has important implications for discussion of Mediterranean microplates. For example, it now seems that Italy has been subjected to 10-15° of clockwise microplate rotation; previous conclusions in favour of 30-40° of anticlockwise rotation are regarded as artefacts which arise from incorrectly linking the Mediterranean region to the European palaeomagnetic frame instead of to the African one. The model suggests further that the Indo-Pakistani plate was closely tied to Eurasia; this challenges the conventional view that the Peninsula was part of an alleged Gondwanaland. The new pre-drift configuration implies that the Indo-Pakistani plate rotated ˜ 135° clockwise at around the Cretaceous-Tertiary boundary before redocking with Asia in approximately its present relative orientation.
NASA Astrophysics Data System (ADS)
Niviere, B.; Backé, G.
2006-12-01
The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.
Focal mechanism and stress analyses for main tectonic zones in Albania
NASA Astrophysics Data System (ADS)
Dushi, Edmond; Koçi, Rexhep; Begu, Enkela; Bozo, Rrezart
2017-04-01
In this study, a number of 33 moderate earthquakes for the period 2013-2015, ranging in magnitude within 2.2 ≤ MW ≤ 4.9 and located within the Albanian territory, have been analyzed. As an earthquake prone country, situated at the frontal collision boundary between Adria microplate and Eurasian tectonic plate, Albania is characterized frequently by micro earthquakes, many moderate and seldom by strong ones. It is evidenced that the whole territory is divided in two different tectonic domains, correspondingly the outer and the inner domain, showing different stress regime as clearly evidenced based on earthquake focal mechanism and geodetic studies. Although strong earthquakes are clearly related to faults in tectonically active areas, moderate events are more frequent revealing valuable information on this purpose. All the studied events are selected to be well-recorded by a maximum possible number of the local broadband (BB) seismological stations of Albanian Seismological Network (ASN), although regional stations have been used as well to constrain the solution. Earthquakes are grouped according to their location, within three well-defined tectonic zones, namely: Adriatic-Ionian (AI), Lushnja-Elbasani-Dibra (LED) and Ohrid-Korça (OK). For each event, the seismic moment M0is determined, through spectral analyses. Moment values vary ranging 1012 - 1015 Nm, for the Adriatic-Ionian (AI) outer zone; 1013 - 1016 Nm, for the Lushnja-Elbasani-Dibra (LED) transversal zone, which cuts through both the outer and the inner domains and 1012 - 1014 Nm, for the Ohrid-Korça (OK), north-south trending inner zone. Focal mechanism solutions (FMS) have been determined for each earthquake, based on the robust first motion polarities method, as applied in the FOCMEC (Seisan 10.1) routine. Using the Michael's linear bootstrap invertion on FMS, a stress analysis is applied. Results show the minimum compressional stress directions variation: σ1 370/270, σ23030/80 and σ31980/620 (μ = 0.4) for AI zone; σ1830/90, σ22040/730and σ33500/140 (μ = 0.4) for LED zone and σ13060/430, σ21860/280 and σ3750/340 (μ = 0.65) for OK zone. Based on final results, according to Zoback (1992), the Adriatic-Ionian (AI) zone is characterized mainly by thrust (TF) faulting, although normal and oblique ones take place as well. This outer zone is under a compressive stress regime, where the maximum horizontal stress lies in the direction of P axes. Meanwhile, the Lushnja-Elbasani-Dibra (LED) transversal zone, is characterized by normal-oblique faulting (NF-NS), undergoing an oblique transform to extensional stress regime, where the maximum horizontal stress extends at the (T + 900) direction. The Ohrid-Korça (OK) zone is characterized by oblique-normal faults, undergoing and extensional stress regime, where the maximum horizontal stress lies in the of T axes direction. Keywords: moderate earthquakes, focal mechanism, stress
Fitzenz, D.D.; Miller, S.A.
2004-01-01
Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.
History and evolution of Subduction in the Precambrium
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2013-12-01
Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.
NASA Astrophysics Data System (ADS)
Fosdick, Julie C.; Carrapa, Barbara; Ortíz, Gustavo
2015-12-01
The Argentine Precordillera is an archetypal retroarc fold-and-thrust belt that records tectonics associated with changing subduction regimes. The interactions between exhumation and faulting in the Precordillera were investigated using apatite and zircon (U-Th-Sm)/He and apatite fission track thermochronometry from the Precordillera and adjacent geologic domains. Inverse modeling of thermal histories constrains eastward in-sequence rock cooling associated with deformation and erosion from 18 to 2 Ma across the Central Precordillera tracking thrusting during this time. The youngest AHe ages (5-2 Ma) and highest erosion rates are located in the eastern and western extremities of the Precordillera and indicate that recent denudation is concentrated at its structural boundaries. Moreover, synchronous rapid Pliocene cooling of the Frontal Cordillera, Eastern Precordillera, and Sierra del Valle Fértil was coeval with initiation of basement-involved faulting in the foreland. Detrital zircon U-Pb geochronology from the ca. 16-8.1 Ma Bermejo foreland basin strata suggests fluvial connectivity westward beyond the Frontal Cordillera to the Main Cordillera and Coast Range followed by an important shift in sediment provenance at ca. 10 Ma. At this time, we suggest that a substantial decrease in Permo-Triassic igneous sources in the Frontal Cordillera and concurrent increase in recycled zircons signatures of Paleozoic strata are best explained by uplift and erosion of the Precordillera during widening of the thrust-belt. Bedrock thermochronology and modeling indicate a 2-6 Myr lag time between faulting-related cooling in the hinterland and the detrital record of deformation in the foreland basin, suggesting that for tectonically active semi-arid settings, bedrock cooling may be more sensitive to onset of faulting. We suggest that high erosion rates in the Frontal Cordillera and Eastern Precordillera are associated with increased interplate coupling during shallowing of the subducting Nazca plate that may concentrate stress along weak structural boundaries of the Precordillera.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Bras, R. L.; Tucker, G. E.
2003-04-01
An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial networks.
Palaeozoic and Mesozoic tectonic implications of Central Afghanistan
NASA Astrophysics Data System (ADS)
Sliaupa, Saulius; Motuza, Gediminas
2017-04-01
The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.
NASA Astrophysics Data System (ADS)
Navabpour, Payman; Kley, Jonas; Le Breton, Eline; van Hinsbergen, Douwe J. J.; Ustaszewski, Kamil
2017-04-01
Even though Central Europe has been located within a plate interior since the end of the Variscan orogeny, its intracontinental basins and highs recorded a succession of different tectonic regimes throughout the Mesozoic and Cenozoic, which were coeval with events at distant plate margins. A long Triassic-Cretaceous period of weak subsidence with intermittent extension was followed by NNE-SSW contraction in the Late Cretaceous-Paleocene. Renewed extension led to the formation of the Cenozoic Rift System and eventually evolved to the present-day variable stress regimes with a consistent NW-SE-oriented maximum horizontal shortening, SHmax. The detailed knowledge of this evolution relies on exhaustive lithostratigraphy and geochronological datasets, as well as on reconstruction of successive states of paleostress that controlled the formation and/or inversion of intracontinental basins. In combination, these data provide an excellent opportunity of linking the intracontinental deformation to the lithospheric plate boundary kinematics. Regional-scale analysis of fault kinematics in Central Europe unveiled a succession of consistent stress states for the crystalline basement and sedimentary cover of the brittle crust. These states of stress include a post-Triassic normal faulting regime with NE-SW-trending σ3 axis, strike-slip and thrust faulting regimes with NNE-SSW-trending σ1 axis, supposedly of Late Cretaceous age, and two younger events of normal and strike-slip faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. In this study, we report on the first attempts of linking the central European intraplate kinematics to changes in relative motion between the plates. The integration of stress fields with plate boundary kinematics suggests that the Late Cretaceous contraction may be explained by a change in African plate motion with respect to Eurasia from SE-directed sinistral transform to NNE-directed convergence. The reorientation of contraction to the present-day SHmax likely results from a change in direction of Africa-Eurasia plate convergence from N-S to NW-SE combined with plume-enhanced ridge push of the North Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Khalaf, E. A.; Obeid, M. A.
2013-09-01
This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
2015-10-01
The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.
Proterozoic orogens in southern Peninsular India: Contiguities and complexities
NASA Astrophysics Data System (ADS)
Chetty, T. R. K.; Santosh, M.
2013-12-01
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.
NASA Astrophysics Data System (ADS)
Brookfield, M. E.
2008-08-01
During uplift of the Tibetan plateau and surrounding ranges, tectonic processes have interacted with climatic change and with local random effects (such as landslides) to determine the development of the major river systems of Asia. Rivers draining northward from the Pamir syntaxis have three distinctive patterns that are controlled by different tectonic and climatic regimes. West of the Pamir, the rivers have moderate but irregular gradients and drain northwards to disappear into arid depressions. Relatively steady uplift of the Hindu Kush in northern Afghanistan allowed rivers to cut across the rising ranges, modified by the shear along the Harirud fault zone, local faulting, and by increasing rain-shadow effects from the rising Makran. In the transition to the Pamir the rivers have steeper but more even gradients suggesting more even flow and downcutting during uplift, possibly related to larger glacial sources. In the central Pamir, only one antecedent river, the Pyandzh appears to have kept its northward course with compression and uplift of the indenter, and its course strangely corresponds with a major geophysical boundary (a distorted subducted slab) but not a geological boundary: the other rivers are subsequent rivers developed along deformation fronts during development and northward displacements of the Pamir structural units. The above areas have sources north of the Cretaceous Karakorum-South Pamir Andean margin. On the eastern flank of the Pamir, in the Kunlun and northern Tibetan plateau, the rivers rise similarly north of the Cretaceous Andean margin of southern Tibet, but then flow with low gradients across the plateau, before cutting and plunging steeply down across the Kunlun to disappear into the arid Tarim. These steep profiles are the result of late Neogene uplift of the northern Tibetan plateau and Kunlun possibly modified by glacial diversion and river capture. The drainage history of the Pamir indenter can be reconstructed by restoring the gross movements of the plates and the tectonic displacements, uplift, and erosion of individual tectonic units. Most important changes in drainage took place in the last 10 million years, late Miocene to Quaternary times, as the Pamir syntaxis developed.
Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa
NASA Astrophysics Data System (ADS)
Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.
2009-12-01
The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.
Tectonic stress pattern in the Chinese Mainland from the inversion of focal mechanism data
NASA Astrophysics Data System (ADS)
Wei, Ju; Weifeng, Sun; Xiaojing, Ma
2017-04-01
The tectonic stress pattern in the Chinese Mainland and kinematic models have been subjected to much debate. In the past several decades, several tectonic stress maps have been figured out; however, they generally suffer a poor time control. In the present study, 421 focal mechanism data up to January 2010 were compiled from the Global/Harvard CMT catalogue, and 396 of them were grouped into 23 distinct regions in function of geographic proximity. Reduced stress tensors were obtained from formal stress inversion for each region. The results indicated that, in the Chinese Mainland, the directions of maximum principal stress were ˜NE-SW-trending in the northeastern region, ˜NEE-SWW-trending in the North China region, ˜N-S-trending in western Xinjiang, southern Tibet and the southern Yunnan region, ˜NNE-SSW-trending in the northern Tibet and Qinghai region, ˜NW-SE-trending in Gansu region, and ˜E-W-trending in the western Sichuan region. The average tectonic stress regime was strike-slip faulting (SS) in the eastern Chinese Mainland and northern Tibet region, normal faulting (NF) in the southern Tibet, western Xinjiang and Yunnan region, and thrust faulting (TF) in most regions of Xinjiang, Qinghai and Gansu. The results of the present study combined with GPS velocities in the Chinese Mainland supported and could provide new insights into previous tectonic models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
Heat production in granitic rocks: Global analysis based on a new data compilation
NASA Astrophysics Data System (ADS)
Artemieva, I. M.; Thybo, H.; Jakobsen, K.; Sørensen, N. K.; Nielsen, L. S. K.
2017-12-01
Granitic rocks play special role in the evolution of the Earth and its thermal regime. Their compositional variability provides constraints on global differentiation processes and large scale planetary evolution, while heat production by radioactive decay is among the main heat sources in the Earth. We analyze a new global database GRANITE2017 on the abundances of Th, U, K and heat production in granitic rocks based on all available published data. Statistical analysis of the data shows a huge scatter in all parameters, but the following conclusions can be made. (i) Bulk heat production in granitic rocks of all ages is ca. 2.0 microW/m3 . It is very low in Archean-Early Proterozoic granitic rocks and there is a remarkable peak in Middle Proterozoic granites followed by a gradual decrease towards Cenozoic granites. (ii) There is no systematic correlation between the tectonically controlled granite-type and bulk heat production, although A-type (anorogenic) granites are the most radioactive, and many of them were emplaced in Middle Proterozoic. (iii) There is no systematic correlation between heat flow and concentrations of radiogenic elements. (iv) The present-day global average Th/U value is 4.75 with a maximum in Archean-Early Proterozoic granites (5.75) and a minimum in Middle-Late Proterozoic granites (3.78). The Th/U ratio at the time of granite emplacement has a minimum in Archean (2.78). (v) The present-day K/U ratio is close to a global estimate for the continental crust only for the entire dataset (1460), but differs from the global ratio for each geological time. (vi) We recognize a sharp change in radiogenic concentrations and ratios from the Early Proterozoic to Middle Proterozoic granites. The Proterozoic anomaly may be caused by major plate reorganizations possibly related to the supercontinent cycle when changes in the granite forming processes may be expected, or it may even indicate a change in global thermal regime, mantle dynamics and plate tectonics styles. (vii) Our results provide strong evidence that secular change in the Urey ratio was not monotonous, and that plate motions may have been the fastest in Middle Proterozoic and have been decreasing since then. (viii) The total present-day heat production in the granitic crust is 5.8-6.8 TW and in the continental crust 7.8-8.8 TW.
NASA Astrophysics Data System (ADS)
Wei, Ju; Weifeng, Sun; Jinhui, Luo
2017-10-01
Earthquakes occurred on the surface of the Earth contain comprehensive and abundant geodynamic connotations, and can serve as important sources for describing the present-day stress field and regime. An important advantage of the earthquake focal mechanism solution is the ability to obtain the stress pattern information at depth in the lithosphere. During the past several decades, an increasing number of focal mechanisms were available for estimating the present-day stress field and regime. In the present study, altogether 553 focal mechanism data ranging from the year 1976 to 2017 with Mw ≥ 7.0 were compiled in the Global/Harvard centroid moment tensor (CMT) catalogue, the characteristics of global strong earthquakes and the present-day stress pattern were analyzed based on these data. The majority of global strong earthquakes are located around the plate boundaries, shallow-focus, and thrust faulting (TF) regime. We grouped 518 of them into 12 regions (Boxes) based on their geographical proximity and tectonic setting. For each box, the present-day stress field and regime were obtained by formal stress inversion. The results indicated that the maximum horizontal principal stress direction was ˜ N-S-trending in western North America continent and southwestern Indonesia, ˜ NNE-SSW-trending in western Middle America and central Asia, ˜ NE-SW in southeastern South America continent and northeastern Australia, ˜ NEE-SWW-trending in western South America continent and southeastern Asia, ˜ E-W-trending in southeastern Australia, and ˜ NW-SE-trending in eastern Asia. The results can provide additional constraints to the driving forces and geodynamic models, allowing them to explain the current plate interactions and crustal tectonic complexities better.
Looking Backwards in Time to the Early Earth Using the Lens of Stable Isotope Geodynamic Cycles
NASA Astrophysics Data System (ADS)
Gregory, R. T.
2016-12-01
The stable isotope ratios of hydrogen, carbon, oxygen and sulfur provide of means of tracing interactions between the major reservoirs of the Earth. The oceans and the dichotomy between continental and oceanic crust are key differences between the Earth and other terrestrial bodies. The existence of plate tectonics and the recognition that no primary crust survives at the Earth's surface sets this planet apart from the smaller terrestrial bodies. The thermostatic control of carbonate-silicate cycle works because of the hydrosphere and plate tectonics. Additionally, the contrast between the carbon isotope ratios for reduced and oxidized species appear to also be invariant over geologic time with evidence of old recycled carbon in the form of diamond inclusions in mantle-derived igneous rocks. Lessons from comparative planetology suggest that early differentiation of the Earth would have likely resulted in the rapid formation of the oceans, a water world over the primary crust. Plate tectonics provides a mechanism for buffering the oxygen isotope fractionation between the oceans and the mantle. The set point for hydrosphere's oxygen isotope composition is a result of the geometry of mid-ocean ridge accretion that is stable over an order magnitude change in spreading rates with time constants much younger shorter than the age of the Earth. The recognition that the "normal" ranges for hydrogen isotope ratios of igneous, metamorphic and sedimentary rocks of any age generally overlap with similar ranges, with the exception of rocks that have interacted with D- and 18O-depleted meteoric waters (generally at high latitudes), is an argument for a constant volume ocean over geologic time. Plate tectonics with a constant volume ocean constrains the thickness of the continental crust because of the rapidity of the mechanical weathering cycle (characteristic times of 10's of millions of years; freeboard of the continents argument). In a plate tectonic regime, chemical weathering and the subduction of abyssal plain sediments represents true continental recycling and characteristic times for the age of the continents are consistent with modern chemical weathering rates. Two records, zircon and quartz oxygen isotopes, may be recording the transition from the water-world to the modern earth.
Indentation tectonics in northern Taiwan: insights from field observations and analog models
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques
2017-04-01
In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution
NASA Astrophysics Data System (ADS)
Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad
2017-11-01
Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, T. K.; Kim, W.; Hong, T. K.
2017-12-01
The Korean Peninsula is located in a stable intraplate regime with relatively low seismicity. The seismicity in the Korean Peninsula was, however, changed significantly after the 11 March 2011 M9.0 Tohoku-Oki megathrust earthquake. An M5.0 earthquake occurred in 2016 at the region off the southeastern Korean Peninsula. The M5.0 earthquake was the largest event in the region since 1978 when the national seismic monitoring began. Several nuclear power plants are placed near the region. It is requested to understand the seismo-tectonic structures of the region, which may be crucial for mitigation of seismic hazards. Analysis of seismicity may be useful for illumination of fault structures. We investigate the focal mechanism solutions, ambient stress field, and spatial distribution of earthquakes. It is intriguing to note that the number of earthquakes increased since the 2011 Tohoku-Oki earthquake. We refined the hypocenters of 52 events using a velocity-searching hypocentral inversion method (VELHYPO). We determined the focal mechanism solutions of 25 events using a P polarity analysis and long period waveform inversion. The ambient stress field was inferred from the focal mechanism solutions. Strike-slip events occurred dominantly although the paleo-tectonic structures suggest the presence of thrust faults in the region. We observe that the compressional stress field is applied in ENE-WSW, which may be a combination of lateral compressions from the Pacific and Philippine Sea plates. The active strike-slip events and compressional stress field suggest reactivation of paleo-tectonic structures.
Climatic controls on Pennsylvanian sequences, United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecil, C.B.; Dulong, F.T.; Edgar, N.T.
1996-08-01
Temporal and spatial paleoclimate changes were primary controls on changes in sediment supply, both siliciclastic and chemical, in Pennsylvanian deposystems of the United States. Tectonic and eustatic processes, as well as climatically induced changes in sediment supply, controlled accommodation space and sequence stratigraphy within these deposystems. Interbasinal correlations of lithologies sensitive to climate, such as coeval paleosols, provide continental-scale records of climatic and eustatic conditions. Pennsylvanian bio- and lithostratigraphy are indicative of climate change at time scales that range from long-term (tens of millions of years) as Pangea formed and North America moved northward through the paleoequator, to intermediate-term hundredmore » thousand year cycles controlled by orbital forcing, to very short-term events perhaps analogous to El Nino. Because of proximity to the humid tropics, the long-term climate of eastern basins of the United States was generally wetter than western basins. In the east, pluvial parts of climate cycles occur during low-stand events and are recorded by intense chemical weathering, high terrestrial organic productivity, restricted erosion, and siliciclastic sediment starvation. These conditions resulted in highly leached mineral paleosols (Ultisols) and coal beds (Histosols) of interbasinal extent. Drier parts of climate cycles in the east occurred during highstands of sea level when erosion and siliciclastic transport were maximum. In the western basins pluvial periods are generally indicated by shifts from eolian to fluvial and lacustrine sedimentary regimes in continental environments and from evaporate and carbonate to siliciclastic deposition, including black shale petroleum source rocks, in marine environments. Tectonics controlled basin development and glacial eustasy controlled sea level cycles. Climate, however, was the primary control on sediment supply and lithostratigraphy.« less
NASA Astrophysics Data System (ADS)
Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei
2016-03-01
Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.
Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework
NASA Astrophysics Data System (ADS)
Dilek, Yildirim; Thy, Peter; Moores, Eldridge M.; Ramsden, Todd W.
1990-08-01
A new tectonic model reconciles conflicting structural and geochemical evidence for the origin of the Troodos ophiolite, a well-preserved remnant of Neotethyan oceanic crust. Grabens and normal faults within the sheeted dike complex and the extrusive sequence of the Troodos ophiolite resemble those of oceanic spreading centers. Diverse intrusive and tectonic contact relationships between the sheeted dike complex and the underlying plutonic sequence indicate multiple and episodic intrusion of magma and along- and across-strike variation in volcanic and tectonic activity during development of oceanic crust. Coupled with the existence of the Arakapas transform fault to the south, these structural and intrusive relationships suggest origin at an intersection between a spreading center and a transform fault. The arclike chemistry of sheeted dikes and related extrusive rocks and the inferred highly depleted and hydrous nature of the mantle source of the late stage intrusive and extrusive rocks argue, however, for generation of part of the ophiolite within a subduction zone environment. Regional reconstructions suggest that the Mesozoic Neotethys may have evolved as a marginal basin both to the Afro-Arabian continent and the Paleotethyan ocean over an active or recently active south dipping subduction zone. The Troodos ophiolite and other eastern Mediterranean ophiolites, whose magma compositions were affected by the subducted Paleotethyan slab, may have formed along east-west trending spreading centers separated by north-south trending transform faults within this marginal basin. A rapid change in relative plate motion in late Cretaceous time between Eurasia and Afro-Arabia created a regional compressive regime that may have resulted in plate boundary reorganizations within the Neotethyan realm and in initiation of north dipping subduction zone(s) beneath the Troodos and other ophiolites in the region. The apparent forearc setting of the Troodos ophiolite is a consequence of this intraoceanic displacement after its formation and thus is unrelated to its generation.
The influence of mantle refertilisation on the formation of TTGs in a plume-lid tectonics setting
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2017-12-01
Higher amounts of radiogenic elements and leftover primordial heat in the early Earth both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. The increased upper mantle temperature precludes the modern plate tectonics regime and stabilizes another type of global tectonics often called plume-lid tectonics (Fischer and Gerya, 2016) or 'plutonic squishy lid' tectonics(Rozel et al., 2017). Plume-lid tectonics is dominated by intrusive mantle-derived magmatism which results in a thickening of the overlaying crust. The overthickened basaltic crust is transformed into eclogite and episodically recycled back into the mantle. Melt extraction from hydrated partially molten basaltic crust leads to the production of primordial tonalite-trondhjemite-granodiorite (TTG) continental crust. TTGs make up over half of the Archean crust and can be classied into low-, medium- and high-pressure types (Moyen, 2011). Field studies show that the three different types (low-, medium- and high-pressure) appear in a ratio of 20%, 60% and 20% (Moyen, 2011). Numerical models of plume-lid tectonics generally agree very well with these values (Rozel et al., 2017) but also show that the ratio between the three different TTG types varies greatly during the two phases of the plume-lid tectonics cycle: growth phase and overturn phase. Melt productivity of the mantle decreases rapidly after removal of the garnet and clinopyroxene components. Addition of new garnet and clinopyroxene-rich material into the harzburgitic residue should lead to a refertilised lherzolite which could potentially yield new melt (Bédard, 2006). Mixing of eclogite drips back into the mantle can lead to the geochemical refertilisation of already depleted mantle and allow for further extraction of melt (Bédard, 2006). We will explore this process of mantle refertilisation in our 3D petrological-magmatic-thermomechanical numerical modelling experiments and study its influence on the three types of TTGs during different phases of the plume-lid tectonics cycle.
NASA Astrophysics Data System (ADS)
Kooi, Henk; Beaumont, Christopher
1996-02-01
Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.
NASA Astrophysics Data System (ADS)
Lahiri, Siddhartha K.; Sinha, Rajiv
2012-10-01
The Brahmaputra is one of the largest tropical rivers of the world and is located in an area of high structural instability as evidenced from the presence of a large number of earthquakes in the Himalayan catchment through which it flows. Syntectonic evidence of changes in the morphodynamics is difficult to identify for the large rivers. Nevertheless, we note that the Brahmaputra River has become astonishingly large in planform in a historical timescale. Reconstruction of planform changes over a period of 90 years in the upper reaches of the Assam valley shows that the 240-km-long channel belt is widening all along its course in the region. From the average width of 9.74 km in 1915, the channel belt has widened to the average width of 14.03 km in 2005 (44% widening), and in certain reaches the average widening is as high as 250%. However, the bank line shift is not symmetric along both banks. Further, the planform characteristics of the Brahmaputra River reveal significant spatial and temporal variability from upstream to downstream reaches, and we attribute this variability to tectonogeomorphic zonation of the river based on subsurface configuration and channel slope. Further, the tributaries joining the northern and southern banks of the Brahmaputra differ remarkably in terms of river dynamics, and this is attributed to the differences in tectonic regimes of the Himalaya in the north and the Naga Patkai hills in the south.
Identifying tectonic parameters that affect tsunamigenesis
NASA Astrophysics Data System (ADS)
van Zelst, I.; Brizzi, S.; Heuret, A.; Funiciello, F.; van Dinther, Y.
2016-12-01
The role of tectonics in tsunami generation is at present poorly understood. However, the fact thatsome regions produce more tsunamis than others indicates that tectonics could influencetsunamigenesis. Here, we complement a global earthquake database that contains geometrical,mechanical, and seismicity parameters of subduction zones with tsunami data. We statisticallyanalyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson'sproduct-moment correlation coefficients reveal high positive correlations of 0.65 between,amongst others, the maximum water height of tsunamis and the seismic coupling in a subductionzone. However, these correlations are mainly caused by outliers. The Spearman's rank correlationcoefficient results in statistically significant correlations of 0.60 between the number of tsunamisin a subduction zone and subduction velocity (positive correlation) and the sediment thickness atthe trench (negative correlation). Interestingly, there is a positive correlation between the latter andtsunami magnitude. These bivariate statistical methods are extended to a binary decision tree(BDT) and multivariate analysis. Using the BDT, the tectonic parameters that distinguish betweensubduction zones with tsunamigenic and non-tsunamigenic earthquakes are identified. To assessphysical causality of the tectonic parameters with regard to tsunamigenesis, we complement ouranalysis by a numerical study of the most promising parameters using a geodynamic seismic cyclemodel. We show that the inclusion of sediments on the subducting plate results in an increase insplay fault activity, which could lead to larger vertical seafloor displacements due to their steeperdips and hence a larger tsunamigenic potential. We also show that the splay fault is the preferredrupture path for a strongly velocity strengthening friction regime in the shallow part of thesubduction zone, which again increases the tsunamigenic potential.
Tectonic Terminology: Some Proposed Changes
ERIC Educational Resources Information Center
Hill, Mason L.
1978-01-01
Plate tectonics concepts require a definition of fault, a new term to compliment epeirogeny, and a clarification of transform fault characteristics. This article makes proposals for these changes. (Author/MA)
NASA Astrophysics Data System (ADS)
Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.
2015-12-01
The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.
Solano-Acosta, W.; Mastalerz, Maria; Schimmelmann, A.
2007-01-01
Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress. At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution. The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to providing access for methanogenic bacteria. The abundance, distribution, and orientation of cleats control coal fabric and are crucial features in all stages of coalbed gas operations (i.e., exploration and production). Understanding coal fabric is important for coal gas exploration as it may be related to groundwater migration and the occurrence of methanogenic bacteria, prerequisite to biogenic gas accumulations. Likewise, the distribution of cleats in coal also determines pathways for migration and accumulation of thermogenic gas generated during coalification. ?? 2007 Elsevier B.V. All rights reserved.
Water in geodynamical models of mantle convection and plate tectonics
NASA Astrophysics Data System (ADS)
Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.
2017-12-01
The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.
NASA Astrophysics Data System (ADS)
Dixit, Nilesh C.
Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana basin. Coals have significant capacity for sequestering anthropogenic CO 2 emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO2 sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO2 sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO2 while producing up to 0.36 TCF of CH4 at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.
Fractal analysis of earthquake swarms of Vogtland/NW-Bohemia intraplate seismicity
NASA Astrophysics Data System (ADS)
Mittag, Reinhard J.
2003-03-01
The special type of intraplate microseismicity with swarm-like occurrence of earthquakes within the Vogtland/NW-Bohemian Region is analysed to reveal the nature and the origin of the seismogenic regime. The long-term data set of continuous seismic monitoring since 1962, including more than 26000 events within a range of about 5 units of local magnitude, provides an unique database for statistical investigations. Most earthquakes occur in narrow hypocentral volumes (clusters) within the lower part of the upper crust, but also single event occurrence outside of spatial clusters is observed. Temporal distribution of events is concentrated in clusters (swarms), which last some days until few month in dependence of intensity. Since 1962 three strong swarms occurred (1962, 1985/86, 2000), including two seismic cycles. Spatial clusters are distributed along a fault system of regional extension (Leipzig-Regensburger Störung), which is supposed to act as the joint tectonic fracture zone for the whole seismogenic region. Seismicity is analysed by fractal analysis, suggesting a unifractal behaviour of seismicity and uniform character of seismotectonic regime for the whole region. A tendency of decreasing fractal dimension values is observed for temporal distribution of earthquakes, indicating an increasing degree of temporal clustering from swarm to swarm. Following the idea of earthquake triggering by magma intrusions and related fluid and gas release into the tectonically pre-stressed parts of the crust, a steady increased intensity of intrusion and/or fluid and gas release might account for that observation. Additionally, seismic parameters for Vogtland/NW-Bohemia intraplate seismicity are compared with an adequate data set of mining-induced seismicity in a nearby mine of Lubin/Poland and with synthetic data sets to evaluate parameter estimation. Due to different seismogenic regime of tectonic and induced seismicity, significant differences between b-values and temporal dimension values are observed. Most significant for intraplate seismicity are relatively low fractal dimension values for temporal distribution. That observation reflects the strong degree of temporal earthquake clustering, which might explain the episodic character of earthquake swarms and support the idea of push-like triggering of earthquake avalanches by intruding magma.
MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric, E-mail: summeren@hawaii.edu
Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate thatmore » if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.« less
Formation of cratonic lithosphere during the initiation of plate tectonics
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Beall, A.; Cooper, C. M.
2017-12-01
The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.
Analysis of the Exhumation Pathways Experienced in the Cascades Range
NASA Astrophysics Data System (ADS)
Giles, S. M.; Pesek, M.; Perez, N. D.
2017-12-01
The Cascades volcanic arc is the result of subduction of the Juan de Fuca plate beneath North America. The Cascades trend north to south and create a modern orographic precipitation gradient that focuses precipitation along the western flank of the range. However, the deformation style changes from shortening in the north to extension in the south. This experimental design is an ideal location to test how surface and tectonic processes contribute to rock uplift in orogens. In the Oregon Cascades, zircon U-Pb geochronology, and multiple thermochronologic techniques (apatite U-Pb, zircon U-Th/He) will be applied to an intrusive rock exposed along a west-flowing river to investigate the exhumation pathway. These intrusive rocks are capped by late Miocene basalt flows, constraining the timing of surface exposure. The results of this study will define a time-temperature pathway and be compared with existing exhumation constraints from the Washington Cascades to determine whether the exhumation pathways may correspond to the changing structural regimes or consistent climate patterns along strike.
Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.
2017-01-01
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event. PMID:28148950
NASA Astrophysics Data System (ADS)
Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.
2017-02-01
It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2~0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event.
Dynamic Modeling of Back-arc Extension in the Aegean Sea and Western Anatolia
NASA Astrophysics Data System (ADS)
Mazlum, Ziya; Göğüş, Oğuz H.; Sözbilir, Hasan; Karabulut, Hayrullah; Pysklywec, Russell N.
2015-04-01
Western Anatolian-Aegean regions are characterized by large-scale lithospheric thinning and extensional deformation. While many geological observations suggest the formation of rift basins, normal faulting, exhumation of metamorphic rocks, and back-arc volcanism, the primary cause and the geodynamic driving mechanisms for the lithospheric thinning and extension are not well understood. Previous studies suggest three primary geodynamic hypotheses to address the extension in the Aegean-west Anatolia: 1) Slab retreat/roll-back model, inferred by the southward younging magmatism and metamorphic exhumations; 2) Gravitational collapse of the overthickened (post orogenic) lithosphere, interpreted by the structural studies that suggests tectonic mode switching from contraction to extension; 3) Lateral extrusion (escape tectonics) associated with the continental collision in East Anatolia. We use 2-D thermo-mechanical numerical subduction experiments to investigate how subduction retreat and related back-arc basin opening are controlled by a) changing length and thickness of the subducting plate, b) the dip angle of the subducting slab and c) various thickness and thermal properties of the back-arc lithosphere. Subsequently, we explore the surface response to the subduction retreat model in conjunction with the gravitational (orogenic) collapse in the presumed back-arc region. Quantitative model predictions (e.g., crustal thickness, extension rate) are tested against a wide range of available geological and geophysical observations from the Aegean and west Anatolia regions and these results are reconciled with regional tectonic observations. Our model results are interpreted in the context of different surface response in the extensional regime (back-arc) for the Aegean and western Anatolia, where these two regions have been presumably segmented by the right lateral transfer fault system (Izmir-Balıkesir transfer zone).
NASA Astrophysics Data System (ADS)
Mora-Stock, Cindy; Tassara, Andrés
2016-04-01
The Southern Andean margin is intrinsically related to the Liquiñe-Ofqui Fault Zone (LOFZ), a 1000 km-long dextral strike-slip arc-parallel fault on which most of the volcanic centers of the Southern Volcanic Zone (SCVZ) of the Andes are emplaced. At large spatial (102 - 103 km) and temporal (105 - 107 yr) scales, regional tectonics linked to partitioning of the oblique convergence controls the distribution of magma reservoirs, eruption rates and style, as well as the magma evolution. At small scales in space (< 102 km) and time (10-1 - 102 yr), stress transfer mechanisms between magma reservoirs and seismically-active faults are though to transiently change the regional stress field, thus leading to eruptions and fault (re)activation. However, the mechanisms by which the interaction between (megathrust and crustal) earthquakes and volcanic eruptions actually occur, in terms of generating the relationships and characteristics verified at the long term, are still poorly understood. Since 2007, the Southern Andean margin has presented an increase of its tectonic and eruptive activity with several volcanic crisis and eruptions taking place in association with significant seismicity clusters and earthquakes both in the megathrust and the LOFZ. This increased activity offers a unique opportunity to improve our understanding of the physical relation between contemporary tectono-volcanic processes and the long-term construction of the LOFZ-SVZ system. Taking advantage of this opportunity by means of an integrated analysis of geodetic and seismological data through finite element numerical modeling at the scale of the entire margin and for selected cases is the main goal of project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA, see Tassara et al. this meeting). Into the framework of the ACT&VO-SA project, the complementary ROCTEVODY-Villarrica project concentrates on the role that inherited crustal structures have in the volcano dynamics. The focus is on Villarrica volcano, which is emplaced at the intersection of the main NNE-branch of the LOFZ and the NW-SE inherited Mocha-Villarrica Fault (MVF). The extensional characteristics of previous eruptions at Villarrica contrasts with the dextral strike-slip motion of LOFZ and the compressive regime dominated by the subduction. Then, this projects aims to understand how the NW-SE inherited structures interacts with their intra-arc counterpart to allow the emplacement of volcanic edifices under the present day compressive stress regime. This goal will be achieved through the analysis of a seismic database for Villarrica volcano that combines data from a dense local network and the network of the Chilean volcanic observatory. These data will allow us to identify long period events and tremor signals from which we plan to perform a wave field characterization to extract information about fluid flow and seismic source, together with a precise location of tectonic crustal events. We will present preliminary results and a conceptual model to explain the role of the different structures at interplay in the region and their relation with volcano dynamics.
Multi-scale characterization of topographic anisotropy
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.
2016-05-01
We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.
NASA Astrophysics Data System (ADS)
Ji, Wenbin; Chen, Yan; Chen, Ke; Wei, Wei; Faure, Michel; Lin, Wei
2018-01-01
The Late Mesozoic magmatic province is a prominent feature of the South China Block (SCB). However, the tectonic regimes associated with the magmatism are still elusive. A combined anisotropy of magnetic susceptibility and gravity study has been carried out to determine the fabric patterns and shape at depth of the Dayunshan-Mufushan composite batholith in the north-central SCB. This is a companion paper to Part 1 that presented the structural and geochronological data of this batholith. The magnetic fabrics in the batholith interior predominantly reflect magma flow structures. Two distinct patterns of the magnetic lineations are defined, around NNE-SSW and WNW-ESE trends for the early-stage and late-stage intrusions of the batholith, respectively. The gravity survey reveals that the early-stage intrusion has a main feeder zone located below its northern part, while several linear feeder zones trending NNE-SSW are inferred for the late-stage intrusion. Integrating all results, a two-stage construction of the batholith with distinct tectonic regimes has been established. It is concluded that the early-stage intrusion experienced a southward magma transport during its emplacement, partially assisted by far-field compression from the north at ca. 150 Ma. Conversely, the emplacement and exhumation of the late-stage intrusion was accommodated by a NW-SE crustal stretching involving a lateral magma expansion above the multiple feeder zones (likely corresponding to extensional fractures) and ductile shearing during 132-95 Ma localized mainly along the Dayunshan detachment fault. Finally, we discuss the geodynamic linkage between the paleo-Pacific subduction and the Late Mesozoic tectonomagmatism in the SCB.
NASA Astrophysics Data System (ADS)
Rojay, Bora
2017-04-01
Central Anatolia is one of the key areas on the evolution of Cretaceous-Paleogene Tethys where stratigraphy of the region is well studied. However not well linked with tectonics. The so-called "Ankara Mélange" belt (AOM) and the basins on top are important elements in the understanding of the İzmir-Ankara-Erzincan suture belt (İAES) evolution in Anatolia (Turkey) and in the evolution of Tethys in minor Asia (Turkey). Some of the basins are directly situated on top of the tectonic slices of the accretionary prism (IAES). However, some are not tectonically well explained as in the case of Haymana basin. The southern continental fragments (eg. Kütahya-Bolkardaǧ and Kırşehir blocks from Gondwana) are approaching to northern continents (Pontides of Lauriasia) where basins like Haymana, Alçı, Kırıkkale and Orhaniye extensional basins are evolved in between the closing margins of two continents. Haymana basin is an extensional basin developed under contractional regime on top of both northward subducting oceanic fragments and an approaching fragments of southern continents. Paleogene (end of Eocene) is the time where the Seas were retreated to S-SE Anatolia leaving a continental setting in Anatolia during Oligocene-Miocene. The slip data gathered from the faults cross-cutting the Paleogene Units and the fabric from Cretaceous mélanges depicts a NNW-SSE to NNE-SSW compressional stress regime operated during post-Eocene-pre-Miocene period. Lately the slip surfaces were overprinted by post-Pliocene normal faulting. Key words: fault slip data, Paleogene, NNW-SSE compression, Anatolia.
NASA Astrophysics Data System (ADS)
Nédélec, A.; Paquette, J.-L.
1998-02-01
The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.
NASA Astrophysics Data System (ADS)
Paquette, Jean-Louis; Nédélec, Anne
1998-02-01
The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.
Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran
NASA Astrophysics Data System (ADS)
Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.
2007-12-01
The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.
NASA Astrophysics Data System (ADS)
Burch Fisher, G.; Amidon, William H.; Burbank, Douglas W.; Luna, Lisa V.
2016-04-01
Proposed linkages among climate, erosion, and tectonics provide an appealing framework for interpretation of the interplay among tectonic forcing, topographic form, climatic inputs, and rates of erosion. More rapid deformation is hypothesized to create higher and steeper topography that focuses precipitation, drives faster erosion, and enhances slip rates. But, a determination of cause and effect or synchrony in any proposed tectonic-climate-erosion coupling is commonly difficult to extract. Typically constraints on age and provenance are too loose, or records are too short, irregular, or sparse to permit nuanced interpretations. In fact, clear records in active orogens that reveal a persistent climatic imprint on erosion rates (such as ones scaled by Milankovich-type cyclicity) are rare, especially for pre-Quaternary intervals. Here, along the Rio Iruya on the eastern flank of the NE Argentinian Andes, we exploit a unique field setting in which a 100-m-deep canyon has been cut during the past century through a 6-km-thick tilted sequence of upper Cenozoic synorogenic strata. Sample ages in the Iruya gorge are provided by a high-quality magnetostratigraphy (~100-kyr resolution) that is calibrated with U-Pb zircon ages of interbedded tephra. Detrital zircon ages and quartz trace elements provide a provenance record for the sampled section. Here, we report 49 new detrital 10Be cosmogenic paleo-erosion rates spanning from the Late Miocene to Early Pleistocene (~5.8 to 1.8 Ma). Paired with each 10Be sample that is younger than ~3.3 Ma, 23 26Al samples provide a second proxy for paleo-erosion rates. 20th-century canyon cutting obviates the typical uncertainties associated with unconstrained Late Quaternary cosmogenic production due to exhumation prior to sampling. Three different erosion-rate regimes are apparent: from 1.8 to 2.3 Ma, rates are high with few oscillations; from 2.3 to 4.0 Ma, rates oscillate by a factor of 5 on a ~400-kyr timescale; and from 5.8 to 4.0 Ma, rates are again high with little variability. These different regimes correspond with provenance changes revealed by quartz chemistry and detrital zircon populations. Notably, erosion rates during the middle and late Pliocene in the Eastern Cordillera appear to correlate with the 400-kyr eccentricity-paced orbital frequency. Previously, no terrestrial records have revealed such a clear (and surprising) correlation; one that suggests coupling of long-term (>100-kyr) climate fluctuations to synchronous sediment fluxes. Consistent with some recent numerical models, this cyclicity lends support for frequency-dependent responses of Andean sediment fluxes to climate oscillations.
Coastal land loss and gain as potential earthquake trigger mechanism in SCRs
NASA Astrophysics Data System (ADS)
Klose, C. D.
2007-12-01
In stable continental regions (SCRs), historic data show earthquakes can be triggered by natural tectonic sources in the interior of the crust and also by sources stemming from the Earth's sub/surface. Building off of this framework, the following abstract will discuss both as potential sources that might have triggered the 2007 ML4.2 Folkestone earthquake in Kent, England. Folkestone, located along the Southeast coast of Kent in England, is a mature aseismic region. However, a shallow earthquake with a local magnitude of ML = 4.2 occurred on April 28 2007 at 07:18 UTC about 1 km East of Folkestone (51.008° N, 1.206° E) between Dover and New Romney. The epicentral error is about ±5 km. While coastal land loss has major effects towards the Southwest and the Northeast of Folkestone, research observations suggest that erosion and landsliding do not exist in the immediate Folkestone city area (<1km). Furthermore, erosion removes rock material from the surface. This mass reduction decreases the gravitational stress component and would bring a fault away from failure, given a tectonic normal and strike-slip fault regime. In contrast, land gain by geoengineering (e.g., shingle accumulation) in the harbor of Folkestone dates back to 1806. The accumulated mass of sand and gravel accounted for a 2.8·109 kg (2.8 Mt) in 2007. This concentrated mass change less than 1 km away from the epicenter of the mainshock was able to change the tectonic stress in the strike-slip/normal stress regime. Since 1806, shear and normal stresses increased at most on oblique faults dipping 60±10°. The stresses reached values ranging between 1.0 KPa and 30.0 KPa in up to 2 km depth, which are critical for triggering earthquakes. Furthermore, the ratio between holding and driving forces continuously decreased for 200 years. In conclusion, coastal engineering at the surface most likely dominates as potential trigger mechanism for the 2007 ML4.2 Folkestone earthquake. It can be anticipated that the mainshock nucleated at shallower depth (<500 m) near the Paleozoic surface a) where differential stresses are generally maximum and b) because earthquakes in aseismic regions are generally overestimated by 88% due to sparse instrumental coverage. The latter was suggested by recent research on shallow seismicitiy (<10 km) in SCRs in northeastern USA and eastern Canada. Data of the focal mechanism provided by the British Geological Survey (BGS) confirm fault zone orientations of 326°/74° (strike-slip fault component) and 71°/48° (normal fault component).
NASA Astrophysics Data System (ADS)
Boncio, Paolo; Bracone, Vito
2009-10-01
The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate within the compressed crust. The estimated stress difference ( σ1- σ3) is ≤ 460-560 MPa at 15-20 km depth.
Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling
NASA Astrophysics Data System (ADS)
Coulon, C. A.; Hsieh, P. A.; White, R.; Lowenstern, J. B.; Ingebritsen, S. E.
2017-10-01
Distal volcano-tectonic (dVT) seismicity typically precedes eruption at long-dormant volcanoes by days to years. Precursory dVT seismicity may reflect magma-induced fluid-pressure pulses that intersect critically stressed faults. We explored this hypothesis using an open-source magmatic-hydrothermal code that simulates multiphase fluid and heat transport over the temperature range 0 to 1200 °C. We calculated fluid-pressure changes caused by a small (0.04 km3) intrusion and explored the effects of flow geometry (channelized vs. radial flow), magma devolatilization rates (0-15 kg/s), and intrusion depths (5 and 7.5 km, above and below the brittle-ductile transition). Magma and host-rock permeabilities were key controlling parameters and we tested a wide range of permeability (k) and permeability anisotropies (kh/kv), including k constant, k(z), k(T), and k(z, T, P) distributions, examining a total of 1600 realizations to explore the relevant parameter space. Propagation of potentially causal pressure changes (ΔP ≥ 0.1 bars) to the mean dVT location (6 km lateral distance, 6 km depth) was favored by channelized fluid flow, high devolatilization rates, and permeabilities similar to those found in geothermal reservoirs (k 10- 16 to 10- 13 m2). For channelized flow, magma-induced thermal pressurization alone can generate cases of Δ P ≥ 0.1 bars for all permeabilities in the range 10- 16 to 10- 13 m2, whereas in radial flow regimes thermal pressurization causes Δ P < 0.1 bars for all permeabilities. Changes in distal fluid pressure occurred before proximal pressure changes given modest anisotropies (kh/kv 10-100). Invoking k(z,T,P) and high, sustained devolatilization rates caused large dynamic fluctuations in k and P in the near-magma environment but had little effect on pressure changes at the distal dVT location. Intrusion below the brittle-ductile transition damps but does not prevent pressure transmission to the dVT site.
Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution
NASA Astrophysics Data System (ADS)
Smrekar, S. E.; Hensley, S.; Helbert, J.
2013-12-01
As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.
When do glaciated landscapes form?
NASA Astrophysics Data System (ADS)
Koppes, M. N.
2015-12-01
Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.
NASA Astrophysics Data System (ADS)
Trautwein-Bruns, Ute; Schulze, Katja C.; Becker, Stephan; Kukla, Peter A.; Urai, Janos L.
2010-10-01
In 2004 the 2544 m deep RWTH-1 well was drilled in the city centre of Aachen to supply geothermal heat for the heating and cooling of the new student service centre "SuperC" of RWTH Aachen University. Aachen is located in a complex geologic and tectonic position at the northern margin of the Variscan deformation front at the borders between the Brabant Massif, the Hohes Venn/Eifel areas and the presently active rift zone of the Lower Rhine Embayment, where existing data on in situ stress show complex changes over short distances. The borehole offers a unique opportunity to study varying stress regimes in this area of complex geodynamic evolution. This study of the in situ stresses is based on the observation of compressive borehole breakouts and drilling-induced tensile fractures in electrical and acoustic image logs. The borehole failure analysis shows that the maximum horizontal stress trends SE-NW which is in accordance with the general West European stress trend. Stress magnitudes modelled in accordance to the Mohr-Coulomb Theory of Sliding Friction indicate minimum and maximum horizontal stress gradients of 0.019 MPa/m and 0.038 MPa/m, respectively. The occurrence of drilling-induced tensile failure and the calculated in situ stress magnitudes are consistent with a model of strike-slip deformation. The observed strike-slip faulting regime supports the extension of the Brabant Shear Zone proposed by Ahorner (1975) into the Aachen city area, where it joins the major normal faulting set of the Roer Valley Graben zone. This intersection of the inherited Variscan deformation grain and the Cenozoic deformation resulting in recent strike-slip and normal faulting activity proves the tectonically different deformation responses over a short distance between the long-lived Brabant Massif and the Cenozoic Rhine Rift System.
Multi-phase structural and tectonic evolution of the Andaman Sea Region
NASA Astrophysics Data System (ADS)
Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga
2017-04-01
We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the opening of the South China Sea to the east. Consequently, the obliquity of plate convergence along this margin increased, ultimately resulting in a change from minor strain partitioning to hyper oblique convergence and full strain partitioning by the mid-Miocene. Investigation into the effects of slab-steepening and dynamic subsidence in the Indochina region could be used as further tests of our proposed tectonic evolution of the Andaman Sea.
NASA Astrophysics Data System (ADS)
Fojtíková, Lucia; Vavryčuk, Václav
2018-02-01
We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003-2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012-2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003-2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012-2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003-2004 swarm and of 13 strongest events of the 2012-2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2-0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, G.E.; Borns, D.J.; Fridrich, C.
A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flowmore » rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs.« less
Crustal strength anisotropy influences landscape form and longevity
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.
2013-12-01
Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel tortuosity together provide critical information on the orientation and spatial distribution of fault damage and the relevant tectonic regime. Our landscape evolution models express similar mechanisms and produce drainage network patterns analogous to those seen in the Southern Alps of New Zealand and the Himalayan Eastern Syntaxis, both centers of active lithospheric deformation.
NASA Astrophysics Data System (ADS)
Wu, G.; Moresi, L. N.
2017-12-01
Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.
Fridrich, Christopher J.; Thompson, Ren A.
2011-01-01
The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.
An Intracratonic Record of North American Tectonics
NASA Astrophysics Data System (ADS)
Lovell, Thomas Rudolph
Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.
NASA Astrophysics Data System (ADS)
Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.
2018-01-01
Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.
NASA Astrophysics Data System (ADS)
Zhang, Huichao; Zhu, Yongfeng
2018-06-01
Gabbro plutons, consisting of clinopyroxene and plagioclase with trace amounts of magnetite, titanite, and apatite, intruded into Early Carboniferous volcanic-sedimentary strata in the Huilvshan gold mining region (west Junggar, China). Samples collected from two gabbro bodies are tholeiitic in composition with low concentrations of Na2O + K2O, showing weak depletions of light rare earth elements with insignificant Eu, Nb, and Ti anomalies. Zircon U-Pb analyses yield a weighted average U-Pb age of 296.1 ± 2.7 Ma (MSWD = 0.98), which could represent the time corresponding to mafic magma emplacement in the Huilvshan region. Geochemical calculations suggest that this mafic magma was derived from a depleted mantle source in a post-collisional tectonic setting corresponding to 4% partial melting of spinel lherzolite.
Geology and tectonics of the Archean Superior Province, Canadian Shield
NASA Technical Reports Server (NTRS)
Card, K. D.
1986-01-01
Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.
NASA Astrophysics Data System (ADS)
Hagag, W.; Moustafa, R.; Hamimi, Z.
2018-01-01
The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.
NASA Astrophysics Data System (ADS)
Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi
2015-09-01
An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.
NASA Astrophysics Data System (ADS)
Hill, E.; Qiu, Q.; Feng, L.; Lubis, A.; Meltzner, A. J.; Tsang, L. L.; Daly, P.; McCaughey, J.; Banerjee, P.; Rubin, C. M.; Sieh, K.
2013-12-01
Tectonic changes can have significant effects on crustal deformation, the geoid, and relative sea level (RSL). Indeed, the tectonic impacts on RSL in some regions can be greater than those predicted as a result of climate change. In the case of earthquakes, these changes can occur suddenly, as coastlines uplift or subside by up to many meters. The changes can also occur over many decades as a result of interseismic or postseismic processes, or periodically in the form of transient slow-slip events. Although these effects are (mostly) recovered elastically over the course of the earthquake cycle, they are occurring in the context of ever-increasing populations living along affected coastlines, particularly the case in areas such as SE Asia. The societal effects of these tectonic-induced sea-level changes are therefore becoming increasingly significant, and important to consider in future projections for sea-level change. Additionally, tide-gauge and gravity measurements made in tectonically active areas cannot be interpreted without consideration and modeling of the tectonic setting. These facts highlight the need for accurate geodetic measurements of land-height change. Along the Sumatra subduction zone, a series of great earthquakes have occurred over the last decade, along with numerous moderate and smaller earthquakes. These, and their ensuing postseismic deformation, have reshaped regional coastlines. We will show visualization of land height changes using a decade of Sumatra GPS Array (SuGAr) data, and related tectonic models, that demonstrate dramatically the ups and downs of land elevation close to the earthquake sources. Vertical coseismic displacements as large as ~2.9 m have been recorded by the SuGAr (an uplift at Nias, during the 2005 Mw 8.6 earthquake), and vertical postseismic rates on the order of tens of mm/yr or greater (e.g., in northern Aceh, one station has been uplifting at a rate of ~34 mm/yr since the 2004 Mw 9.2 earthquake, while in southern Simeulue a station has been subsiding, on average, by ~39 mm/yr since 2005, with higher rates immediately after the earthquake). Photos and stories from people in affected communities bring life to these coastline changes. Further afield, viscoelastic relaxation of the mantle causes widespread regional changes. For example, postseismic deformation following the 2004 Sumatra-Andaman earthquake has caused subsidence of 20-30 mm/yr along the Thai coastline. This subsidence - and therefore relative sea-level rise - will continue for many years to come. One question this raises is the degree to which countries close to tectonic plate boundaries should consider tectonic effects in their planning for future sea-level change. For example, in the event of an earthquake occurring on the Mentawai patch of the Sunda megathrust (an event which has been forecast based on paleogeodetic data), Singapore could face up to 15 cm of subsidence in the decades following the earthquake.
NASA Astrophysics Data System (ADS)
Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo
1999-04-01
The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.
NASA Astrophysics Data System (ADS)
Amrhar, Mostafa
Palaeostresses and deformation axis reconstruction related to the intracontinental High-Atlas uplift evidences two shortening phases from Upper Cretaceous to Quaternary. The first compression is oriented N20-30°E and is Maastrichtian to Oligocene age; the second one, oriented N120-160°E, is syn-Mio-Pliocene. Tectonic inversion of the lateral to compressive Jurassic regime is contemporaneous with the beginning of Africa and Europe collision. Rotation of the Mio-Pliocene shortening orientation could be linked to the change of the convergence direction between the Africa and Europe plates. To cite this article: M. Amrhar, C. R. Geoscience 334 (2002) 279-285.
Detrital zircons and Earth system evolution
NASA Astrophysics Data System (ADS)
McKenzie, R.
2016-12-01
Zircon is a mineral commonly produced in silicic magmatism. Therefore, due to its resilience and exceedingly long residence times in the continental crust, detrital zircon records can be used to track processes associated with silicic magmatism throughout Earth history. In this contribution I will address the potential role of preservational biases in zircon record, and further discuss how zircon datasets can be used to help better understand the relationship between lithospheric and Earth system evolution. I will use large compilations of zircon data to trace the composition and weatherability of the continental crust, to evaluate temporal rates of crustal recycling, and finally to track spatiotemporal variation in continental arc magmatism and volcanic CO2 outgassing throughout Earth history. These records demonstrate that secular changes in plate tectonic regimes played a prominent role in modulating conditions of the ocean+atmosphere system and long-term climate state for the last 3 billion years.
New tectonic data constrain the mechanisms of breakup along the Gulf of California
NASA Astrophysics Data System (ADS)
Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David
2014-05-01
The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San Jose del Cabo and the coeval footwall exhumation of large Cretaceous basement blocks (such as the Sierra Laguna). This detachment tectonics is overprinted by a more recent detachment-type tectonic evolution, localized alongshore the GOC, with coeval development of Pliocene basins. At this stage, extension was trending N75E +/-10° , i.e. close to GOC-normal. We discuss the geodynamical interpretation of all those new results in terms of forces driving the obliquity of rifts.
Plate Tectonics on Earth-like Planets: Implications for Habitability
NASA Astrophysics Data System (ADS)
Noack, L.; Breuer, D.
2011-12-01
Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate tectonics regime. References [1] Parnell, J. (2004): Plate tectonics, surface mineralogy, and the early evolution of life. Int. J. Astrobio. 3(2): 131-137. [2] Rosing, M.T.; D.K. Bird, N.H. Sleep, W. Glassley, and F. Albar (2006): The rise of continents - An essay on the geologic consequences of photosynthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 232 (2006) 99-11. [3] Stamenkovic, V.; D. Breuer and T. Spohn (2011): Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths. Submitted to Icarus. [4] Valencia, D., R.J. O'Connell and D.D. Sasselov (2007): Inevitability of plate tectonics on super-Earths. Astrophys. J. Let. 670(1): 45-48. [5] O'Neill, C. and A. Lenardic (2007). Geological consequences of super-sized Earths. GRL 34: 1-41.
Paleostress maps and structural evolution of the Pontides
NASA Astrophysics Data System (ADS)
Hippolyte, Jean-Claude; Espurt, Nicolas; Kaymakci, Nuretdin; Sangu, Ercan; Müller, Carla
2014-05-01
In the frame of DARIUS programme we worked from 2010 to 2012 in the central and eastern Pontides. We aimed at understanding the timing and the characteristics of the extensional and compressional episodes that occurred along the southern margin of the Black Sea (Pontides belt). We used stress inversion technique (Angelier's softwares) for analyzing fault kinematics and characterizing the successive tectonic episodes in terms of paleostresses. The age of the tectonic episodes was constrained by combining structural analysis with nannoplankton dating of the sedimentary units. 1) In the central Pontides, structural analysis shows that deposition of the Barremian-Albian terrigenous sediments of the "syn-rift" Çaglayan Group was controlled by large normal faults under an ESE-WNW extension probably related to the SE-directed opening of the western Black Sea Basin. In contrast, the Coniacian-Santonian and the Paleocene "post-rift" sequences were deposited under NE-SW extension probably related to the SW-directed opening of the eastern Black Sea Basin. At the beginning of Eocene the stress regime changed from extensional to compressional which resulted in the formation of syn-compressional basins. In order to illustrate the two-dimensional structural evolution of the central Pontides we built a NNE-trending 75 km long balanced and restored cross section between Boyabat and Sinop cities. The section is constrained by 183 sites of field data, 5 seismic lines and 8 wells. We model the Pontides as a bi-vergent structure resulting from the structural inversion of Cretaceous normal faults of the southern Black Sea margin. Apatite fission track data along this section suggest that inversion started in the earliest Eocene (~55 Ma). Eocene-Miocene shortening reached ~28 km. 2) In the eastern Pontides, an early Campanian to late Paleocene NW-SE extension was followed by three successive compressional events. A Paleocene to early Eocene NW-SE compression resulted in the formation of the main structural elements of the eastern Pontides. This compression is probably the consequence of the oblique collision of the Tauride block in the South. Paleogene sediments in the Tercan region are interpreted as remnants of a flexural basin related to this collision. A more recent NE-SW compression created interference fold structures in particular in the easternmost Pontides. It may be related to the middle Miocene collision of the Arabian plate. The last event is a N-S to NW-SE compressional to transcurrent tectonics that uplifted the Tercan foreland basin. The change from the Miocene NE-SW compression to the modern stress field is correlated with the change from shortening to escape related strike-slip tectonics that occurred in the Zagros Belt and gave way to the inception of the North Anatolian Fault Zone along the southern margin of the Pontides Belt.
NASA Astrophysics Data System (ADS)
Liu, S.; Hao, C.; Li, X.; Xu, M.
2015-12-01
Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.
Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, D.B.; Ziegler, A.M.; Hulver, M.
1985-01-01
A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less
A global earthquake discrimination scheme to optimize ground-motion prediction equation selection
Garcia, Daniel; Wald, David J.; Hearne, Michael
2012-01-01
We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.
NASA Astrophysics Data System (ADS)
Sahu, Sudarsan; Saha, Dipankar
2014-08-01
The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.
NASA Astrophysics Data System (ADS)
Sherif, Mahmoud I.; Ghoneim, Mohamed F.; Heikal, Mohamed Th. S.; El Dosuky, Bothina T.
2013-10-01
Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610-580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny.
Io: Mountains and crustal extension
NASA Technical Reports Server (NTRS)
Heath, M. J.
1985-01-01
It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.
NASA Astrophysics Data System (ADS)
Song, Insun; Chang, Chandong
2017-05-01
This paper presents a complete set of in situ stress calculations for depths of 200-1400 meters below seafloor at Integrated Ocean Drilling Program (IODP) Site C0002, near the seaward margin of the Kumano fore-arc basin, offshore from southwest Japan. The vertical stress component was obtained by integrating bulk density calculations from moisture and density logging data, and the two horizontal components were stochastically optimized by minimizing misfits between a probabilistic model and measured breakout widths for every 30 m vertical segment of the wellbore. Our stochastic optimization process reveals that the in situ stress regime is decoupled across an unconformity between an accretionary complex and the overlying Kumano fore-arc basin. The stress condition above the unconformity is close to the critical condition for normal faulting, while below the unconformity the geologic system is stable in a normal to strike-slip fault stress regime. The critical state of stress demonstrates that the tectonic evolution of the sedimentary system has been achieved mainly by the regionally continuous action of a major out-of-sequence thrust fault during sedimentation in the fore-arc basin. The stable stress condition in the accretionary prism is interpreted to have resulted from mechanical decoupling by the accommodation of large displacement along the megasplay fault.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Daigle, Hugh; Clary, Wesley A.; Gulick, Sean P. S.; Montelli, Aleksandr
2018-02-01
The southern Alaskan margin offshore the St. Elias Mountains has experienced the highest recorded offshore sediment accumulation rates globally. Combined with high uplift rates, active convergence and extensive temperate glaciation, the margin provides a superb setting for evaluating competing influences of tectonic and surface processes on orogen development. We correlate results from Integrated Ocean Drilling Program (IODP) Expedition 341 Sites U1420 and U1421 with regional seismic data to determine the spatial and temporal evolution of the Pamplona Zone fold-thrust belt that forms the offshore St. Elias deformation front on the continental shelf. Our mapping shows that the pattern of active faulting changed from distributed across the shelf to localized away from the primary glacial depocenter over ∼300-780 kyrs, following an order-of-magnitude increase in sediment accumulation rates. Simple Coulomb stress calculations show that the suppression of faulting is partially controlled by the change in sediment accumulation rates which created a differential pore pressure regime between the underlying, faulted strata and the overlying, undeformed sediments.
NASA Astrophysics Data System (ADS)
Wenau, S.; Spiess, V.
2016-12-01
Methane seepage sites have been investigated in the Lower Congo Basin using seismo-acoustic methods in combination with geological and geochemical sampling. Pockmarks were observed in different areas of the Lower Congo Basin that are affected by different styles of salt-tectonic deformation and sedimentary input. At the salt front in the southern part of the basin, methane seepage shifts continuously westwards as previously undeformed sediments are affected by westward moving salt. Older seepage sites to the East are cut off from methane supply in the process of continuing salt-tectonic deformation. The initiation of gas accumulation and seepage directly at the deformation front is expected in the late Miocene due to salt-induced uplift. In the northern part of the basin on the lower slope, methane seepage is focused along salt-tectonic faults connecting Pliocene fan deposits to the seafloor, breaching the hemipelagic seal. These sites show indications for continuing seepage for the last 640 kyrs. Such long term seepage activity may be due to the lack of polygonal faults in the hemipelagic seal, focusing gas migration on fewer, salt-tectonic faults. Westward of the salt front, seepage features include the Regab pockmark where a potential reservoir in an Early Pleistocene channel flank is connected to the seafloor feature via a seismic chimney. Seepage activity in this area is also documented to be continuous over geologic time scales by seafloor and sub-seafloor seepage indications such as chimneys, pockmarks and buried seepage features. The Lower Congo Basin thus documents the longevity of seepage processes in the context of various tectonic and sedimentary regimes on a passive continental margin. Indications of the duration of seepage activity at individual sites may be used for methane budgeting in combination with emission rates estimated for typical seepage sites.
NASA Astrophysics Data System (ADS)
Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng
2018-03-01
Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.
NASA Astrophysics Data System (ADS)
Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng
2018-07-01
Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.
NASA Astrophysics Data System (ADS)
Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad
2016-07-01
The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.
Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data
NASA Astrophysics Data System (ADS)
Pamukçu, Oya Ankaya; Akçığ, Zafer; Demirbaş, Şevket; Zor, Ekrem
2007-12-01
The tectonic regime of Eastern Anatolia is determined by the Arabia-Eurasia continent-continent collision. Several dynamic models have been proposed to characterize the collision zone and its geodynamic structure. In this study, change in crustal thickness has been investigated using gravity, magnetic and topographic data of the region. In the first stage, two-dimensional low-pass filter and upward analytical continuation techniques were applied to the Bouguer gravity data of the region to investigate the behavior of the regional gravity anomalies. Next the moving window power spectrum method was used, and changes in the probable structural depths from 38 to 52 km were determined. The changes in crustal thickness where free air gravity and magnetic data have inversely correlated and the type of the anomaly resources were investigated applying the Euler deconvolution method to Bouguer gravity data. The obtained depth values are consistent with the results obtained using the power spectrum method. It was determined that the types of anomaly resources are different in the west and east of the 40° E longitude. Finally, using the obtained findings from this study and seismic velocity models proposed for this region by previous studies, a probable two-dimensional crust model was constituted.
NASA Astrophysics Data System (ADS)
Li, Lu; Qiu, Nansheng
2017-06-01
In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.
NASA Astrophysics Data System (ADS)
Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua
2018-01-01
The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."
Identifying tectonic parameters that influence tsunamigenesis
NASA Astrophysics Data System (ADS)
van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca
2017-04-01
The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.
NASA Technical Reports Server (NTRS)
Ivanov, M. A.; Head, James W.
2008-01-01
The area of the Meskhent Tessera quadrangle (V-3, 50-75degN, 60-120degE, Fig. 1) corresponds to a transition zone from the uplands of Ishtar Terra to the west to the lowlands of Atalanta Planitia to the east. The topographic configuration, gravity signature, and presence of large tesserae in Ishtar Terra are consistent with extensive areas of thickened crust and tectonically stabilized lithosphere representing ancient and now extinct regimes of mantle convection. The gravity and topographic characteristics of Atalanta Planitia have been cited as evidence for large-scale mantle downwelling. Thus, the region of Meskhent Tessera quadrangle represents an important sample for the study of the regional history of long-wavelength topography (highlands, midlands, and lowlands), interaction between the downwelling and areas of thickened crust/lithosphere, formation of associated tectonic features, and emplacement of volcanic plains.
NASA Astrophysics Data System (ADS)
Sélo, Madeleine; Benkhelil, Jean; Mascle, Jean; Storzer, Dieter; Exon, Neville
2002-01-01
We present and discuss a few fission track data, and microstructural observations, from rock samples dredged along the western and southwestern continental margin of Tasmania. The results allow assessing the thermal and tectonic regimes that were active prior to and during the margin creation. The different ages, as provided by fission tracks, and deformational styles, as evidenced from microstructures, are then tentatively correlated with the two main rifting episodes, in Late Jurassic-Cretaceous times and Eocene-Oligocene respectively, deduced from kinematical reconstructions, that have led to the present- day southern margin of Tasmania. To cite this article: M. Sélo et al., C. R. Geoscience 334 (2002) 59-66
Dynamics of continental rift propagation: the end-member modes
NASA Astrophysics Data System (ADS)
Van Wijk, J. W.; Blackman, D. K.
2005-01-01
An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.
Geologic and tectonic characteristics of rockbursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.
1995-06-01
The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that casemore » to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.« less
NASA Astrophysics Data System (ADS)
Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific
2015-04-01
IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and extensional fractures. Faults observed at sites 352-U1440 and 352-U1441 show mainly strike-slip. The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.
Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska
NASA Technical Reports Server (NTRS)
SauberRosenberg, Jeanne M.; Molnia, Bruce F.
2003-01-01
Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.
The 13 million year Cenozoic pulse of the Earth
NASA Astrophysics Data System (ADS)
Chen, Jiasheng; Kravchinsky, Vadim A.; Liu, Xiuming
2015-12-01
The geomagnetic polarity reversal rate changes radically from very low to extremely high. Such process indicates fundamental changes in the Earth's core reorganization and core-mantle boundary heat flow fluctuations. However, we still do not know how critical such changes are to surface geology and climate processes. Our analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ∼13 Myr during most of the time. The periodicity is disrupted only during the last 20 Myr. Such periodic behavior suggests that large scale climate and tectonic changes at the Earth's surface are closely connected with the million year timescale cyclical reorganization of the Earth's interior.
NASA Astrophysics Data System (ADS)
Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara
2009-10-01
We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.
Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)
NASA Technical Reports Server (NTRS)
Zamudio, Joe
1993-01-01
In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.
Evaluation of the deformation parameters of the northern part of Eg
NASA Astrophysics Data System (ADS)
Mohamed, Abdel-Monem S.; Radwan, Ali M.; Sharf, Mohamed; Hamimi, Zakaria; Hegazy, Esraa E.; Abou Aly, Nadia; Gomaa, Mahmoud
2016-06-01
The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS) will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults
NASA Astrophysics Data System (ADS)
Chaput, Marie; Famin, Vincent; Michon, Laurent
2017-10-01
To understand the volcano-tectonic history of Piton des Neiges (the dormant volcano of La Réunion), we measured in the field the orientation of sheeted intrusions and deformation structures, and interpreted the two datasets separately with a paleostress inversion. Results show that the multiple proposed rift zones may be simplified into three trends: (1) a N30°E, 5 km wide linear rift zone running to the south of the edifice, active in the shield building (≥ 2.48-0.43 Ma) and terminal stages (190-22 ka); (2) a curved N110 to N160°E rift zone, widening from 5 km to 10 km toward the NW flank, essentially active during the early emerged shield building (≥ 1.3 Ma); and (3) two sill zones, ≤ 1 km thick in total, in the most internal parts of the volcano, active in the shield building and terminal stages. In parallel, deformation structures reveal that the tectonics of the edifice consisted in three end-member stress regimes sharing common stress axes: (1) NW-SE extension affecting in priority the south of the edifice near the N30°E rift zone; (2) NNE-SSW extension on the northern half of the volcano near the N110-160°E rift zone; (3) compression occurring near the sill zones, with a NE-SW or NW-SE maximum principal stress. These three stress regimes are spatially correlated and mechanically compatible with the injection trends. Combined together, our data show that the emerged Piton des Neiges underwent sector spreading delimited by perpendicular rift zones, as observed on Piton de la Fournaise (the active volcano of La Réunion). Analogue experiments attribute such sector spreading to brittle edifices built on a weaker substratum. We therefore conclude that La Réunion volcanoes are both brittle, as opposed to Hawaiian volcanoes or Mount Etna whose radial spreading is usually attributed to a ductile body within the edifices.
NASA Astrophysics Data System (ADS)
Yeh, E. C.; Li, W. C.; Chiang, T. C.; Lin, W.; Wang, T. T.; Yu, C. W.; Chiao, C. H.; Yang, M. W.
2014-12-01
Scientific study in deep boreholes has paid more attention as the demand of natural resources and waste disposal and risk evaluation of seismic hazard dramatically increases, such as petroleum exploitation, geothermal energy, carbon sequestration, nuclear waste disposal and seismogenic faulting. In the deep borehole geoengineering, knowledge of in-situ stress is essential for the design of drilling-casing plan. Understanding the relationship between fracture and in-situ stress is the key information to evaluate the potential of fracture seal/conduit and fracture reactivity. Also, assessment of in-situ stress can provide crucial information to investigate mechanism of earthquake faulting and stress variationfor earthquake cycles. Formations under the Coastal Plain in Taiwan have evaluated as saline-water formations with gently west-dipping and no distinct fractures endured by regional tectonics of arc-continental collision with N35W compression. The situation is characterized as a suitable place for carbon sequestration. In this study, we will integrate results from different in-situ stress determinations such as anelastic strain recovery (ASR), borehore breakout, hydraulic fracturing from a 3000m borehole of carbon sequestration testing site and further evaluate the seal feasibility and tectonic implication. Results of 30 ASR experiments between the depth of 1500m and 3000m showed the consistent normal faulting stress regime. Stress gradient of vertical stress, horizontal maximum stress and horizontal minimum stress with depth is estimated. Borehole breakout is not existed throughout 1500-3000m. The mean orientation of breakout is about 175deg and mean width of breakout is 84 deg. Based on rock mechanical data, maximum injection pressure of carbon sequestration can be evaulated. Furthermore, normal faulting stress regime is consistent with core observations and image logging, the horizontal maximum stress of 85deg inferred from breakout suggested that this place has been affected by the compression of oblique collision. The comparison of stress magnitudes estimated from ASR, breakout and hydraulic fracturing cab further verified current results.
Plate tectonics on large exoplanets and the importance of the initial conditions
NASA Astrophysics Data System (ADS)
Noack, Lena; Breuer, Doris
2013-04-01
Several numerical studies have been published in the past years speculating about the existence of plate tectonics on large exoplanets. These studies focus on various aspects like the mass of a planet [1,2,3,5], the interior heating rate and mantle temperatures [4,5] and the occurrence of water in the upper mantle [6]. Different trends in the propensity for plate tectonics have been observed in particular when varying the planetary mass: with increasing mass the surface mobilization is found to be either more [2,3,5], equally [3,6] or less [1,4] likely than on Earth. These studies and their implications are, however, difficult to compare as they assume different initial conditions and parameter sets, and either neglect the pressure effect on the viscosity or assume a rather small influence of the pressure on the rheology. Furthermore, the thermal evolution of the planets (i.e. cooling of core and decrease in radioactive heat sources with time) is typically neglected. In our study, we us the finite volume code GAIA [7] and apply a pseudo-plastic rheology. We investigate how a strong pressure-dependence of the viscosity [8] influences not only the convective regime in the lower mantle, but also the upper mantle and hence the likelihood to obtain plate tectonics. We investigate how our results change when assuming different initial conditions, focussing on the initial temperature in the lower mantle and at the core-mantle boundary. We find that the initial temperature conditions have a first-order influence on the likelihood of plate tectonics on large exoplanets and (as observed in earlier studies) surface mobilization may either be more, equally or less likely than on Earth. References [1] O'Neill, C. and A. Lenardic (2007), GRL 34, 1-4. [2] Valencia, D., O'Connell, R.J. and Sasselov, D.D. (2007), Astrophys. J. Let., 670(1):45-48. [3] van Heck, H.J. and Tackley, P.J. (2011), EPSL, 310:252-261. [4] Stein, C.; A. Finnenkötter, J. P. Lowman and U. Hansen (2011), GRL 38, L21201. [5] Foley, B.J., Bercovici, D. and Landuyt, W. (2012), EPSL 331-332, 281-290. [6] Korenaga, J. (2010), Astrophys. J. Let. 725, L43-L46. [7] Hüttig, C. and K. Stemmer (2008), PEPI 171, 137-146. [8] Stamenkovic, V.; L. Noack, D. Breuer and T. Spohn (2012), Astroph. J. 748(1), 41.
NASA Astrophysics Data System (ADS)
Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad
2018-02-01
An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated as well.
Eastern Indian Ocean microcontinent formation driven by plate motion changes
NASA Astrophysics Data System (ADS)
Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.
2016-11-01
The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated.
NASA Astrophysics Data System (ADS)
Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.
2015-12-01
Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated. PMID:24376585
Long term fault system reorganization of convergent and strike-slip systems
NASA Astrophysics Data System (ADS)
Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.
2017-12-01
Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.
On the dynamics of stream piracy
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S. D.
2012-04-01
Drainage network reorganization by stream piracy is invoked repeatedly to explain the morphology of unique drainage patterns and as a possible mechanism inducing abrupt variations of sediment accumulation rates. However, direct evidence of stream piracy is usually rare, and is highly interpretation dependent. As a first step in assessing how probable capture events are and establishing the conditions that favor stream piracy versus the those that favor stable landscapes, we formulate analytically the physics of divide migration and capture events and study this formulation from a dynamical system point of view. The formulation is based on a one-dimensional topographic cross section between two channels that share a water divide. Two hillslope profiles diverge from the divide and drain into two fluvial bedrock tributaries, whose erosion rate is controlled by a stream power law. The rate of erosion at the bounding channels is thus a function of the upstream drainage area and local slope. A tectonically induced downward perturbation of the elevation of one of the bounding channels lowers the channel slope but at the same time increases the drainage area due to outward migration of the water divide. The changes in slope and area have opposing effect on the erosion rate at the bounding channels, so that the perturbation may either grow or be damped. We define the geomorphic and tectonic parameters that control the behavior of the system and find the regimes that lead to stable landscapes and to capture events.
Upper Pleistocene uplifted shorelines as tracers of (local rather than global) subduction dynamics
NASA Astrophysics Data System (ADS)
Henry, Hadrien; Regard, Vincent; Pedoja, Kevin; Husson, Laurent; Martinod, Joseph; Witt, Cesar; Heuret, Arnauld
2014-08-01
Past studies have shown that high coastal uplift rates are restricted to active areas, especially in a subduction context. The origin of coastal uplift in subduction zones, however, has not yet been globally investigated. Quaternary shorelines correlated to the last interglacial maximum (MIS 5e) were defined as a global tectonic benchmark (Pedoja et al., 2011). In order to investigate the relationships between the vertical motion and the subduction dynamic parameters, we cross-linked this coastal uplift database with the “geodynamical” databases from Heuret (2005), Conrad and Husson (2009) and Müller et al. (2008). Our statistical study shows that: (1) the most intuitive parameters one can think responsible for coastal uplift (e.g., subduction obliquity, trench motion, oceanic crust age, interplate friction and force, convergence variation, dynamic topography, overriding and subducted plate velocity) are not related with the uplift (and its magnitude); (2) the only intuitive parameter is the distance to the trench which shows in specific areas a decrease from the trench up to a distance of ˜300 km; (3) the slab dip (especially the deep slab dip), the position along the trench and the overriding plate tectonic regime are correlated with the coastal uplift, probably reflecting transient changes in subduction parameters. Finally we conclude that the first order parameter explaining coastal uplift is small-scale heterogeneities of the subducting plate, as for instance subducting aseismic ridges. The influence of large-scale geodynamic setting of subduction zones is secondary.
Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms
NASA Astrophysics Data System (ADS)
Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad
2017-11-01
Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.
NASA Technical Reports Server (NTRS)
Norman, Marc D.; Leeman, William P.
1989-01-01
The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.
Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling
Coulon, Cecile A.; Hsieh, Paul A.; White, Randall A.; Lowenstern, Jacob B.; Ingebritsen, Steven E.
2017-01-01
Distal volcano-tectonic (dVT) seismicity typically precedes eruption at long-dormant volcanoes by days to years. Precursory dVT seismicity may reflect magma-induced fluid-pressure pulses that intersect critically stressed faults. We explored this hypothesis using an open-source magmatic-hydrothermal code that simulates multiphase fluid and heat transport over the temperature range 0 to 1200 °C. We calculated fluid-pressure changes caused by a small (0.04 km3) intrusion and explored the effects of flow geometry (channelized vs. radial flow), magma devolatilization rates (0–15 kg/s), and intrusion depths (5 and 7.5 km, above and below the brittle-ductile transition). Magma and host-rock permeabilities were key controlling parameters and we tested a wide range of permeability (k) and permeability anisotropies (kh/kv), including k constant, k(z), k(T), and k(z, T, P) distributions, examining a total of ~ 1600 realizations to explore the relevant parameter space. Propagation of potentially causal pressure changes (ΔP ≥ 0.1 bars) to the mean dVT location (6 km lateral distance, 6 km depth) was favored by channelized fluid flow, high devolatilization rates, and permeabilities similar to those found in geothermal reservoirs (k ~ 10− 16 to 10− 13 m2). For channelized flow, magma-induced thermal pressurization alone can generate cases of ∆ P ≥ 0.1 bars for all permeabilities in the range 10− 16 to 10− 13 m2, whereas in radial flow regimes thermal pressurization causes ∆ P < 0.1 bars for all permeabilities. Changes in distal fluid pressure occurred before proximal pressure changes given modest anisotropies (kh/kv ~ 10–100). Invoking k(z,T,P) and high, sustained devolatilization rates caused large dynamic fluctuations in k and P in the near-magma environment but had little effect on pressure changes at the distal dVT location. Intrusion below the brittle-ductile transition damps but does not prevent pressure transmission to the dVT site.
Poag, C.W.; Sevon, W.D.
1989-01-01
The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.
NASA Astrophysics Data System (ADS)
Goren, Liran; Petit, Carole
2017-04-01
Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Bertrand, G.
2012-12-01
The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.
Reexamining ultrafiltration and solute transport in groundwater
NASA Astrophysics Data System (ADS)
Neuzil, C. E.; Person, Mark
2017-06-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Reexamining ultrafiltration and solute transport in groundwater
Neuzil, Christopher E.; Person, Mark
2017-01-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Lithospheric Shear Stresses Over And Around Africa
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Jean, B.; Vicente De Gouveia, S.
2017-12-01
We use a simple model for mantle dynamics combining contributions of subducted lithosphere, domes at the bottom of the mantle and upwelling plumes. A dominant feature of plate tectonics is the quasi permanence of a girdle of subductions around the Pacific ocean (or its ancestor), which creates large-wavelength positive topography anomaly within the ring they form. The superimposition of the resultant extension with the one induced by the dome leads to a permanent extensional regime over Africa and the future Indian ocean which creates faults with azimuth directions depending on the direction of the most active part of the ring of subductions. We thus obtain fractures with NW-SE azimuth during the period 275-165 Ma parallel to the strike of the subduction zone of the West South American active margin, which appears to be very active during this period. Between 155-95 Ma, subduction became more active along the Eastern Australian coast involving a change in the direction of the faults toward an E-W direction, in agreement with the observed fault systems between Africa and India, Antartica and Australia. During the Mesozoic and the Cenozoic, we correlate the permanent extensional regime over Africa and Indian ocean with the observed rift systems.Finally we emphasize the role of three primary hotspots as local additional contributors to the stress field imposed by our proposed subduction-doming system, which help in the opening of Indian and South Atlantic oceans.
NASA Astrophysics Data System (ADS)
Ávila-Barrientos, L.; Zúñiga, F. R.; Rodríguez-Pérez, Q.; Guzmán-Speziale, M.
2015-11-01
Aftershock sequences along the Mexican subduction margin (between coordinates 110ºW and 91ºW) were analyzed by means of the p value from the Omori-Utsu relation and the b value from the Gutenberg-Richter relation. We focused on recent medium to large (Mw > 5.6) events considered susceptible of generating aftershock sequences suitable for analysis. The main goal was to try to find a possible correlation between aftershock parameters and plate characteristics, such as displacement rate, age and segmentation. The subduction regime of Mexico is one of the most active regions of the world with a high frequency of occurrence of medium to large events and plate characteristics change along the subduction margin. Previous studies have observed differences in seismic source characteristics at the subduction regime, which may indicate a difference in rheology and possible segmentation. The results of the analysis of the aftershock sequences indicate a slight tendency for p values to decrease from west to east with increasing of plate age although a statistical significance is undermined by the small number of aftershocks in the sequences, a particular feature distinctive of the region as compared to other world subduction regimes. The b values show an opposite, increasing trend towards the east even though the statistical significance is not enough to warrant the validation of such a trend. A linear regression between both parameters provides additional support for the inverse relation. Moreover, we calculated the seismic coupling coefficient, showing a direct relation with the p and b values. While we cannot undoubtedly confirm the hypothesis that aftershock generation depends on certain tectonic characteristics (age, thickness, temperature), our results do not reject it thus encouraging further study into this question.
Static Stress Changes Inverted from Microseismicity in Eastern Aegean Sea
NASA Astrophysics Data System (ADS)
Leptokaropoulos, Konstantinos; Papadimitriou, Eleftheria; Orlecka-Sikora, Beata; Karakostas, Vassilios
2014-05-01
In this study we attempted to derive static stress field variations from the changes of earthquake production rates in Kusadasi bay and Samos island (eastern Aegean), by applying the Dieterich et al. (2000) Rate/State formulation. The calculation of stress changes from earthquake occurrence rates fluctuations should be obtained from catalogues which achieve adequate spatial and temporal resolution and well determined hypocenter coordinates. For this reason we took advantage of the data from a regional network operating since July of 2007, providing continuous monitoring of microseismicity, along with data available from seismological stations of the permanent Hellenic Unified Seismological Network (HUSN). The high accuracy and large sized regional catalogue is utilized for inverting seismicity rate changes into stress variation through a Rate/State dependent friction model. After explicitly determining the physical parameters incorporating in the modeling (reference seismicity rates, characteristic relaxation time, constitutive properties of fault zones) we investigated stress changes in both space and time regime and their possible connection with earthquake clustering and fault interactions. The main interest is focused on the June 2009 Samos Mw=5.1 event, which was followed by an intense seismic activity for several days. We attempt to reproduce and interpret stress changes both before and after the initiation of this seismic burst. The differences between the earthquake occurrence rates before and after the main shock are used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an estimation of stress changes. Diverse assumptions and combinations of the parameters values are tested for the model performance and sensitivity to be evaluated. The approach followed here could provide evidence of the robustness of the seismicity rate changes usage as a stress meter for both positive and negative stress steps in an actively tectonic region accommodating complex fault systems. Acknowledgements: Support from the bilateral agreement between Aristotle University of Thessaloniki and Institute of Geophysics of Polish Academy of Sciences during August 2013 and the research project titled as 'Seismotectonic properties of the eastern Aegean: Implications on the stress field evolution and seismic hazard assessment in a tectonically complex area', GSRT 10 T UR/1-3-9, Joint Research and Technology Programmes 2010-2011, financed by the Ministry of Education of Greece and the Scientific and Technological Research Council of Turkey (TUBITAK 109Y401) are acknowledged.
A geological interpretation of Seasat-SAR imagery of Jamaica
NASA Technical Reports Server (NTRS)
Wadge, G.; Dixon, T. H.
1984-01-01
Spaceborne radar imagery obtained from Seasat allows an unobscured large-scale view of Jamaica that can be used for geological interpretation. Lineaments and textures visible in these images were mapped and compared with the known geology of the Tertiary karst limestones covering the central and western parts of the island. Some of these radar textures correlate with lithological units, while others follow tectonically-controlled zones or structural blocks. Mapping of radar lineaments has led to the recognition of three new aspects of Jamaican faults: (1) a major through-going NE-SW fault system, termed here the Vere-Annotto lineament; (2) a series of curving scissor faults in the central part of the island; and (3) the related observation that the dominant NNW-SSE tectonic fabric of the central part of the island takes the form of an elongate sigmoid in plan view. During most of the Neogene Jamaica has been part of an active zone of left-lateral transform motion between the Caribbean and North American plates and is a region of anomalous uplift. The radar imagery is a sensitive recorder of the deformation undergone by the karst limestones in this tectonic regime. Some of the observations are explained with models for a complex, evolving shear zone.
Merewether, E. Allen; McKinney, Kevin C.
2015-01-01
In this transect for time-stratigraphic units of the Cretaceous, lateral changes in lithologies, regional differences in thicknesses, and the abundance of associated disconformities possibly reflect local and regional tectonic events. Examples of evidence of those events follow: (1) Disconformities and the absence of strata of lowest Cretaceous age in western Montana, western Wyoming, and northern Utah indicate significant tectonism and erosion probably during the Late Jurassic and earliest Cretaceous; ( 2) stages of Upper Cretaceous deposition in the transect display major lateral changes in thickness, which probably reflect regional and local tectonism.
Collision processes at the northern margin of the Black Sea
NASA Astrophysics Data System (ADS)
Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.
2016-07-01
Extended along the Crimea-Caucasus coast of the Black Sea, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic processes at the junction of the Scythian Plate and Black Sea Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic process occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black Sea Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this process is complicated by the East Black Sea Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.
Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes
NASA Astrophysics Data System (ADS)
Kerrich, Robert; Wyman, Derek
1990-09-01
Mesothermal gold provinces of Phanerozoic age are characteristically associated with regional structures along which allochthonous terranes have been accreted onto continental margins or arcs. A recurring sequence of transpressive deformation, uplift, late kinematic mineralization, and shoshonitic magmatism is consistent with thermal reequilibration of tectonically thickened crust. Mesothermal gold camps in the Superior province are spatially associated with large-scale structures that have been interpreted as zones of transpressive accretion of individual subprovinces or allochthonous terranes: these boundary structures are characterized by the sequence of significant horizontal shortening, uplift, late-kinematic mineralization, and shoshonitic lamprophyres and therefore may have the same geodynamic significance as Phanerozoic counterparts. In this model, thermal re-equilibration of underplated and subducted oceanic lithosphere and sediments in a transpressive regime, over time scales of 10 to 40 m.y., is a necessary precursor to gold mineralization. Hydrothermal fluids are released along boundary faults and their splays during uplift: the uniform temperature, low salinity and mole% CO2 signify uniform source conditions, whereas the variable O, C, Sr, and Pb isotopic compositions of fluids reflect lithological complexity of the source regions and conduits. Ou the basis of this model it is suggested that mesothermal lode gold deposits are the product of subduction-related crustal underplating and deep, late metamorphism, rather than magmatic or metamorphic events in the supracrustal rocks. Secular variations in the generation of Archean, Proterozoic, and Phanerozoic mesothermal Au provinces reflect the timing of collisional orogenies within terranes of these eras.
Global prediction of continuous hydrocarbon accumulations in self-sourced reservoirs
Eoff, Jennifer D.
2012-01-01
This report was first presented as an abstract in poster format at the American Association of Petroleum Geologists (AAPG) 2012 Annual Convention and Exhibition, April 22-25, Long Beach, Calif., as Search and Discovery Article no. 90142. Shale resource plays occur in predictable tectonic settings within similar orders of magnitude of eustatic events. A conceptual model for predicting the presence of resource-quality shales is essential for evaluating components of continuous petroleum systems. Basin geometry often distinguishes self-sourced resource plays from conventional plays. Intracratonic or intrashelf foreland basins at active margins are the predominant depositional settings among those explored for the development of self-sourced continuous accumulations, whereas source rocks associated with conventional accumulations typically were deposited in rifted passive margin settings (or other cratonic environments). Generally, the former are associated with the assembly of supercontinents, and the latter often resulted during or subsequent to the breakup of landmasses. Spreading rates, climate, and eustasy are influenced by these global tectonic events, such that deposition of self-sourced reservoirs occurred during periods characterized by rapid plate reconfiguration, predominantly greenhouse climate conditions, and in areas adjacent to extensive carbonate sedimentation. Combined tectonic histories, eustatic curves, and paleogeographic reconstructions may be useful in global predictions of organic-rich shale accumulations suitable for continuous resource development. Accumulation of marine organic material is attributed to upwellings that enhance productivity and oxygen-minimum bottom waters that prevent destruction of organic matter. The accumulation of potential self-sourced resources can be attributed to slow sedimentation rates in rapidly subsiding (incipient, flexural) foreland basins, while flooding of adjacent carbonate platforms and other cratonic highs occurred. In contrast, deposition of this resource type on rifted passive margins was likely the result of reactivation of long-lived cratonic features or salt tectonic regimes that created semi-confined basins. Commonly, loading by thick sections of clastic material, following thermal relaxation after plate collision or rift phases, advances kerogen maturation. With few exceptions, North American self-sourced reservoirs appear to be associated with calcitic seas and predominantly greenhouse or transitional ("warm" to "cool") global climatic conditions. Significant changes to the global carbon budget may also be a contributing factor in the stratigraphic distribution of continuous resource plays, requiring additional evaluation.
Global tectonic of Enceladus driven by subsidence of South Polar Terrain
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-07-01
Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. Our hypothesis states that this mass loss is the main driving mechanism of the tectonic processes. The hypothesis is presented in [2] and [3]. We find that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: (i) Subsidence of the 'lithosphere' of SPT. (ii) Flow of the matter in the mantle. (iii) Motion of plates adjacent to SPT towards the active region. The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm per yr. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ~0.02 mm per yr, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ~0.02 mm per yr for the Newtonian rheology. The SPT is not compressed, so "tiger stripes" could exist for long time. Only after significant subsidence the regime of stresses changes to compression. It means the end of activity in a given region. The future region of activity is suggested. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.
Relating stress models of magma emplacement to volcano-tectonic earthquakes
NASA Astrophysics Data System (ADS)
Vargas-Bracamontes, D.; Neuberg, J.
2007-12-01
Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.
Abrupt climate-independent fire regime changes
Pausas, Juli G.; Keeley, Jon E.
2014-01-01
Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.
Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone
NASA Astrophysics Data System (ADS)
Ramírez-Herrera, M. Teresa; Kostoglodov, Vladimir; Urrutia-Fucugauchi, Jaime
2011-08-01
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7-0.9 m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3 ± 0.5 m/ka. In contrast, steady rates of uplift (ca. 0.5-1.0 m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7 m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6 ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.
NASA Astrophysics Data System (ADS)
Willenbring, J. K.; Jerolmack, D. J.
2015-12-01
At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.
NASA Astrophysics Data System (ADS)
Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart
2016-04-01
The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically-induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.
NASA Astrophysics Data System (ADS)
Gilkerson, W.; Leroy, T. H.; Patton, J. R.; Williams, T. B.
2010-12-01
Humboldt Bay in Northern California provides a unique opportunity to investigate the effects of relative sea level change on both native flora and maritime aquiculture as influenced by both tectonic and eustatic sea-level changes. This combination of superposed influences makes quantitatively predicting relative sea-level more uncertain and consumption of the results for public planning purposes exceedingly difficult. Public digestion for practical purposes is confounded by the fact that the uncertainty for eustatic sea-level changes is a magnitude issue while the uncertainty associated with the tectonic land level changes is both a magnitude and timing problem. Secondly, the public is less well informed regarding how crustal deformation contributes to relative sea-level change. We model the superposed effects of eustatic sea-level rise and tectonically driven land-level changes on the spatial distribution of habitats suitable to native eelgrass (Zostera marina) and oyster mariculture operations in Humboldt Bay. While these intertidal organisms were chosen primarily because they have vertically restricted spatial distributions that can be successfully modeled, the public awareness of their ecologic and economic importance is also well developed. We employ easy to understand graphics depicting conceptual ideas along with maps generated from the modeling results to develop locally relevant estimates of future sea level rise over the next 100 years, a time frame consistent with local planning. We bracket these estimates based on the range of possible vertical deformation changes. These graphic displays can be used as a starting point to propose local outcomes from global and regional relative sea-level changes with respect to changes in the distribution of suitable habitat for ecologically and economically valuable species. Currently the largest sources of uncertainty for changes in relative sea-level in the Humboldt Bay area are 1) the rate and magnitude of tectonic deformation throughout the earthquake cycle and 2) the stability and reliability of the tide gauges and other benchmarks assumed to be stable in the Humboldt Bay region.
Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)
NASA Astrophysics Data System (ADS)
Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.
2015-04-01
A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake shorelines outside the caldera. These faults have similar strikes as Pleistocene faults that define the left-stepping, north-northeast oriented segments of the volcano-tectonic axis of the inner trough of the Central Kenya Rift. In the center of the caldera, these faults are kinematically linked with oblique-slip and strike-slip transfer faults, similar to other sectors in the Central Kenya Rift. The structural setup of Menengai and the faults to the north and south of the eruptive center is thus compatible with tectono-magmatic activity in an oblique extensional tectonic regime, which reflects the tectonic and seismic activity along a nascent plate boundary.
Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size.
Franks, Peter J; Freckleton, Rob P; Beaulieu, Jeremy M; Leitch, Ilia J; Beerling, David J
2012-02-19
Tectonic processes drive megacycles of atmospheric carbon dioxide (CO(2)) concentration, c(a), that force large fluctuations in global climate. With a period of several hundred million years, these megacycles have been linked to the evolution of vascular plants, but adaptation at the subcellular scale has been difficult to determine because fossils typically do not preserve this information. Here we show, after accounting for evolutionary relatedness using phylogenetic comparative methods, that plant nuclear genome size (measured as the haploid DNA amount) and the size of stomatal guard cells are correlated across a broad taxonomic range of extant species. This phylogenetic regression was used to estimate the mean genome size of fossil plants from the size of fossil stomata. For the last 400 Myr, spanning almost the full evolutionary history of vascular plants, we found a significant correlation between fossil plant genome size and c(a), modelled independently using geochemical data. The correlation is consistent with selection for stomatal size and genome size by c(a) as plants adapted towards optimal leaf gas exchange under a changing CO(2) regime. Our findings point to the possibility that major episodes of change in c(a) throughout Earth history might have selected for changes in genome size, influencing plant diversification.
Sen, Sevket; Antoine, Pierre-Olivier; Varol, Baki; Ayyildiz, Turhan; Sözeri, Koray
2011-05-01
A recent fieldwork in the Kağızman-Tuzluca Basin in northeastern Turkey led us to the discovery of three vertebrate localities which yielded some limb bones of the giant rhino Paraceratherium, a crocodile tooth, and some small mammals, respectively. These discoveries allowed, for the first time to date some parts of the sedimentary units of this basin. This study also shows that the dispersal area of Paraceratherium is wider than it was known before. Eastern Turkey has several Cenozoic sedimentary basins formed during the collision of the Arabian and Eurasian plates. They are poorly documented for vertebrate paleontology. Consequently, the timing of tectonic activities, which led to the formation of the East Anatolian accretionary complex, is not constrained enough with a solid chronological framework. This study provides the first biostratigraphic evidences for the infill under the control of the compressive tectonic regime, which built the East Anatolian Plateau.
Complex deformation in the Caucasus region revealed by ambient noise seismic tomography
NASA Astrophysics Data System (ADS)
Legendre, Cédric P.; Tseng, Tai-Lin; Chen, Ying-Nien; Huang, Tzu-Ying; Gung, Yuan-Cheng; Karakhanyan, Arkadiy; Huang, Bor-Shouh
2017-08-01
Cross-correlation of 3years of ambient seismic noise recorded at 35 seismic stations deployed in Caucasus region yields hundreds of short-period surface-wave phase-speed dispersion curves on inter-station paths. We inverted these measurements using two techniques to construct tomographic images of the principal geological units of Caucasus. High-resolution isotropic and azimuthally anisotropic phase-velocity maps (at periods between 5 and 20s) and shear-velocity tomographic maps between 5 and 30km are generated. The resulting maps show a velocity dichotomy between the Caucasus region and the surrounding that is interpreted in term of changes in crustal thickness. There is also a strong dichotomy in the anisotropic pattern between the eastern part and the western part of the Caucasus. This difference in both amplitudes and directions of the 2ψ anisotropy is linked to the tectonic regime changes in the region. These observations suggest a good correlation between the tomographic models and the geology of the region. It was also possible to identify the early stage of the indentation of the Arabian Plate into the Eurasian plate, as well as to detect the possible magma chamber responsible for the Javakheti highland.
NASA Astrophysics Data System (ADS)
Sardar Abadi, Mehrdad; Da Silva, Anne-Christine; Amini, Abdolhossein; Aliabadi, Ali Akbar; Boulvain, Frédéric; Sardar Abadi, Mohammad Hossein
2014-11-01
The Kashafrud Formation was deposited in the extensional Kopeh-Dagh Basin during the Late Bajocian to Bathonian (Middle Jurassic) and is potentially the most important siliciclastic unit from NE Iran for petroleum geology. This extensional setting allowed the accumulation of about 1,700 m of siliciclastic sediments during a limited period of time (Upper Bajocian-Bathonian). Here, we present a detailed facies analysis combined with magnetic susceptibility (MS) results focusing on the exceptional record of the Pol-e-Gazi section in the southeastern part of the basin. MS is classically interpreted as related to the amount of detrital input. The amount of these detrital inputs and then the MS being classically influenced by sea-level changes, climate changes and tectonic activity. Facies analysis reveals that the studied rocks were deposited in shallow marine, slope to pro-delta settings. A major transgressive-regressive cycle is recorded in this formation, including fluvial-dominated delta to turbiditic pro-delta settings (transgressive phase), followed by siliciclastic to mixed siliciclastic and carbonate shoreface rocks (regressive phase). During the transgressive phase, hyperpycnal currents were feeding the basin. These hyperpycnal currents are interpreted as related to important tectonic variations, in relation to significant uplift of the hinterland during opening of the basin. This tectonic activity was responsible for stronger erosion, providing a higher amount of siliciclastic input into the basin, leading to a high MS signal. During the regressive phase, the tectonic activity strongly decreased. Furthermore, the depositional setting changed to a wave- to tide-dominated, mixed carbonate-siliciclastic setting. Because of the absence of strong tectonic variations, bulk MS was controlled by other factors such as sea-level and climatic changes. Fluctuations in carbonate production, possibly related to sea-level variations, influenced the MS of the siliciclastic/carbonate cycles. Carbonate intervals are characterized by a strong decrease of MS values indicates a gradual reduction of detrital influx. Therefore, the intensity of tectonic movement is thought to be the dominant factor in controlling sediment supply, changes in accommodation space and modes of deposition throughout the Middle Jurassic sedimentary succession in the Pol-e-Gazi section and possibly in the Kopeh-Dagh Basin in general.
NASA Astrophysics Data System (ADS)
Agard, Philippe; Angiboust, Samuel; Guillot, Stéphane; Burov, Evgueni
2015-04-01
Over the last decade, many studies based on field, petrological and geophysical evidence have emphasized the link between mineral reactions, fluid release and seismogenesis, either along the whole plate interface (eg., Hacker et al., 2003) or at specific depths (e.g., ~30 km: Audet et al., 2009; ~70-80 km: Angiboust et al., 2012). Although they argue for a crucial influence of fluids on subduction processes, large uncertainties remain when assessing their impact on the rheology of the plate interface across space and time. Kilometer-scale accreted terranes/units in both ancient and present-day subduction zones potentially allow to track changes in mechanical coupling along the plate interface. Despite some potential biases (exhumation is limited and episodic, lasting no more than a few My if any, from prefered depths -- mainly 30-40 and 70-80 km, and there are so far only few examples precisely located with respect to the plate interface) their record of changes in fluid regime and strain localisation is extremely valuable. One striking example of the role of fluids on plate interface rheology during nascent subduction is provided by metamorphic soles (i.e., ~500 m thick tectonic slices welded to the base of ophiolites). We show that their accretion to the ophiolite indeed only happens across a transient, optimal time-T-P window (after < 1-2 My, at 1±0.2 GPa, 750-850°C) associated with fluid release and infiltration, leading to similar effective rheology on both sides (i.e., downgoing crust and mantle wedge). This maximizes interplate mechanical coupling, as deformation gets distributed over a large band encompassing the plate interface (i.e., a few km), and promotes detachment of the sole from the sinking slab. We also show how tectonic slicing during mature subduction likely relates to short-term fluid release and repeated seismicity, based on the Monviso exposures (W. Alps, a relatively continuous, 15 km long fragment of oceanic lithosphere exhumed from ~80 km depths), which preserve evidence of intraslab fluid flow and eclogitic, intermediate-depth seismicity of Mw ~4. We finally address how, in the long-term and at subduction scale, the overall fluid content and fluid regime may control the slicing, size and metastability of exhumed units. We propose that mechanical coupling varies through time, from weak to strong, as a function of the contrast of effective viscosity on either side of the interface: a young and wet subduction interface will promote the formation of knockers and sole accretion, whereas a fluid-present yet drier and colder one will lead to mainly metasedimentary underplated material and large-scale slivers of (metastable) oceanic lithosphere. This interpretation is supported by bi-phase numerical models (allowing for fluid migration driven by concentrations in the rocks, non-lithostatic pressure gradients and deformation, mantle wedge hydration and mechanical weakening of the plate interface) showing that the detachment of large-scale oceanic tectonic slices is in particular promoted by fluid migration along the subduction interface. [Hacker et al., Journal of Geophysical Research 2003; Audet et al., Nature, 2009; Angiboust et al., Geology 2012
Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M
2007-06-01
The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.
The Modulation of Crustal Magmatic Systems by Tectonic Forcing
NASA Astrophysics Data System (ADS)
Karakas, O.; Dufek, J.
2010-12-01
The amount, location and residence time of melt in the crust significantly impacts crustal structure and influences the composition, frequency, and volume of eruptive products. In this study, we develop a two dimensional model that simulates the response of the crust to prolonged mantle-derived intrusions in arc environments. The domain includes the entire crustal section and upper mantle and focuses on the evolving thermal structure due to intrusions and external tectonic forcing. Magmatic intrusion into the crust can be accommodated by extension or thickening of the crust or some combination of both mechanisms. Additionally, external tectonic forcing can generate thicker crustal sections, while tectonic extension can significantly thin the crust. We monitor the thermal response, melt fraction and surface heat flux for different tectonic conditions and melt flux from the mantle. The amount of crustal melt versus fractionated primary mantle melts present in the crustal column helps determine crustal structure and growth through time. We express the amount of crustal melting in terms of an efficiency; we define the melting efficiency as the ratio of the melted volume of crustal material to the volume of melt expected from a strict enthalpy balance as explained by Dufek and Bergantz (2005). Melting efficiencies are less than 1 in real systems because heat diffuses to sections of the crust that never melt. In general, thick crust and crust experiencing extended compressional regimes results in an increased melting efficiency; and thin crust and crust with high extension rates have lower efficiency. In most settings, maximum efficiencies are less than 0.05-0.10. We also observe that with a geophysically estimated flux, the mantle-derived magma bodies build up isolated magma pods that are distributed in the crust. One of the aspects of this work is to monitor the location and size of these magma chambers in the crustal column. We further investigate the rheological, stress and pre-existing structure control on the longevity of the individual magmatic systems.
Seismic stratigraphy, tectonics and depositional history in the Halk el Menzel region, NE Tunisia
NASA Astrophysics Data System (ADS)
Sebei, Kawthar; Inoubli, Mohamed Hédi; Boussiga, Haïfa; Tlig, Said; Alouani, Rabah; Boujamaoui, Mustapha
2007-01-01
In the Halk el Menzel area, the proximal- to pelagic platform transition and related tectonic events during the Upper Cretaceous-Lower Miocene have not been taken into adequate consideration. The integrated interpretation of outcrop and subsurface data help define a seismic stratigraphic model and clarify the geodynamic evolution of the Halk el Menzel block. The sedimentary column comprises marls and limestones of the Campanian to Upper Eocene, overlain by Oligocene to Lower Miocene aged siliciclastics and carbonates. Well to well correlations show sedimentary sequences vary considerably in lithofacies and thicknesses over short distances with remarkable gaps. The comparison of sedimentary sequences cut by borehole and seismic stratigraphic modelling as well help define ten third order depositional sequences (S1-S10). Sequences S1 through S6 (Campanian-Paleocene) are mainly characterized by oblique to sigmoid configurations with prograding sedimentary structures, whereas, sequences S7-S10 (Ypresian to Middle Miocene) are organized in shallow water deposits with marked clinoform ramp geometry. Sedimentary discontinuities developed at sequence boundaries are thought to indicate widespread fall in relative sea level. Angular unconformities record a transpressive tectonic regime that operated from the Campanian to Upper Eocene. The geometry of sequences with reduced thicknesses, differential dipping of internal seismic reflections and associated normal faulting located westerly in the area, draw attention to a depositional sedimentary system developed on a gentle slope evolving from a tectonically driven steepening towards the Northwest. The seismic profiles help delimit normal faulting control environments of deposition. In contrast, reef build-ups in the Eastern parts occupy paleohighs NE-SW in strike with bordering Upper Maastrichtian-Ypresian seismic facies onlapping Upper Cretaceous counterparts. During the Middle-Upper Eocene, transpressive stress caused reactivation of faults from normal to reverse play. This has culminated in propagation folds located to the west; whereas, the eastern part of the block has suffered progressive subsidence. Transgressive carbonate depositional sequences have predominated during the Middle Miocene and have sealed pre-existing tectonic structures.
Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling
NASA Astrophysics Data System (ADS)
Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.
2017-12-01
Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.
NASA Astrophysics Data System (ADS)
Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike
2018-02-01
Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below 1400 °C during post-Archean times, probably sometime shortly after 2 Ga. At around this time kimberlites replace komatiites as the hallmark mantle-derived magmatic feature of continental shields worldwide. The remarkable Mesozoic-Cenozoic 'kimberlite bloom' between 250-50 Ma may represent the ideal circumstance under which the relatively cool and volatile-fluxed cratonic roots of the Pangea supercontinent underwent significant tectonic disturbance. This created more than 60% of world's known kimberlites in a combination of redox- and decompression-related low-degree partial melting. Less than 2% of world's known kimberlites formed after 50 Ma, and the tectonic settings of rare 'young' kimberlites from eastern Africa and western North America demonstrate that far-field stresses on cratonic lithosphere enforced by either continental rifting or cold subduction play a crucial role in enabling kimberlite magma transfer to Earth's surface.
NASA Astrophysics Data System (ADS)
Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze
2014-05-01
Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.
Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics
NASA Astrophysics Data System (ADS)
Reilinger, Robert; McClusky, Simon
2011-09-01
We use geodetic and plate tectonic observations to constrain the tectonic evolution of the Nubia-Arabia-Eurasia plate system. Two phases of slowing of Nubia-Eurasia convergence, each of which resulted in an ˜50 per cent decrease in the rate of convergence, coincided with the initiation of Nubia-Arabia continental rifting along the Red Sea and Somalia-Arabia rifting along the Gulf of Aden at 24 ± 4 Ma, and the initiation of oceanic rifting along the full extent of the Gulf of Aden at 11 ± 2 Ma. In addition, both the northern and southern Red Sea (Nubia-Arabia plate boundary) underwent changes in the configuration of extension at 11 ± 2 Ma, including the transfer of extension from the Suez Rift to the Gulf of Aqaba/Dead Sea fault system in the north, and from the central Red Sea Basin (Bab al Mandab) to the Afar volcanic zone in the south. While Nubia-Eurasia convergence slowed, the rate of Arabia-Eurasia convergence remained constant within the resolution of our observations, and is indistinguishable from the present-day global positioning system rate. The timing of the initial slowing of Nubia-Eurasia convergence (24 ± 4 Ma) corresponds to the initiation of extensional tectonics in the Mediterranean Basin, and the second phase of slowing to changes in the character of Mediterranean extension reported at ˜11 Ma. These observations are consistent with the hypothesis that changes in Nubia-Eurasia convergence, and associated Nubia-Arabia divergence, are the fundamental cause of both Mediterranean and Middle East post-Late Oligocene tectonics. We speculate about the implications of these kinematic relationships for the dynamics of Nubia-Arabia-Eurasia plate interactions, and favour the interpretation that slowing of Nubia-Eurasia convergence, and the resulting tectonic changes in the Mediterranean Basin and Middle East, resulted from a decrease in slab pull from the Arabia-subducted lithosphere across the Nubia-Arabia, evolving plate boundary.
Systematic detection and classification of earthquake clusters in Italy
NASA Astrophysics Data System (ADS)
Poli, P.; Ben-Zion, Y.; Zaliapin, I. V.
2017-12-01
We perform a systematic analysis of spatio-temporal clustering of 2007-2017 earthquakes in Italy with magnitudes m>3. The study employs the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b] with basic data-driven parameters. The results indicate that seismicity in Italy (an extensional tectonic regime) is dominated by clustered events, with smaller proportion of background events than in California. Evaluation of internal cluster properties allows separation of swarm-like from burst-like seismicity. This classification highlights a strong geographical coherence of cluster properties. Swarm-like seismicity are dominant in regions characterized by relatively slow deformation with possible elevated temperature and/or fluids (e.g. Alto Tiberina, Pollino), while burst-like seismicity are observed in crystalline tectonic regions (Alps and Calabrian Arc) and in Central Italy where moderate to large earthquakes are frequent (e.g. L'Aquila, Amatrice). To better assess the variation of seismicity style across Italy, we also perform a clustering analysis with region-specific parameters. This analysis highlights clear spatial changes of the threshold separating background and clustered seismicity, and permits better resolution of different clusters in specific geological regions. For example, a large proportion of repeaters is found in the Etna region as expected for volcanic-induced seismicity. A similar behavior is observed in the northern Apennines with high pore pressure associated with mantle degassing. The observed variations of earthquakes properties highlight shortcomings of practices using large-scale average seismic properties, and points to connections between seismicity and local properties of the lithosphere. The observations help to improve the understanding of the physics governing the occurrence of earthquakes in different regions.
Global-scale tectonic patterns on Pluto
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Keane, J. T.; Kamata, S.
2016-12-01
The New Horizons spacecraft revealed a global-scale tectonic pattern on the surface of Pluto which is presumably related to its formation and early evolution. Changes in the rotational and tidal potentials, expansion, and loading can generate stresses capable of producing global-scale tectonic patterns. The current alignment of Sputnik Planum with the tidal axis suggests a reorientation of Pluto relative to the rotation and tidal axes, or true polar wander. This reorientation can be driven by mass loading associated with Sputnik Planum. We developed a general theoretical formalism for the calculation of tectonic patterns due to a variety of process including true polar wander, loading, and expansion. The formalism is general enough to be applicable to non-axisymmetric loads. We illustrate that the observed global-scale tectonic pattern can be explained by stresses generated by true polar wander, Sputnik Planum loading, and expansion.
NASA Astrophysics Data System (ADS)
Datt, Devi
2017-04-01
This paper describes the results of a continuing investigation of tectonic influence on channel pattern and morphology of Alaknanda River in Lesser Garhwal Himalaya, Uttarakhand, India. Extensive field investigations using conventional methods supported by topographical sheets and remote sensing data (LISS IV), were undertaken.The results are classified into three sections :- tectonics, channel pattern and impact of tectonics on channel pattern. The channel length is divided into 8 meanders sets of 3 segments from Supana to Kirtinagar. Thereafter, a litho-tectonic map of the Srinagar valley was prepared. The style of active tectonics on deformation and characterization of fluvial landscape was investigated on typical strike-slip transverse faults near the zone of North Almora Thrust (NAT). NAT is a major tectonic unit of the Lesser Himalaya which passes through the northern margin from NW to SE direction.. The structural and lithological controls on the Alaknanda River system in Srinagar valley are reflected on distinct drainage patterns, abrupt change in flow direction, incised meandering, offset river channels, straight river lines, palaeo-channels, multi levels of terraces, knick points and pools in longitudinal profile. The results of the study show that the sinuosity index of the river is 1.35. Transverse faulting is very common along the NAT. An earlier generation of linear tectonic features were displaced by the latter phase of deformation. Significant deviations were observed in river channel at deformation junctions. Moreover, all 8 sets of meanders are strongly influenced by tectonic features. The meandering course is, thereby, correlated with tectonic features. It is shown that the river channel is strongly influenced by the tectonic features in the study area. Key Words: Tectonic, Meander, Channel pattern, deformation, Knick point.
The East Falcon Basin: Its Caribbean roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartok, P.; Boesi, T.
1996-08-01
The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less
Allen, Trevor I.; Wald, David J.
2009-01-01
Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.
NASA Astrophysics Data System (ADS)
El-Fakharani, Abdelhamid; Hamimi, Zakaria
2013-04-01
Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.
NASA Astrophysics Data System (ADS)
Muhs, Daniel R.; Schweig, Eugene S.; Simmons, Kathleen R.; Halley, Robert B.
2017-12-01
The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ∼11-12 m and outer-coast, wave-cut benches are as high as ∼14 m. Uranium-series analyses of corals yield ages ranging from ∼133 ka to ∼119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02-0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ∼100 ka (MIS 5.3) or ∼80 ka (MIS 5.1) sea stands and results of the present study support this.
Muhs, Daniel; Schweig, Eugene S.; Simmons, Kathleen; Halley, Robert B.
2017-01-01
The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ∼11–12 m and outer-coast, wave-cut benches are as high as ∼14 m. Uranium-series analyses of corals yield ages ranging from ∼133 ka to ∼119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02–0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ∼100 ka (MIS 5.3) or ∼80 ka (MIS 5.1) sea stands and results of the present study support this.
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron
2015-04-01
Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.
NASA Astrophysics Data System (ADS)
Farahat, Esam S.; Ali, Shehata; Hauzenberger, Christoph
2017-01-01
Mineral and whole-rock chemistry of Red Sea rift-related Tertiary basalts from south Quseir city, central Eastern Desert of Egypt is presented to investigate their petrogenesis and relationship to tectonic processes. The south Quseir basalts (SQB) are classified as high-Ti (TiO2 >2 wt.%) subalkaline transitional lava emplaced in an anorogenic tectonic setting. Their Mg# varies from 48 to 53 indicating the evolved nature of the SQB. Pearce element ratios suggest that the SQB magmas evolved via fractional crystallization of olivine + clinopyroxene ± plagioclase, but the absence of Eu anomalies argues against significant plagioclase fractionation. Clinopyroxene compositions provide evidence for polybaric fractionation of the parental mafic magmas. Estimated temperatures of crystallization are 1015 to 1207 °C for clinopyroxene and 1076 to 1155 °C for plagioclase. These values are interpreted to result from early stage crystallization of clinopyroxene followed by concurrent crystallization of clinopyroxene and plagioclase. The incompatible trace element signatures of the SQB (La/Ba = 0.08-0.10 and La/Nb = 0.89-1.04) are comparable to those of ocean island basalts (OIB) generated from an asthenospheric mantle source unaffected by subduction components. Modeling calculations indicate that the SQB primary magmas were derived from 4-5% partial melting of a garnet-bearing lherzolite mantle source. The NE Egyptian basaltic volcanism is spatially and temporally related to Red Sea rifting and to the local E-W striking faults, confirming a relationship to tectonic activity. Our results suggest that the extensional regime associated with Red Sea rifting controlled the generation of the Egyptian basalts, likely as a result of passive upwelling of asthenospheric mantle.
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.
2007-01-01
Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.
NASA Astrophysics Data System (ADS)
Cai, Da-wei; Tang, Yong; Zhang, Hui; Lv, Zheng-Hang; Liu, Yun-long
2017-06-01
Most Silurian-Devonian granites in South China are S- or I-type granites, which are suggested to be petrogenetically related to the Wuyi-Yunkai orogeny. In this paper, we present the detailed LA-ICP-MS zircon U-Pb dating, major and trace element geochemical, and Nd-Hf isotopic data for Xiqin A-type granites in the northeastern Cathaysia Block, SE China. Zircon U-Pb dating results show that the Xiqin granites were emplaced at about 410 Ma, indicating that they were generated at the end of Wuyi-Yunkai orogeny. These granites are high in K2O + Na2O (6.31-8.79 wt%), high field strength elements (Zr + Nb + Ce + Y = 427-699 ppm), rare earth elements (total REE = 221-361 ppm) as well as high Ga/Al ratios (10,000 Ga/Al = 2.50-3.10), and show characteristics typical of A-type granites. εHf(t) values of the Xiqin granites mainly vary from -0.4 to -3.1 and yield Mesoproterozoic T2DM(Hf) (mainly ranging from 1.29 to 1.45 Ga). The εNd(t) values are from -1.23 to -2.11 and T2DM(Nd) vary from 1.25 to 1.32 Ga. These isotopic data suggest that the Xiqin granites were generated by partial melting of metavolcanic rocks with minor metasedimentary rocks in the lower crust. Our data on the Xiqin granites, coupled with previous studies of Silurian-Devonian magmatism, suggest that the tectonic regime had changed to a strongly post-collisional extension environment in the Wuyi-Yunkai orogen at least since 410 Ma, and that delamination, which accounts for the change in stress from the compression to extension and asthenospheric upwelling during the early Paleozoic, plays a significant role in the generation of Xiqin A-type granites.
NASA Astrophysics Data System (ADS)
Jaquet, O.; Lantuéjoul, C.; Goto, J.
2017-10-01
Risk assessments in relation to the siting of potential deep geological repositories for radioactive wastes demand the estimation of long-term tectonic hazards such as volcanicity and rock deformation. Owing to their tectonic situation, such evaluations concern many industrial regions around the world. For sites near volcanically active regions, a prevailing source of uncertainty is related to volcanic hazard. For specific situations, in particular in relation to geological repository siting, the requirements for the assessment of volcanic and tectonic hazards have to be expanded to 1 million years. At such time scales, tectonic changes are likely to influence volcanic hazard and therefore a particular stochastic model needs to be developed for the estimation of volcanic hazard. The concepts and theoretical basis of the proposed model are given and a methodological illustration is provided using data from the Tohoku region of Japan.
The origin of strike-slip tectonics in continental rifts
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Pagli, C.; Yun, S. H.; Keir, D.; Wang, H.
2016-12-01
Although continental rifts are zones of lithospheric extension, strike-slip tectonics is also accommodated within rifts and its origin remains controversial. Here we present a combined analysis of recent seismicity, InSAR and GPS derived strain maps to reveal that the plate motion in Afar is accommodated primarily by extensional tectonics in all rift arms and lacks evidences of regional scale bookshelf tectonics. However in the rifts of central Afar we identify crustal extension and normal faulting in the central part of the rifts but strike-slip earthquakes at the rift tips. We investigate if strike-slip can be the result of Coulomb stress changes induced by recent dyking but models do not explain these earthquakes. Instead we explain strike-slips as shearing at the tips of a broad zone of spreading where extension terminates against unstretched lithosphere. Our results demonstrate that plate spreading can develop both strike-slip and extensional tectonics in the same rifts.
Rapid biological speciation driven by tectonic evolution in New Zealand
NASA Astrophysics Data System (ADS)
Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.
2016-02-01
Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.
NASA Astrophysics Data System (ADS)
Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.
2017-12-01
Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.
NASA Astrophysics Data System (ADS)
Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu
2013-12-01
Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.
Slip slidin' away: A post-glacial environmental history of the Waipaoa River basin
NASA Astrophysics Data System (ADS)
Gomez, Basil; Rosser, Brenda J.
2018-04-01
The dramatic changes that occurred to the post-glacial landscape in the headwaters of the Waipaoa River basin are a consequence of perturbations about the equilibrium that exists between the rate of tectonic uplift and fluvial incision. At times when the amount of coarse sediment delivered to channels exceeds the capacity of streams to remove it, the channel bed rises at the rate of tectonic uplift. Once bedload overcapacity is replaced by undercapacity and the alluvial cover is depleted, streams reestablish contact with bedrock and recuperate the time lost to fluvial incision. The first major perturbation occurred during the final phase of the last glaciation (ca. 33-17.5 cal. ka), when aggradation was driven by a climate-forced variation in the relative supplies of sediment and water. We suggest that the subsequent transformation of channels in the headwaters of the Waipaoa River basin, from alluvial to bedrock, occurred as the atmospheric and oceanic circulation converged on their contemporary patterns ca. 12 cal. ka. A second major perturbation that continues to the present began ca. 1910-1912 CE, when a massive increase in sediment load was accompanied by a modest increase in water discharge after the native vegetation cover in the headwaters was replaced by pasture. The processes of terrace creation and incision are inherently unsteady, and in five interim cases incision was arrested by a transient increase in the thickness of the alluvial cover that was a response to climatic forcing. Events that disrupted the native vegetation cover in the headwaters also modulated patterns of sediment dispersal and accumulation in other parts of the fluvial system and caused rapid, storm-driven infilling of the Poverty Bay Flats. Tectonic subsidence dictates the course of the Waipaoa River across Poverty Bay Flats which, because the modern rate of floodplain construction by vertical accretion is rapid relative to the amount of destruction by lateral channel migration, has remained virtually unchanged for the past 100 years. During this time the channel assumed a narrower, deeper form that is in equilibrium with the contemporary supply of sediment and hydraulic regime.
NASA Astrophysics Data System (ADS)
Nittrouer, J. A.
2015-12-01
The downstream termination of gravel is measured for two fluvial-deltaic systems: the Selenga and Mississippi rivers. These end-members vary by an order of magnitude for slope, water and sediment discharge, and delta area. Moreover, the contrast between the tectonic regimes of the receiving basins is stark: the Selenga delta is located along the deep-water margin of Lake Baikal, which is an active half-graben rift basin, while the Mississippi discharges onto a passive margin with little tectonic influence. Nevertheless, the two rivers share a striking sedimentological similarity: near the delta apex, gravel is eliminated from the downstream dispersal system, and so sediment reaching the land-water interface is exclusively sand and mud. Field data for both rivers, including sediment samples and water discharge and flow velocity measurements, are used to validate morphodynamic models that assess the downstream changes in fluid stress and gravel transport. The analyses show that there are two distinct mechanisms that drive gravel deposition and prohibit dispersal throughout the delta. For the Selenga, water partitioning among bifurcating channels produces a non-linear reduction in shear stress and gravel deposition. For the Mississippi, backwater flow arrests the downstream movement of gravel during low and moderate water discharges, and although floods overcome backwater and produce uniform flow to the outlet, the duration of floods is too short to disperse gravel throughout the delta. Given sufficient time, model results indicate that both rivers should approach morphodynamic equilibrium, whereby aggradation due to sediment deposition raises local bed slope and sediment transport capacity, thereby facilitating downstream gravel movement. However, both systems possess unique characteristics that prevent this process from occurring. For the Selenga, tectonically induced movements regularly down drop portions of the delta below base level, forcing renewed delta sedimentation. For the Mississippi, channel filling produces regular avulsions, whereby mainstem channels are abandoned. In both cases, sediment is sequestered in perpetuity, and gravel dispersal within the delta begins anew. This presentation will discuss the stratigraphic implications for these different scenarios.
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
Generation of felsic crust in the Archean: a geodynamic modeling perspective
NASA Astrophysics Data System (ADS)
Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael
2015-04-01
The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified two distinct types of continent crust. The first type is a pristine granite-greenstone-like crust with dome-and-keel geometry formed over delaminating-upwelling mantle which is mostly subjected to vertical tectonics processes. By contrast, the second type is a reworked (accreted) crust comprising strongly deformed granite-greenstone and subduction-related sequences and subjected to both strong horizontal compression and vertical tectonics processes. Thus, our study has identified a possible spatial and temporal transition from the lower-grade granite-greenstone terrains to higher-grade gneiss terrains in the Archean as each tectonic cycle is terminated by short-lived subduction. We suggest that the contemporaneity of the proposed mechanisms for the generation of TTGs explains the variety and complexity of the Archean geological record.
NASA Astrophysics Data System (ADS)
Sun, Li-Qiang; Ling, Hong-Fei; Shen, Wei-Zhou; Wang, Kai-Xing; Huang, Guo-Long
2017-07-01
The evolution of the tectonic regime that was responsible for the Indosinian granitoids in the South China Block (SCB) is still controversial. Investigations on A-type granites can provide important information regarding this tectonic evolution. A detailed study that utilizes whole-rock elemental, Sr-Nd isotopic, in situ zircon U-Pb and Lu-Hf isotopic geochemistry is conducted on the Miantuwo biotite granite in northern Guangdong Province and the Pingtian biotite monzogranite in southern Jiangxi Province, South China. The new data indicate that both the Miantuwo and Pingtian granites were emplaced at 233 ± 2 Ma and show metaluminous to slightly peraluminous A-type granite affinity. The two granites are characterized by high amounts of rare earth elements (total REEs = 247 ppm-557 ppm and 251 ppm-342 ppm) and high field strength elements (Zr + Nb + Ce + Y = 325 ppm-605 ppm and 343 ppm-496 ppm) and high Ga/Al ratios (10,000 × Ga/Al = 2.50-2.98 and 2.62-2.70). Calculations from a zircon saturation thermometer and apatite saturation thermometer indicate that the magmatic temperatures were 800 °C-980 °C for both granites. Both the Miantuwo and Pingtian granites show relatively high initial 87Sr/86Sr ratios (0.7151-0.7185 and 0.7170-0.7189), low εNd(t) values (- 9.8 to - 8.6 and - 9.7 to - 9.1) and low to moderate zircon εHf(t) values (- 10.4 to - 6.6 and - 9.5 to - 4.6). Based on these data, we suggest that these two A-type granites were derived from the partial melting of existing mafic to intermediate rocks in the lower crust in response to the underplating and/or intraplating of mantle-derived magma. Our study on the Miantuwo and Pingtian granites, alongside previous studies on other Triassic A-type granites in South China, indicates an extensional tectonic environment during the Late Triassic in the interior of the Cathaysia Block. Alongside existing geological observations and the tectonic evolution in the SCB, we suggest that the interior of the SCB was dominated by a compressional tectonic environment during the Late Permian-Middle Triassic in response to the collisions between the SCB and ambient blocks, and then a tectonic transition from this compressional environment to a post-collisional extension environment began at approximately 233 Ma.
Brittle strength of basaltic rock masses with applications to Venus
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1993-06-01
Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.
NASA Astrophysics Data System (ADS)
von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik
2015-04-01
Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold glacial periods with intensive sediment supply and strong vertical sedimentation of tributaries originating from a westerly direction. Thus, the middle course of the Kura River shows a dynamic equilibrium between competing tectonic and climatic processes.
Geology Field Camp at Southern Illinois University: Six weeks exploring four tectonic regimes
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Conder, J. A.; Ferre, E. C.; Heij, G.
2013-12-01
Field Geology is typically the capstone course for an undergraduate Bachelor of Science degree in Geology. This type of course brings together the varied sub-disciplines and course topics students encounter in their undergraduate experience, and puts these in context of active Earth processes. At the same time, a significant fraction of Geology departments have dropped field geology from their offerings and students must choose from those programs still offering the course. Southern Illinois University has offered field geology for over 40 years, stationed in and around southwestern Montana. This field camp offers experiences with four distinct tectonic settings: thick-skin contractional, thin-skin contractional, extensional, and anorogenic. The most challenging projects of the course involve mapping and interpreting Laramide and Sevier compressionally deformed areas. The major difference between the two types of deformation is that Laramide ('thick-skinned') tectonics encompasses the mid-crust in deformation while Sevier ('thin-skinned') deformation is limited to the uppermost portion of the crust. This difference results in markedly different fold styles and other deformational structures encountered, requiring different approaches to understanding and constructing the deformational histories of the regions. Extensional tectonics are explored with a paleoseismology project at Hebgen Lake, in Grand Teton National Park where the students typically spend two days, and at the Bitterroot Shear Zone - the edge of a metamorphic core complex along the eastern boundary of the Idaho batholith. While recent work from EarthScope and elsewhere casts doubt on Yellowstone as a mantle plume, Yellowstone remains the classic example of a continental hotspot. During visits through the park, students distinguish between the recent volcanics and hydrothermal activity of Yellowstone and the nearby Eocene Absaroka volcanics. Expanding on the story of the Yellowstone hotspot, a visit is made to Craters of the Moon National Monument in the Snake River Plain to examine some of the youngest volcanics in North America. Not only does field camp give students an occasion to put their knowledge-base developed during their undergraduate years into action, but it is also an ideal opportunity to expose students to the varied approaches applicable to distinct tectonic problems and situations. At SIU, we are proud to offer a wide range of experiences drawing from several important tectonic provinces giving students a strong foundation for their future geological careers and continuing scientific development.
Generation and Initiation of Plate Tectonics on Terrestrail Planets
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
The question of why plate tectonics occurs on Earth, but not on the other planets of our solar system, is one of the most fundamental issues in geophysics and planetary science. I study this problem using numerical simulations of mantle convection with a damage-grainsize feedback (grain-damage) to constrain the conditions necessary for plate tectonics to occur on a terrestrial planet, and how plate tectonics initiates. In Chapter 2, I use numerical simulations to determine how large a viscosity ratio, between pristine lithosphere and mantle, damage can offset to allow mobile (plate-like) convection. I then use the numerical results to formulate a new scaling law to describe the boundary between stagnant lid and plate-like regimes of mantle convection. I hypothesize that damage must reduce the viscosity of shear zones in the lithosphere to a critical value, equivalent to the underlying mantle viscosity, in order for plate tectonics to occur, and demonstrate that a scaling law based on this hypothesis reproduces the numerical results. For the Earth, damage is efficient in the lithosphere and provides a viable mechanism for the operation of plate tectonics. I apply my theory to super-Earths and map out the transition between plate-like and stagnant lid convection with a "planetary plate-tectonic phase" diagram in planet size-surface temperature space. Both size and surface temperature are important, with plate tectonics being favored for larger, cooler planets. This gives a natural explanation for Earth, Venus, and Mars, and implies that plate tectonics on exoplanets should correlate with size, incident solar radiation, and atmospheric composition. In Chapters 3 and 4 I focus on the initiation of plate tectonics. In Chapter 3, I develop detailed scaling laws describing plate speed and heat flow for mantle convection with grain-damage across a wide parameter range, with the intention of applying these scaling laws to the early Earth in Chapter 4. Convection with grain-damage scales differently than Newtonian convection; whereas the Nusselt number, Nu, typically scales with the Rayleigh number, Ra, to the 1/3 power, for grain-damage this exponent is larger because increasing Ra also enhances damage. In addition, Nu and plate velocity are also functions of the damage to healing ratio, (D/H); increasing D/H increases Nu (or plate speed) because more damage leads to more vigorous convection. In Chapter 4, I demonstrate that subduction can be sustained on the early Earth, that the style of subduction at this time was different than modern day plate tectonics, and that such subduction (or proto-subduction) can initiate rapidly after magma ocean solidification. The scaling laws from Chapter 3 show that, though either higher interior mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of at least 1.5 cm/yr, can still be maintained in the Hadean, even if the primordial atmosphere was CO2 rich. Furthermore, when the interior mantle temperature is high (e.g. above ≈ 2000 K), the mode of subduction switches to a "sluggish subduction" style, where downwellings are more drip-like than slab-like and plate boundaries are more diffuse. Numerical models of post-magma ocean mantle convection, and a scaling analysis based on the results of these models, demonstrate that proto-plate tectonics likely initiates within ˜100 Myrs of magma ocean solidification. Combined with the conclusion that proto-subduction could be maintained on the early Earth, my results are consistent with evidence for Hadean subduction from zircon data, and indicate that the subduction inferred from zircons may have been distinct from modern day plate tectonics. After the initiation of proto-subduction, which occurs as a rapid overturn of the whole lithosphere, mobile lid convection takes place as non-plate tectonic "sluggish subduction" As both the mantle interior and climate cool, modern style plate tectonics develops. The rapid, initial subduction event may help hasten the onset of modern style plate tectonics by drawing excess CO 2 out of the atmosphere and cooling the climate.
The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia
NASA Astrophysics Data System (ADS)
Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry
2005-04-01
Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.
NASA Astrophysics Data System (ADS)
Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter
2012-03-01
Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.
du Bray, Edward A.; John, David A.
2011-01-01
Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably reflects extensional tectonics that dominated during these periods of arc magmatism. Mineral deposits associated with ancestral Cascades arc rocks are uncommon; most are small and low grade relative to those found in other continental magmatic arcs. The small size, low grade, and dearth of deposits, especially in the southern two-thirds of the ancestral arc, probably reflect many factors, the most important of which may be the prevalence of extensional tectonics within this arc domain during this magmatic episode. Progressive clockwise rotation of the forearc block west of the evolving Oregon part of the ancestral Cascades magmatism produced an extensional regime that did not foster significant mineral deposit formation. In contrast, the Washington arc domain developed in a transpressional to mildly compressive regime that was more conducive to magmatic processes and hydrothermal fluid channeling critical to deposit formation. Small, low-grade porphyry copper deposits in the northern third of the ancestral Cascades arc segment also may be a consequence of more mature continental crust, including a Mesozoic component, beneath Washington north of Mount St. Helens.
Can future land use change be usefully predicted?
NASA Astrophysics Data System (ADS)
Ramankutty, N.; Coomes, O.
2011-12-01
There has been increasing recognition over the last decade that land use and land cover change is an important driver of global environmental change. Consequently, there have been growing efforts to understanding processes of land change from local-to-global scales, and to develop models to predict future changes in the land. However, we believe that such efforts are hampered by limited attention being paid to the critical points of land change. Here, we present a framework for understanding land use change by distinguishing within-regime land-use dynamics from land-use regime shifts. Illustrative historical examples reveal the significance of land-use regime shifts. We further argue that the land-use literature predominantly demonstrates a good understanding (with predictive power) of within-regime dynamics, while understanding of land-use regime shifts is limited to ex post facto explanations with limited predictive capability. The focus of land use change science needs to be redirected toward studying land-use regime shifts if we are to have any hope of making useful future projections. We present a preliminary framework for understanding land-use regime-shifts, using two case studies in Latin America as examples. We finally discuss the implications of our proposal for land change science.
Modeling temporal changes of low-frequency earthquake bursts near Parkfield, CA
NASA Astrophysics Data System (ADS)
Wu, C.; Daub, E. G.
2016-12-01
Tectonic tremor and low-frequency earthquakes (LFE) are found in the deeper crust of various tectonic environments in the last decade. LFEs are presumed to be caused by failure of deep fault patches during a slow slip event, and the long-term variation in LFE recurrence could provide crucial insight into the deep fault zone processes that may lead to future large earthquakes. However, the physical mechanisms causing the temporal changes of LFE recurrence are still under debate. In this study, we combine observations of long-term changes in LFE burst activities near Parkfield, CA with a brittle and ductile friction (BDF) model, and use the model to constrain the possible physical mechanisms causing the observed long-term changes in LFE burst activities after the 2004 M6 Parkfield earthquake. The BDF model mimics the slipping of deep fault patches by a spring-drugged block slider with both brittle and ductile friction components. We use the BDF model to test possible mechanisms including static stress imposed by the Parkfield earthquake, changes in pore pressure, tectonic force, afterslip, brittle friction strength, and brittle contact failure distance. The simulation results suggest that changes in brittle friction strength and failure distance are more likely to cause the observed changes in LFE bursts than other mechanisms.
NASA Astrophysics Data System (ADS)
Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.
2017-12-01
In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.
Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2012-04-01
Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The hydrogeological characteristics hardly permit forced convection in the deep aquifer. Thus, we argue that thermal convection could be the driving mechanism of water flow in the carbonate reservoir. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. A relatively low permeability is required for thermal convection to occur. The carbonate reservoir can be thus envisaged as a hydrothermal convection system of large thickness and extension having a large over-heat ratio. Lateral variation of hydrothermal regime was also tested by using temperature data representing the reservoir thermal conditions. We found that thermal convection is of variable intensity and may more likely occur at an area (Ferrara structural high) where widespread fracturing due to tectonism is expected yielding a local increase in permeability.
This dynamic earth: the story of plate tectonics
Kious, W. Jacquelyne; Tilling, Robert I.
1996-01-01
In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.
de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias
2017-01-01
This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.
NASA Astrophysics Data System (ADS)
de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.
2017-12-01
This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.
Chan, Lung Sang; Gao, Jian-Feng
2017-01-01
The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640
NASA Astrophysics Data System (ADS)
Lozano, J. E.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.
2013-05-01
Peralkaline igneous rocks are characterized by a lower total aluminum content in comparison to the total alkalis content (Na + K), and are important to determine the tectonic environment in which they formed. The majority of the volcanic activity in Chihuahua State, northern Mexico, is mostly related to the formation of the Sierra Madre Occidental (SMO), product of the subduction of the Farallon plate. Volcanic activity of Paleogene age (late Oligocene) to the SW of Chihuahua city, specifically in the towns of Laborcita de San Javier and Cusihuiriachic, includes 27.5 M.a. peralkaline tuffs, capping the older rhyolites and andesites of the SMO. This sequence becomes thicker and more prominent towards the west. A volcanic section of more than 1,000 m thick is exposed in the Laborcita area, which ranges in age from 27 to 35 Ma. The oldest (bottom) unit is a calc-alkaline felsic ash-flow tuff and rhyolitic lavas interbedded with flows of mafic to intermediate composition. Overlying this unit, there is a basaltic andesite with an age of 30 to 33 Ma. Right at the top of this sequence, there is the widespread peralkaline ash-flow tuff (27.5 M.a.), focus of this study. Geochemical analyses performed to rhyolitic tuffs by Mauger and Dayvault (1983), have a peralkalinity index ranging from 0.94 to 1.20, while analyses prepared for this project only reach an index of 0.60. The appearance of peralkaline rocks in the Chihuahua State indicates the change of tectonic regime from compression (Farallon plate subduction) to distension (Basin and Range and/or Rio Grande Rift), about 27 M.a. ago.
NASA Astrophysics Data System (ADS)
Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.
2012-06-01
Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the only sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature, and with groundwater sampling followed by determination of major ions, tracers (such as Boron and Strontium), and isotopes (Oxygen, Deuterium, Tritium). Leaching experiments on soil samples and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of highly mineralized Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Chloride (up to 800 mg l-1). The deep water inflow recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 7800-17 500 m3 yr-1). It also partly recharges the landslide body, where the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This points to a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains.
Implications of sediment redistribution on modeled sea-level changes over millennial timescales
NASA Astrophysics Data System (ADS)
Ferrier, Ken
2016-04-01
Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
Wright, David F.; Stigall, Alycia L.
2013-01-01
Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode—from a vicariance to dispersal dominated macroevolutionary regime—across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior. PMID:23869215
The Hissar–Alay and the Pamirs: Deep-Seated Structure, Geodynamic Model, and Experimental Evidence
NASA Astrophysics Data System (ADS)
Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.
2018-03-01
The structural and geodynamic features of the Pamirs and the Hissar-Alay have been revealed based on geological and geophysical evidence supplemented by experimental data. It has been shown that both the Pamirs and the Hissar-Alay are geodynamic systems, the formation of which is related to interference of two geodynamic regimes: (i) global orogeny covering extensive territories of Eurasia and determining their similarity and (ii) regional regimes differing for the Pamirs and the Alay, which act independently within Central Asian and Apline-Himalayan mobile belts, respectively. The Pamirs do not act as an indentor during the formation of structure of the Hissar-Alay and areas to the north. It is stated that the Pamir-Alay segment of Asia is a reflection of the geodynamic countermotion setting (3D flow of mountain masses) of several distinct segments of the continental lithosphere, while the Pamirs are an intracontinental subduction domain at the surface, which represents a special tectonic-geodynamic type of structures.
NASA Astrophysics Data System (ADS)
Tuck-Martin, Amy; Adam, Jürgen; Eagles, Graeme
2015-04-01
Starting with the break up of Gondwana, the northwest Indian Ocean and its continental margins in Madagascar, East Africa and western India formed by divergence of the African and Indian plates and were shaped by a complicated sequence of plate boundary relocations, ridge propagation events, and the independent movement of the Seychelles microplate. As a result, attempts to reconcile the different plate-tectonic components and processes into a coherent kinematic model have so far been unsatisfactory. A new high-resolution plate kinematic model has been produced in an attempt to solve these problems, using seafloor spreading data and rotation parameters generated by a mixture of visual fitting of magnetic isochron data and iterative joint inversion of magnetic isochron and fracture zone data. Using plate motion vectors and plate boundary geometries derived from this model, the first-order regional stress pattern was modelled for distinct phases of margin formation. The stress pattern is correlated with the tectono-stratigraphic history of related sedimentary basins. The plate kinematic model identifies three phases of spreading, from the Jurassic to the Paleogene, which resulted in the formation of three main oceanic basins. Prior to these phases, intracontinental 'Karoo' rifting episodes in the late Carboniferous to late Triassic had failed to break up Gondwana, but initiated the formation of sedimentary basins along the East African and West Madagascan margins. At the start of the first phase of spreading (183 to 133 Ma) predominantly NW - SE extension caused continental rifting that separated Madagascar/India/Antarctica from Africa. Maximum horizontal stresses trended perpendicular to the local plate-kinematic vector, and parallel to the rift axes. During and after continental break-up and subsequent spreading, the regional stress regime changed drastically. The extensional stress regime became restricted to the active spreading ridges that in turn adopted trends normal to the plate divergence vector. Away from the active ridges, compressional horizontal stresses caused by ridge-push forces were transmitted through the subsiding oceanic lithosphere, with an SH max orientation parallel to plate divergence vectors. These changes are documented by the lower Bajocian continental breakup unconformity, which can be traced throughout East African basins. At 133 Ma, the plate boundary moved from north to south of Madagascar, incorporating it into the African plate and initiating its separation from Antarctica. The orientation of the plate divergence vector however did not change markedly. The second phase (89 - 61 Ma) led to the separation of India from Madagascar, initiating a new and dramatic change in stress orientation from N-S to ENE-WSW. This led to renewed tectonic activity in the sedimentary basins of western Madagascar. In the third phase (61 Ma to present) asymmetric spreading of the Carlsberg Ridge separated India from the Seychelles and the Mascarene Plateau via the southward propagation of the Carlsberg Ridge to form the Central Indian Ridge. The anti-clockwise rotation of the independent Seychelles microplate between chrons 28n (64.13 Ma) and 26n (58.38 Ma) and the opening of the short-lived Laxmi Basin (67 Ma to abandonment within chron 28n (64.13 - 63.10 Ma)) have been further constrained by the new plate kinematic model. Along the East African margin, SH max remained in a NE - SW orientation and the sedimentary basins experienced continued thick, deep water sediment deposition. Contemporaneously, in the sedimentary basins along East African passive margin, ridge-push related maximum horizontal stresses became progressively outweighed by local gravity-driven NE-SW maximum horizontal stresses trending parallel to the margin. These stress regimes are caused by sediment loading and extensional collapse of thick sediment wedges, predominantly controlled by margin geometry. Our study successfully integrates an interpretation of paleo-stress regimes constrained by the new high resolution plate kinematic and basin history to produce a margin scale tectono-stratigraphic framework that highlights the important interplay of plate boundary forces and basin formation events along the East African margin.
Influence of heat-piping on the initiation and evolution of plate tectonics
NASA Astrophysics Data System (ADS)
Tosi, N.; Baumeister, P. A.
2017-12-01
The onset of plate tectonics on Earth is believed to be caused by local weakening of the lithosphere. If the convective stress locally exceeds a critical value, a plate-breaking event may occur and initiate plate tectonics. Heat-piping is a heat transport process in which a large amount of melt produced at depth migrates either to the surface (extrusive volcanism) or the base of the crust and lithosphere (intrusive volcanism) due to positive buoyancy and over-pressure in the melting region. As a result of melt being extruded and compacted at the surface or within the crust and lithosphere, cold, near surface material is advected downwards. This mechanism, which effectively cools the mantle, has been proposed to dominate the early phases of the Earth's evolution preventing the onset of plate tectonics by leveling the slope of the lithosphere (e.g. Moore & Webb, 2013, Kankanamge & Moore, 2016). This in turn prevents the formation of lithospheric undulations that are necessary to locally build up sufficient stress to initiate a plate-breaking event. In this work we explore the effects of both extrusive and intrusive heat-piping on the critical yield stress needed to start a plate-breaking event and maintain a regime of surface mobilization over long timescales. We use a two-dimensional cylindrical model of compressible thermal convection. The melt generated at depth is extracted instantaneously according to a defined ratio between extrusive and intrusive volcanism. Extrusive melt is deposited at the surface, whereas intrusive melt is assumed to migrate to a depth dependent on the pressure distribution in the column above the melt region. Considering heat piping tends to increase the episodicity in the mobilization of the surface due to the additional local cooling caused by melt extraction but does not affect significantly the critical yield stress necessary to induce lid failure. Our models indicate that the evolution of plate mobility is a stochastic process, strongly dependent on the choice of the initial conditions. Heat-piping does not seem to be a controlling factor for the onset of plate tectonics.
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.
2016-12-01
Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.
Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
Behrendt, John C.
1993-01-01
Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.
NASA Astrophysics Data System (ADS)
Chappell, John
1993-03-01
The estuarine plain of the macrotidal Daly River, in monsoonal northern Australia, is underlain by extensive mid-Holocene mangrove swamp sediments which accumulated during the last stages of Post-glacial sea-level rise. Sediment yield from the catchment is too low to account for the volume which accumulated during sea-level rise, and onshore transport is invoked. This is supported by radiocarbon ages and facies analysis of the transgressive sediment tract beneath the maximum flooding surface (MFS), and of the tract of vertical sedimentation which extends from the MFS to the surface of estuarine/fluvial transition (the EFT). The EFT occurred about 5000 to 6000 BP throughout the estuarine plain. A contrasting situation exists in the lowland Holocene basin of the microtidal Sepik and Ramu rivers in Papua New Guinea, which derive sediment from highly tectonic catchments. A tectonic basin, which was a shallow brackish inland sea after Post-glacial transgression, is separated by a low divide from a deltaic plain. Progradation of the deltaic plain commenced about 3500 BP after regressive sedimentation eclipsed the inland sea in the tectonic basin. Contrasting organic facies, mangrove in the Daly and freshwater swamp deposits in the Sepik-Ramu, highlight differences between facies models of the two systems. Differences between fluvio-tidal regimes are reflected by the EFT, which is synchronous in the Daly and diachronous in the Sepik-Ramu, and possibly by the MFS which is diachronous in the Daly and may be synchronous in the Sepik-Ramu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, W.C.; Danforth, W.W.; Scanlon, K.M.
1990-06-01
An amphitheater-shaped scarp, approximately 55 km across in water depths from about 3,000 m to 6,700 m was imaged on the northern insular slope of Puerto Rico (southern slope of the Puerto Rico Trench) using the GLORIA side-scan sonar system. This scarp represents the removal of more than 1,500 m{sup 3} of Tertiary Arecibo basin strata. The head of the scarp coincides with the location of a fault zone observed on nearby seismic-reflection profiles. Interpretation of the GLORIA imagery, and a review of available bathymetric, geophysical, and stratigraphic data and tectonic-framework models suggest that the scarp formed as a consequencemore » of slope failure induced by tectonic oversteepening of the insular slope. The oversteepening may be a result of the most recent episode of convergence of the Caribbean and North American plates, which began approximately 4 million years ago. The Arecibo basin strata have been tilted approximately 4{degree} to the north and are apparently gravitationally unstable under the present seismic regime. The volume of material involved in this slope failure is comparable to the material displaced in tsunamogenic submarine landslides along the Peru Trench and Hawaiian Ridge. Therefore, if the slope failure north of Puerto Rico was catastrophic, it was large enough to have generated a tsunami that would have flooded the low ground of northern Puerto Rico.« less
Steeply-dipping extension fractures in the Newark basin, New Jersey
Herman, G.C.
2009-01-01
Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.
Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range
Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.
2007-01-01
Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei
2017-08-01
The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the onset of the subduction of the Paleo-Pacific Plate beneath the East Asian continental margin probably took place during the latest Triassic (ca. 215 Ma); (3) changes in the drifting direction of the Paleo-Pacific Plate were responsible for the intermittent magmatic activities; and (4) roll-back of the subducted plate resulted in the oceanwards migration of the magmatic arc and large-scale back-arc extension throughout NE China during the Early Cretaceous.
NASA Astrophysics Data System (ADS)
Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.
2017-12-01
On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic Network at Institute of Geophysics (SEISDMC, doi:10.11998/SeisDmc/SN), China Earthquake Networks Center and GS, QH, SC, XZ Seismic Networks, China Earthquake Administration. This work was supported by the National Nature Science Foundation of China under Grant No.41230206.
Hu, Zi-Min; Uwai, Shinya; Yu, Shen-Hui; Komatsu, Teruhisa; Ajisaka, Tetsuro; Duan, De-Lin
2011-09-01
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting. © 2011 Blackwell Publishing Ltd.
Plume-induced subduction and accretion on present-day Venus and Archean Earth
NASA Astrophysics Data System (ADS)
Davaille, A.; Smrekar, S. E.; Sibrant, A.; Mittelstaedt, E. L.
2017-12-01
Plate tectonics is responsible for the majority of Earth's heat loss, cycling of volatiles between the atmosphere and interior, recycling in the mantle of most of the surface plates, and possibly even for maintaining habitability. Despite its similarity in size and bulk density to Earth, Venus lacks plate tectonics today, and its mode of operation remains debated. Using laboratory experiments in colloidal dispersion which brittle viscosity-elasto-plastic rheology, we recently showed that plume-induced subduction could be operating nowadays on Venus. The experimental fluids were heated from below to produce upwelling plumes, which in turn produced tensile fractures in the lithosphere-like skin that formed on the upper surface. Plume material upwelling through the fractures then spread above the skin, analogous to volcanic flooding, and lead to bending and eventual subduction of the skin along arcuate segments. These segments are analogous to the semi-circular trenches seen on large coronae. Scaling analysis suggests that this regime with limited, plume-induced subduction is favored by a hot lithosphere, such as that found on early Earth or present-day Venus. Moreover, in this regime, subduction proceeds primarily by roll-back and the coronae expands through time at velocity that could reach 10 cm/yr. A second set of experiments focusing on accretion processes suggests that accretion dynamics depends on the strength of the lithosphere, as well as the spreading velocity. Venus hot surface temperature would act to decrease the lithosphere strength, and therefore weaken the ridge axis, that would become highly unstable, showing large sinuosity and producing a number of micro-plates. These plume, subduction, and accretion characteristics explain well the features seen in Artemis coronae, the largest coronae on Venus.
Evolving polycentric governance of the Great Barrier Reef.
Morrison, Tiffany H
2017-04-11
A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime's context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change.
NASA Astrophysics Data System (ADS)
Silva-Tamayo, Juan Carlos
2015-04-01
Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from transpressional tectonics. Calcareous algae persisted as the main constituents of the shallow marine carbonate factories until the middle Oligocene; a period when atmospheric pCO2 dropped significantly. The drop in atmospheric pCO2 allowed the onset of global icehouse conditions, which likely resulted in a decrease in sea surface temperatures along the Caribbean. This drop allowed the appearance of corals as the main constituents of the shallow marine carbonate factories along the SE Circum-Caribbean by late Oligocene times.
NASA Astrophysics Data System (ADS)
Deines, A. M.; Morrison, A. M.; Menzie, C.
2016-12-01
The wide variety of ecosystem services associated with running fresh waters are dependent on an assortment of flow conditions including timing and duration of seasonal floods as well as intermittent flows, such as storm peaks. Modern methods of assessing environmental flows consider hydrological regime change by comparing actual or simulated baseline flow conditions against putatively altered regime flows. These calculated flow changes are used as inputs to models of ecosystem responses such as for fish populations, inundated habitat area, or nutrient supplies. However, common and recommended tools and software used to make flow comparisons between putative regimes lack robust mechanisms for evaluating the significance of hydrological regime change in the context of long-term (multiple decades, centuries, or greater) trends, such as climatic conditions, or the facility to determine the existence and causes of regime changes when no obvious discontinuity exists, such as the construction of a dam. As such, environmental flow decisions based on short (recent) baseline records or baseline records assumed to represent stable hydrological conditions may lead to inefficient water use and ecosystem services distribution. Here we examine long-term patterns in discharge, the frequency and severity of regional droughts, and the Atlantic Multidecadal Oscillation to better understand the occurrence and causes of hydrological regime change in rivers in the Southern United States. For each river we ask: 1) Has hydrological regime change occurred? 2) To what degree is observed regime change associated with regional climatic drivers? 3) How might environmental flows suggested by current methods (e.g. the USGS Hydroecological Integrity Assessment or the Indicators of Hydrologic Alteration software) compare with flows derived by additional consideration of long-term drivers of hydrological change? We discuss the different temporal scales through which climate can influence a hydrological regime and provide insights for evaluating or planning expected future flow regimes under potential conditions of water scarcity.
Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.
ERIC Educational Resources Information Center
Chamberlain, Valerie Elaine
1989-01-01
Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…
Cyr, Andrew J.; Granger, Darryl E.; Olivetti, Valerio; Molin, Paola
2014-01-01
Knickpoints in fluvial channel longitudinal profiles and channel steepness index values derived from digital elevation data can be used to detect tectonic structures and infer spatial patterns of uplift. However, changes in lithologic resistance to channel incision can also influence the morphology of longitudinal profiles. We compare the spatial patterns of both channel steepness index and cosmogenic 10Be-determined erosion rates from four landscapes in Italy, where the geology and tectonics are well constrained, to four theoretical predictions of channel morphologies, which can be interpreted as the result of primarily tectonic or lithologic controls. These data indicate that longitudinal profile forms controlled by unsteady or nonuniform tectonics can be distinguished from those controlled by nonuniform lithologic resistance. In each landscape the distribution of channel steepness index and erosion rates is consistent with model predictions and demonstrates that cosmogenic nuclide methods can be applied to distinguish between these two controlling factors.
Building a Bridge to Deep Time: Sedimentary Systems Across Timescales
NASA Astrophysics Data System (ADS)
Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.
2013-12-01
It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.
NASA Astrophysics Data System (ADS)
Amini, A.; Eberhardt, E.
2016-12-01
Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.
NASA Astrophysics Data System (ADS)
Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan
2018-04-01
The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.
The Water Level and Transport Regimes of the Lower Columbia River
NASA Astrophysics Data System (ADS)
Jay, D. A.
2011-12-01
Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.
NASA Astrophysics Data System (ADS)
Guo, Pei; Liu, Chiyang; Huang, Lei; Yu, Mengli; Wang, Peng; Zhang, Guoqing
2018-06-01
As the largest Cenozoic terrestrial intermountain basin on the Tibetan Plateau, the Qaidam Basin is an ideal setting to understand the coupled controls of tectonics and climate on hydrological evolution. In this study, we used 47,846 data of carbonate and chloride contents from 146 boreholes to reconstruct the Neogene-Quaternary basin-wide hydrological evolution of the Qaidam Basin. Our results show that during the early Miocene (22-15 Ma), the palaeolake in the Qaidam Basin was mainly situated in the southwestern part of the basin, and its water was mostly brackish. From then on, this palaeolake progressively migrated southeastward, and its salinity increased from late Miocene saline water to Quaternary brines. This generally increasing trend of the water palaeosalinity during the late Cenozoic corresponded with regional and global climate changes at that time, suggesting the dominance of climatic control. However, the paces of the salinity increase from sediments in front of the three basin-bounding ranges were not the same, indicating that extra tectonic controls occurred. Sediments in front of the Eastern Kunlun Shan to the southwest and the Altyn Shan to the northwest showed an abrupt, dramatic increase in salinity at 15 Ma and 8 Ma, respectively; sediments in front of the Qilian Shan to the northeast showed steady increase without prominent, abrupt changes, indicating the occurrence of asynchronous tectonic controls from the basin-bounding ranges. The late Miocene depocentre migration was synchronous with the hydrological changes in front of the Altyn Shan, while the more significant migration during the Quaternary was consistent with the pulsing, intense extrabasinal and intrabasinal tectonic movements along the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.
2015-12-01
Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a function of tectonic rate of simulated convergent or divergent kinematics. In addition the estimate of structurally and mineral-chemically re-equilibrated volumes assists the choice of physical parameters selected to constrain numerical models.
Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China
NASA Astrophysics Data System (ADS)
Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye
2018-04-01
The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.
Geochronologic evidence for Late Cretaceous and Miocene tectonism in northern New England
NASA Astrophysics Data System (ADS)
Amidon, W. H.; Barr, M.; Walcott, C.; Kylander-Clark, A. R.
2017-12-01
The persistence of mountainous relief in the northeastern U.S. suggests post-rift tectonic rejuvenation has occurred, although specific mechanisms and timing have been difficult to identify. Here we present direct evidence for significant tectonism in New Hampshire and Vermont during the Late-Cretaceous ( 85-65 Ma) and Miocene periods ( 20-5 Ma). Low temperature thermochronology from a drill core in the White Mountains of New Hampshire suggests 2-3 km of accelerated exhumation during the Late Cretaceous. This exhumation is synchronous with compressional thrusting and rapid exhumation on many other Atlantic margins and also with a change in spreading direction in the Atlantic from 85-65 Ma. Recently obtained U-Pb ages of vein calcite from faults and fractures in the Champlain Valley of New York and Vermont suggest significant brittle fracturing occurred during the Late Cretaceous and also during the Miocene. Although many questions remain, this evidence points to tectonic rejuvenation by lateral tectonic stresses in the latest Cretaceous and possibly in the Miocene. The Late Cretaceous seems to have been a particularly significant tectonic episode in northern New England and elsewhere in the circum-Atlantic region.
Tectonic mode switches and the nature of orogenesis
NASA Astrophysics Data System (ADS)
Lister, Gordon; Forster, Marnie
2009-12-01
The birth and death of many mountain belts occurs in lithosphere that over-rides major subduction zones. Here the tectonic mode (shortening versus extension) can abruptly switch, even during continuous and otherwise smooth convergence. If the hinge line of the foundering slab rapidly retreats (i.e. rolls back), the foundering slab creates a gravitational potential well into which the orogen collapses. This motion, coupled with stress guides, can "pull" the orogen apart. A slowing of roll-back (or of hinge retreat) means that the subduction flexure may subsequently begin to be "pushed back" or be "pushed over" by the advancing orogen. The consequence of such changes in relative motion is that orogenic belts are affected by abrupt tectonic mode switches. The change from "push" to "pull" leads to a sudden change from horizontal extension to horizontal shortening, potentially throughout the entire mass of the orogenic lithosphere that over-rides the subducting slab. The sequencing of these tectonic mode switches affects the thermal evolution of the orogen, and thus fundamentally determines the nature of orogenesis. This insight led to us to our quite different views as to how orogens work. It is evident that orogens affected by abrupt "push-pull" mode switches are characterized by high-pressure metamorphism, whereas orogens affected by abrupt "pull-push" mode switches are characterized by high-temperature metamorphism, magmatism and anatexis.
Evolving polycentric governance of the Great Barrier Reef
Morrison, Tiffany H.
2017-01-01
A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime’s context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change. PMID:28348238
Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.
Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki
2015-03-11
Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.
NASA Astrophysics Data System (ADS)
de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil
2011-03-01
The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One consequence of this observation is that plutonic magmatic fluxes seem to be comparable from one geodynamic setting to another and also over various geologic time spans. A second consequence of this correlation is that small plutons, which are constructed in a geologically short length of time, commonly record little about tectonic conditions, and result only from the interference between magma dynamics and the local geologic setting. The fast rate of magma transfer in the crust (on the order of cm/s) relative to tectonic rates (on the order of cm/yr) explain why the incremental process of pluton construction is independent of - but not insensitive to - the tectonic setting. However, in large plutonic bodies, which correspond to longer duration magmatic events, regional deformation has time to interact with the growing pluton and can be recorded within the pluton-wall rock structure. Magma transfer operates at a very short timescale (comparable to volcanic timescales), which can be sustained over variable periods, depending on the fertility of the magma source region and its ability to feed the system. The fast operation of magmatic processes relative to crustal tectonic processes ensures that the former control the system from below.
Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.
Tang, Ming; Chen, Kang; Rudnick, Roberta L
2016-01-22
The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.
Tectonic analysis of folds in the Colorado plateau of Arizona
NASA Technical Reports Server (NTRS)
Davis, G. H.
1975-01-01
Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao
2017-05-01
The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan-Man; Cheng, Anning
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
Xu, Kuan-Man; Cheng, Anning
2016-11-15
As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less
Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa
NASA Technical Reports Server (NTRS)
Mohr, P. A.; Wood, C. A.
1976-01-01
The Eastern Rift of Africa runs the gamut of crustal and lithospheric attenuation from undeformed shield through attenuated rift margin to active neo-oceanic spreading zones. It is therefore peculiarly well suited to an examination of relationships between volcano spacings and crust/lithosphere thickness. Although lithospheric thickness is not well known in Eastern Africa, it appears to have direct expression in the surface spacing of volcanoes for any given tectonic regime. This applies whether the volcanoes are essentially basaltic, silicic, or alkaline-carbonatitic. No evidence is found for control of volcano sites by a pre-existing fracture grid in the crust.
NASA Astrophysics Data System (ADS)
Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay
2017-08-01
The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into the peninsular region through these basement faults. Northward extension of the East Patna Fault coincides with the region of the Himalayan front, which corresponds to a less slip potential. Therefore, an association of frequent earthquakes in this region indicates strain release along the East Patna Fault.
Pacific tectonics: Eastern-Pacific "stationarity" of EPR and causative association with Equator
NASA Astrophysics Data System (ADS)
Bostrom, R. C.
2003-04-01
The fundamentals of present-day Pacific tectonics are observed to be: its N/S mirror-symmetry about the Equator, displayed by the major transforms; its E/W asymmetry, represented by the western motion of the world's largest plate, originating in the eastern Equatorial Pacific; and correspondingly, development of the globally most voluminous subduction, at the western Pacific margin. The configuration seen at present is maintained at a fundamental level. The maximum in convective upwelling develops as coalescing plumes in the Galapagos region in the eastern Pacific. This has been found (Lonsdale 1988; McGuire and Hilde 2002; Chen and Lin 2002) to produce steady westward propagation of the Nazca/Cocos axis. Continually renewed, it determines the orientation and locus of a quasi-stationary EPR, centered on the Equator. Magnetic dating of boundaries in satellite gravity images records the Cenozoic history of the EPR, namely re-orientation in consequence of slow counter-clockwise re-orientation of the Equator. Relative to the present, during Maastrichtian times both Equator and plate motion were aligned WNW, recorded paleomagnetically and by features in the western, older part of the Pacific crust. Material subducted at that time accumulated principally beneath the SE Asia margin. Its slow heating is believed to play a role in the deep-seated activity and back-arc spreading associated with latter-day convergence in that region. The mechanism primarily responsible for the Pacific regime may be that mantle convection is not immune, as is generally tacitly supposed, to the minute westward tilt (c. 0.36°) under which it takes place. The latter, now astronomically quantifiable without tidal identification, represents the attraction component of water and solid-Earth masses which averaged over unit day lags the direction of purely geocentric g. Under gravity minutely E/W asymmetric, convection as always promoting the most efficient dissipative configuration, favors disproportionately large surface-west displacement, maximum at the contemporary Equator (=west limb of EPR upwelling). Some conclusions are a), that it is no longer adequate to model global convection assuming that angular momentum is conserved internally; in reality a considerable part is exported, here measured by expansion of the lunar orbit; and b), that the tectonics of an Earth simultaneously under vigorous convection and in asynchronous rotation relative to the mass center of Kuiper's Earth-Moon double planet, differs fundamentally from the regime developing within a fictitious isolated planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.
1991-02-01
The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less
NASA Astrophysics Data System (ADS)
Basilone, Luca; Sulli, Attilio
2018-01-01
In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.
Tectonic sequence stratigraphy, Early Permian Dry Mountain trough, east-central Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, W.S.; Gallegos, D.M.; Spinosa, C.
1991-06-01
The Early Permian Dry Mountain trough (DMT) of east-central Nevada is one of several tectonic basins and associated uplifts that developed along the continenetal margin during the latest Pennsylvanian-Early Permian Dry Mountain tectonic phase. The sequence stratigraphy reflects a combination of eustatic sea level changes and tectonic uplift or subsidence. Fewer than one to only a few million years separate the development of sequence boundaries within the DMT. At this scale, differences among published eustasy curves preclude their use as definitive tools to identify eustatically controlled sequence boundaries. Nevertheless, available data indicate several pulses of tectonism affected sedimentation within themore » DMT. The authors are attempting to develop criteria to distinguish tectonic from eustatic sequence boundaries. Detailed biostratigraphic data are required to provide an independent check on the correlation of sequence boundaries between measured sections. For example, the same age boundary may reflect tectonic uplift in one part of the basin and subsidence in another. The uplift may or may not result in subaerial exposure and erosion. For those boundaries that do not result from subaerial exposure, lithofacies and biofacies analyses are required to infer relative uplift (water depth decrease) or subsidence (water depth increase). There are inherent resolution limitations in both the paleontologic and sedimentologic methodologies. These limitations, combined with those of eustasy curves, dictate the preliminary nature of their results.« less
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Heller, P.
2009-12-01
A primary goal of sedimentary geologists is to interpret past tectonic, climatic, and eustatic conditions from the stratigraphic record. Stratigraphic changes in alluvial-basin fills are routinely interpreted as the result of past tectonic movements or changes in climate or sea level. Recent physical and numerical models have shown that sedimentary systems can exhibit self-organization on basin-filling time scales, suggesting that structured stratigraphic patterns can form spontaneously rather than as the result of changing boundary conditions. The Ferris Formation (Upper Cretaceous/Paleogene, Hanna Basin, Wyoming) exhibits stratigraphic organization where clusters of closely-spaced channel deposits are separated from other clusters by intervals dominated by overbank material. In order to evaluate the role of basinal controls on deposition and ascertain the potential for self-organization in this ancient deposit, the spatial patterns of key channel properties (including sand-body dimensions, paleoflow depth, maximum clast size, paleocurrent direction, and sediment provenance) are analyzed. Overall the study area lacks strong trends sand-body properties through the stratigraphic succession and in cluster groups. Consequently there is no indication that the stratigraphic pattern observed in the Ferris Formation was driven by systematic changes in climate or tectonics.
NASA Astrophysics Data System (ADS)
Brown, M.
2008-12-01
UHPM provides petrologic evidence of transport of continental lithosphere to asthenospheric depth and return of some of these materials to crustal depth. The rock record registers UHPM since the Ediacaran Period, and studies of inclusion assemblages in zircon have increased the evidence of UHPM in Phanerozoic orogens and enabled an assessment of the real estate involved. Plots of apparent thermal gradient vs. age of metamorphism and P vs. age of metamorphism reveal two dramatic changes in inferred thermal environment and inferred depth of metamorphism from which continental lithosphere has been recovered during Earth evolution. First, from the Mesoarchean Era to the Neoproterozoic Era, sutures in subduction-to- collision orogens are marked by eclogite and high-pressure granulite metamorphism (characterized by apparent thermal gradients of 750-350 C/GPa). The P of metamorphism in sutures jumped from <1 GPa during the Eoarchean-Paleoarchean up to 2 GPa during the Paleoproterozoic. Second, from the Cryogenian- Ediacaran to the present, many sutures in subduction-to-collision orogens, and sometimes intracratonic sutures in the overriding plate, are marked by UHPM (characterized by apparent thermal gradients of <350 C/GPa) with P of metamorphism >2.7GPa. Given this pattern of secular change to colder apparent thermal gradients in sutures, the recent discovery of diamonds in zircons of crustal paragenesis in Neoarchean sedimentary rocks is surprising. Maybe UHPM has been possible since the Neoarchean but the evidence was rarely exhumed or if exhumed maybe the evidence was rarely preserved? The Appalachian/Caledonian-Variscide-Altaid and the Cimmerian-Himalayan-Alpine orogenic systems were formed by successive closure of short-lived oceans by transfer and suturing of ribbon-continent terranes derived from the Gondwanan side. Subduction of young ocean lithosphere followed by choking of the subduction channel by arc or terrane collision limited transport of water to the mantle wedge, and suppressed development of small-scale convection, arc magmatism and backarc formation. This allowed the retro- continental margin to remain strong, which favored efficient exhumation of UHPM rocks (Warren et al., 2008, EPSL). How should we interpret the presence of diamonds in detrital zircons (age range 3,050-4,260 Ma) from the Narryer terrane? Menneken et al. (2007, Nature) argue that the age range indicates repeated conditions for diamond formation (or recycling of ancient diamond) and that diamonds imply thick continental lithosphere and crust-mantle interactions since 4,260 Ma! This implies thermal environments and tectonics in the Hadean and Archean Eons similar to the Phanerozoic Eon. However, these ancient zircons originally crystallized from low-T melts (Watson and Harrison, 2006, Science) and the 'age' of the diamonds is only constrained to be > the age of deposition and <3,050 Ma. Williams (2007, Science) suggests that C was introduced as graphite precipitated from COH fluid in fractures/imperfections in zircon prior to deep burial to form diamond during a single event. COH fluid was involved in the formation of diamonds from Phanerozoic UHPM localities, so the hypothesis is viable if an appropriate tectonic model can be developed. I will present a model for the formation and exhumation of an overriding plate source terrane for the diamond-bearing detrital zircons that is consistent with periodic changes in the tectonic regime of Earth (Brown, 2006, Geology), and the geology and likely tectonic setting of the Narryer Terrane-Yilgarn Craton during the Neoarchean. Finally, I will speculate about UMPM during the Proterozoic and exhumation vs. relamination (Hacker et al., Eos, 2007).
NASA Astrophysics Data System (ADS)
Fracassi, U.; Vannoli, P.; Burrato, P.; Basili, R.; Tiberti, M. M.; di Bucci, D.; Valensise, G.
2006-12-01
The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.
2016-05-26
makers. The third case study, on Nigeria , will provide an analysis of a peaceful transition of power. Finally, the structure for a proposed Post...15. SUBJECT TERMS Regime Change, National Security Council, Kosovo, Libya, Nigeria , transition of power, post-regime change planning. 16. SECURITY...conflation that exists between the planning element and politically appointed decision makers. The third case study, on Nigeria , will provide an analysis of
Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey
NASA Astrophysics Data System (ADS)
Doğan, Uğur; Koçyiğit, Ali
2018-04-01
This study focuses on the morphotectonic evolutionary history of two significant geomorphic features, Suğla structural-border polje and Maviboğaz canyon, located within the Suğla-Seydişehir, Akören-Kavakköy, and Bozkır grabens in the central Taurides. Data were obtained by detailed field mapping of faults, rocks, and geomorphic features. Three phases of tectonic deformation were determined. The three erosional surfaces developed, especially in the form of tectonically controlled steps, during Oligocene-early Miocene, middle Miocene, and late Miocene-early Pliocene, sequentially. Southwest- to northeast-trending karstified hanging paleovalleys are present on the high erosional surfaces, which have been attributed to the end of early Miocene and late Miocene. Faulting-induced tectonic movements enabled the formation of Suğla-Seydişehir paleograben in early Miocene. We suggest that the Maviboğaz canyon was formed by captures at the beginning of late Miocene and late Pliocene and by incision in Late Pliocene-Quaternary, depending on the headward erosion of Çarşamba River. Starting from the beginning of Quaternary, a tensional neotectonic regime became prominent and then a series of modern graben-horst structures formed along the reactivated older grabens. One of these is the Suğla-Seydişehir reactivated graben. Suğla structural-border polje developed within the graben. Total visible tectonic subsidence of the polje is 134 m. Underground capture of surface water occurred on the southern slopes of the graben. Waters of Suğla polje are transported intermittently into Konya basin on the surface and into the Mediterranean basin via natural swallow holes. Beach deposits, water marks, cliffs, and notches marking the late Pleistocene lake level (10 m) and two perched corrosion surfaces ( 50 and 22 m) were detected around the polje.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin
2017-04-01
Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.
Berberich, Gabriele; Schreiber, Ulrich
2013-01-01
Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413
Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy
NASA Astrophysics Data System (ADS)
Montone, Paola; Mariucci, M. Teresa
1999-09-01
We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.
NASA Astrophysics Data System (ADS)
Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.
2018-01-01
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.
NASA Astrophysics Data System (ADS)
Jess, S.; Stephenson, R.; Brown, R. W.
2017-12-01
The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.
NASA Astrophysics Data System (ADS)
Saadallah, A.; Caby, R.
1996-12-01
The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this massif during Alpine events. We show that the dome geometry, the kinematic and metamorphic evolutions and the age pattern are typical of metamorphic core complexes exhumed by extension. A major low-angle detachment fault defined by mylonites and by younger cataclasites has been traced in the massif. The upper unit encompasses pre-Permian phyllites with Variscan {40Ar }/{39Ar } cooling ages, capped by unconformable Mesozoic to Tertiary cover of the Calcareous Range, both mainly affected by extensive Tertiary brittle deformation and normal faulting. The lower unit exposes in two half-domes a continuous tectonic pile, 6-8 km thick, of amphibolite facies rocks and orthogneisses affected by syndashmetamorphic ductile deformation, devoid of retrogression. The regular increase of paleotemperature downward and the {40Ar }/{39Ar } plateau ages around 80 Ma suggest that the high-temperature foliation and associated WNW-directed shear under a high geothermal gradient relate to extensional tectonics developed during Mesozoic lithospheric thinning of the Variscan south European margin. To the north, the Sidi Alli Bou Nab massif exposes another crustal section affected throughout by WNW-directed extensional shear during {HP }/{HT } syndashmetamorphic thinning and with overall {40Ar }/{39Ar } plateau ages of 25 Ma. The Eocene oblique collisional event responsible for crustal thickening was totally overprinted by this new extensional regime, synchronous with the beginning of the opening of the Western Mediterranean oceanic basin. This was also coeval with south-directed thrusting of foreland nappes to the south. Post-Miocene tectonic events cause significant overprinting.
Stallard, R.F.; Koehnken, L.; Johnsson, M.J.
1991-01-01
The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.
NASA Astrophysics Data System (ADS)
El-Din, Gamal Kamal; Abdelkareem, Mohamed
2018-05-01
The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.
Mars Geological Province Designations for the Interpretation of GRS Data
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.
2005-01-01
Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
Thick-skinned tectonics closing the Rifian Corridor
NASA Astrophysics Data System (ADS)
Capella, Walter; Matenco, Liviu; Dmitrieva, Evelina; Roest, Wilmer M. J.; Hessels, Suzanne; Hssain, Mohamed; Chakor-Alami, Abdelwahid; Sierro, Francisco J.; Krijgsman, Wout
2017-07-01
Tectonic processes in the Gibraltar region are associated with Africa-Iberia convergence and the formation of the Betic-Rif orogenic system. The Late Miocene shortening recorded in the Rif orogen resulted in gradual shallowing and eventual closure of the Rifian Corridor, a narrow marine gateway connecting the Atlantic Ocean with the Mediterranean Sea. This closure is associated with paleoenvironmental changes that ultimately led to the Mediterranean Messinian Salinity Crisis. Here we present a structural analysis based on a combination of field kinematic data and interpretation of reflection seismic lines acquired for petroleum exploration to understand the deformational phases associated with the closure of the Rifian Corridor. We show the succession of three Late Miocene to present day events, an initial thin-skinned nappe thrusting, followed by regional subsidence and continued by thick-skinned contraction. The transition from in sequence thin-skinned tectonics during subduction to thick-skinned contraction during continental collision resulted in significant acceleration of tectonic uplift and associated exhumation. This is related to a change in the regional deformation linked to plate convergence, but possibly also coupled with deep lithospheric or dynamic topography processes. Such a mechanism is also common for other Mediterranean orogens during late stages of slab retreat, where accelerated tectonics resulted in rapid sedimentation and associated basins evolution. We conclude that the thick-skinned contraction in the Rif orogeny initiated in the late Tortonian, has created a cumulative uplift in the order of 1 km, and provided high enough uplift rates to close the Rifian Corridor.
Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems
Stow, D.A.V.; Howell, D.G.; Nelson, C.H.
1984-01-01
To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. ?? 1984 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.
2011-12-01
The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The observational evidence is consistent with tectonic and isostatic processes both operating over the past 300,000 years without requiring changes in the time averaged (over a few thousand years) tectonic rates. (v) Recent bathymetric data for the Bab al Mandab region have been compiled to confirm the location and depth of the sill controlling flow in and out of the Red Sea. Throughout the last 400,000 years the Red Sea has remained open to the Gulf of Aden with cross sectional areas at times of glacial maxima about 2% of that today. (vi) The minimum channel widths connecting the Red Sea to the Gulf of Aden at times of lowstand occur south of the Hanish Sill. The channels are less than 4 km wide and remain narrow for as long as local sea levels are below -50 m. This occurs for a number of sustained periods during the last two glacial cycles and earlier. (vii) Periods suitable for crossing between Africa and Arabia without requiring seaworthy boats or seafaring skills occurred periodically throughout the Pleistocene, particularly at times of favourable environmental climatic conditions that occurred during times of sea level lowstand.
NASA Astrophysics Data System (ADS)
Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.
2015-12-01
Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in calcifying macrofauna and the ocean managed to dump alkalinity as diagenetic carbonate.
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; Stockli, D. F.
2017-12-01
Spatial and temporal variations in pre-Andean deformation, inherited lithospheric discontinuities, and subduction geometry have been documented for the southern Central Andes (27-40°S). However, the influence of inherited crustal structures and changing subduction zone dynamics on along-strike (N-S) and across-strike (E-W) variations in upper-plate deformation and basin evolution remains poorly understood. The La Ramada Basin in the High Andes at 32°S preserves the northernmost succession correlated with the well-studied Neuquen Basin to the south. New maximum depositional ages and provenance information provided by detrital zircon U-Pb geochronology refine the chronostratigraphic and provenance framework of La Ramada Basin deposits and improve reconstructions of structural activity and subsidence mechanisms during polyphase basin evolution. Updated along- and across-strike comparisons with Neuquen and intraplate depocenters provide an unparalleled opportunity to examine long-term fluctuations in stress regime, modes of variable plate coupling, structural reactivation, and basin evolution. Zircon U-Pb age distributions constrain Mesozoic-Cenozoic ages of La Ramada clastic units and identify a previously unrecognized period of Paleogene nonmarine deposition. Late Triassic-Jurassic synrift and post-rift deposits record sediment derivation from the eastern half-graben footwall and western Andean volcanic arc during periods of slab rollback and thermal subsidence. Uplift of the Coastal Cordillera and introduction of Coastal Cordillera sediment at 107 Ma represents the first signature of initial Andean uplift associated with accumulation in the La Ramada Basin. Finally, newly identified Paleogene extensional structures and intra-arc deposits in the western La Ramada Basin are correlated with the extensional Abanico Basin system ( 28°S-44°S) to the west in Chile. Development and inversion of this system of intra-arc depocenters suggests that shortening and uplift in the southern Central Andes was produced by at least two (Late Cretaceous and Neogene) punctuated orogenic episodes.
Geomorphological approach in karstic domain: importance of underground water in the Jura mountains.
NASA Astrophysics Data System (ADS)
Rabin, Mickael; Sue, Christian; Champagnac, Jean Daniel; Bichet, Vincent; Carry, Nicolas; Eichenberger, Urs; Mudry, Jacques; Valla, Pierre
2014-05-01
The Jura mountain belt is the north-westernmost and one of the most recent expressions of the Alpine orogeny (i.e. Mio-Pliocene times). The Jura has been well studied from a structural framework, but still remains the source of scientific debates, especially regarding its current and recent tectonic activity [Laubscher, 1992; Burkhard and Sommaruga, 1998]. It is deemed to be always in a shortening state, according to leveling data [Jouanne et al., 1998] and neotectonic observations [Madritsch et al., 2010]. However, the few GPS data available on the Jura do not show evidence of shortening, but rather a low-magnitude extension parallel to the arc [Walpersdorf et al., 2006]. Moreover, the traditionally accepted assumption of a collisional activity of the Jura raises the question of its geodynamic origin. The Western Alps are themselves in a post-collisional regime and characterized by a noticeable isostatic-related extension, due to the interaction between buoyancy forces and external dynamics [Sue et al., 2007]. Quantitative morphotectonic approaches have been increasingly used in active mountain belts to infer relationship between climates and tectonics in landscape evolution [Whipple, 2009]. In this study, we propose to apply morphometric tools to calcareous bedrock, in a slowly deformed mountain belt. In particular, we have used watersheds metrics determination and associated river profiles analysis to allow quantifying the degree and nature of the equilibrium between the tectonic forcing and the fluvial erosional agent [Kirby and Whipple, 2001]. Indeed, long-term river profiles evolution is controlled by climatic and tectonic forcing through the following expression [Whipple and Tucker, 1999]: S = (U / K) 1/n Am/n (with U: uplift rate, K: empirical erodibility factor, function of hydrological and geological settings; A: drained area, m, n: empirical parameters). We present here a systematic analysis of river profiles applied to the main drainage system of the Jura. The objective is to assess to what extent this powerful landscape analysis tool will be applicable to limestone bedrock settings where groundwater flow might be an important component of the hydrological system. First results show that river slopes and knickpoints are poorly controlled by lithological variation within the Jura mountains. Quantitative analyses reveal abnormal longitudinal profiles, which are controlled by either tectonic and/or karstic processes. Evaluating the contribution of both tectonics and karst influence in the destabilization of river profiles is challenging and appears still unresolved. However these morphometrics signals seem to be in accordance with the presence of active N-S to NW-SE strike-slip faults, controlling both surface runoff and groundwater flow.
Recent tectonic activity on Pluto driven by phase changes in the ice shell
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.
2016-07-01
The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.
NASA Technical Reports Server (NTRS)
Engeln, J. F.; Stein, S.
1984-01-01
A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.
NASA Technical Reports Server (NTRS)
Bloom, A. L.; Strecker, M. R.; Fielding, E. J.
1984-01-01
A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.
1990-01-01
Venus lithospheric structure models are presently formulated in which regional isostatic elevation, d, and the spacing wavelength, lambda, of tectonic features formed due to horizontal extension and compression are functions of both surface thermal gradient and crustal thickness c. It is shown that, in areas of Venus where the upper mantle is stronger than the upper crust, the spacings of short-wavelength features should increase with increasing d, if that change in turn is due to increasing c, but should decrease with increasing d, if this change is in turn due to increasing surface thermal gradient.
Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska
NASA Astrophysics Data System (ADS)
Sauber, Jeanne M.; Molnia, Bruce F.
2004-07-01
Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ˜2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.
Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska
Sauber, J.M.; Molnia, B.F.
2004-01-01
Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ???2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.
Rivaes, Rui P.; Rodríguez-González, Patricia M.; Ferreira, Maria Teresa; Pinheiro, António N.; Politti, Emilio; Egger, Gregory; García-Arias, Alicia; Francés, Felix
2014-01-01
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. PMID:25330151
NASA Astrophysics Data System (ADS)
Aradi, L. E.; Hidas, K.; Kovács, I. J.; Tommasi, A.; Klébesz, R.; Garrido, C. J.; Szabó, C.
2017-12-01
Mantle xenoliths from the Styrian Basin Volcanic Field (Western Pannonian Basin, Austria) are mostly coarse granular amphibole-bearing spinel lherzolites with microstructures attesting for extensive annealing. Olivine and pyroxene CPO (crystal-preferred orientation) preserve nevertheless the record of coeval deformation during a preannealing tectonic event. Olivine shows transitional CPO symmetry from [010]-fiber to orthogonal type. In most samples with [010]-fiber olivine CPO symmetry, the [001] axes of the pyroxenes are also dispersed in the foliation plane. This CPO patterns are consistent with lithospheric deformation accommodated by dislocation creep in a transpressional tectonic regime. The lithospheric mantle deformed most probably during the transpressional phase after the Penninic slab breakoff in the Eastern Alps. The calculated seismic properties of the xenoliths indicate that a significant portion of shear wave splitting delay times in the Styrian Basin (0.5 s out of approximately 1.3 s) may originate in a highly annealed subcontinental lithospheric mantle. Hydroxyl content in olivine is correlated to the degree of annealing, with higher concentrations in the more annealed textures. Based on the correlation between microstructures and hydroxyl content in olivine, we propose that annealing was triggered by percolation of hydrous fluids/melts in the shallow subcontinental lithospheric mantle. A possible source of these fluids/melts is the dehydration of the subducted Penninic slab beneath the Styrian Basin. The studied xenoliths did not record the latest large-scale geodynamic events in the region—the Miocene extension then tectonic inversion of the Pannonian Basin.
NASA Astrophysics Data System (ADS)
Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.
2017-12-01
The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime
NASA Astrophysics Data System (ADS)
Regalla, Christine
Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.
Abnormally high formation pressures, Potwar Plateau, Pakistan
Law, B.E.; Shah, S.H.A.; Malik, M.A.
1998-01-01
Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.
LiDAR-Assisted identification of an active fault near Truckee, California
Hunter, L.E.; Howle, J.F.; Rose, R.S.; Bawden, G.W.
2011-01-01
We use high-resolution (1.5-2.4 points/m2) bare-earth airborne Light Detection and Ranging (LiDAR) imagery to identify, map, constrain, and visualize fault-related geomorphology in densely vegetated terrain surrounding Martis Creek Dam near Truckee, California. Bare-earth LiDAR imagery reveals a previously unrecognized and apparently youthful right-lateral strike-slip fault that exhibits laterally continuous tectonic geomorphic features over a 35-km-long zone. If these interpretations are correct, the fault, herein named the Polaris fault, may represent a significant seismic hazard to the greater Truckee-Lake Tahoe and Reno-Carson City regions. Three-dimensional modeling of an offset late Quaternary terrace riser indicates a minimum tectonic slip rate of 0.4 ?? 0.1 mm/yr.Mapped fault patterns are fairly typical of regional patterns elsewhere in the northern Walker Lane and are in strong coherence with moderate magnitude historical seismicity of the immediate area, as well as the current regional stress regime. Based on a range of surface-rupture lengths and depths to the base of the seismogenic zone, we estimate a maximum earthquake magnitude (M) for the Polaris fault to be between 6.4 and 6.9.
NASA Astrophysics Data System (ADS)
Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos
2011-08-01
The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.
Diapirs of the Mediterranean ridge: The tectonic regime of an incipient accreted terrane
NASA Technical Reports Server (NTRS)
Mart, Y.
1988-01-01
The occurrence of diapirs in the Mediterranean ridge stems mostly from the massive deposition of salt and gypsum in the Mediterranean basin during the late Miocean. The diapiric emplacement of the evaporitic sequence is not obvious, because the mobilization of the salt beds and the initiation of the diapiric upward flow are constrained by the relatively shallow thickness of the Plio-Pleistocene sedimentary overburden and by the low heat flow that prevails in the eastern Mediterranean. The diapirs consist also of early Cretaceous shales as well as other gravitationally metastable strata which are less mobile than salt. Studies of subduction trenches and their surroundings show that shallow ridges occur seaward of the trenches in many places. The collisional motion between the African and the Eurasian plates would further enhance accretion of sediments in the Mediterranean ridge, which would attain subaerial exposure, and eventually would become a mountain range accreted to southern Europe. The numerous diapirs of salt and shales that occur in the ridge would be common features in the future accreted terrane, indicating an intermediate extensional phase in the tectonic history of the development of crustal growth.
Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon
O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.
2001-01-01
Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its major tributaries. 3) Between 15,000 and 12,700 years ago, dozens of floods from Glacial Lake Missoula flowed up the Willamette Valley from the Columbia River, depositing up to 35 m of gravel, sand, silt, and clay. 4) Subsequent to 12,000 years ago, Willamette River sediment and flow regimes changed significantly: the Pleistocene braided river systems that had formed vast plains of sand and gravel evolved to incised and meandering rivers that are constructing today's fine-grained floodplains and gravelly channel deposits. Sub-surface channel facies of this unit are loose and unconsolidated and are highly permeable zones of substantial groundwater flow that is likely to be well connected to surface flow in the Willamette River and major tributaries. Stratigraphic exposures and drillers' logs indicate that this unit is mostly between 5 and 15 m thick.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
...On December 9, 2010, the Bureau of Industry and Security (BIS) published an advance notice of proposed rulemaking entitled Commerce Control List: Revising Descriptions of Items and Foreign Availability as part of the President's Export Control Reform (ECR) Initiative. The December 9, 2010 notice sought, among other things, public comments on how descriptions of items controlled on the Commerce Control List (CCL) could be made clearer. This proposed rule would implement changes identified by BIS and the public that would make the CCL clearer. This rule would only implement changes that can be made to the CCL without requiring changes to multilateral export control regime guidelines or lists. However, BIS has identified changes that would require a decision of a multilateral regime to implement. For those changes, the U.S. Government is developing regime change proposals for consideration by members of those multilateral export control regimes. BIS will implement those changes in separate rulemakings, if approved by the respective multilateral export control regimes.
NASA Astrophysics Data System (ADS)
Xue, L.; Abdelsalam, M. G.
2017-12-01
Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.
Weems, R.E.; Lewis, W.C.
2002-01-01
Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.
Post-Paleogene Deformation in central Anatolia, South of Ankara (Turkey)
NASA Astrophysics Data System (ADS)
Rojay, Bora
2014-05-01
The closure of the northern Neo-Tethys took place between Eurasia in the north and northern edge of Afro- Arabian plate in the south since the Early Cretaceous is documented in central Anatolia. It is mated by Cretaceous ophiolitic mélanges thrusted over southwards on to the upper Cretaceous-Paleogene fore-arc and foreland sequences along the northern margins of Haymana and Tuzgölü basins, respectively. Two main deformation episodes are recognized in the region. These include post-Cretaceous-pre Miocene compressional regime and Miocene to mid-Pliocene transcurrent regime dominated extensional deformation. The first regime is characterize by NW-SE directed compressional and contractional deformation dominated by south vergent, large wave length, asymmetric to overturned folds and associated thrust/reverse faults. Some of these reverse faults were reactivated as strike-slip faults with reverse components as evidenced by cross-cutting relationships and overprinting slickensides observed extensively in the field. Along these reactivated faults, echelon calcite veins, fault parallel meter thick silica walls with repeated phases of deformation are very common. Following the Miocene, the region is affected by a NNE-SSW to NE-SW directed extension, possibly resulted from the interaction of Tuzgölü Fault with the northwards convex splays of dextral North Anatolian Fault extending into the region. As a conclusion, the Paleogene sequences with ophiolitic mélanges are deformed under NNE-SSW directed compression related to the development of dextral strike slip tectonics during post-Paleogene-pre-Miocene period. Keywords:fault plane slip data, transcurrent regime, post-Paleogene, central Anatolia.
NASA Astrophysics Data System (ADS)
Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin
2018-03-01
Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to a change from an early compressive tectonic environment with a thickened crust, to conditions of crustal thinning and lithospheric extension due to progressive slab rollback. Such tectonic transitions may provide favorable conditions for intrusion-related mineralization. Given the common occurrence of volcanic and plutonic rocks associated with Sn-W-Mo mineralization worldwide, we suggest that a combined understanding of temporal tectonic evolution and plutonic-volcanic connections can assist in assessment of regional-scale mineralization potential, which in turn can aid strategies for future ore deposit exploration.
Problems with the concept of deformation phases as illustrated for the Goantagab Domain, NW Namibia
NASA Astrophysics Data System (ADS)
Passchier, C. W.
2010-12-01
The concept of deformation phases is one of the corner stones of structural geology and is used to reconstruct tectonic history in all metamorphic rocks. Despite its simplicity, however, there are situations where the concept breaks down. The junction of the Neoproterozoic-Cambrian Kaoko and Damara Belts in the well-exposed desert of Namibia is ideally suited for a critical assessment of our use of the deformation phase concept. Metaturbidites and granite intrusions in the Goantagab Domain at the junction of the belts record the amalgamation of the Congo, Kalahari and Rio de la Plata Cratons. The local structure is complicated, with km-scale sheath folds, and despite perfectly exposed geology over a large area, could only be reconstructed by detailed structural mapping. Structures can be subdivided into at least four sets, attributed to four deformation phases on the basis of overprinting relations. Three of these sets of structures, however, formed during the same tectonic event under similar metamorphic conditions but slightly different flow regime. These sets show unusual gradational “ring” transitions in space, where older DA structures are reoriented and overprinted by new structures DA+1 that have similar orientation, and seem to grade into DA structures outside the overprinted area. In the core of the Goantagab Domain, D2 is thus reoriented and overprinted by local D2b folds and foliations that have the same orientation and style as D2 structures outside the domain core. This kind of behaviour may be common in inhomogeneous non-coaxial flow in other, less well exposed terrains and would go there unnoticed, leading to erroneous interpretations. An additional general problem is that the geometry of critical structures is laterally highly variable because of changes in (1) lithology; (2) previous structure; (3) metamorphic conditions (4) orientation and geometry of stress and flow tensors and (5) finite strain magnitude. Of these, only (2) and (4) are relevant to understand local tectonics, while the other effects have to be filtered out. Work in the Goantagab Domain shows how such “expressions” of deformation can be organised. Foliation traces in metaturbidites of the Goantagab Domain, central Namibia. S2 and S2b show partially overlapping "ring" transitions
Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.
2017-12-01
The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.
NASA Astrophysics Data System (ADS)
Phartiyal, B.
2016-12-01
The climate system plays an important role in the geomorphological dynamics of a region. The cold, arid, high altitude, tectonically active areas of Ladakh (India) in Trans Himalaya, western Tibetan Plateau is none exception. Noticeable change in the landscape with a shift from fluvial to lacustrine regime at 10000 yrs BP forming big open valley lakes occupying the present day river valleys is attributed to the early Holocene northward advancement of the mean latitudinal position of the summer ITCZ causing wetter conditions in this dry area. The glaciers of the Ladakh range are almost depleted and the northern range glaciers show andrastic retreat in the Quaternary time. Lakes were studied using multi-proxies, to record centennial and decadal scale climatic variability. Spatial and temporal setting of Spituk palaeolake (12600-240 cal yrs BP) along Indus River, was analyzed using multi proxies. The lake that extended for 40-50 km covering an area of 106 km2, was formed after Older Dryas as a result of river blockage by precipitation induced debris flow and seismicity. Two lake phases between 12600-9000 and 5500-3200 cal yrs BP show stable lake conditions and have synchronous relationship between high variation in monsoon intensity, high δ18O values in the Guliya core, rise in temperature and high solar insolation. High magnetic susceptibility and clay content along with diversified diatom and other freshwater algae and land derived organic matter are indicative of fresh water supply leading to high lake level from 4700 yr BP onwards in the present pro-glacial lakes studied. The multi-proxy data provides evidence of much higher and stable lake level during 3700 yr BP and 3000 yr BP onwards due to high water supply in these lake. It is in contrast to the records of weak ISM conditions and low lake level in rest of the part of Indian peninsula during the period. The study also suggests strong western disturbance activity during 4800-3000 yr BP leading to high lake level in this region. The ongoing researches aim to make an inventory/dataset of these records and address the climate-tectonics interaction with respect to the lake outburst consequences.
NASA Astrophysics Data System (ADS)
Beekman, Fred; Badsi, Madjid; van Wees, Jan-Diederik
2000-05-01
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data. In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.
NASA Astrophysics Data System (ADS)
Colella, Harmony V.; Sit, Stefany M.; Brudzinski, Michael R.; Graham, Shannon E.; DeMets, Charles; Holtkamp, Stephen G.; Skoumal, Robert J.; Ghouse, Noorulann; Cabral-Cano, Enrique; Kostoglodov, Vladimir; Arciniega-Ceballos, Alejandra
2017-04-01
The March 20, 2012 Mw 7.4 Ometepec earthquake in the Oaxaca region of Southern Mexico provides a unique opportunity to examine whether subtle changes in seismicity, tectonic tremor, or slow slip can be observed prior to a large earthquake that may illuminate changes in stress or background slip rate. Continuous Global Positioning System (cGPS) data reveal a 5-month-long slow slip event (SSE) between ∼20 and 35 km depth that migrated toward and reached the vicinity of the mainshock a few weeks prior to the earthquake. Seismicity in Oaxaca is examined using single station tectonic tremor detection and multi-station waveform template matching of earthquake families. An increase in seismic activity, detected with template matching using aftershock waveforms, is only observed in the weeks prior to the mainshock in the region between the SSE and mainshock. In contrast, a SSE ∼15 months earlier occurred at ∼25-40 km depth and was primarily associated with an increase in tectonic tremor. Together, these observations indicate that in the Oaxaca region of Mexico shallower slow slip promotes elevated seismicity rates, and deeper slow slip promotes tectonic tremor. Results from this study add to a growing number of published accounts that indicate slow slip may be a common pre-earthquake signature.
NASA Astrophysics Data System (ADS)
Andres-Martinez, Miguel; Perez-Gussinye, Marta; Armitage, John; Morgan, Jason
2016-04-01
The inner dynamics of the Earth such as mantle convection, geochemical reactions and isostasy have been typically interpreted as the main engine of plate tectonics and crustal deformation. However, nowadays it is well established that processes transporting material along the surface of the Earth influence the inner dynamics. Surface processes play a key role particularly during rifting, where great subsidence rates occur at synrift basins while shoulder uplift provides rock to be eroded for later infilling of these basins. Erosion implies unloading of the crust which favours uplift, and sedimentation at basins results in loading which favours subsidence. Consequently, erosion and sedimentation amplify stresses and the flexural response of the lithosphere in situations with extensive faulting. These changes to the stress field may be large enough to result in changes in the evolution of rifting and its modes of extension. Additionally, higher subsidence rates and thermal blanketing due to sediments may result in higher geotherms and consequently, a weaker/more-viscous behaviour of the crustal rocks. This would also have a large impact on the deformation style during extension. Here, we explore the interactions between surface processes and tectonics using numerical modelling. Experiments are run with the absence of sediment transport and with different sediment transport regimes for 35 and 40 km crustal thicknesses. Tests with higher transport coefficient show more effective localization of deformation into upper crustal faults which results in effective crustal thinning, larger blocks and longer-lived faults. Our experiments also prove that more effective surface processes reduce the length of margins generated by sequential faulting. For our end member situations, high sedimentation rates lead to pure shear extension of the crust induced by high temperatures, which finally results in broad extension and symmetric margins. Furthermore, our model allows for the recovery of predicted sediment stratigraphic patterns. Major unconformities that separate synrift from sag-basin-type sediments are observed in these pseudo-strata patterns. Here, we also address the meaning of these major unconformities and their relationship to the time of breakup.
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
Gatlin, Michael R.; Long, James M.; Turton, Donald J.
2015-01-01
The natural flow regime is important for structuring streams and their resident ichthyofauna and alterations to this regime can have cascading consequences. We sought to determine if changes in hydrology could be attributed to changes in precipitation in a minimally altered watershed (Lee Creek). The stream flow regime was analyzed using Indicators of Hydrologic Alteration (IHA) software, and data from a nearby climate station were used to summarize concurrent precipitation patterns. We discovered that Lee Creek hydrology had become flashier (i.e., increased frequency of extreme events of shorter duration) since 1992 coincident with changes in precipitation patterns. Specifically, our results show fewer but more intense rain events within the Lee Creek watershed. Our research provides evidence that climate-induced changes to the natural flow regime are currently underway and additional research on its effects on the fish community is warranted.
Subsidence of the South Polar Terrain and global tectonic of Enceladus
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-04-01
Introduction: Enceladus is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of ˜200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust (like on Mercury). Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special dynamical process that could explain this paradox. Our hypothesis states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypothesis is presented in [2] and [3]. We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion includes: Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. Methods and results: The numerical model of the subsidence process is developed. It is based on the model of thermal convection in the mantle. Special boundary conditions are applied, that could simulate subsidence of SPT. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ˜0.05 mmṡyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is ˜0.02 mmṡyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be ˜0.02 mmṡyr-1 for the Newtonian rheology. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT is compressed, so "tiger stripes" could exist for long time. Only after significant subsidence (below 1200 m) the regime of stresses changes to compressional. We suppose that it means the end of activity in a given region. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.
NASA Astrophysics Data System (ADS)
Finzel, E. S.
2017-07-01
Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.
2009-01-01
In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.
Cenozoic mountain building on the northeastern Tibetan Plateau
Lease, Richard O.
2014-01-01
Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.
Are triggering rates of labquakes universal? Inferring triggering rates from incomplete information
NASA Astrophysics Data System (ADS)
Baró, Jordi; Davidsen, Jörn
2017-12-01
The acoustic emission activity associated with recent rock fracture experiments under different conditions has indicated that some features of event-event triggering are independent of the details of the experiment and the materials used and are often even indistinguishable from tectonic earthquakes. While the event-event triggering rates or aftershock rates behave pretty much identical for all rock fracture experiments at short times, this is not the case for later times. Here, we discuss how these differences can be a consequence of the aftershock identification method used and show that the true aftershock rates might have two distinct regimes. Specifically, tests on a modified Epidemic-Type Aftershock Sequence model show that the model rates cannot be correctly inferred at late times based on temporal information only if the activity rates or the branching ratio are high. We also discuss both the effect of the two distinct regimes in the aftershock rates and the effect of the background rate on the inter-event time distribution. Our findings should be applicable for inferring event-event triggering rates for many other types of triggering and branching processes as well.
Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan
NASA Astrophysics Data System (ADS)
Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.
2017-12-01
The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface structures of the MTLFZ based on newly obtained data and previous research results. And then, we discuss how the relationship between the surface fault geometry and the deep subsurface structures changes through the MTLFZ which is under the heterogeneous regional stress condition.
NASA Astrophysics Data System (ADS)
Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.
2017-01-01
Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback progressed at a mean velocity of 3 to 4 km/Ma. The Neogene horst-and-graben mosaic that defines the modern landscape (Phase 3) has completely overprinted the earlier fabrics of Phases 1 and 2, and has been the prime focus of tectonic geomorphologists working in the region. The new narrative proposed here for linking the geodynamic evolution of SE Europe with surface landform assemblages raises issues in favour of better documenting the regional sedimentary record of existing Paleogene basins, which constitute a poorly documented missing link to the thermochronological evidence presented here.
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.
2018-04-01
Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.
NASA Astrophysics Data System (ADS)
Thomson, S. N.; Lefebvre, C.; Umhoefer, P. J.; Darin, M. H.; Whitney, D.; Teyssier, C. P.
2016-12-01
The central part of the Anatolian microplate in Turkey forms a complex tectonic zone situated between ongoing convergence of the Arabian and Eurasian plates to the east, and lateral escape of the Anatolian microplate as a rigid block to the west facilitated by two major strike-slip faults (the North and East Anatolian fault zones) that transitions westward into an extensional tectonic regime in western Turkey and the Aegean Sea related to subduction retreat. However, the geodynamic processes behind the transition from collision to escape, and the timing and nature of this transition, are complex and remain poorly understood. To gain a better understanding of the timing and nature of this transition, including the debated timing of ca. 35-20 Ma onset of collision between Arabia and Eurasia, we have undertaken a comprehensive low-temperature thermochronologic study in central Turkey to provide a record of exhumation patterns. We have collected over 150 samples, focused on the Central Anatolian Crystalline Complex (CACC), the Central Anatolian fault zone (CAFZ - proposed as a major lithosphere-scale structure that may also be related to onset of tectonic escape), and Eocene to Neogene sedimentary basins. Results include 113 apatite fission track (FT) ages (62 bedrock ages and 51 detrital ages), 26 detrital zircon FT ages, 218 apatite (U-Th)/He (He) ages from 84 mostly bedrock samples, and 15 zircon He ages from 6 bedrock samples. Our most significant new finding is identification of an early Miocene (ca. 22-15 Ma) phase of rapid cooling seen in the CACC. These cooling ages are localized in the footwalls of several large high-angle NW-SE trending normal faults, and imply significant footwall uplift and exhumation at this time. This early Miocene exhumation is restricted to entirely west of the CAFZ, and supports this fault marking a major tectonic transition active at this time. East of the CAFZ, AFT ages in sedimentary rocks show Eocene and older detrital ages despite much higher elevations (up to 3000m) suggesting uplift of the fault block east of CAFZ occurred since the late Miocene. An earlier Eocene (40-35 Ma) phase of cooling and exhumation is identified in deformed Paleocene-Eocene sedimentary rocks either side of the CAFZ likely related to a regional episode of shortening during final closure of the inner Tauride suture.
Presence of stratigraphic traps in the back arc basins of the southern shelf of Cuba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, R.; Dominguez, R.; Touset, S.
For the last ten years the southern shelf of Cuba has been the object of seismic investigations, mainly in the Ana Maria and Guacanayabo areas. More than 4000 km of seismic lines with 3000 % had been shot. These seismic surveys had confirmed the following geological events: (1) Presence of back arc extensional basins as a result of the ocean-ocean subduction. These basins started to form since Middle Cretaceous; (2) Presence of sedimentary sequences which change in thickness between 3.0-7.0 km; (3) Predominance of the extensional regime since Middle Cretaceous with subsidence, accommodation and extending of the sediments; (4) Developmentmore » of stratigraphic traps, mainly associated with reef facies and slope fans of Late Cretaceous-Early Tertiary. These traps can reach some hundred square kilometers. They have very clear dynamic expression in the seismic section and usually form anomaly zones. Over these seismic anomalies some reverberation can be observed which could be related to hydrocarbon flows. The depth of the traps changes between 1.5-3.5 km. More than thirty of them have been localized; (5) Probably a wrench tectonic interested these basins since Middle Eocene; (6) in some wells has been found oil and gas seeps as well as seal sequences; (7) According to their origin and evolution they can be similar to the great oil basins of the Venezuela and Colombia.« less
Deep and persistent melt layer in the Archaean mantle
NASA Astrophysics Data System (ADS)
Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis
2018-02-01
The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.
NASA Astrophysics Data System (ADS)
Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.
2004-12-01
We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.
Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.
Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel
2017-09-22
Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Ribas, Camila C; Moyle, Robert G; Miyaki, Cristina Y; Cracraft, Joel
2007-01-01
The mechanisms underlying the taxonomic assembly of montane biotas are still poorly understood. Most hypotheses have assumed that the diversification of montane biotas is loosely coupled to Earth history and have emphasized instead the importance of multiple long-distance dispersal events and biotic interactions, particularly competition, for structuring the taxonomic composition and distribution of montane biotic elements. Here we use phylogenetic and biogeographic analyses of species in the parrot genus Pionus to demonstrate that standing diversity within montane lineages is directly attributable to events of Earth history. Phylogenetic relationships confirm three independent biogeographic disjunctions between montane lineages, on one hand, and lowland dry-forest/wet-forest lineages on the other. Temporal estimates of lineage diversification are consistent with the interpretation that the three lineages were transported passively to high elevations by mountain building, and that subsequent diversification within the Andes was driven primarily by Pleistocene climatic oscillations and their large-scale effects on habitat change. These results support a mechanistic link between diversification and Earth history and have general implications for explaining high altitudinal disjuncts and the origin of montane biotas. PMID:17686731
Polar continental margins: Studies off East Greenland
NASA Astrophysics Data System (ADS)
Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.
The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.
Potential Flooding area for local Tsunami in Nayarit Region (Western Coast of Mexico).
NASA Astrophysics Data System (ADS)
Trejo-Gomez, E.; Ortiz, M.; Nuñez-Cornu, F. J.
2016-12-01
The western coast of Mexico in the region of Jalisco and Nayarit states has a complex tectonics and a high seismic activity. In the last century, four big tsunamis occurred in this area, (three of them in 1932 and one in 1995, that hit the coast of Colima, Jalisco and Nayarit. Three of these tsunamis were generated by earthquakes and one more (22 June 1932) by an underwater landslide. Currently, there is a seismic Gap on the north coast of Jalisco and southern Nayarit. Recent published papers (Urías-Espinosa et al, 2016) and the first results of TsuJal Project (Núñez- Cornú et al, 2016) suggest that subduction regime to the north of Cabo Corrientes changes and the Rivera plate subducts with a very low angle and this structure remains until Maria Madre Island at north of the Marias Islands. The hypothesis of this work is the estimation of the tsunami run up and the flooding zone after a great magnitude earthquake generated by the rupture of the hypothetical subduction structure north of Cabo Corrientes. The possible effects on the coasts of Nayarit, Islas Marias and Banderas Bay (Puerto Vallarta) are proposed in this study.
,
1984-01-01
Geologic mapping and potassium-argon dating by R. L. Detterman, F. H. Wilson, J. E. Case, and Nora Shew in the Ugashik and western part of the Karluk quadrangles have shown that the Eocene and Oligocene volcanic arc continues into these quadrangles from the south in the Chignik and Sutwik Island quadrangles. Surface exposures of the arc extend northward to approximately 57°30'N., or midway through the Ugashik quadrangle, but none are observed north of that point. Subsurface drill-hole data (Brockway and others, 1975) indicate continuation of the arc, possibly offset to the northwest of the northernmost known surface exposures.In the extreme northern part of the Ugashik and Karluk quadrangles, volcanic rocks again become important. These volcanic rocks are as yet undated; however, they may be related to the Katmai late Tertiary volcanic centers.Like the early Tertiary volcanic arc, the present-day Aleutian arc is also offset to the northwest in the northern part of the Ugashik and Karluk quadrangles. No major offset of the Mesozoic rocks is indicated through the offset zone; this fact suggests a change in the Tertiary tectonic regime in the area of the offset.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
NASA Astrophysics Data System (ADS)
Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob
2018-05-01
We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that the former types of faults can be activated under a strike-slip stress regime. Our observations of the seismicity, with normal faulting concentrated offshore to the northwest and reverse faulting focused offshore to the east, are compatible with the results of our estimates of stress magnitudes.
Flint, Paul L.
2013-01-01
Broad-scale multi-species declines in populations of North American sea ducks for unknown reasons is cause for management concern. Oceanic regime shifts have been associated with rapid changes in ecosystem structure of the North Pacific and Bering Sea. However, relatively little is known about potential effects of these changes in oceanic conditions on marine bird populations at broad scales. I examined changes in North American breeding populations of sea ducks from 1957 to 2011 in relation to potential oceanic regime shifts in the North Pacific in 1977, 1989, and 1998. There was strong support for population-level effects of regime shifts in 1977 and 1989, but little support for an effect of the 1998 shift. The continental-level effects of these regime shifts differed across species groups and time. Based on patterns of sea duck population dynamics associated with regime shifts, it is unclear if the mechanism of change relates to survival or reproduction. Results of this analysis support the hypothesis that population size and trends of North American sea ducks are strongly influenced by oceanic conditions. The perceived population declines appear to have halted >20 years ago, and populations have been relatively stable or increasing since that time. Given these results, we should reasonably expect dramatic changes in sea duck population status and trends with future oceanic regime shifts.
NASA Astrophysics Data System (ADS)
Vögeli, Natalie; Van der Beek, Peter; Najman, Yani; Huyghe, Pascale
2015-04-01
The link between tectonics, erosion and climate has become an important subject to ongoing research in the last years (Clift et al. (2008), amongst others). The young Himalayan orogeny is the perfect laboratory for its study. The Neogene sedimentary foreland basin of the Himalaya contains a record of tectonics and paleoclimate since Miocene times, within the so called Siwalik Group. Therefore several sedimentary sections within the Himalayan foreland basin along strike in the Himalayan range have been dated and studied regarding exhumation rates, provenance and paleoclimatology (e.g. Quade and Cerling, 1995; Ghosh et al., 2004; Sanyal et al., 2004; van der Beek et al., 2006). Lateral variations have been observed and changes in exhumation rate as well as climate change in the past especially the strengthening of the Asian summer monsoon is still debated. Several paleoclimatological studies in the western Himalaya were conducted (Quade and Cerling, 1995; Najman et al., 2003; Huyghe et al., 2005), but the eastern part of the mountain range remains poorly studied. The Himalaya has a major influence on global and regional climate. The major force driving the evolution of this mountain belt is the India-Asia convergence, nevertheless it has been suggested that the monsoonal climate plays a major role for the erosion and relief pattern (Bookhagen and Burbank, 2006; Clift et al., 2008; Iaffaldano et al., 2011). Exhumation rates in the central Himalayas are more or less constant over last 13 Ma in the order of 1.8 km/myr, whereas exhumation rates in the eastern syntaxis increased post 3 Ma (Chirouze et al., 2013) to reach up to 10km/myr in the recent past. In this study we use a multidisciplinary approach in order to better understand the interplay of monsoon and weathering regime during the Mid Miocene to Pleistocene in the Himalaya. Therefore a sedimentary section in the eastern Himalaya was sampled. Pairs of fine and coarse grained sediment samples were taken in the Kameng section, Arunachal Pradesh (Fig. 1), which was previously dated by magnetostratigraphy by Chirouze et al. (2012) and ranges from 13 Ma to 1 Ma. Major elements were analyzed in order to calculate the Chemical Index of Alteration (CIA), to identify a trend in the weathering intensity over the time span. Ratios of mobile to immobile elements showed different trends of weathering, whereas the CIA remained relatively constant over time and values between 65 and 85 indicate a strong and stable weathering regime. Results of organic geochemical analyses of lipid biomarkers show substantial diagenesis during burial affected the organic material. Specifically, chain length distributions of n-alkanes showed that sediments were subjected to temperatures within the oil window (Hunt, 1996). Chirouze et al. (2013) provided the provenance of the sandstones of the Kameng section, where they defined a zone of the Paleo-Brahmaputra between 3-7 Ma. Clay mineral measurements and analysis of heavy minerals and petrography give further insight of a possible climatic change during this time.
Mantle convection with plates and mobile, faulted plate margins.
Zhong, S; Gurnis, M
1995-02-10
A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.
NASA Astrophysics Data System (ADS)
Schmeelk, Dylan; Bendick, Rebecca; Stickney, Michael; Bomberger, Cody
2017-06-01
We derive surface velocities from GPS sites in the interior Northwest U.S. relative to a fixed North American reference frame to investigate surface tectonic kinematics from the Snake River Plain (SRP) to the Canadian border. The Centennial Tectonic Belt (CTB) on the northern margin of the SRP exhibits west directed extensional velocity gradients and strain distributions similar to the main Basin and Range Province (BRP) suggesting that the CTB is part of the BRP. North of the CTB, however, the vergence of velocities relative to North America switches from westward to eastward along with a concomitant rotation of the principal stress axes based on available seismic focal mechanisms, revealing paired extension in the northern Rockies and shortening across the Rocky Mountain Front. This change in orientation of surface velocities suggests that the change in the boundary conditions on the western margin of North America influences the direction of gravitational collapse of Laramide thickened crust. Throughout the study region, fault slip rate estimates calculated from the new geodetic velocity field are consistently larger than previously reported fault slip rates determined from limited geomorphic and paleoseismic studies.
Monitoring the hydrothermal system in Long Valley caldera, California
Farrar, C.D.; Sorey, M.L.
1985-01-01
An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.
The Neogene tectonic evolution and climatic change of the Tianshui Basin, NE Tibetan Plateau
NASA Astrophysics Data System (ADS)
Peng, T.; Li, J.; Song, C.; Zhao, Z.; Zhang, J.; Wang, X.; Hui, Z.
2013-12-01
The Tianshui Basin, located at the conjunction of NE Tibetan Plateau and Chinese Loess Plateau, has received intensive attention recently. Fine-grained Miocene sediment was identified as loess in its north part and this pushes the onset of Asian aridification into 22 Ma. However, our sedimentological, biomarker, pollen, diatom and mammalian fossils evidence propose that these sediments were suggested to be mudflat/distal fan and floodplain deposit instead of eolian deposit. So detailed tectonic background and climate reconstruction may illustrate the controversy and shed light on the tectonic, climate and ecology interactions. Here we report our integrated studies on the tectonic evolution, climate change and paleoecology reconstruction in the Tianshui basin. Based on the magnetostratigraphy and fossil mammal ages, sedimentological and detrital fission-track thermochronologic (DFT) analysis reveals four episodic tectonic uplift events occurred at ~20 Ma, ~14 Ma, ~9.2-7.4 Ma and ~3.6 Ma along the basin and its adjacent mountains. The timing of these activities at Western Qinling have been documented at many segments of the Tibetan Plateau, so most likely they were the remote response to the ongoing India-Asia collision. Pollen, mammalian fossils and biomarker data permit us to illustrate the paleoenvironment in the Tianshui Basin. During the period of ~17-10 Ma, the climate was generally warm-humid revealed by the broad-leaved forest and low Average Chain Length (ACL) values, when the Paltybelodon and Gomphotherium were roaming near an extensive aquatic setting. In addition, the observed Middle Miocene Climatic Optimum and Middle Miocene Climatic Transition events may be a terrestrial response to global climate changes. During the interval of ~10-6 Ma, the climate was relatively arid characterized by the rapid development of steppe and appearance of the Hipparion fauna, consistent with the biomarker proxy. Although the NE Tibetan Plateau experienced a phase of active uplift around ~8 Ma, we mainly ascribe this arid interval to global change known as the C4 grass expansion, because the subsequent early Pliocene turned back to humid-warm climate again. Since ~4 Ma, it became obviously drier than the previous two arid intervals via the biomarker perspective. This dramatic dry trend may be related to the Tibetan Plateau uplift and/or global cooling, highlighting the importance and complexity of tectonic-climate interaction. Acknowledgements: This work was co-supported by the "Strategic Priority Research Program" of the CAS (XDB03020402), the (973) National Basic Research Program of China (2013CB956400) and the National Natural Science Foundation of China (41021091, 41101012).
Challenges to Progress in Studies of Climate-Tectonic-Erosion Interactions
NASA Astrophysics Data System (ADS)
Burbank, D. W.
2016-12-01
Attempts to unravel the relative importance of climate and tectonics in modulating topography and erosion should compare relevant data sets at comparable temporal and spatial scales. Given that such data are uncommonly available, how can we compare diverse data sets in a robust fashion? Many erosion-rate studies rely on detrital cosmogenic nuclides. What time scales can such data address, and what landscape conditions do they require to provide accurate representations of long-term erosion rates? To what extent do large-scale, but infrequent erosional events impact long-term rates? Commonly, long-term erosion rates are deduced from thermochronologic data. What types of data are needed to test for consistency of rates across a given interval or change in rates through time? Similarly, spatial and temporal variability in precipitation or tectonics requires averaging across appropriate scales. How are such data obtained in deforming mountain belts, and how do we assess their reliability? This study describes the character and temporal duration of key variables that are needed to examine climate-tectonic-erosion interactions, explores the strengths and weaknesses of several study areas, and suggests the types of data requirements that will underpin enlightening "tests" of hypotheses related to the mutual impacts of climate, tectonics, and erosion.
Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate
Finarelli, John A.; Badgley, Catherine
2010-01-01
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339
Effects of climate change on ecological disturbance in the northern Rockies
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.
2018-01-01
Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.
Effects of climate change on ecological disturbances [Chapter 8
Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall
2018-01-01
This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...
NASA Astrophysics Data System (ADS)
Tari, U.; Tüysüz, O.; Blackwell, B. A. B.; Genç, Ş. C.; Florentin, J. A.; Mahmud, Z.; Li, G. L.; Blickstein, J. I. B.; Skinner, A. R.
2016-12-01
Tectonic movements among the African, Arabian and Anatolian Plates have deformed the eastern Mediterranean. These movements caused transtensional opening of the NE-trending Antakya Graben since the late Pliocene. Tectonic uplift coupled with Quaternary sealevel fluctuations has produced several stacked marine terraces along the Mediterranean coasts on the graben. Here, marine terrace deposits that sit on both flanks of the graben at elevations between 3 and 175 m were dated using electron spin resonance (ESR) method in order to calculate uplift rates. The ESR ages range from 12 ka in late MIS 2 to 457 ka in MIS 9-11, but most of the terraces contain molluscs reworked from several earlier deposits due to successive tectonic movements and sealevel fluctuations. By dating in situ fossils, along the basal contacts of the marine terraces, uplift rates were calculated on both sides of the Antakya Graben. Results indicate that these deposits were mainly uplifted by local active faults rather than regional movements.
NASA Astrophysics Data System (ADS)
Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.
2013-12-01
Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.
NASA Astrophysics Data System (ADS)
McLaren, Sandra; Wallace, Malcolm W.; Gallagher, Stephen J.; Miranda, John A.; Holdgate, Guy R.; Gow, Laura J.; Snowball, Ian; Sandgren, Per
2011-05-01
The Murray Basin is a low-lying but extensive intracratonic depocentre in southeastern Australia, preserving an extraordinary record of Late Neogene sedimentation. New stratigraphic and sedimentologic data allow the long-term evolution of the basin to be re-evaluated and suggest a significant role for: (1) tectonism in controlling basin evolution, and (2) progressive and step-wise climatic change beginning in the early Pleistocene. Tectonic change is associated with regional uplift, occurring at approximately the same rate from the early Pliocene until the present day, and possibly associated with changing mantle circulation patterns or plate boundary processes. This uplift led to the defeat and re-routing of the Murray River, Australia's major continental drainage system. Key to our interpretation is recognition of timing relationships between four prominent palaeogeographic features - the Loxton-Parilla Sands strandplain, the Gambier coastal plain, palaeo megalake Bungunnia and the Kanawinka Escarpment. Geomorphic and stratigraphic evidence suggest that during the Early Pliocene the ancestral Murray River was located in western Victoria, flowing south along the Douglas Depression. Relatively small amounts of regional uplift (<200 m) defeated this drainage system, dramatically changing the palaeogeography of southeastern Australia and forming Plio-Pleistocene megalake Bungunnia. At its maximum extent Lake Bungunnia covered more than 50,000 km 2, making it one of the largest known palaeo- or modern-lakes in an intracontinental setting. Magnetostratigraphic constraints suggest lake formation c. 2.4 Ma. The formation of Lake Bungunnia influenced the Pliocene coastal dynamics, depriving the coastline of a sediment source and changing the coastal system from a prograding strandline system to an erosional one. Erosion during this period formed the Kanawinka Escarpment, a palaeo sea-cliff and one of the most prominent and laterally extensive geomorphic features in southeastern Australia. Marine sediments c. 800 ka to c. 1.16 Ma represent the time of re-establishment of depositional coastal dynamics and of a permanent outlet for the Murray River. This age range is consistent with our best estimate of the age of the youngest Lake Bungunnia sediments and points towards an early Pleistocene age for the demise of the lake system. The youngest Lake Bungunnia sediment, present on a number of distinct terraces, suggests that progressive, step-wise climatic change played a role in the demise of the lake. However, in order for the ancestral Murray River system to have been able to breach the pre-existing tectonic dam, it is likely that tectonic change and/or temporarily enhanced discharge was also significant. This scenario indicates that the modern Murray River has only been in existence for at most 700 ka.
Effects of dislocations on polycrystal anelasticity
NASA Astrophysics Data System (ADS)
Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.
2017-12-01
Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.
2015-12-01
The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a function of lithology and loading pulse characteristics.
NASA Astrophysics Data System (ADS)
Macchiavelli, Chiara; Mazzoli, Stefano; Megna, Antonella; Saggese, Ferdinando; Santini, Stefano; Vitale, Stefano
2012-12-01
In order to obtain new insights into the active tectonic setting of the Italian territory and surrounding regions, the Multiple Inverse Method (MIM) has been applied to the analysis of fault plane solutions from more than 700 earthquakes with Mw ≥ 4. The active stress field in the top 40 km of the lithosphere has been defined for four 10 km-thick layers, each including 810 square cells of 1.5° side. The obtained stress field maps point out that most of the upper crustal seismicity of the Western and Central Alps is controlled by a strike-slip regime, which is dominant also in part of the Dinarides, Albanides and Hellenides and in a large sector encompassing eastern Sicily and the Malta area to the eastern Tunisia offshore. On the other hand, the well-known extensional belt occurring in the interior of the Apennines appears to extend well beyond the backbone of Italy, potentially reaching the outer foothills of the northern Marche region, while the adjacent Adria block (extending to the eastern Po Plain and the outer Dinarides) sticks out as a major area characterised by dominant thrust faulting in the upper crust. A similar regime characterises also a large sector of the western Tyrrhenian Sea, from NE Tunisia through western Sicily and the west coast of Sardinia, to the Provence coast. Besides lateral variations, our analysis also points out a significant vertical heterogeneity of the stress field, the deeper levels (20 to 40 km) investigated in this study being characterised by dominant horizontal maximum compression even in areas of upper crustal extension. The application of the MIM to a large seismological dataset, providing basic information for the compilation of active stress maps, contributes to a better understanding of active tectonic processes and may be used for improving seismotectonic zoning and reservoir management.
NASA Astrophysics Data System (ADS)
Zhong, S.; Watts, A. B.
2014-12-01
Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes of this weakening in the context of the potential effects on laboratory studies of reduced grain size and Peierls stress on the low-temperature deformation regime.
NASA Astrophysics Data System (ADS)
Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine
2017-03-01
The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for arid conditions in the terrestrial hinterland place the Alborz Basin at lower latitudes than the approximately 45ο-50ο southern paleolatitude reported thus far.
NASA Astrophysics Data System (ADS)
Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.
2017-10-01
Late Cretaceous (∼100-80 Ma) magmatism in the Gangdese magmatic belt plays a pivotal role in understanding the evolutionary history and tectonic regime of the southern Lhasa terrane. The geodynamic process for the formation of the early Late Cretaceous magmatism has long been an issue of hot debates. Here, petrology, geochronology and geochemistry of early Late Cretaceous granodiorite and coeval gabbroic-dioritic dykes in the Caina region, southern Lhasa, were investigated in an effort to ascertain their petrogenesis, age of intrusion, magma mixing and tectonic setting. Zircon U-Pb dating of granodiorite yields 206Pb/238U ages of 85.8 ± 1.7 and 86.4 ± 1.1 Ma, whilst that of the E-W trending dykes yields ages of 82.7 ± 2.6 and 83.5 ± 3.5 Ma. Within error, the crystallization ages of the dykes and the granodiorite are indistinguishable. Field observations and mineralogical microstructures are suggestive of a magma mixing process during the formation of the dykes and the granodiorite. The granodiorite exhibits geochemical features that are in agreement with those of subduction-related high-SiO2 adakites. The granodiorite and dykes have relatively constant εNd(t) values of +2.2 to +4.9 and initial 87Sr/86Sr ratios (0.7045-0.7047). These similar characteristics are herein interpreted as an evolutionary series from the dykes to granodiorite, consistent with magma mixing process. Ti-in-zircon thermometer and Al-in-hornblende barometer indicate that the granodiorite and the dioritic dyke crystallized at temperatures of ca. 750 and 800 °C, depths of ca. 6-10 and 5-9 km, respectively. Taking into account the synchronous magmatic rocks in the Gangdese Belt and the coeval rifted basin within the Lhasa terrane, the granodiorite and dykes reveal an early Late Cretaceous syn-convergence extensional regime in the southern Lhasa terrane, triggered by slab rollback of the Neotethyan oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng
2017-08-01
We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.
NASA Astrophysics Data System (ADS)
Blés, J. L.; Bonijoly, D.; Castaing, C.; Gros, Y.
1989-11-01
Structural analysis and particularly microtectonic methods have made it possible to define the different stages of brittle deformation of the Massif Central basement and the surrounding sedimentary cover from the end of the Hercynian orogeny to the end of the Tertiary. During the Stephanian a compressional tectonic regime prevailed: regional faults appeared or were react vated reactivation as a result of initial N-S compression, becoming NW then E-W. These regional strike-slip faults caused local extension which led to the formation of small coal-bearing basins. This compressional regime, which marked the end of the formation of Pangea. was followed by a series of extension episodes: Permian-Triassic extension oscillating around N-S. E-W to NW-SE extension in the Early and Middle Jurassic and finally N-S to NE-SW extension in the Late Jurassic to Cretaceous. The normal faults formed during these episodes strongly influenced the distribution of emerging continents and sedimentary basins. From the Campanian (75 Ma) to the Present, the convergence of Africa and Eurasia involved the distribut on of stresses in the West European plate. Several tectonic episodes are distinguished in the Massif Central. During the Eocene approximately N-S compression predominated. General E-W extension in the Late Eocene-Oligocene resulted in grabens with general northerly strike, mainly in the centre of the Massif Central and on its east and southeast borders. Lastly, compression, varying from NW-SE to E-W, in the north and south of the Massif Central, prevailed during the Alpine orogenic phase at the end of the Miocene. These successive stages of brittle deformation are interpreted in the context of the evolution of the West European plate and its displacement in relation to the African plate. The correspondences between the major geodynamic periods and the distribution of stresses over the West European continent are noted as well as the problems which remair to be resolved.
NASA Astrophysics Data System (ADS)
Ings, Steven; Albertz, Markus
2014-05-01
Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.
Hough, S.E.; Kanamori, H.
2002-01-01
We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.
Focal mechanisms of earthquakes in Mongolia
NASA Astrophysics Data System (ADS)
Sodnomsambuu, D.; Natalia, R.; Gangaadorj, B.; Munkhuu, U.; Davaasuren, G.; Danzansan, E.; Yan, R.; Valentina, M.; Battsetseg, B.
2011-12-01
Focal mechanism data provide information on the relative magnitudes of the principal stresses, so that a tectonic regime can be assigned. Especially such information is useful for the study of intraplate seismic active regions. A study of earthquake focal mechanisms in the territory of Mongolia as landlocked and intraplate region was conducted. We present map of focal mechanisms of earthquakes with M4.5 which occurred in Mongolia and neighboring regions. Focal mechanisms solutions were constrained by the first motion solutions, as well as by waveform modeling, particularly CMT solutions. Four earthquakes have been recorded in Mongolia in XX century with magnitude more than 8, the 1905 M7.9 Tsetserleg and M8.4 Bolnai earthquakes, the 1931 M8.0 Fu Yun earthquake, the 1957 M8.1 Gobi-Altai earthquake. However the map of focal mechanisms of earthquakes in Mongolia allows seeing all seismic active structures: Gobi Altay, Mongolian Altay, active fringe of Hangay dome, Hentii range etc. Earthquakes in the most of Mongolian territory and neighboring China regions are characterized by strike-slip and reverse movements. Strike-slip movements also are typical for earthquakes in Altay Range in Russia. The north of Mongolia and south part of the Baikal area is a region where have been occurred earthquakes with different focal mechanisms. This region is a zone of the transition between compressive regime associated to India-Eurasian collision and extensive structures localized in north of the country as Huvsgul area and Baykal rift. Earthquakes in the Baikal basin itself are characterized by normal movements. Earthquakes in Trans-Baikal zone and NW of Mongolia are characterized dominantly by strike-slip movements. Analysis of stress-axis orientations, the tectonic stress tensor is presented. The map of focal mechanisms of earthquakes in Mongolia could be useful tool for researchers in their study on Geodynamics of Central Asia, particularly of Mongolian and Baikal regions.
Regime Change and the Role of Airpower
2006-08-01
cut off aid to Batista, Samoza, Marcos , and the Shah. Each dictator sub- sequently fell.”11 Like the domestic winning coalition, foreign countries and...Vice Pres. Hubert Humphrey provides a robust example of a regime change in a democracy. The previous sections detailed 34 AMERICAN REGIME CHANGE how...the Democrats and draw support away from the incumbent candidate, Vice Pres. Hubert Humphrey. Even among Johnson’s advocates and personal advisors
NASA Astrophysics Data System (ADS)
Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi
2018-01-01
The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.
NASA Astrophysics Data System (ADS)
Tudge, J.; Webb, S. I.; Tobin, H. J.
2013-12-01
Since 2007 the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has drilled a total of 15 sites across the Nankai Trough subduction zone, including two sites on the incoming sediments of the Philippine Sea plate (PSP). Logging-while-drilling (LWD) data was acquired at 11 of these sites encompassing the forearc Kumano Basin, upper accretionary prism, toe region and input sites. Each of these tectonic domains is investigated for changes in physical properties and LWD characteristics, and this work fully integrates a large data set acquired over multiple years and IODP expeditions, most recently Expedition 338. Using the available logging-while-drilling data, primarily consisting of gamma ray, resistivity and sonic velocity, a log-based lithostratigraphy is developed at each site and integrated with the core, across the entire NanTroSEIZE transect. In addition to simple LWD characterization, the use of Iterative Non-hierarchical Cluster Analysis (INCA) on the sites with the full suite of LWD data clearly differentiates the unaltered forearc and slope basin sediments from the deformed sediments of the accretionary prism, suggesting the LWD is susceptible to the subtle changes in the physical properties between the tectonic domains. This differentiation is used to guide the development of tectonic-domain specific physical properties relationships. One of the most important physical property relationships between is the p-wave velocity and porosity. To fully characterize the character and properties of each tectonic domain we develop new velocity-porosity relationships for each domain found across the NanTroSEIZE transect. This allows the porosity of each domain to be characterized on the seismic scale and the resulting implications for porosity and pore pressure estimates across the plate interface fault zone.
Geology is the Key to Explain Igneous Activity in the Mediterranean Area
NASA Astrophysics Data System (ADS)
Lustrino, M.
2014-12-01
Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.
Tectonic evolution of the Gaoua region, Burkina Faso: Implications for mineralization
NASA Astrophysics Data System (ADS)
Baratoux, L.; Metelka, V.; Naba, S.; Ouiya, P.; Siebenaller, L.; Jessell, M. W.; Naré, A.; Salvi, S.; Béziat, D.; Franceschi, G.
2015-12-01
The interpretation of high-resolution airborne geophysical data integrated with field structural and lithological observations were employed in the creation of a litho-structural framework for the Gaoua region, Burkina Faso. The granite-greenstone domain of Paleoproterozoic age was affected by multiple deformation and mineralization events. The early tectonic phase is characterized by the emplacement of voluminous tholeiitic and calc-alkaline lavas, probably in a volcanic arc setting. The copper mineralization in Gongondy, Dienemera and Mt Biri is concentrated in a diorite/andesite breccia, and is interpreted as porphyry-copper style formed at an early stage of the evolution of the area. Evidence for the first deformation event D1Ga corresponding to N-S shortening was only found in the E-W trending mafic unit bordering the Gaoua batholith to the south. A second deformation phase D2Ga occurred under greenschist facies conditions and lead to a development of more or less penetrative metamorphic foliation and its subsequent folding under overall E-W compression. At later stages, the D2Ga switched to a transcurrent regime characterized by intense N-S to NW-trending steeply dipping shear zones. The first significant gold mineralization event is related to this transcurrent tectonic phase. During subsequent D3Ga, intense network of brittle to brittle-ductile NW and NE faults developed. Economic gold concentrations are attributed to the D3Ga event and are associated with the remobilization of early disseminated low grade gold concentrations. Significant deposits in the area are Nassara, Gomblora, Batié West and Kampti. The last deformation event D4Ga resulted in E-W trending thrust faults and crenulation cleavage planes, under overall N-S compression. No mineralization events related to this stage have been seen.
NASA Astrophysics Data System (ADS)
Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František
2017-09-01
On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.
Formation of plate boundaries: The role of mantle volatilization
NASA Astrophysics Data System (ADS)
Seno, Tetsuzo; Kirby, Stephen H.
2014-02-01
In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.
Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India
Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.
2006-01-01
Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min
2017-08-01
We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.
Separation of Diamagnetic and Paramagnetic Fabrics Reveals Strain Directions in Carbonate Rocks
NASA Astrophysics Data System (ADS)
Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.
2018-03-01
We present a new procedure for separating magnetic fabrics in coccolith-bearing chalk samples, demonstrated in the case studies of three sites located within the Dead Sea Fault (DSF) plate boundary. The separation is achieved by combining measurements of room temperature and low-temperature anisotropy of magnetic susceptibility (RT-AMS and LT-AMS, respectively) with anisotropy of anhysteretic remanence magnetization (AARM). The LT-AMS, measured at 77 K, enhances the fabric of paramagnetic clay minerals. The AARM represents the fabric of ferromagnetic Fe oxides. By subtracting the paramagnetic and ferromagnetic fabrics from the RT-AMS, the diamagnetic fabric is separated. In the studied samples, we found that the ferromagnetic contribution to the bulk magnetic fabric is negligible and could be excluded from the subtraction procedure. Our analysis indicates that in chalks with a negligible ferromagnetic contribution, diamagnetic fabric predominates the rock bulk magnetic fabric, if the mean susceptibility is <-6 × 10-6 SI, whereas with a mean susceptibility >11 × 10-6 SI, paramagnetic fabric predominates. In the studied rocks, the paramagnetic clay minerals preserve the original depositional fabric, whereas the diamagnetic minerals show a tectonic fabric. We propose a mechanism by which coccolith rotation under tectonic strain contributes to the development of the diamagnetic fabric parallel to the shortening direction. We infer that the diamagnetic fabrics of the studied rocks indicate strain regime of approximately N-S horizontal shortening near strands of the DSF system. This suggests a deflection of the regional principal strain axes near the DSF. The diamagnetic fabric is more sensitive to tectonic strain than paramagnetic fabric in chalks and provides a valuable strain indicator near major faults.
Planetary Evolution, Habitability and Life
NASA Astrophysics Data System (ADS)
Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz
A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.
Snowpack Regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, E.; Molotch, N. P.
2011-12-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments, and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here, we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at over seven hundred snow pillow stations in the Western U.S., focusing on several metrics of the yearly SWE curves and the cross relationships between the different metrics. The metrics include the initial snow accumulation and meltout dates, the peak accumulation and date of peak, the time from initial accumulation to peak, the time from peak to meltout, the accumulation and melt slopes, and the daily rates of accumulation and melt. Three distinct regimes emerge from these results: a maritime, an intermediate (intercontinental), and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days, while on the other hand; the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intercontinental regime lies in between. Several other differences are identified between the metrics of the SWE curve in these regimes. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intercontinental regime includes the Northern and Central basins and ranges, the Idaho Batholith, the Northern Rockies and the Blue Mountains. Lastly, the Continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The consequences of the differences between these snow regimes are discussed in the framework of the implications of possible changes in accumulation and melt patterns as a consequence of changes in climate.
NASA Astrophysics Data System (ADS)
Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.
2015-12-01
Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.
Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.
2016-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We conclude that future work should focus on testing and implementing these pathways in different contexts to make ecosystem services provisioning more robust to changing disturbance regimes and advance our understanding of how to cope with change and uncertainty in ecosystem management. PMID:26966320
Present-day stress magnitude at depth from leak-off tests in Italy
NASA Astrophysics Data System (ADS)
Mariucci, M. T.; Montone, P.; Pierdominici, S.
2012-04-01
We present new results from the analysis of leak-off tests, performed in deep oil wells in Italy, to characterize the present-day stress magnitude and regime in the crust. In the last years we have collected a large number of data (more than 500) from different stress indicators, mainly borehole breakouts, earthquake focal mechanisms and fault data, which provided information on the present-day stress orientations. In some areas the tectonic regime has been inferred either from fault plane solutions of M≥4 earthquakes or from stress inversions of smaller earthquakes. Where seismicity lacks, the regime is not well constrained and little or no information on the magnitude of the crustal stresses is available. In order to improve our knowledge in stress regime and its magnitude in Italy, in this work we use the leak-off test technique. Each test is performed at the bottom of an open hole by sealing off a section and then slowly pressurizing with a fluid until hydraulic tensile fractures develop. The minimum horizontal stress is inferred by leak-off pressure record, the vertical stress is computed by rock density data and the maximum horizontal stress is estimated applying a specific formula from the literature. Thanks to ENI S.p.A. (Italian oil company), that kindly provided new well data, we have been able to perform a critical review of our preliminary calculations and to enhance our previous results concerning stress magnitudes. Totally, we have analyzed 192 leak-off tests at depth between 200 and 5400m (average 1800m). In particular, wells are located along the Italian peninsula and in Sicily: most of them are in the Po Plain and along the Apenninic foredeep; few are in southern Apenninic belt and a few tens are in Sicily. After an accurate selection of the most robust results, we better characterize the Italian stress regime at depth.
William J. De Groot; Michael D. Flannigan; Brian J. Stocks
2013-01-01
Wildland fire regimes are primarily driven by climate/weather, fuels and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes in many global regions. Current research suggests a general increase in area burned and fire occurrence...
NASA Astrophysics Data System (ADS)
Vilella, Kenny; Kaminski, Edouard
2017-05-01
The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.
NASA Astrophysics Data System (ADS)
Vilella, K.; Kaminski, E. C.
2016-12-01
The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This "Hottest Thermal Boundary Layer" (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.
NASA Astrophysics Data System (ADS)
Pfeiffer, A.; Finnegan, N. J.
2017-12-01
Gravel river beds provide an ephemeral architecture for the benthic inhabitants of river ecosystems. Periphyton and benthic macroinvertebrates that live on or within the gravel are subject to catastrophic disruption upon mobilization of the surface gravel during floods. Because sediment supply varies by orders of magnitude across North America, and rivers have adjusted to convey their imposed loads, river bed surface mobility varies enormously. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydrologic patterns result in diverse regimes of benthic habitat stability. To quantitatively characterize these regimes, we calculate decades-scale time series of estimated bed surface mobility using sediment transport equations (Wilcock and Crowe, 2003). The method requires measurements of the bed surface grainsize distribution, channel slope, and standard USGS stream gauging records. We calculate the fraction of the bed surface grain size distribution that is mobile at any given flow, as well as the intensity of transport. We use the time series of bed mobility to compare between rivers and regions. In many snowmelt-dominated rivers in Idaho, a period of moderate bed mobility (W* > 0.002) generally occurs during the annual melt, and can last for days. In rivers draining the central and northern Appalachians, bed mobility is comparatively rare and occurs during short duration floods. Rivers on the tectonically active West Coast tend to experience bed mobility during most winter storms, with brief (hours long) periods of high transport rates (W* > 0.02) during storm peaks. The timing and intensity of bed mobility varies with hydrologic regime and sediment supply; these contrasts in bed mobility lead to diverse structural templates for river ecosystems.
Sandstone: secular trends in lithology in southwestern montana.
McLane, M
1972-11-03
Long-term secular trends in the composition and texture of sandstones in southwestern Montana reflect changing provenance and depositional environment, which in turn reflect changing tectonic patterns in the Cordilleran mobile belt just to the west.
NASA Astrophysics Data System (ADS)
Booker, David; Clarke, Peter J.; Lavallée, David A.
2014-09-01
The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.
Numerical modelling of volatiles in the deep mantle
NASA Astrophysics Data System (ADS)
Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.
2017-04-01
The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).
The divergent fates of primitive hydrospheric water on Earth and Mars
NASA Astrophysics Data System (ADS)
Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.
2017-12-01
Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
The divergent fates of primitive hydrospheric water on Earth and Mars.
Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J
2017-12-20
Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Armadillo, E.; Young, D. A.; Blankenship, D. D.; Jordan, T. A.; Balbi, P.; Bozzo, E.; Siegert, M. J.
2014-12-01
The Wilkes Subglacial Basin (WSB) extends for 1,400 km from George V Land into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet (EAIS). This region is of key significance for the long-term stability of the ice sheet in East Antarctica, as it lies well below sea level and its bedrock deepens inland, making it potentially prone to marine ice sheet instability, much like areas of the West Antarctic Ice Sheet (WAIS) that are presently experiencing significant mass loss. We present new enhanced potential field images of the WSB combined with existing radar imaging to study geological controls on bedrock topography and ice flow regimes in this key sector of the ice sheet. These images reveal mayor Precambrian and Paleozoic basement faults that exert tectonic controls both on the margins of the basin and its sub-basins. Several major sub-basins can be recognised: the Eastern Basin, the Central Basins and the Western Basins. Using ICECAP aerogeophysical data we show that these tectonically controlled interior basins connect to newly identified basins underlying the Cook Ice Shelf region. This connection implies that any ocean-induced changes at the margin of the EAIS could potentially propagate rapidly further into the interior. With the aid of simple magnetic and gravity models we show that the WSB does not presently include major post Jurassic sedimentary infill. Its bedrock geology is highly variable and includes Proterozoic basement, Neoproterozoic and Cambrian sediments, intruded by Cambrian arc rocks, and cover rocks formed by Beacon sediments intruded by Jurassic Ferrar sills. Enhanced ice flow in this part of the EAIS occurs therefore in a area of mixed and spatially variable bedrock geology. This contrasts with some regions of the WAIS where more extensive sedimentary basins may represent a geological template for the onset and maintenance of fast glacial flow.
Accurate relocation of seismicity along the North Aegean Trough and its relation to active tectonics
NASA Astrophysics Data System (ADS)
Konstantinou, K. I.
2017-10-01
The tectonics of northern Aegean are affected by the westward push of Anatolia and the gravitational spreading of the Aegean lithosphere that promote transtensional deformation in the area. This regime is also responsible for the creation of a series of pull-apart basins, collectively known as the North Aegean Trough. This work accurately relocates a total of 2300 earthquakes that were recorded along the North Aegean Trough during 2011-2016 by stations of the Hellenic Unified Seismic Network (HUSN) and strong-motion sensors. Absolute locations for these events were obtained using a nonlinear probabilistic algorithm and utilizing a minimum 1D velocity model with station corrections. The hypocentral depth distribution of these events shows a peak at 8 km diminishing gradually down to 20 km. A systematic overestimation of hypocentral depths is observed in the routine locations provided by the National Observatory of Athens where the majority of events appear to be deeper than 15 km. In order to obtain more accurate relative locations these events were relocated using the double-difference method. A total of 1693 events were finally relocated with horizontal and vertical uncertainties that do not exceed 0.11 km and 0.22 km respectively. Well-defined clusters of seismicity can be observed along the Saros and Sporades basins as well as the Kassandra and Sithonia peninsulas. These clusters either occur along the well-known NE-SW strike-slip faults bounding the basins, or along normal faults whose strike is perpendicular to the regional minimum stress axis. Locking depth along the North Aegean Trough is found to be remarkably stable between 13 and 17 km. This is likely a consequence of simultaneous reduction along the SW direction of heat flow (from 89 to 51 mW/m2) and strain rate (from 600 to 50 nstrain/yr) whose opposite effects are canceled out, precluding any sharp changes in locking depth.
NASA Astrophysics Data System (ADS)
Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.
2015-12-01
The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.
NASA Astrophysics Data System (ADS)
Fellin, M. G.; Picotti, V.; Zattin, M.
Corsica is a continental block located between the Ligurian-Balearic and the North Tyrrhenian Seas (Corsica basin). Recent studies indicate that from Eocene to Pliocene the structural evolution of Corsica was controlled by extensional tectonics which prob- ably continued till Holocene (Jolivet et al., 1998). New field data have been collected in the the Marana plain (Eastern Corsica), which is a subsiding area covered by allu- vial deposits. These deposits have been dated as late Quaternary by Conchon (1978) through outcrop analyses, wells, paleosoils and weathering rinds. The master fault, separating the Marana plain from the mountain range to the west, shows an extensional tectonics and a later compressional reactivation. The river network in the Marana plain area is characterized by incised meanders formed at the intersection between the rivers and the master fault. This feature is related to a river profile convexity and not to a lithological change of the bedrock. Therefore the incised meanders may be due to a recent activity of the master fault. Reverse faults cutting Wuermian deposits of the Marana plain have been observed for the first time and they indicate a late Quaternary NW-SE directed compression. This regime is in good agreement with the present day compressional stress field determined on the basis of earthquakes focal mechanism in the Ligurian Sea (Baroux et al., 2001) and it may be responsible for the reactivation of the master fault of the Marana plain. Conchon O., 1978: Quaternary studies in Corsica (France). Quaternary Research, v. 9, pp. 41-53. Jolivet L. et al., 1998: Midcrustal shear zones in postorogenic extension: ex- ample from the North Tyrrhenian Sea. J. Geoph. Res., v. 103 (B6), pp.12,123-12,160. Baroux E. et al., 2001: Analyses of the stress field in southern France from earthquakes focal mechanisms. Geophys. J. Int., v. 145, pp. 336-348.
Turning back from the brink: Detecting an impending regime shift in time to avert it
Biggs, Reinette; Carpenter, Stephen R.; Brock, William A.
2009-01-01
Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human economies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrelation) could potentially serve as early warning indicators of impending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy processes that enable society to respond more rapidly to information about impending regime shifts. PMID:19124774
Glacial reorganization of topography in a tectonically active mountain range
NASA Astrophysics Data System (ADS)
Adams, Byron; Ehlers, Todd
2016-04-01
Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.
Deciphering the influence of the thermal processes on the early passive margins formation
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille
2015-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere. However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs. In addition, it seems that the relationship between basin formation and thermal evolution is not always the same: - Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic . - Other examples show that temperature changes are synchronous with basin formation . For example, extensive ponds Cretaceous North Pyrenean clearly indicate that the "cooking" of contemporary sediment deposit. In the light of new models, we discuss the consequences of the formation of LP-granulites during rifting on deformation and the subsidence processes.
Plate tectonics, damage and inheritance.
Bercovici, David; Ricard, Yanick
2014-04-24
The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.
NASA Astrophysics Data System (ADS)
Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.
2016-12-01
Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.
NASA Astrophysics Data System (ADS)
Turner, B. R.; Makhlouf, I. M.; Armstrong, H. A.
2003-04-01
Upper Ordovician (Ashgillian) glacial deposits of the Ammar Formation, Southern Jordan, comprise locally deformed, structureless fine sandstone, incised by glacial channels filled by braided outwash plain sandstones and transgressive marine mudstones. The structureless sandstones, previously interpreted as a glacial rock flour or loessite derived from the underlying undisturbed sandstones, differ significantly from typical loessite and contain hitherto unrecognised sedimentary structures, including hummocky cross-stratification. The sandstones, which grade laterally and vertically into stratigraphically equivalent undeformed marginal marine sandstones, are interpreted as a deformed facies of the underlying sandstones, deposited in a similar high energy shoreface environment. Although deformation of the shoreface sandstones was post-depositional, the origin of the deformation, and its confinement to the Jebel Ammar area is unknown. Deformation due to the weight of the overlying ice is unlikely as the glaciofluvial channels are now thought to have been cut by tunnel valley activity not ice. A more likely mechanism is post-glacial crustal tectonics. Melting of ice caps is commonly associated with intraplate seismicity and the development of an extensional crustal stress regime around the perimeter of ice caps; the interior is largely aseismic because the weight of the ice supresses seismic activity and faulting. Since southern Jordan lay close to the ice cap in Saudi Arabia it may have been subjected to postglacial seismicity and crustal stress, which induced ground shaking, reduced overburden pressure, increased hydrostatic pressure and possibly reactivation of existing tectonic faults. This resulted in liquefaction and extensive deformation of the sediments, which show many characteristics of seismites, generated by earthquake shocks. Since the glaciation was a very short-lived event (0.2-1 Ma), deglaciation and associated tectonism triggering deformation, lasted not more than a few hundred thousand years. Deglaciation and crustal unloading commonly lead to seismically-induced reactivation of tectonic faults. This relationship provides a possible explanation for the localisation of the deformation to the Jebel Ammar area which lies on the footwall of the Hutayya graben. The fault may also have acted as a conduit for post-seismic fluid movement along the fault plane under high pressure, thereby enhancing permeability and promoting fluid migration.
NASA Astrophysics Data System (ADS)
Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.
2017-12-01
The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.
NASA Astrophysics Data System (ADS)
Cataldo, K.; Douglas, B. J.; Yanites, B.
2017-12-01
Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.
Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal
NASA Astrophysics Data System (ADS)
King, G. C.; Devès, M. H.; Bailey, G.; Inglis, R.; Williams, M.
2012-12-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
Growth of early continental crust by partial melting of eclogite.
Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D
2003-10-09
The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.
Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aftalion, M.; Bowes, D.R.; Dash, B.
1988-11-01
Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less
Efficient cooling of rocky planets by intrusive magmatism
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.
2018-05-01
The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.
Rotund versus skinny orogens: Well-nourished or malnourished gold?
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.
Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul
2015-01-01
The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.
Overview of geology and tectonic evolution of the Baikal-Tuva area.
Gladkochub, Dmitry; Donskaya, Tatiana
2009-01-01
This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.
NASA Astrophysics Data System (ADS)
Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.
1992-11-01
Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.
Elastic and viscoelastic model of the stress history of sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less
The influence of climatically-driven surface loading variations on continental strain and seismicity
NASA Astrophysics Data System (ADS)
Craig, Tim; Calais, Eric; Fleitout, Luce; Bollinger, Laurent; Scotti, Oona
2016-04-01
In slowly deforming regions of plate interiors, secondary sources of stress and strain can result in transient deformation rates comparable to, or greater than, the background tectonic rates. Highly variable in space and time, these transients have the potential to influence the spatio-temporal distribution of seismicity, interfering with any background tectonic effects to either promote or inhibit the failure of pre-existing faults, and potentially leading to a clustered, or 'pulse-like', seismic history. Here, we investigate the ways in which the large-scale deformation field resulting from climatically-controlled changes in surface ice mass over the Pleistocene and Holocene may have influenced not only the seismicity of glaciated regions, but also the wider seismicity around the ice periphery. We first use a set of geodynamic models to demonstrate that a major pulse of seismic activity occurring in Fennoscandia, coincident with the time of end-glaciation, occurred in a setting where the contemporaneous horizontal strain-rate resulting from the changing ice mass, was extensional - opposite to the reverse sense of coseismic displacement accommodated on these faults. Therefore, faulting did not release extensional elastic strain that was building up at the time of failure, but compressional elastic strain that had accumulated in the lithosphere on timescales longer than the glacial cycle, illustrating the potential for a non-tectonic trigger to tap in to the background tectonic stress-state. We then move on to investigate the more distal influence that changing ice (and ocean) volumes may have had on the evolving strain field across intraplate Europe, how this is reflected in the seismicity across intraplate Europe, and what impact this might have on the paleoseismic record.
NASA Astrophysics Data System (ADS)
Ramos, N. T.; Sarmiento, K. J. S.; Maxwell, K. V.; Soberano, O. B.; Dimalanta, C. B.
2017-12-01
The remarkable preservation and extensive distribution of emergent marine terraces in the Philippines allow us to study relative sea level changes and tectonic processes during the Late Quaternary. While higher uplift rates and possible prehistoric coseismic events are recorded by emergent coral reefs facing subduction zones, the central Philippine islands are reported to reflect vertical tectonic stability as they are distant from trenches. To constrain the coastal tectonics of the central Philippine region, we studied emergent sea level indicators along the coasts of northern Cebu Island in Tabuelan, San Remigio, and Bogo City. Upper steps of marine terraces were interpreted from IFSAR-derived DEMs, in which at least two and seven steps were identified along the west (Tabuelan) and east (Bogo) coasts, respectively. In Tabuelan, two extensive terrace steps (TPT) were interpreted with TPT1 at 5-13 m above mean sea level (amsl) and TPT2 at 27-44 m amsl. Five to possibly seven terrace steps (BPT) were delineated in Bogo City with elevations from lowest (BPT1) to highest (BPT7) at BPT1: 4-6 m, BPT2: 12-18 m, BPT3: 27-33 m, BPT4: 39-46 m, BPT5: 59-71 m, BPT6: 80-92 m, and BPT7: 103-108 m amsl. These upper terraces are inferred to be Late Pleistocene in age based on an initial MIS 5e age reported for a 5-m-high terrace in Mactan Island. At some sites, even lower and narrower terrace surfaces were observed, consisting of cemented coral rubble that surround eroded and attached corals. These lower carbonate steps, with elevations ranging from 1 to 3 m amsl, further provide clues on relative sea level changes and long-term tectonic deformation across Cebu Island.
Hillslope degradation in small Mediterranean catchments along the Apennine chain in Italy
NASA Astrophysics Data System (ADS)
Brandolini, Pierluigi; Capolongo, Domenico; Cappadonia, Chiara; Cevasco, Andrea; Conoscenti, Christian; Del Monte, Maurizio; Pepe, Giacomo; Piccarreta, Marco; Vergari, Francesca
2017-04-01
In this research, the results coming from the investigation of some small catchments located along the Apennines (Italy) affected by hillslope degradation are presented. Four key study areas, particularly sensitive to climatic and anthropic changes, have been selected in Liguria (Cinque Terre), Tuscany (Val d'Orcia), Basilicata (Fossa Bradanica)) and Sicily (Scillato) regions. These areas are characterized by different climatic and geological conditions, orographic and tectonic settings, land use evolution and land management practices. All of them recorded very severe landscape changes in the last few centuries, because of unsustainable anthropogenic modification together with their increasing proneness to fast erosion by mass movements and runoff on slopes. Hence, degradation processes are widespread in the selected areas leading to loss and depletion of soil, economic damage, risk conditions and environmental changes. Interestingly, despite the small extent, the selected basins can be considered representative of the land degradation issues that occurred at the wider regional scale. The obtained results show that the maximum denudation effects occur during occasional but extreme rainfall events that can mobilize, in a few hours or days, the total annual sediment yield estimated for a single catchment and for a single slope. Furthermore, the case studies revealed that land mismanagement has a crucial impact in increasing the erosion rates, especially when crop-land are abandoned and/or land maintenance practices are no longer carried out. Since hillslope degradation, together with the recent changes in the rainfall regime and in land use, can lead to an increasing in both geomorphological hazard and risk, our findings can contribute: (i) to define a proper land management; (ii) to support the decision-making; (iii) to schedule an effective strategy for landscape conservation and its enhancement.
Ice Mass Fluctuations and Earthquake Hazard
NASA Technical Reports Server (NTRS)
Sauber, J.
2006-01-01
In south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing ice wastage over the last 100-150 years [Sauber et al., 2000; Sauber and Molnia, 2004]. In this study we focus on the region referred to as the Yakataga segment of the Pacific-North American plate boundary zone in Alaska. In this region, the Bering and Malaspina glacier ablation zones have average ice elevation decreases from 1-3 meters/year (see summary and references in Molnia, 2005). The elastic response of the solid Earth to this ice mass decrease alone would cause several mm/yr of horizontal motion and uplift rates of up to 10-12 mm/yr. In this same region observed horizontal rates of tectonic deformation range from 10 to 40 mm/yr to the north-northwest and the predicted tectonic uplift rates range from -2 mm/year near the Gulf of Alaska coast to 12mm/year further inland [Savage and Lisowski, 1988; Ma et al, 1990; Sauber et al., 1997, 2000, 2004; Elliot et al., 2005]. The large ice mass changes associated with glacial wastage and surges perturb the tectonic rate of deformation at a variety of temporal and spatial scales. The associated incremental stress change may enhance or inhibit earthquake occurrence. We report recent (seasonal to decadal) ice elevation changes derived from data from NASA's ICESat satellite laser altimeter combined with earlier DEM's as a reference surface to illustrate the characteristics of short-term ice elevation changes [Sauber et al., 2005, Muskett et al., 2005]. Since we are interested in evaluating the effect of ice changes on faulting potential, we calculated the predicted surface displacement changes and incremental stresses over a specified time interval and calculated the change in the fault stability margin using the approach given by Wu and Hasegawa [1996]. Additionally, we explored the possibility that these ice mass fluctuations altered the seismic rate of background seismicity. Although we primarily focus on evaluating the influence of ice mass changes since the end of the little Ice Age, the study is partially motivated by paleoseismic evidence from Yakataga and Kodiak regions which suggests that earlier glacier retreat may be associated with large earthquakes [Sauber et al., 2000; Carver et al., 2003].
NASA Astrophysics Data System (ADS)
Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.
2015-05-01
The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
Soil radon measurements as a potential tracer of tectonic and volcanic activity.
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-04-15
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.
Soil radon measurements as a potential tracer of tectonic and volcanic activity
NASA Astrophysics Data System (ADS)
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-04-01
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.
Tectonic controls on the long-term carbon isotope mass balance.
Shields, Graham A; Mills, Benjamin J W
2017-04-25
The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ 13 C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ 13 C and a range of uplift proxies, including seawater 87 Sr/ 86 Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ 13 C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ 13 C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ 13 C record plays in reconstructing the oxygenation of earth's surface environment.
Soil radon measurements as a potential tracer of tectonic and volcanic activity
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-01-01
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264
Tectonic controls on the long-term carbon isotope mass balance
Mills, Benjamin J. W.
2017-01-01
The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ13C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ13C and a range of uplift proxies, including seawater 87Sr/86Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ13C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ13C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ13C record plays in reconstructing the oxygenation of earth’s surface environment. PMID:28396434
Wet Tectonics: A New Planetary Synthesis
NASA Astrophysics Data System (ADS)
Grimm, K. A.
2005-12-01
Most geoscientists (and geoscience textbooks) describe plate tectonics as a `solid-Earth' phenomenon, with fluids playing an important role in discrete geodynamic processes. As a community of diverse research specialists, the critical role of water is being widely elucidated, however these diverse studies do not address the fundamental origin and operation of the global plate tectonic phenomenon, and its expressions in planetary geodynamics and geomorphology. The Wet Tectonics hypothesis extends well beyond the plate tectonics paradigm, to constitute a new synthesis of diverse geoscience specializations and self-organizing complexity into a simple, internally consistent and explicitly testable model. The Wet Tectonics hypothesis asserts that Earth's plate tectonic system arose from and is the explicit and dynamic result of water interacting with the hot silicate mantle. The tectosphere is defined as an interactive functional (rather than structural, compositional or rheological) entity, a planetary-scale dynamic system of plate formation, plate motion, and rock/volatile recycling. Earth's tectosphere extends from the base of the asthenosphere to the top of the crust, arising and evolving as a dynamic pattern of organization that creates, orders and perpetuates itself. Earth's tectosphere is energetically-open, materially ajar (steady-state operation may not require sub-asthenospheric inputs; shifts between distinct tectonic modes may result from changes in coupling between the tectosphere and subasthenospheric reservoirs) and chemically-closed (i.e. the tectosphere recycles its own wastes). Water is a fundamental requirement in all of the constituent processes of Earth's tectosphere, including seafloor spreading, slab cooling/subsidence, plate motion, asthenosphere rheology, and subduction (where crustal and volatile recycling occur). As a working hypothesis, we suggest that the dynamic and persistent hydrosphere and tectosphere on planet Earth are fully interdependent and co-evolving phenomena. The concept of autocatalytic hypercycles has been adapted from molecular biology to resolve the apparent paradox of circular causality amongst the coupled phenomena of liquid water oceans and `plate tectonics'. This new planetary synthesis presents fundamental implications for geological, geophysical, Earth system and planetary sciences, as well as novel hypotheses concerning plate drive (gravity sliding ± slab pull), origin of plate tectonics (Hadean, >=4.4Ga), biogeochemical cycling (balanced global fluxes of water into and out of the tectosphere; is the asthenosphere continuously rehydrated via lateral advection) and planetary geomorphology (simple contrasts between Mars, Earth and Venus).
Tectonics of Tharsis Dorsa on Mars
NASA Technical Reports Server (NTRS)
Raitala, J.
1987-01-01
The tectonics of the Tharsis and adjoining areas is considered to be associated with the convection in the Martian mantle. Convection and mantle plume have been responsible for the primary uplift and volcanism of the Tharsis area. The radial compressional forces generated by the tendency for downslope movement of surface strata, vertical volcanic intrusions, and traction of mantle spreading beneath Tharsis were transmitted through the lithosphere to form peripheral mare ridge zones. The locations of mare ridges were thus mainly controlled by the Tharsis-radial compression. The load-induced stresses then contributed to further ridge formation over an extended period of time by the isostatic readjustment, which was responsible for long-term stresses in the adjoining areas. Extrusions, changes in internal temperature, and possible phase changes may also have caused changes in mantle volume, giving rise to additional compressional forces and crustal deformations.
Understanding the Miocene-Pliocene - The Mediterranean Point of View
NASA Astrophysics Data System (ADS)
Simon, D.; Marzocchi, A.; Lunt, D. J.; Flecker, R.; Hilgen, F. J.; Meijer, P. T.
2015-12-01
During the Miocene-Pliocene the Mediterranean region experienced major changes in paleogeography. Today, its only connection to the global ocean is the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitive to climatic and tectonic related phenomena than the global ocean: Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean alternates in composition and colour. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea: About 6% of the salt in the global ocean got deposited in the Mediterranean Region, forming an approximately 2km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33Ma). Before (and also after) the MSC, the sedimentary record demonstrates "marl dominated" alternations with variations in organic content (e.g. higher organic content = sapropel). During the MSC these change to mainly "evaporite (e.g. gypsum or halite) dominated" alternations, but also to brackish Black Sea-type of deposits towards the end of the crisis. Due to its relative short geological time span, the period before, during and after the MSC is ideal to study these extreme changes in sedimentation. We are investigating these couplings and evolutions in a box/budget model. With such a model we can study the responses to basin water exchange dynamics under the effect of different regional and global climatic and tectonic forcings, to predict the evolution of basin properties (e.g. salinity). By doing so we can isolate certain climatic and tectonic effects, to better understand their individual contribution, their interaction, but also the consequences due to their coupling. Keywords: Mediterranean Sea, Climate, Coupling, Evolution, Messinian Salinity Crisis, Modeling, Strait of Gibraltar, GCM
NASA Astrophysics Data System (ADS)
Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge
2017-04-01
Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.
Multifractal analysis of managed and independent float exchange rates
NASA Astrophysics Data System (ADS)
Stošić, Darko; Stošić, Dusan; Stošić, Tatijana; Stanley, H. Eugene
2015-06-01
We investigate multifractal properties of daily price changes in currency rates using the multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and independent floating currency rates in eight countries, and determine the changes in multifractal spectrum when transitioning between the two regimes. We find that after the transition from managed to independent float regime the changes in multifractal spectrum (position of maximum and width) indicate an increase in market efficiency. The observed changes are more pronounced for developed countries that have a well established trading market. After shuffling the series, we find that the multifractality is due to both probability density function and long term correlations for managed float regime, while for independent float regime multifractality is in most cases caused by broad probability density function.
NASA Astrophysics Data System (ADS)
Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai
2018-01-01
The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.
Snowpack regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, Ernesto; Molotch, Noah P.
2014-07-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime classification are discussed in the context of possible changes in accumulation and melt patterns associated with regional warming.
NASA Astrophysics Data System (ADS)
Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Toda, Shigeru; Kawasaki, Shinji; Fujiwara, Akira; Tanaka, Yasuhisa; Abe, Susumu
2017-04-01
M7-class crustal earthquakes of overlying plate in subduction system have tendency to increase before megathrust earthquake events. Due to stress buildup by the upcoming Nankai Trough megathrust earthquake, SW Japan has being seismically active for last 20 years. In terms of the mitigation of earthquake and tsunami hazards, to construct seismogenic source fault models is first step for evaluating the strong ground motions and height of tsunamis. Since 2013, we performed intense seismic profiling in and around the southern part of the Sea of Japan. In 2016, a 180-km-long onshore -offshore seismic survey was carried out across the volcanic arc and back-arc basins (from Kurayoshi to the Yamato basin). Onshore section, CMP seismic reflection data were collected using four vibroseis trucks and fixed 1150 channel recorders. Offshore part we acquired the seismic reflection data using 1950 cu inch air-guns towing a 4-km-long streamer cable. We performed CMP reflection and refraction tomography analysis. Obtained seismic section portrays compressively deformed rifted continental crust and undeformed oceanic back-arc basin, reflecting the rheological features. These basic structures were formed during the opening of the Sea of Japan in early Miocene. The sub-horizontal Pliocene sediments unconformably cover the folded Miocene sediments. The opening and clock-wise rotation of SW Japan has been terminated at 15 Ma and contacted to the young Shikoku basin along the Nankai trough. Northward motion of Philippine Sea plate (PHS) and the high thermal regime in the Shikoku basin produced the strong resistance along the Nankai trough. The main shortening deformation observed in the seismic section has been formed this tectonic event. After the initiation of the subduction along the Nankai trough, the rate of shortening deformation was decreased and the folded strata were covered by sub-horizontal Pliocene sediments. The thrusting trending parallel to the arc has been continued from Pliocene to early Pleistocene along the limited fault system. The change in the direction of the motion of PHS at 1 Ma produced major change in stress regime from NS compression to EW compression in the back-arc. Following the change of stress regime, former reverse faults reactivated as strike-slip fault. Reuse of pre-existing faults are common, and crustal deformation concentrates relatively narrow zone in the back-arc failed rifts. Two-months after from our survey, Mw 6.2 Tottoriken-chubu earthquake occurred just beneath the onshore part of the seismic line. The source fault corresponds to the boundary of abrupt change in P-wave velocity, however there were no surface ruptures and distinctive geologic faults. The bottom of seismogenic layer corresponds to TWT 4.5 sec., which is almost the top horizon of reflective middle crust.
Could borate have played a role in the RNA World?
NASA Astrophysics Data System (ADS)
Grew, E. S.; Bada, J. L.; Hazen, R. M.
2012-12-01
Two scenarios have been proposed for boron to play a critical role in the stabilization of ribose and other sugars in the ribonucleic acid (RNA) World, >3.8 Ga ago. One scenario envisages oligomeric RNA being synthesized in subaerial intermountane desert valleys in which groundwater was enriched in borate from breakdown of tourmaline (Benner et al. 2012 doi: 10.1021/ar200332w). In the alternative scenario, borates are enriched in hydrothermal environments (<150°C) in oceanic crust where ferromagnesian minerals are altered to brucite, serpentine and other minerals that can extract borate from the circulating seawater (Holm et al. 2006 doi:10.1186/1467-4866-7-7). Both scenarios presume that (1) B concentrations in non-marine water or sea water were about the same at >3.8 Ma as they are today and (2) plate tectonics was the prevailing regime. The postulated non-marine borate deposits would have been associated with continental collision and subduction with volcanism releasing B, whereas in the second scenario, ocean floor caught up in an early phase of subduction is considered a favorable site for borate formation. Because borate deposits are typically ephemeral and poorly preserved, the lack of evidence in the geologic record for these scenarios does not invalidate them. For example, the oldest reported non-marine borate deposits analogous to the type postulated in first scenario are only 20 Ma, but metamorphosed borates of Precambrian age have been interpreted to have non-marine evaporite precursors, the oldest being 2.4-2.1 Ga in the Liaoning-Jilin area, China. The first B minerals so far reported in the geologic record are metamorphic dravite-schorl tourmalines in the 3.7-3.8 Ga Isua supracrustal belt (southern West Greenland), where there is good evidence for seafloor spreading and subduction. The precursors to the Isua tourmalines are reported to include B-bearing marine clay minerals and detrital tourmaline. The relatively high Li contents in zircon from Jack Hills, Australia, have been cited as evidence for the presence of granitic (s. l.) "protocontinental" crust by 4.3 Ga (Ushikuba et al. 2008 doi:10.1016/j.epsl.2008.05.032; Valley et al. 2010 Rec Geol Surv W Aust, 5-7), but the existence of conventional plate tectonics prior to 3.8 Ga remains controversial. Chaussidon & Appel (1997 Chem Geol 136, 171-180) concluded that boron isotope compositions (δ11B) of tourmaline from Isua volcaniclastic rocks provide no evidence for changes of δ11B in the mantle or continental crust between now and 3.8 Ga, whereas the very light B (δ11B = -20‰) in tourmaline from Isua metachert could indicate that seawater δ11B was at least 10‰ less at 3.8 Ga than now and that there was proportionally less B in sediments at 3.8 Ga, i.e., fractionation of B between depleted mantle, oceans, continental crust and oceanic crust was still in progress (Chaussidon & Albarède 1992, EPSL 108, 229-241). If fractionation and outgassing of boron had not proceeded very far during the RNA World, neither of the proposed scenarios of borate enrichment is plausible, particularly in the absence of a conventional plate tectonics regime.
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century
Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan
2011-01-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...
NASA Astrophysics Data System (ADS)
Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.
2012-04-01
Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.
NASA Astrophysics Data System (ADS)
Çırmık, Ayça; Pamukçu, Oya
2017-10-01
In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.
Regulation of snow-fed rivers affects flow regimes more than climate change.
Arheimer, B; Donnelly, C; Lindström, G
2017-07-05
River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.
NASA Astrophysics Data System (ADS)
Soták, Ján
2010-10-01
The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.
Redesigning reservoir compensation releases for ecological beenfit
NASA Astrophysics Data System (ADS)
Maynard, Carly
2010-05-01
River regulation is commonplace in England and much of the UK. Regulation for the purposes of public water supply causes flows downstream of a reservoir to be attenuated and the flow regime of the channel to be altered. The impact of channel impoundment on a small, upland UK river, has been assessed and methods for mitigation of ecological impacts explored. The method utilised a unique macroinvertebrate data set for pre- and post-impoundment periods to quantify the impact of Derwent Reservoir and the steady, continuous compensation release into the River Derwent, Northumberland. Impacts on the hydrological regime were also investigated and links drawn between changes in flow regime and changes in macroinvertebrate richness and diversity as a result of impoundment. In response to the claim that the impoundment has caused a change in flow regime and had deleterious effects on fish and macroinvertebrates, a compensation redesign tool (CRAB: Compensation Release Assessment at the Broad scale) was employed to design new compensation release regimes from the reservoir which account for the seasonal flow requirements of a number of key fish species. The impact of impoundment on the current flow regime was modelled and the impacts of predicted new regimes were predicted, using a 1D hydrodynamic model (HEC-RAS), as part of a modelling process known as CRAM (Compensation Release Assessment at the Meso-scale). Depth and velocity were the foci of the analysis as they are the two habitat requirements most well documented for the fish species in question, they could be modelled using HEC-RAS and they can act as surrogates for other habitat parameters such as temperature and substrate. The suitability of the depth and velocity combinations predicted using the HEC-RAS model were assessed using fuzzy-rule based modelling, which allowed the habitat quality of a given parameter combination to be quantified. Based on the results of the investigation it was concluded that there has been a change in flow regime and in ecological community structure since impoundment. The flow regime of the River Derwent has become less flashy with fewer extreme events, while macroinvertebrate richness and diversity have increased. The new flow regimes that were designed by CRAB, based on the depth and velocity requirements of brown trout, grayling and Atlantic salmon were predicted through CRAM to have minimal benefits for the fish populations of the River Derwent and it was concluded that no changes to flow regime should be made based solely on the assessment of habitat for fish. Impacts for the macroinvertebrate communities must also be considered as well as the impacts on other aspects of fish habitat including temperature, substrate and cover. A more detailed, micro-scale investigation into the effects of changing flow regime would be required to warrant a change in compensation release regime from Derwent Reservoir.
Report of the panel on the land surface: Process of change, section 5
NASA Technical Reports Server (NTRS)
Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.
1991-01-01
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.
Changing Forest Disturbance Regimes and Risk Perceptions in Homer, Alaska
Courtney G. F1int
2007-01-01
Forest disturbances caused by insects can lead to other disturbances, risks, and changes across landscapes. Evaluating the human dimensions of such disturbances furthers understanding of integrated changes in natural and social systems. This article examines the effects of changing forest disturbance regimes on local risk perceptions and attitudes in Homer, Alaska....
Rupert Seidl; Thomas A. Spies; David L. Peterson; Scott L. Stephens; Jeffrey A. Hicke
2015-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resiliencebased stewardship is advocated to address these changes in ecosystem management,...
Triggered dynamics in a model of different fault creep regimes
Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina
2014-01-01
The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397
Prolonged instability prior to a regime shift
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.
2014-01-01
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.
NASA Astrophysics Data System (ADS)
Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.
2015-12-01
Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the Nobeoka Thrust. We estimated the fluid driving pressure ratio P* at the time of fracture opening by using the Mohr circle analysis that has been carried out using the vein orientation data. The estimated P* are 0.05 and 0.15-0.40 in the hanging wall and footwall, respectively. These results indicate that there are spatial differences of pore fluid pressure in the interseismic period.
NASA Astrophysics Data System (ADS)
Lielke, Kevin John
The Renova Formation of southwestern Montana contains an important record of Paleogene floral, faunal, climate and tectonic change in the northern Rocky Mountains. The period between the end of the early Eocene and the early Oligocene (˜49--32 Ma) was a time of rapid and far-reaching climate change. This period saw the end of global greenhouse climate and the establishment of icehouse conditions across the Earth. These changes led to profound alterations in both marine and terrestrial ecosystems. This study examines the late Eocene/early Oligocene history of the northern Rocky Mountains by means of an integrated study of the sedimentology, tectonics and fossil content of the Renova Formation. The first part of this study examines plant fossils found in the Renova Formation in order to examine changes in the composition of the vegetation across the late Eocene/ early Oligocene (E/O) boundary. Plant remains are an effective proxy for climate and are used to estimate multiple climatic parameters across the E/O boundary. The second part of this study examines the paleotopography and paleodrainage patterns of the basins which accumulated the Renova sediments. This is accomplished by a combination of sedimentary facies and detrital zircon analysis. The third part of this study examines the tectonic underpinnings of Paleogene southwestern Montana through a combination of geologic field work and geodynamic modeling. The results of this study indicate that a seasonal summer dry climate became established in the northern Rocky Mountains by early Oligocene time. This is indicated by the elimination of subtropical plant species, the establishment of dry-adapted species and by paleoclimate parameters calculated from leaf physiognomy. Geodynamic calculations and field data indicate that the Renova Formation was deposited in a series of sub-basins separated by relict paleotopography and inverted topography formed by contemporary lava flows. Normal faulting was not active until the middle Miocene initiation of regional extension. Accommodation space for the deposition of Renova sediments was formed primarily by differential erosion of pre-middle Eocene rocks. Climate change and influx rates of volcaniclastic sediment were also important controls on the evolution of the intermontane basins of southwestern Montana.
NASA Astrophysics Data System (ADS)
Dvoretskaya, Olga A.; Kondratenko, Peter S.
2009-04-01
We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.
NASA Astrophysics Data System (ADS)
Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.
2016-04-01
The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.