Sample records for changing test classification

  1. Multi-Temporal Classification and Change Detection Using Uav Images

    NASA Astrophysics Data System (ADS)

    Makuti, S.; Nex, F.; Yang, M. Y.

    2018-05-01

    In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  2. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  3. Adaptive sequential Bayesian classification using Page's test

    NASA Astrophysics Data System (ADS)

    Lynch, Robert S., Jr.; Willett, Peter K.

    2002-03-01

    In this paper, the previously introduced Mean-Field Bayesian Data Reduction Algorithm is extended for adaptive sequential hypothesis testing utilizing Page's test. In general, Page's test is well understood as a method of detecting a permanent change in distribution associated with a sequence of observations. However, the relationship between detecting a change in distribution utilizing Page's test with that of classification and feature fusion is not well understood. Thus, the contribution of this work is based on developing a method of classifying an unlabeled vector of fused features (i.e., detect a change to an active statistical state) as quickly as possible given an acceptable mean time between false alerts. In this case, the developed classification test can be thought of as equivalent to performing a sequential probability ratio test repeatedly until a class is decided, with the lower log-threshold of each test being set to zero and the upper log-threshold being determined by the expected distance between false alerts. It is of interest to estimate the delay (or, related stopping time) to a classification decision (the number of time samples it takes to classify the target), and the mean time between false alerts, as a function of feature selection and fusion by the Mean-Field Bayesian Data Reduction Algorithm. Results are demonstrated by plotting the delay to declaring the target class versus the mean time between false alerts, and are shown using both different numbers of simulated training data and different numbers of relevant features for each class.

  4. The groningen laryngomalacia classification system--based on systematic review and dynamic airway changes.

    PubMed

    van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B

    2015-12-01

    Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.

  5. Applications of remote sensing, volume 3

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Of the four change detection techniques (post classification comparison, delta data, spectral/temporal, and layered spectral temporal), the post classification comparison was selected for further development. This was based upon test performances of the four change detection method, straightforwardness of the procedures, and the output products desired. A standardized modified, supervised classification procedure for analyzing the Texas coastal zone data was compiled. This procedure was developed in order that all quadrangles in the study are would be classified using similar analysis techniques to allow for meaningful comparisons and evaluations of the classifications.

  6. The effect of the atmosphere on the classification of satellite observations to identify surface features

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Bahethi, O. P.; Al-Abbas, A. H.

    1977-01-01

    The effect of differences in atmospheric turbidity on the classification of Landsat 1 observations of a rural scene is presented. The observations are classified by an unsupervised clustering technique. These clusters serve as a training set for use of a maximum-likelihood algorithm. The measured radiances in each of the four spectral bands are then changed by amounts measured by Landsat 1. These changes can be associated with a decrease in atmospheric turbidity by a factor of 1.3. The classification of 22% of the pixels changes as a result of the modification. The modified observations are then reclassified as an independent set. Only 3% of the pixels have a different classification than the unmodified set. Hence, if classification errors of rural areas are not to exceed 15%, a new training set has to be developed whenever the difference in turbidity between the training and test sets reaches unity.

  7. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  8. Image Classification Workflow Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Christoffersen, M. S.; Roser, M.; Valadez-Vergara, R.; Fernández-Vega, J. A.; Pierce, S. A.; Arora, R.

    2016-12-01

    Recent increases in the availability and quality of remote sensing datasets have fueled an increasing number of scientifically significant discoveries based on land use classification and land use change analysis. However, much of the software made to work with remote sensing data products, specifically multispectral images, is commercial and often prohibitively expensive. The free to use solutions that are currently available come bundled up as small parts of much larger programs that are very susceptible to bugs and difficult to install and configure. What is needed is a compact, easy to use set of tools to perform land use analysis on multispectral images. To address this need, we have developed software using the Python programming language with the sole function of land use classification and land use change analysis. We chose Python to develop our software because it is relatively readable, has a large body of relevant third party libraries such as GDAL and Spectral Python, and is free to install and use on Windows, Linux, and Macintosh operating systems. In order to test our classification software, we performed a K-means unsupervised classification, Gaussian Maximum Likelihood supervised classification, and a Mahalanobis Distance based supervised classification. The images used for testing were three Landsat rasters of Austin, Texas with a spatial resolution of 60 meters for the years of 1984 and 1999, and 30 meters for the year 2015. The testing dataset was easily downloaded using the Earth Explorer application produced by the USGS. The software should be able to perform classification based on any set of multispectral rasters with little to no modification. Our software makes the ease of land use classification using commercial software available without an expensive license.

  9. Hydrological Climate Classification: Can We Improve on Köppen-Geiger?

    NASA Astrophysics Data System (ADS)

    Knoben, W.; Woods, R. A.; Freer, J. E.

    2017-12-01

    Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which can explain streamflow differences between geographically close locations. Summarizing, this work shows that hydrology needs its own way to structure climate forcing, acknowledging that climates vary gradually on a global scale and explicitly including those climate aspects that drive seasonal changes in hydrologic regimes.

  10. Dynamic species classification of microorganisms across time, abiotic and biotic environments—A sliding window approach

    PubMed Central

    Griffiths, Jason I.; Fronhofer, Emanuel A.; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L.

    2017-01-01

    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology. PMID:28472193

  11. How does the ball influence the performance of change of direction and sprint tests in para-footballers with brain impairments? Implications for evidence-based classification in CP-Football

    PubMed Central

    2017-01-01

    The aims of this study were: i) to analyze the reliability and validity of three tests that require sprinting (10 m, 25 m, 40 m), accelerations/decelerations (Stop and Go Test) and change of direction (Illinois Agility Test), with and without ball, in para-footballers with neurological impairments, and ii) to compare the performance in the tests when ball dribbling is required and to explore the practical implications for evidence-based classification in cerebral palsy (CP)-Football. Eighty-two international para-footballers (25.2 ± 6.8 years; 68.7 ± 8.3 kg; 175.3 ± 7.4 cm; 22.5 ± 2.7 kg·m-2), classified according to the International Federation of Cerebral Palsy Football (IFCPF) Classification Rules (classes FT5-FT8), participated in the study. A group of 31 players without CP was also included in the study as a control group. The para-footballers showed good reliability scores in all tests, with and without ball (ICC = 0.53–0.95, SEM = 2.5–9.8%). Nevertheless, the inclusion of the ball influenced testing reproducibility. The low or moderate relationships shown among sprint, acceleration/deceleration and change of direction tests with and without ball also evidenced that they measure different capabilities. Significant differences and large effect sizes (0.53 < ηp2 < 0.97; p < 0.05) were found when para-footballers performed the tests with and without dribbling the ball. Players with moderate neurological impairments (i.e. FT5, FT6, and FT7) had higher coefficients of variation in the trial requiring ball dribbling. For all the tests, we also obtained between-group (FT5-FT8) statistical and large practical differences (ηp2 = 0.35–0.62, large; p < 0.01). The proposed sprint, acceleration/deceleration and change of direction tests with and without ball may be applicable for classification purposes, that is, evaluation of activity limitation from neurological impairments, or decision-making between current CP-Football classes. PMID:29099836

  12. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  13. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    NASA Astrophysics Data System (ADS)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  14. Can the Ni classification of vessels predict neoplasia? A systematic review and meta-analysis.

    PubMed

    Mehlum, Camilla S; Rosenberg, Tine; Dyrvig, Anne-Kirstine; Groentved, Aagot Moeller; Kjaergaard, Thomas; Godballe, Christian

    2018-01-01

    The Ni classification of vascular change from 2011 is well documented for evaluating pharyngeal and laryngeal lesions, primarily focusing on cancer. In the planning of surgery it may be more relevant to differentiate neoplasia from non-neoplasia. We aimed to evaluate the ability of the Ni classification to predict laryngeal or hypopharyngeal neoplasia and to investigate if a changed cutoff value would support the recent European Laryngological Society (ELS) proposal of perpendicular vascular changes as indicative of neoplasia. PubMed, Embase, Cochrane, and Scopus databases. A systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. We systematically searched for publications from 2011 until 2016. All retrieved studies were reviewed and qualitatively assessed. The pooled sensitivity and specificity of the Ni classification with two different cutoffs were calculated, and bubble and summary receiver operating characteristics plots were created. The combined sensitivity of five studies (n = 687) with Ni type IV-V defined as test-positive was 0.89 (95% confidence interval [CI]: 0.76-0.95), and specificity was 0.82 (95% CI: 0.72-0.89). The equivalent combined sensitivity of four studies (n = 624) with Ni type V defined as test-positive was 0.82 (95% CI: 0.75-0.87), and specificity was 0.93 (95% CI: 0.82-0.97). The diagnostic accuracy of the Ni classification in predicting neoplasia was high, without significant difference between the two analyzed cutoff values. Implementation of the proposed ELS classification of vascular changes seems reasonable from a clinical perspective, with comparable accuracy. Attention must be drawn to the accompanying risk of exposing patients to unnecessary surgery. Laryngoscope, 128:168-176, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. The Ex Vivo Eye Irritation Test as an alternative test method for serious eye damage/eye irritation.

    PubMed

    Spöler, Felix; Kray, Oya; Kray, Stefan; Panfil, Claudia; Schrage, Norbert F

    2015-07-01

    Ocular irritation testing is a common requirement for the classification, labelling and packaging of chemicals (substances and mixtures). The in vivo Draize rabbit eye test (OECD Test Guideline 405) is considered to be the regulatory reference method for the classification of chemicals according to their potential to induce eye injury. In the Draize test, chemicals are applied to rabbit eyes in vivo, and changes are monitored over time. If no damage is observed, the chemical is not categorised. Otherwise, the classification depends on the severity and reversibility of the damage. Alternative test methods have to be designed to match the classifications from the in vivo reference method. However, observation of damage reversibility is usually not possible in vitro. Within the present study, a new organotypic method based on rabbit corneas obtained from food production is demonstrated to close this gap. The Ex Vivo Eye Irritation Test (EVEIT) retains the full biochemical activity of the corneal epithelium, epithelial stem cells and endothelium. This permits the in-depth analysis of ocular chemical trauma beyond that achievable by using established in vitro methods. In particular, the EVEIT is the first test to permit the direct monitoring of recovery of all corneal layers after damage. To develop a prediction model for the EVEIT that is comparable to the GHS system, 37 reference chemicals were analysed. The experimental data were used to derive a three-level potency ranking of eye irritation and corrosion that best fits the GHS categorisation. In vivo data available in the literature were used for comparison. When compared with GHS classification predictions, the overall accuracy of the three-level potency ranking was 78%. The classification of chemicals as irritating versus non-irritating resulted in 96% sensitivity, 91% specificity and 95% accuracy. 2015 FRAME.

  16. A model-based test for treatment effects with probabilistic classifications.

    PubMed

    Cavagnaro, Daniel R; Davis-Stober, Clintin P

    2018-05-21

    Within modern psychology, computational and statistical models play an important role in describing a wide variety of human behavior. Model selection analyses are typically used to classify individuals according to the model(s) that best describe their behavior. These classifications are inherently probabilistic, which presents challenges for performing group-level analyses, such as quantifying the effect of an experimental manipulation. We answer this challenge by presenting a method for quantifying treatment effects in terms of distributional changes in model-based (i.e., probabilistic) classifications across treatment conditions. The method uses hierarchical Bayesian mixture modeling to incorporate classification uncertainty at the individual level into the test for a treatment effect at the group level. We illustrate the method with several worked examples, including a reanalysis of the data from Kellen, Mata, and Davis-Stober (2017), and analyze its performance more generally through simulation studies. Our simulations show that the method is both more powerful and less prone to type-1 errors than Fisher's exact test when classifications are uncertain. In the special case where classifications are deterministic, we find a near-perfect power-law relationship between the Bayes factor, derived from our method, and the p value obtained from Fisher's exact test. We provide code in an online supplement that allows researchers to apply the method to their own data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. The dynamics of human-induced land cover change in miombo ecosystems of southern Africa

    NASA Astrophysics Data System (ADS)

    Jaiteh, Malanding Sambou

    Understanding human-induced land cover change in the miombo require the consistent, geographically-referenced, data on temporal land cover characteristics as well as biophysical and socioeconomic drivers of land use, the major cause of land cover change. The overall goal of this research to examine the applications of high-resolution satellite remote sensing data in studying the dynamics of human-induced land cover change in the miombo. Specific objectives are to: (1) evaluate the applications of computer-assisted classification of Landsat Thematic Mapper (TM) data for land cover mapping in the miombo and (2) analyze spatial and temporal patterns of landscape change locations in the miombo. Stepwise Thematic Classification, STC (a hybrid supervised-unsupervised classification) procedure for classifying Landsat TM data was developed and tested using Landsat TM data. Classification accuracy results were compared to those from supervised and unsupervised classification. The STC provided the highest classification accuracy i.e., 83.9% correspondence between classified and referenced data compared to 44.2% and 34.5% for unsupervised and supervised classification respectively. Improvements in the classification process can be attributed to thematic stratification of the image data into spectrally homogenous (thematic) groups and step-by-step classification of the groups using supervised or unsupervised classification techniques. Supervised classification failed to classify 18% of the scene evidence that training data used did not adequately represent all of the variability in the data. Application of the procedure in drier miombo produced overall classification accuracy of 63%. This is much lower than that of wetter miombo. The results clearly demonstrate that digital classification of Landsat TM can be successfully implemented in the miombo without intensive fieldwork. Spatial characteristics of land cover change in agricultural and forested landscapes in central Malawi were analyzed for the period 1984 to 1995 spatial pattern analysis methods. Shifting cultivation areas, Agriculture in forested landscape, experienced highest rate of woodland cover fragmentation with mean patch size of closed woodland cover decreasing from 20ha to 7.5ha. Permanent bare (cropland and settlement) in intensive agricultural matrix landscapes increased 52% largely through the conversion of fallow areas. Protected National Park area remained fairly unchanged although closed woodland area increased by 4%, mainly from regeneration of open woodland. This study provided evidence that changes in spatial characteristics in the miombo differ with landscape. Land use change (i.e. conversion to cropland) is the primary driving force behind changes in landscape spatial patterns. Also, results revealed that exclusion of intense human use (i.e. cultivation and woodcutting) through regulations and/or fencing increased both closed woodland area (through regeneration of open woodland) and overall connectivity in the landscape. Spatial characteristics of land cover change were analyzed at locations in Malawi (wetter miombo) and Zimbabwe (drier miombo). Results indicate land cover dynamics differ both between and within case study sites. In communal areas in the Kasungu scene, land cover change is dominated by woodland fragmentation to open vegetation. Change in private commercial lands was dominantly expansion of bare (settlement and cropland) areas primarily at the expense of open vegetation (fallow land).

  18. Can a Forest/Nonforest Change Map Improve the Precision of Forest Area, Volume, Growth, Removals, and Mortality Estimates?

    Treesearch

    Dale D. Gormanson; Mark H. Hansen; Ronald E. McRoberts

    2005-01-01

    In an extensive forest inventory, stratifications that use dual-date forest/nonforest classifications of Landsat Thematic Mapper data approximately 10 years apart are tested against similar classifications that use data from only one date. Alternative stratifications that further define edge strata as pixels adjacent to a forest/nonforest boundary are included in the...

  19. Machine learning algorithms for mode-of-action classification in toxicity assessment.

    PubMed

    Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can

    2016-01-01

    Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.

  20. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  1. Reducing uncertainty on satellite image classification through spatiotemporal reasoning

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Nikolakaki, Natassa; Psillakis, Periklis; Miliaresis, George; Xanthakis, Michail

    2014-05-01

    The natural habitat constantly endures both inherent natural and human-induced influences. Remote sensing has been providing monitoring oriented solutions regarding the natural Earth surface, by offering a series of tools and methodologies which contribute to prudent environmental management. Processing and analysis of multi-temporal satellite images for the observation of the land changes include often classification and change-detection techniques. These error prone procedures are influenced mainly by the distinctive characteristics of the study areas, the remote sensing systems limitations and the image analysis processes. The present study takes advantage of the temporal continuity of multi-temporal classified images, in order to reduce classification uncertainty, based on reasoning rules. More specifically, pixel groups that temporally oscillate between classes are liable to misclassification or indicate problematic areas. On the other hand, constant pixel group growth indicates a pressure prone area. Computational tools are developed in order to disclose the alterations in land use dynamics and offer a spatial reference to the pressures that land use classes endure and impose between them. Moreover, by revealing areas that are susceptible to misclassification, we propose specific target site selection for training during the process of supervised classification. The underlying objective is to contribute to the understanding and analysis of anthropogenic and environmental factors that influence land use changes. The developed algorithms have been tested upon Landsat satellite image time series, depicting the National Park of Ainos in Kefallinia, Greece, where the unique in the world Abies cephalonica grows. Along with the minor changes and pressures indicated in the test area due to harvesting and other human interventions, the developed algorithms successfully captured fire incidents that have been historically confirmed. Overall, the results have shown that the use of the suggested procedures can contribute to the reduction of the classification uncertainty and support the existing knowledge regarding the pressure among land-use changes.

  2. 43 CFR 2461.4 - Changing classifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Changing classifications. 2461.4 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.4 Changing classifications. Classifications may be changed...

  3. 43 CFR 2461.4 - Changing classifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Changing classifications. 2461.4 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.4 Changing classifications. Classifications may be changed...

  4. 43 CFR 2461.4 - Changing classifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Changing classifications. 2461.4 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.4 Changing classifications. Classifications may be changed...

  5. 43 CFR 2461.4 - Changing classifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Changing classifications. 2461.4 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.4 Changing classifications. Classifications may be changed...

  6. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  7. SAR-based change detection using hypothesis testing and Markov random field modelling

    NASA Astrophysics Data System (ADS)

    Cao, W.; Martinis, S.

    2015-04-01

    The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.

  8. Proposals for new standardized general diagnostic criteria for the secondary headaches.

    PubMed

    Olesen, J; Steiner, T; Bousser, M-G; Diener, H-C; Dodick, D; First, M B; Goadsby, P J; Göbel, H; Lainez, M J A; Lipton, R B; Nappi, G; Sakai, F; Schoenen, J; Silberstein, S D

    2009-12-01

    Headache classification is a dynamic process through clinical testing and re-testing of current and proposed criteria. After publication of the second edition of the International Classification of Headache Disorders (ICHD-II), need arose for revisions in the classification of medication overuse headache and chronic migraine. These changes made apparent a further need for broader revisions to the standard formulation of diagnostic criteria for the secondary headaches. Currently, the fourth criterion makes impossible the definitive diagnosis of a secondary headache until the underlying cause has resolved or been cured or greatly ameliorated by therapy, at which time the headache may no longer be present. Given that the main purpose of diagnostic criteria is to enable a diagnosis at the onset of a disease in order to guide treatment, this is unhelpful in clinical practice. In the present paper we propose maintaining a standard approach to the secondary headaches using a set of four criteria A, B, C and D, but we construct these so that the requirement for resolution or successful treatment is removed. The proposal for general diagnostic criteria for the secondary headaches will be entered into the internet-based version of the appendix of ICHD-II. During 2009 the Classification Committee will apply the general criteria to all the specific types of secondary headaches. These, and other changes, will be included in a revision of the entire classification entitled ICHD-IIR, expected to be published in 2010. ICHD-IIR will be printed and posted on the website and will be the official classification of the International Headache Society. Unfortunately, it will be necessary to translate ICHD-IIR into the many languages of the world, but the good news is that no major changes to the headache classification are then foreseen for the next 10 years. Until the printing of ICHD-IIR, the printed ICHD-II criteria remain in place for all other purposes. We issue a plea to the headache community to use and study these proposed general criteria for the secondary headaches in order to provide more evidence for their utility-before their incorporation in the main body of the classification.

  9. 19 CFR 152.16 - Judicial changes in classification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY (CONTINUED) CLASSIFICATION AND APPRAISEMENT OF MERCHANDISE Classification § 152.16 Judicial changes in classification. The following procedures apply to changes in classification made by... 19 Customs Duties 2 2010-04-01 2010-04-01 false Judicial changes in classification. 152.16 Section...

  10. ASR testing : a new approach to aggregate classification and mix design verification : technical report.

    DOT National Transportation Integrated Search

    2014-04-01

    The main objective of this study was to develop a fast, reliable test method to determine the aggregate alkali-silica reactivity : (ASR) with respect to the overall alkalinity of the concrete. A volumetric change measuring device (VCMD) developed at ...

  11. Visual modifications on the P300 speller BCI paradigm

    NASA Astrophysics Data System (ADS)

    Salvaris, M.; Sepulveda, F.

    2009-08-01

    The best known P300 speller brain-computer interface (BCI) paradigm is the Farwell and Donchin paradigm. In this paper, various changes to the visual aspects of this protocol are explored as well as their effects on classification. Changes to the dimensions of the symbols, the distance between the symbols and the colours used were tested. The purpose of the present work was not to achieve the highest possible accuracy results, but to ascertain whether these simple modifications to the visual protocol will provide classification differences between them and what these differences will be. Eight subjects were used, with each subject carrying out a total of six different experiments. In each experiment, the user spelt a total of 39 characters. Two types of classifiers were trained and tested to determine whether the results were classifier dependant. These were a support vector machine (SVM) with a radial basis function (RBF) kernel and Fisher's linear discriminant (FLD). The single-trial classification results and multiple-trial classification results were recorded and compared. Although no visual protocol was the best for all subjects, the best performances, across both classifiers, were obtained with the white background (WB) visual protocol. The worst performance was obtained with the small symbol size (SSS) visual protocol.

  12. Invariant approach to the character classification

    NASA Astrophysics Data System (ADS)

    Šariri, Kristina; Demoli, Nazif

    2008-04-01

    Image moments analysis is a very useful tool which allows image description invariant to translation and rotation, scale change and some types of image distortions. The aim of this work was development of simple method for fast and reliable classification of characters by using Hu's and affine moment invariants. Measure of Eucleidean distance was used as a discrimination feature with statistical parameters estimated. The method was tested in classification of Times New Roman font letters as well as sets of the handwritten characters. It is shown that using all Hu's and three affine invariants as discrimination set improves recognition rate by 30%.

  13. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification.

    PubMed

    Travis, William D; Brambilla, Elisabeth; Nicholson, Andrew G; Yatabe, Yasushi; Austin, John H M; Beasley, Mary Beth; Chirieac, Lucian R; Dacic, Sanja; Duhig, Edwina; Flieder, Douglas B; Geisinger, Kim; Hirsch, Fred R; Ishikawa, Yuichi; Kerr, Keith M; Noguchi, Masayuki; Pelosi, Giuseppe; Powell, Charles A; Tsao, Ming Sound; Wistuba, Ignacio

    2015-09-01

    The 2015 World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart has just been published with numerous important changes from the 2004 WHO classification. The most significant changes in this edition involve (1) use of immunohistochemistry throughout the classification, (2) a new emphasis on genetic studies, in particular, integration of molecular testing to help personalize treatment strategies for advanced lung cancer patients, (3) a new classification for small biopsies and cytology similar to that proposed in the 2011 Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification, (4) a completely different approach to lung adenocarcinoma as proposed by the 2011 Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification, (5) restricting the diagnosis of large cell carcinoma only to resected tumors that lack any clear morphologic or immunohistochemical differentiation with reclassification of the remaining former large cell carcinoma subtypes into different categories, (6) reclassifying squamous cell carcinomas into keratinizing, nonkeratinizing, and basaloid subtypes with the nonkeratinizing tumors requiring immunohistochemistry proof of squamous differentiation, (7) grouping of neuroendocrine tumors together in one category, (8) adding NUT carcinoma, (9) changing the term sclerosing hemangioma to sclerosing pneumocytoma, (10) changing the name hamartoma to "pulmonary hamartoma," (11) creating a group of PEComatous tumors that include (a) lymphangioleiomyomatosis, (b) PEComa, benign (with clear cell tumor as a variant) and (c) PEComa, malignant, (12) introducing the entity pulmonary myxoid sarcoma with an EWSR1-CREB1 translocation, (13) adding the entities myoepithelioma and myoepithelial carcinomas, which can show EWSR1 gene rearrangements, (14) recognition of usefulness of WWTR1-CAMTA1 fusions in diagnosis of epithelioid hemangioendotheliomas, (15) adding Erdheim-Chester disease to the lymphoproliferative tumor, and (16) a group of tumors of ectopic origin to include germ cell tumors, intrapulmonary thymoma, melanoma and meningioma.

  14. Visual Impairment/lntracranial Pressure Risk Clinical Care Data Tools

    NASA Technical Reports Server (NTRS)

    Van Baalen, Mary; Mason, Sara S.; Taiym, Wafa; Wear, Mary L.; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2014-01-01

    Prior to 2010, several ISS crewmembers returned from spaceflight with changes to their vision, ranging from a mild hyperopic shift to frank disc edema. As a result, NASA expanded clinical vision testing to include more comprehensive medical imaging, including Optical Coherence Tomography and 3 Tesla Brain and Orbit MRIs. The Space and Clinical Operations (SCO) Division developed a clinical practice guideline that classified individuals based on their symptoms and diagnoses to facilitate clinical care. For the purposes of clinical surveillance, this classification was applied retrospectively to all crewmembers who had sufficient testing for classification. This classification is also a tool that has been leveraged for researchers to identify potential risk factors. In March 2014, driven in part by a more comprehensive understanding of the imaging data and increased imaging capability on orbit, the SCO Division revised their clinical care guidance to outline in-flight care and increase post-flight follow up. The new clinical guidance does not include a classification scheme

  15. 75 FR 70754 - Postal Classification Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... POSTAL REGULATORY COMMISSION [Docket No. MC2011-5; Order No. 583] Postal Classification Changes...-filed Postal Service request announcing a classification change affecting bundle and container charges... Commission announcing a classification change [[Page 70755

  16. Mixing geometric and radiometric features for change classification

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Descombes, Xavier; Zerubia, Josiane

    2008-02-01

    Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.

  17. (Quickly) Testing the Tester via Path Coverage

    NASA Technical Reports Server (NTRS)

    Groce, Alex

    2009-01-01

    The configuration complexity and code size of an automated testing framework may grow to a point that the tester itself becomes a significant software artifact, prone to poor configuration and implementation errors. Unfortunately, testing the tester by using old versions of the software under test (SUT) may be impractical or impossible: test framework changes may have been motivated by interface changes in the tested system, or fault detection may become too expensive in terms of computing time to justify running until errors are detected on older versions of the software. We propose the use of path coverage measures as a "quick and dirty" method for detecting many faults in complex test frameworks. We also note the possibility of using techniques developed to diversify state-space searches in model checking to diversify test focus, and an associated classification of tester changes into focus-changing and non-focus-changing modifications.

  18. Study Guide for TCT in Science.

    ERIC Educational Resources Information Center

    Clark, Gene

    This study guide was developed for individuals preparing to take the Georgia Teacher Certification Test (TCT) in science. Content objectives of the test are listed and encompass: (1) scientific processes, research, and classification; (2) earth sciences; (3) characteristics and properties of matter, energy, and chemical change; (4) biology of life…

  19. A risk-based classification scheme for genetically modified foods. II: Graded testing.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    This paper presents a graded approach to the testing of crop-derived genetically modified (GM) foods based on concern levels in a proposed risk-based classification scheme (RBCS) and currently available testing methods. A graded approach offers the potential for more efficient use of testing resources by focusing less on lower concern GM foods, and more on higher concern foods. In this proposed approach to graded testing, products that are classified as Level I would have met baseline testing requirements that are comparable to what is widely applied to premarket assessment of GM foods at present. In most cases, Level I products would require no further testing, or very limited confirmatory analyses. For products classified as Level II or higher, additional testing would be required, depending on the type of the substance, prior dietary history, estimated exposure level, prior knowledge of toxicity of the substance, and the nature of the concern related to unintended changes in the modified food. Level III testing applies only to the assessment of toxic and antinutritional effects from intended changes and is tailored to the nature of the substance in question. Since appropriate test methods are not currently available for all effects of concern, future research to strengthen the testing of GM foods is discussed.

  20. From the promotion of biodiversity to the Recovery of organic waste

    NASA Astrophysics Data System (ADS)

    Jammoukh, Mustapha; Mansouri, Khalifa; Salhi, Bachir

    2018-05-01

    This article presents an empirical research to classify a new renewable resource material, as opposed to eco-composites, it has been neglected by the materials specialist. This classification is based on the typology of elastic behavior demonstrated by tensile tests. In addition, some identifying criterions of the usefulness of this material were examined. To justify the relevance of this classification, curves from the extension of tests focusing on the virgin material, illustrate significant results of the review. Obtained from waste, having a significant recycling possibilities and potential from renewable resources, bio-mechanically characterized loads will be injected into polymeric materials of different categories. All in the perspective of promoting changes in thermomechanical properties, whether static or dynamic; such as resistance to corrosion, heat, wear… They result in functional changes such as security, relief, coatings and stability…

  1. Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    PubMed Central

    2018-01-01

    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959

  2. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results

    PubMed Central

    Plon, Sharon E.; Eccles, Diana M.; Easton, Douglas; Foulkes, William D.; Genuardi, Maurizio; Greenblatt, Marc S.; Hogervorst, Frans B.L.; Hoogerbrugge, Nicoline; Spurdle, Amanda B.; Tavtigian, Sean

    2011-01-01

    Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology and propose a standardized classification system for application to sequence based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. PMID:18951446

  3. Analysis of the changes in the tarcrete layer on the desert surface of Kuwait using satellite imagery and cell-based modeling

    NASA Astrophysics Data System (ADS)

    Al-Doasari, Ahmad E.

    The 1991 Gulf War caused massive environmental damage in Kuwait. Deposition of oil and soot droplets from hundreds of burning oil-wells created a layer of tarcrete on the desert surface covering over 900 km2. This research investigates the spatial change in the tarcrete extent from 1991 to 1998 using Landsat Thematic Mapper (TM) imagery and statistical modeling techniques. The pixel structure of TM data allows the spatial analysis of the change in tarcrete extent to be conducted at the pixel (cell) level within a geographical information system (GIS). There are two components to this research. The first is a comparison of three remote sensing classification techniques used to map the tarcrete layer. The second is a spatial-temporal analysis and simulation of tarcrete changes through time. The analysis focuses on an area of 389 km2 located south of the Al-Burgan oil field. Five TM images acquired in 1991, 1993, 1994, 1995, and 1998 were geometrically and atmospherically corrected. These images were classified into six classes: oil lakes; heavy, intermediate, light, and traces of tarcrete; and sand. The classification methods tested were unsupervised, supervised, and neural network supervised (fuzzy ARTMAP). Field data of tarcrete characteristics were collected to support the classification process and to evaluate the classification accuracies. Overall, the neural network method is more accurate (60 percent) than the other two methods; both the unsupervised and the supervised classification accuracy assessments resulted in 46 percent accuracy. The five classifications were used in a lagged autologistic model to analyze the spatial changes of the tarcrete through time. The autologistic model correctly identified overall tarcrete contraction between 1991--1993 and 1995--1998. However, tarcrete contraction between 1993--1994 and 1994--1995 was less well marked, in part because of classification errors in the maps from these time periods. Initial simulations of tarcrete contraction with a cellular automaton model were not very successful. However, more accurate classifications could improve the simulations. This study illustrates how an empirical investigation using satellite images, field data, GIS, and spatial statistics can simulate dynamic land-cover change through the use of a discrete statistical and cellular automaton model.

  4. 75 FR 10529 - Mail Classification Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... POSTAL REGULATORY COMMISSION [Docket Nos. MC2010-19; Order No. 415] Mail Classification Change...-filed Postal Service request to make a minor modification to the Mail Classification Schedule. The.... concerning a change in classification which reflects a change in terminology from Bulk Mailing Center (BMC...

  5. Influence of leaching conditions for ecotoxicological classification of ash.

    PubMed

    Stiernström, S; Enell, A; Wik, O; Hemström, K; Breitholtz, M

    2014-02-01

    The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (∼10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1mm and <4mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. ADM. Change House (TAN606). Elevations and floor plan. Room Names. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Change House (TAN-606). Elevations and floor plan. Room Names. Ralph M. Parsons 902-2-ANP-606-A 65. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0606-00-693-106733 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. 76 FR 21413 - Classification Changes for Competitive Mail Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... POSTAL REGULATORY COMMISSION [Docket No. MC2011-24; Order No. 714] Classification Changes for... noticing a recently-filed Postal Service notice of two classification changes concerning certain... of two classification changes pursuant to 39 CFR 3020.90 and 3020.91 concerning certain competitive...

  8. Deep learning application: rubbish classification with aid of an android device

    NASA Astrophysics Data System (ADS)

    Liu, Sijiang; Jiang, Bo; Zhan, Jie

    2017-06-01

    Deep learning is a very hot topic currently in pattern recognition and artificial intelligence researches. Aiming at the practical problem that people usually don't know correct classifications some rubbish should belong to, based on the powerful image classification ability of the deep learning method, we have designed a prototype system to help users to classify kinds of rubbish. Firstly the CaffeNet Model was adopted for our classification network training on the ImageNet dataset, and the trained network was deployed on a web server. Secondly an android app was developed for users to capture images of unclassified rubbish, upload images to the web server for analyzing backstage and retrieve the feedback, so that users can obtain the classification guide by an android device conveniently. Tests on our prototype system of rubbish classification show that: an image of one single type of rubbish with origin shape can be better used to judge its classification, while an image containing kinds of rubbish or rubbish with changed shape may fail to help users to decide rubbish's classification. However, the system still shows promising auxiliary function for rubbish classification if the network training strategy can be optimized further.

  9. 76 FR 47614 - Mail Classification Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... POSTAL REGULATORY COMMISSION [Docket No. MC2011-27; Order No. 785] Mail Classification Change...-filed Postal Service request for a change in classification to the ``Reply Rides Free'' program. The... Service filed a notice of classification change pursuant to 39 CFR 3020.90 and 3020.91 concerning the...

  10. Classification of childhood epilepsies in a tertiary pediatric neurology clinic using a customized classification scheme from the international league against epilepsy 2010 report.

    PubMed

    Khoo, Teik-Beng

    2013-01-01

    In its 2010 report, the International League Against Epilepsy Commission on Classification and Terminology had made a number of changes to the organization, terminology, and classification of seizures and epilepsies. This study aims to test the usefulness of this revised classification scheme on children with epilepsies aged between 0 and 18 years old. Of 527 patients, 75.1% only had 1 type of seizure and the commonest was focal seizure (61.9%). A specific electroclinical syndrome diagnosis could be made in 27.5%. Only 2.1% had a distinctive constellation. In this cohort, 46.9% had an underlying structural, metabolic, or genetic etiology. Among the important causes were pre-/perinatal insults, malformation of cortical development, intracranial infections, and neurocutaneous syndromes. However, 23.5% of the patients in our cohort were classified as having "epilepsies of unknown cause." The revised classification scheme is generally useful for pediatric patients. To make it more inclusive and clinically meaningful, some local customizations are required.

  11. An efficient classification method based on principal component and sparse representation.

    PubMed

    Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang

    2016-01-01

    As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.

  12. Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error

    PubMed Central

    Porter, Teresita M.; Golding, G. Brian

    2012-01-01

    Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215

  13. A Compilation of Hazard and Test Data for Pyrotechnic Compositions

    DTIC Science & Technology

    1980-10-01

    heated. These changes may be related to dehydration , decomposition , crystal- line transition, melting, boiling, vaporization, polymerization, oxidation...123 180 + 66 162 + 16 506 +169 447 +199 448+ 159 Decomposition temperature °C 277 + 102 561 j; 135 205 + 75 182 + 24 550 + 168 505 +224 517 + 153...of compatibility or classification. The following tests are included in the parametric tests: 1. Autoignition Temperature 2. Decomposition

  14. Label-noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study.

    PubMed

    Lee, Seokho; Shin, Hyejin; Lee, Sang Han

    2016-12-01

    Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.

  15. 40 CFR 164.25 - Filing copies of notification of intent to cancel registration or change classification or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... intent to cancel registration or change classification or refusal to register, and statement of issues... copies of notification of intent to cancel registration or change classification or refusal to register... appropriate notice of intention to cancel, the notice of intention to change the classification or the...

  16. Towards psychologically adaptive brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Myrden, A.; Chau, T.

    2016-12-01

    Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.

  17. 76 FR 46856 - Mail Classification Schedule Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... POSTAL REGULATORY COMMISSION [Docket No. MC2011-26; Order No. 777] Mail Classification Schedule... recently-filed Postal Service request regarding classification changes to Priority Mail packaging. This...). SUPPLEMENTARY INFORMATION: On July 26, 2011, the Postal Service filed a notice of two classification changes...

  18. The natural history of cystic echinococcosis in untreated and albendazole-treated patients.

    PubMed

    Solomon, N; Kachani, M; Zeyhle, E; Macpherson, C N L

    2017-07-01

    The World Health Organization (WHO) treatment protocols for cystic echinococcosis (CE) are based on the standardized ultrasound (US) classification. This study examined whether the classification reflected the natural history of CE in untreated and albendazole-treated patients. Data were collected during mass US screenings in CE endemic regions among transhumant populations, the Turkana and Berber peoples of Kenya and Morocco. Cysts were classified using the WHO classification. Patient records occurring prior to treatment, and after albendazole administration, were selected. 852 paired before/after observations of 360 cysts from 257 patients were analyzed. A McNemar-Bowker χ 2 test for symmetry was significant (p<0.0001). 744 observations (87.3%) maintained the same class, and 101 (11.9%) progressed, consistent with the classification. Regression to CE3B occurred in seven of 116 CE4 cyst observations (6.0%). A McNemar-Bowker χ 2 test of 1414 paired before/after observations of 288 cysts from 157 albendazole-treated patients was significant (p<0.0001). 1236 observations (87.4%) maintained the same class, and 149 (10.5%) progressed, consistent with the classification. Regression to CE3B occurred in 29 of 206 CE4 observations (14.1%). Significant asymmetry confirms the WHO classification's applicability to the natural history of CE and albendazole-induced changes. Regressions may reflect the stability of CE3B cysts. Copyright © 2017. Published by Elsevier B.V.

  19. Operational Test Director Guide. Change 4.

    DTIC Science & Technology

    1982-09-20

    usable by the people invol - ved; the testers, the data collectors, and the evaluators. Sample formats are available to the OTD in (Change 1) 10-4 4 a...to & educe the e6jeetA o the timiting 6aetoxA. FoL exampte, "Avai- * abte ta/getA do not tepiteaent iteaLL~tic thkeatA. Howevek, 3-3 CLASSIFICATION...related test equipment and special tools. (e) (*) Completed NAVSUP Form 1250, with part number and APL number (or nomenclature of parent equipment), for

  20. 42 CFR 412.10 - Changes in the DRG classification system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...

  1. 42 CFR 412.10 - Changes in the DRG classification system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...

  2. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  3. Template optimization and transfer in perceptual learning.

    PubMed

    Kurki, Ilmari; Hyvärinen, Aapo; Saarinen, Jussi

    2016-08-01

    We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect. We used a new regression technique to directly estimate the template weight change and to test whether the direction of reweighting is significantly different from an optimal learning strategy. The subjects trained the task for six daily sessions, and we tested the transfer of training to a target in an orthogonal orientation. Strong learning and partial transfer were observed. We tested whether task precision (difficulty) had an effect on template change and transfer: Observers trained in either a high-precision (small, 60° phase difference) or a low-precision task (180°). Task precision did not have an effect on the amount of template change or transfer, suggesting that task precision per se does not determine whether learning generalizes. Classification images show that training made observers use more task-relevant features and unlearn some irrelevant features. The transfer templates resembled partially optimized versions of templates in training sessions. The template change direction resembles ideal learning significantly but not completely. The amount of template change was highly correlated with the amount of learning.

  4. Review of Land Use and Land Cover Change research progress

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  5. A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

  6. Polytomous Adaptive Classification Testing: Effects of Item Pool Size, Test Termination Criterion, and Number of Cutscores

    ERIC Educational Resources Information Center

    Gnambs, Timo; Batinic, Bernad

    2011-01-01

    Computer-adaptive classification tests focus on classifying respondents in different proficiency groups (e.g., for pass/fail decisions). To date, adaptive classification testing has been dominated by research on dichotomous response formats and classifications in two groups. This article extends this line of research to polytomous classification…

  7. Clinical testing of BRCA1 and BRCA2: a worldwide snapshot of technological practices.

    PubMed

    Toland, Amanda Ewart; Forman, Andrea; Couch, Fergus J; Culver, Julie O; Eccles, Diana M; Foulkes, William D; Hogervorst, Frans B L; Houdayer, Claude; Levy-Lahad, Ephrat; Monteiro, Alvaro N; Neuhausen, Susan L; Plon, Sharon E; Sharan, Shyam K; Spurdle, Amanda B; Szabo, Csilla; Brody, Lawrence C

    2018-01-01

    Clinical testing of BRCA1 and BRCA2 began over 20 years ago. With the expiration and overturning of the BRCA patents, limitations on which laboratories could offer commercial testing were lifted. These legal changes occurred approximately the same time as the widespread adoption of massively parallel sequencing (MPS) technologies. Little is known about how these changes impacted laboratory practices for detecting genetic alterations in hereditary breast and ovarian cancer genes. Therefore, we sought to examine current laboratory genetic testing practices for BRCA1 / BRCA2 . We employed an online survey of 65 questions covering four areas: laboratory characteristics, details on technological methods, variant classification, and client-support information. Eight United States (US) laboratories and 78 non-US laboratories completed the survey. Most laboratories (93%; 80/86) used MPS platforms to identify variants. Laboratories differed widely on: (1) technologies used for large rearrangement detection; (2) criteria for minimum read depths; (3) non-coding regions sequenced; (4) variant classification criteria and approaches; (5) testing volume ranging from 2 to 2.5 × 10 5 tests annually; and (6) deposition of variants into public databases. These data may be useful for national and international agencies to set recommendations for quality standards for BRCA1/BRCA2 clinical testing. These standards could also be applied to testing of other disease genes.

  8. LANDSAT data for coastal zone management. [New Jersey

    NASA Technical Reports Server (NTRS)

    Mckenzie, S.

    1981-01-01

    The lack of adequate, current data on land and water surface conditions in New Jersey led to the search for better data collections and analysis techniques. Four-channel MSS data of Cape May County and access to the OSER computer interpretation system were provided by NASA. The spectral resolution of the data was tested and a surface cover map was produced by going through the steps of supervised classification. Topics covered include classification; change detection and improvement of spectral and spatial resolution; merging LANDSAT and map data; and potential applications for New Jersey.

  9. Rationale for classification of combustible gases, vapors and dusts with reference to the National Electrical Code

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Serious reservations about the entire classification procedure of chemical compounds present in electrical equipment environments and the precepts on which it is based are discussed. Although some tests were conducted on selected key compounds, the committee primarily considered the chemical similarity of compounds and other known flammability properties and relied heavily on the experience and intuition of its members. The committee also recommended that the NEC grouping of dusts be changed in some ways and has reclassified dusts according to the modified version of the code.

  10. A Classification System to Guide Physical Therapy Management in Huntington Disease: A Case Series.

    PubMed

    Fritz, Nora E; Busse, Monica; Jones, Karen; Khalil, Hanan; Quinn, Lori

    2017-07-01

    Individuals with Huntington disease (HD), a rare neurological disease, experience impairments in mobility and cognition throughout their disease course. The Medical Research Council framework provides a schema that can be applied to the development and evaluation of complex interventions, such as those provided by physical therapists. Treatment-based classifications, based on expert consensus and available literature, are helpful in guiding physical therapy management across the stages of HD. Such classifications also contribute to the development and further evaluation of well-defined complex interventions in this highly variable and complex neurodegenerative disease. The purpose of this case series was to illustrate the use of these classifications in the management of 2 individuals with late-stage HD. Two females, 40 and 55 years of age, with late-stage HD participated in this case series. Both experienced progressive declines in ambulatory function and balance as well as falls or fear of falling. Both individuals received daily care in the home for activities of daily living. Physical therapy Treatment-Based Classifications for HD guided the interventions and outcomes. Eight weeks of in-home balance training, strength training, task-specific practice of functional activities including transfers and walking tasks, and family/carer education were provided. Both individuals demonstrated improvements that met or exceeded the established minimal detectible change values for gait speed and Timed Up and Go performance. Both also demonstrated improvements on Berg Balance Scale and Physical Performance Test performance, with 1 of the 2 individuals exceeding the established minimal detectible changes for both tests. Reductions in fall risk were evident in both cases. These cases provide proof-of-principle to support use of treatment-based classifications for physical therapy management in individuals with HD. Traditional classification of early-, mid-, and late-stage disease progression may not reflect patients' true capabilities; those with late-stage HD may be as responsive to interventions as those at an earlier disease stage.Video Abstract available for additional insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A172).

  11. Information Gain Based Dimensionality Selection for Classifying Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less

  12. Relationships among NANDA-I diagnoses, nursing outcomes classification, and nursing interventions classification by nursing students for patients in medical-surgical units in Korea.

    PubMed

    Noh, Hyun Kyung; Lee, Eunjoo

    2015-01-01

    The purpose of this study was to identify NANDA-I, Nursing Outcomes Classification (NOC), and Nursing Interventions Classification (NIC; NNN) linkages used by Korean nursing students during their clinical practice in medical-surgical units. A comparative descriptive research design was used to measure the effects of nursing interventions from 153 nursing students in South Korea. Nursing students selected NNN using a Web-based nursing process documentation system. Data were analyzed by paired t-test. Eighty-two NANDA-I diagnoses, 116 NOC outcomes, and 163 NIC interventions were identified. Statistically significant differences in patients' preintervention and postintervention outcome scores were observed. By determining patient outcomes linked to interventions and how the degree of outcomes change after interventions, the effectiveness of the interventions can be evaluated. © 2014 NANDA International, Inc.

  13. Robust tissue classification for reproducible wound assessment in telemedicine environments

    NASA Astrophysics Data System (ADS)

    Wannous, Hazem; Treuillet, Sylvie; Lucas, Yves

    2010-04-01

    In telemedicine environments, a standardized and reproducible assessment of wounds, using a simple free-handled digital camera, is an essential requirement. However, to ensure robust tissue classification, particular attention must be paid to the complete design of the color processing chain. We introduce the key steps including color correction, merging of expert labeling, and segmentation-driven classification based on support vector machines. The tool thus developed ensures stability under lighting condition, viewpoint, and camera changes, to achieve accurate and robust classification of skin tissues. Clinical tests demonstrate that such an advanced tool, which forms part of a complete 3-D and color wound assessment system, significantly improves the monitoring of the healing process. It achieves an overlap score of 79.3 against 69.1% for a single expert, after mapping on the medical reference developed from the image labeling by a college of experts.

  14. 26 CFR 1.410(b)-4 - Nondiscriminatory classification test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... unsafe harbor percentage, as defined in paragraph (c)(4)(ii) of this section, and (B) The classification... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Nondiscriminatory classification test. 1.410(b.... § 1.410(b)-4 Nondiscriminatory classification test. (a) In general. A plan satisfies the...

  15. Computerized Classification Testing with the Rasch Model

    ERIC Educational Resources Information Center

    Eggen, Theo J. H. M.

    2011-01-01

    If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…

  16. 14 CFR 21.93 - Classification of changes in type design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Classification of changes in type design... TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Changes to Type Certificates § 21.93 Classification of changes in type design. (a) In addition to changes in type design specified in paragraph (b) of...

  17. An efficient robust sound classification algorithm for hearing aids.

    PubMed

    Nordqvist, Peter; Leijon, Arne

    2004-06-01

    An efficient robust sound classification algorithm based on hidden Markov models is presented. The system would enable a hearing aid to automatically change its behavior for differing listening environments according to the user's preferences. This work attempts to distinguish between three listening environment categories: speech in traffic noise, speech in babble, and clean speech, regardless of the signal-to-noise ratio. The classifier uses only the modulation characteristics of the signal. The classifier ignores the absolute sound pressure level and the absolute spectrum shape, resulting in an algorithm that is robust against irrelevant acoustic variations. The measured classification hit rate was 96.7%-99.5% when the classifier was tested with sounds representing one of the three environment categories included in the classifier. False-alarm rates were 0.2%-1.7% in these tests. The algorithm is robust and efficient and consumes a small amount of instructions and memory. It is fully possible to implement the classifier in a DSP-based hearing instrument.

  18. Effects of temporal variability in ground data collection on classification accuracy

    USGS Publications Warehouse

    Hoch, G.A.; Cully, J.F.

    1999-01-01

    This research tested whether the timing of ground data collection can significantly impact the accuracy of land cover classification. Ft. Riley Military Reservation, Kansas, USA was used to test this hypothesis. The U.S. Army's Land Condition Trend Analysis (LCTA) data annually collected at military bases was used to ground truth disturbance patterns. Ground data collected over an entire growing season and data collected one year after the imagery had a kappa statistic of 0.33. When using ground data from only within two weeks of image acquisition the kappa statistic improved to 0.55. Potential sources of this discrepancy are identified. These data demonstrate that there can be significant amounts of land cover change within a narrow time window on military reservations. To accurately conduct land cover classification at military reservations, ground data need to be collected in as narrow a window of time as possible and be closely synchronized with the date of the satellite imagery.

  19. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  20. Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe; Gallant, Alisa L.; Woodcock, Curtis E.; Pengra, Bruce; Olofsson, Pontus; Loveland, Thomas R.; Jin, Suming; Dahal, Devendra; Yang, Limin; Auch, Roger F.

    2016-12-01

    The U.S. Geological Survey's Land Change Monitoring, Assessment, and Projection (LCMAP) initiative is a new end-to-end capability to continuously track and characterize changes in land cover, use, and condition to better support research and applications relevant to resource management and environmental change. Among the LCMAP product suite are annual land cover maps that will be available to the public. This paper describes an approach to optimize the selection of training and auxiliary data for deriving the thematic land cover maps based on all available clear observations from Landsats 4-8. Training data were selected from map products of the U.S. Geological Survey's Land Cover Trends project. The Random Forest classifier was applied for different classification scenarios based on the Continuous Change Detection and Classification (CCDC) algorithm. We found that extracting training data proportionally to the occurrence of land cover classes was superior to an equal distribution of training data per class, and suggest using a total of 20,000 training pixels to classify an area about the size of a Landsat scene. The problem of unbalanced training data was alleviated by extracting a minimum of 600 training pixels and a maximum of 8000 training pixels per class. We additionally explored removing outliers contained within the training data based on their spectral and spatial criteria, but observed no significant improvement in classification results. We also tested the importance of different types of auxiliary data that were available for the conterminous United States, including: (a) five variables used by the National Land Cover Database, (b) three variables from the cloud screening "Function of mask" (Fmask) statistics, and (c) two variables from the change detection results of CCDC. We found that auxiliary variables such as a Digital Elevation Model and its derivatives (aspect, position index, and slope), potential wetland index, water probability, snow probability, and cloud probability improved the accuracy of land cover classification. Compared to the original strategy of the CCDC algorithm (500 pixels per class), the use of the optimal strategy improved the classification accuracies substantially (15-percentage point increase in overall accuracy and 4-percentage point increase in minimum accuracy).

  1. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.

  2. A comparison of change detection methods using multispectral scanner data

    USGS Publications Warehouse

    Seevers, Paul M.; Jones, Brenda K.; Qiu, Zhicheng; Liu, Yutong

    1994-01-01

    Change detection methods were investigated as a cooperative activity between the U.S. Geological Survey and the National Bureau of Surveying and Mapping, People's Republic of China. Subtraction of band 2, band 3, normalized difference vegetation index, and tasseled cap bands 1 and 2 data from two multispectral scanner images were tested using two sites in the United States and one in the People's Republic of China. A new statistical method also was tested. Band 2 subtraction gives the best results for detecting change from vegetative cover to urban development. The statistical method identifies areas that have changed and uses a fast classification algorithm to classify the original data of the changed areas by land cover type present for each image date.

  3. A standard lexicon for biodiversity conservation: unified classifications of threats and actions.

    PubMed

    Salafsky, Nick; Salzer, Daniel; Stattersfield, Alison J; Hilton-Taylor, Craig; Neugarten, Rachel; Butchart, Stuart H M; Collen, Ben; Cox, Neil; Master, Lawrence L; O'Connor, Sheila; Wilkie, David

    2008-08-01

    An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.

  4. Educational inequality by race in Brazil, 1982-2007: structural changes and shifts in racial classification.

    PubMed

    Marteleto, Leticia J

    2012-02-01

    Despite overwhelming improvements in educational levels and opportunity during the past three decades, educational disadvantages associated with race still persist in Brazil. Using the nationally representative Pesquisa Nacional de Amostra por Domicílio (PNAD) data from 1982 and 1987 to 2007, this study investigates educational inequalities between white, pardo (mixed-race), and black Brazilians over the 25-year period. Although the educational advantage of whites persisted during this period, I find that the significance of race as it relates to education changed. By 2007, those identified as blacks and pardos became more similar in their schooling levels, whereas in the past, blacks had greater disadvantages. I test two possible explanations for this shift: structural changes and shifts in racial classification. I find evidence for both. I discuss the findings in light of the recent race-based affirmative action policies being implemented in Brazilian universities.

  5. Educational Inequality by Race in Brazil, 1982–2007: Structural Changes and Shifts in Racial Classification

    PubMed Central

    Marteleto, Leticia J.

    2013-01-01

    Despite overwhelming improvements in educational levels and opportunity during the past three decades, educational disadvantages associated with race still persist in Brazil. Using the nationally representative Pesquisa Nacional de Amostra por Domicílio (PNAD) data from 1982 and 1987 to 2007, this study investigates educational inequalities between white, pardo (mixed-race), and black Brazilians over the 25-year period. Although the educational advantage of whites persisted during this period, I find that the significance of race as it relates to education changed. By 2007, those identified as blacks and pardos became more similar in their schooling levels, whereas in the past, blacks had greater disadvantages. I test two possible explanations for this shift: structural changes and shifts in racial classification. I find evidence for both. I discuss the findings in light of the recent race-based affirmative action policies being implemented in Brazilian universities. PMID:22259031

  6. 7 CFR 400.304 - Nonstandard Classification determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) If a Nonstandard Classification change has been made to current assigned yields, insurance experience... in any year, Nonstandard Classification adjustments will be made from year to year until no further... not been in effect. (f) Nonstandard Classification changes will not be made that: (1) Increase...

  7. Expert consensus statement to guide the evidence-based classification of Paralympic athletes with vision impairment: a Delphi study.

    PubMed

    Ravensbergen, H J C Rianne; Mann, D L; Kamper, S J

    2016-04-01

    Paralympic sports are required to develop evidence-based systems that allocate athletes into 'classes' on the basis of the impact of their impairment on sport performance. However, sports for athletes with vision impairment (VI) classify athletes solely based on the WHO criteria for low vision and blindness. One key barrier to evidence-based classification is the absence of guidance on how to address classification issues unique to VI sport. The aim of this study was to reach expert consensus on how issues specific to VI sport should be addressed in evidence-based classification. A four-round Delphi study was conducted with 25 participants who had expertise as a coach, athlete, classifier and/or administrator in Paralympic sport for VI athletes. The experts agreed that the current method of classification does not fulfil the requirements of Paralympic classification, and that the system should be different for each sport to account for the sports' unique visual demands. Instead of relying only on tests of visual acuity and visual field, the panel agreed that additional tests are required to better account for the impact of impairment on sport performance. There was strong agreement that all athletes should not be required to wear a blindfold as a means of equalising the impairment during competition. There is strong support within the Paralympic movement to change the way that VI athletes are classified. This consensus statement provides clear guidance on how the most important issues specific to VI should be addressed, removing key barriers to the development of evidence-based classification. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Clinical Variant Classification: A Comparison of Public Databases and a Commercial Testing Laboratory.

    PubMed

    Gradishar, William; Johnson, KariAnne; Brown, Krystal; Mundt, Erin; Manley, Susan

    2017-07-01

    There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, the well-documented limitations of these databases call into question how often clinicians will encounter discordant variant classifications that may introduce uncertainty into patient management. Here, we evaluate discordance in BRCA1 and BRCA2 variant classifications between a single commercial testing laboratory and a public database commonly consulted in clinical practice. BRCA1 and BRCA2 variant classifications were obtained from ClinVar and compared with the classifications from a reference laboratory. Full concordance and discordance were determined for variants whose ClinVar entries were of the same pathogenicity (pathogenic, benign, or uncertain). Variants with conflicting ClinVar classifications were considered partially concordant if ≥1 of the listed classifications agreed with the reference laboratory classification. Four thousand two hundred and fifty unique BRCA1 and BRCA2 variants were available for analysis. Overall, 73.2% of classifications were fully concordant and 12.3% were partially concordant. The remaining 14.5% of variants had discordant classifications, most of which had a definitive classification (pathogenic or benign) from the reference laboratory compared with an uncertain classification in ClinVar (14.0%). Here, we show that discrepant classifications between a public database and single reference laboratory potentially account for 26.7% of variants in BRCA1 and BRCA2 . The time and expertise required of clinicians to research these discordant classifications call into question the practicality of checking all test results against a database and suggest that discordant classifications should be interpreted with these limitations in mind. With the increasing use of clinical genetic testing for hereditary cancer risk, accurate variant classification is vital to ensuring appropriate medical management. There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, we show that up to 26.7% of variants in BRCA1 and BRCA2 have discordant classifications between ClinVar and a reference laboratory. The findings presented in this paper serve as a note of caution regarding the utility of database consultation. © AlphaMed Press 2017.

  9. 77 FR 39747 - Changes in Postal Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... with the Commission of a proposal characterized as a minor classification change under 39 CFR parts 3090 and 3091, along with a conforming revision to the Mail Classification Schedule (MCS).\\1\\ The... Flat Rate Envelope options. \\1\\ Notice of United States Postal Service of Classification Changes, June...

  10. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  11. [Management of children with headache in a Pediatric Emergency Department before and after the introduction of the Second International Classification of Headache Disorders (ICHD-II)].

    PubMed

    Gioachin, Anna; Fiumana, Elisa; Tarocco, Anna; Verzola, Adriano; Forini, Elena; Guerra, Valentina; Salani, Manuela; Faggioli, Raffaella

    2013-03-01

    The aim of this study was to evaluate how the management of children admitted with headache to a Pediatric Emergency Department, was modified by the introduction of the Second International Classification of Headache Disorders ( ICHD-II) published in 2004. The complexity and average costs of the services provided to patients in 2002 and 2011 were compared. The results revealed a decrease in the number of tests performed and in-hospital admissions. However, tests were more complex, and an increase in requests of specialist advice was observed. We hypothesized that this change may be related to the introduction of ICHD-II, which suggests a more rational approach to the child with headache and a better use of hospital resources.

  12. 40 CFR 164.25 - Filing copies of notification of intent to cancel registration or change classification or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intent to cancel registration or change classification or refusal to register, and statement of issues. 164.25 Section 164.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE... ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS...

  13. 19 CFR 10.303 - Originating goods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in General Note 3(c), HTSUS; (2) Transformed with a change in classification. The goods have been transformed by a processing which results in a change in classification and, if required, a sufficient value-content, as set forth in General Note 3(c), HTSUS; or (3) Transformed without a change in classification...

  14. 19 CFR 10.303 - Originating goods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in General Note 3(c), HTSUS; (2) Transformed with a change in classification. The goods have been transformed by a processing which results in a change in classification and, if required, a sufficient value-content, as set forth in General Note 3(c), HTSUS; or (3) Transformed without a change in classification...

  15. Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region

    NASA Astrophysics Data System (ADS)

    Pastor, M. A.; Casado, M. J.

    2012-10-01

    This paper presents an evaluation of the multi-model simulations for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in terms of their ability to simulate the ERA40 circulation types over the Euro-Atlantic region in winter season. Two classification schemes, k-means and SANDRA, have been considered to test the sensitivity of the evaluation results to the classification procedure. The assessment allows establishing different rankings attending spatial and temporal features of the circulation types. Regarding temporal characteristics, in general, all AR4 models tend to underestimate the frequency of occurrence. The best model simulating spatial characteristics is the UKMO-HadGEM1 whereas CCSM3, UKMO-HadGEM1 and CGCM3.1(T63) are the best simulating the temporal features, for both classification schemes. This result agrees with the AR4 models ranking obtained when having analysed the ability of the same AR4 models to simulate Euro-Atlantic variability modes. This study has proved the utility of applying such a synoptic climatology approach as a diagnostic tool for models' assessment. The ability of the models to properly reproduce the position of ridges and troughs and the frequency of synoptic patterns, will therefore improve our confidence in the response of models to future climate changes.

  16. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  17. The Sequential Probability Ratio Test and Binary Item Response Models

    ERIC Educational Resources Information Center

    Nydick, Steven W.

    2014-01-01

    The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has…

  18. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers

    PubMed Central

    2014-01-01

    Background Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). Methods This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. Results The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. Conclusions A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients. PMID:24903422

  19. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers.

    PubMed

    Huang, Huifang; Liu, Jie; Zhu, Qiang; Wang, Ruiping; Hu, Guangshu

    2014-06-05

    Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients.

  20. Fatigue crack identification method based on strain amplitude changing

    NASA Astrophysics Data System (ADS)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  1. A Comparison of Computer-Based Classification Testing Approaches Using Mixed-Format Tests with the Generalized Partial Credit Model

    ERIC Educational Resources Information Center

    Kim, Jiseon

    2010-01-01

    Classification testing has been widely used to make categorical decisions by determining whether an examinee has a certain degree of ability required by established standards. As computer technologies have developed, classification testing has become more computerized. Several approaches have been proposed and investigated in the context of…

  2. Development of Subscale Fast Cookoff Test (PREPRINT)

    DTIC Science & Technology

    2006-09-21

    The hazards classification procedures have been harmonized with both the UN Test and Criteria Manual for UN Series 1...aimed at the development of a sub-scale alternate test protocol to the external fire test currently required for final hazards classification (HC...external fire test currently required for final hazards classification (HC) of an ordnance system. The specific goal of this part of the task was

  3. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    PubMed Central

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594

  4. On-line Robot Adaptation to Environmental Change

    DTIC Science & Technology

    2005-08-01

    by the Department of the Interior under contract no. NBCH1040007, the US Army under contract no. DABT639910013, the US Air Force Research Laboratory...Probable Series Predictor algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Accuracy of PSC in various test classification tasks...105 6.1 Probable Series Predictor algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Accuracy of PSC in

  5. Using Unidimensional IRT Models for Dichotomous Classification via Computerized Classification Testing with Multidimensional Data.

    ERIC Educational Resources Information Center

    Lau, Che-Ming Allen; And Others

    This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…

  6. 26 CFR 1.410(b)-4 - Nondiscriminatory classification test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., nature of compensation (i.e., salaried or hourly), geographic location, and similar bona fide business... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.410(b)-4 Nondiscriminatory classification test. (a) In general. A plan satisfies the nondiscriminatory classification test of...

  7. A Challenge to Change: Necessary Changes in the Library Classification System for the Chicago Public Schools.

    ERIC Educational Resources Information Center

    Williams, Florence M.

    This report addresses the feasibility of changing the classification of library materials in the Chicago Public School libraries from the Dewey Decimal classification system (DDC) to the Library of Congress system (LC), thus patterning the city school libraries after the Chicago Public Library and strengthening the existing close relationship…

  8. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  9. Common component classification: what can we learn from machine learning?

    PubMed

    Anderson, Ariana; Labus, Jennifer S; Vianna, Eduardo P; Mayer, Emeran A; Cohen, Mark S

    2011-05-15

    Machine learning methods have been applied to classifying fMRI scans by studying locations in the brain that exhibit temporal intensity variation between groups, frequently reporting classification accuracy of 90% or better. Although empirical results are quite favorable, one might doubt the ability of classification methods to withstand changes in task ordering and the reproducibility of activation patterns over runs, and question how much of the classification machines' power is due to artifactual noise versus genuine neurological signal. To examine the true strength and power of machine learning classifiers we create and then deconstruct a classifier to examine its sensitivity to physiological noise, task reordering, and across-scan classification ability. The models are trained and tested both within and across runs to assess stability and reproducibility across conditions. We demonstrate the use of independent components analysis for both feature extraction and artifact removal and show that removal of such artifacts can reduce predictive accuracy even when data has been cleaned in the preprocessing stages. We demonstrate how mistakes in the feature selection process can cause the cross-validation error seen in publication to be a biased estimate of the testing error seen in practice and measure this bias by purposefully making flawed models. We discuss other ways to introduce bias and the statistical assumptions lying behind the data and model themselves. Finally we discuss the complications in drawing inference from the smaller sample sizes typically seen in fMRI studies, the effects of small or unbalanced samples on the Type 1 and Type 2 error rates, and how publication bias can give a false confidence of the power of such methods. Collectively this work identifies challenges specific to fMRI classification and methods affecting the stability of models. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Fragoso, K.; Acosta-Mesa, H. G.; Cruz-Ramírez, N.; Hernández-Jiménez, R.

    2013-12-01

    Cervical cancer has remained, until now, as a serious public health problem in developing countries. The most common method of screening is the Pap test or cytology. When abnormalities are reported in the result, the patient is referred to a dysplasia clinic for colposcopy. During this test, a solution of acetic acid is applied, which produces a color change in the tissue and is known as acetowhitening phenomenon. This reaction aims to obtaining a sample of tissue and its histological analysis let to establish a final diagnosis. During the colposcopy test, digital images can be acquired to analyze the behavior of the acetowhitening reaction from a temporal approach. In this way, we try to identify precursor lesions of cervical cancer through a process of automatic classification of acetowhite temporal patterns. In this paper, we present the performance analysis of three classification methods: kNN, Naïve Bayes and C4.5. The results showed that there is similarity between some acetowhite temporal patterns of normal and abnormal tissues. Therefore we conclude that it is not sufficient to only consider the temporal dynamic of the acetowhitening reaction to establish a diagnosis by an automatic method. Information from cytologic, colposcopic and histopathologic disciplines should be integrated as well.

  11. Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition

    NASA Astrophysics Data System (ADS)

    Colone, L.; Hovgaard, M. K.; Glavind, L.; Brincker, R.

    2018-07-01

    A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.

  12. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    NASA Astrophysics Data System (ADS)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach presented here for the classification of ARD potential offers rapid, repeatable and accurate outcomes comparable to manually derived classifications. Methods for automated ARD classifications from digital drill core data represent a step-change for geoenvironmental management practices in the mining industry.

  13. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  14. 32 CFR 1633.12 - Reconsideration of classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2010-07-01 2010-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...

  15. 32 CFR 1633.12 - Reconsideration of classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2011-07-01 2011-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...

  16. 7 CFR 400.304 - Nonstandard Classification determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... changes are necessary in assigned yields or premium rates under the conditions set forth in § 400.304(f... Classification determinations. (a) Nonstandard Classification determinations can affect a change in assigned yields, premium rates, or both from those otherwise prescribed by the insurance actuarial tables. (b...

  17. Secular Change in Morphological Pelvic Traits used for Sex Estimation.

    PubMed

    Klales, Alexandra R

    2016-03-01

    This research evaluates secular change in Phenice's (Am J Phys Anthropol, 30, 1969 and 297) three morphological traits of the pubis, as described by Klales et al. (Am J Phys Anthropol, 149, 2012 and 104): medial aspect of the ischio-pubic ramus, subpubic contour, and ventral arc. Ordinal scores were collected for these traits and compared between a sample of innominates from the historical Hamann-Todd Collection (n = 170) and modern Bass Donated Collection (n = 129). Using the Freeman-Halton test, significant differences between temporal sample score frequencies were found for all traits in females and for the subpubic contour and ventral arc in males. Despite these findings, classification accuracy using logistic regression between the temporal periods remained low (68.7%). These results suggest that secular changes in trait expression are occurring; however, sex estimation methods using these traits and created with historical samples are still applicable to modern forensic cases. In fact, the secular changes occurring in these traits contribute to better classification accuracy between sexes in modern populations. © 2015 American Academy of Forensic Sciences.

  18. Early morning oedema in patients with primary varicose veins without trophic changes.

    PubMed

    Rastel, Didier; Allaert, François-André

    2016-11-01

    Chronic lower limb oedema is one of the complications of superficial or deep chronic venous disorders. It is ranked as "C3"on the CEAP classification. In epidemiological studies, the recognition of oedema is mainly based on clinical signs, and oedema is more easily detected in the second part of the day when it becomes evident. We addressed the question whether oedema is already present in the morning in patients suffering of primary varicose veins without trophic changes. In total, 101 patients with primary varicose veins (C2 and/or C3 stage of the CEAP classification) and 122 controls were enrolled as they appeared in our centre. The consultation time was no later than 6 hours after the patient had woken up. Oedema was detected by pitting test and ultrasound. The mean consultation time lapse was 3.7 ± 1.2 hours after waking-up. Oedema was more frequent in the group of primary varicose veins without trophic changes (36 % compared to 14 % in the control group; p < 0.01). Oedema was mainly detected by ultrasound and far less so by the pitting test. Patients with varicose veins have morning oedema more frequently than patients without varicosis and at a higher rate than in epidemiological studies.

  19. Secular change of sexually dimorphic cranial variables in Euro-Americans and Germans.

    PubMed

    Manthey, Laura; Jantz, Richard L; Bohnert, Michael; Jellinghaus, Katharina

    2017-07-01

    Crania are a reliable source for sex estimation in Euro-Americans, Europeans, and most other populations. Besides morphological assessments, the application of Fordisc® has become a useful tool within the last two decades, creating discriminant functions from morphometric data. Unfortunately, until now, white populations are mostly represented by measurements of American individuals. Therefore, classification rates are lower for European skulls than for Euro-Americans. The aim of this study was to show differences in sexual dimorphism between German and Euro-American crania. Furthermore, their secular change from the nineteenth to the twentieth century has been investigated. Analyses have been performed on glabella subtense (GLS), mastoid height (MDH), and bizygomatic breadth (ZYB). Fordisc® 3.1 was used to study sexual dimorphism and secular change, whereas SAS® was used to perform a two-level ANOVA to test for variation in sex dimorphism. Euro-Americans show greater dimorphism than Germans in all three measurements tested. This larger difference is even increasing from the late nineteenth through the late twentieth century in terms of GLS and MDH, while it stays almost the same in the present Europeans. These results explain the unsatisfying classification rates of German and other European crania on Fordisc®. Data collection for European Fordisc® samples is in progress and should improve the current situation.

  20. The Dysexecutive Questionnaire advanced: item and test score characteristics, 4-factor solution, and severity classification.

    PubMed

    Bodenburg, Sebastian; Dopslaff, Nina

    2008-01-01

    The Dysexecutive Questionnaire (DEX, , Behavioral assessment of the dysexecutive syndrome, 1996) is a standardized instrument to measure possible behavioral changes as a result of the dysexecutive syndrome. Although initially intended only as a qualitative instrument, the DEX has also been used increasingly to address quantitative problems. Until now there have not been more fundamental statistical analyses of the questionnaire's testing quality. The present study is based on an unselected sample of 191 patients with acquired brain injury and reports on the data relating to the quality of the items, the reliability and the factorial structure of the DEX. Item 3 displayed too great an item difficulty, whereas item 11 was not sufficiently discriminating. The DEX's reliability in self-rating is r = 0.85. In addition to presenting the statistical values of the tests, a clinical severity classification of the overall scores of the 4 found factors and of the questionnaire as a whole is carried out on the basis of quartile standards.

  1. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  2. [Correlation coefficient-based principle and method for the classification of jump degree in hydrological time series].

    PubMed

    Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting

    2018-04-01

    The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.

  3. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    PubMed Central

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894

  4. Tree classification with fused mobile laser scanning and hyperspectral data.

    PubMed

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.

  5. Does Maximizing Information at the Cut Score Always Maximize Classification Accuracy and Consistency?

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Babcock, Ben

    2016-01-01

    A common suggestion made in the psychometric literature for fixed-length classification tests is that one should design tests so that they have maximum information at the cut score. Designing tests in this way is believed to maximize the classification accuracy and consistency of the assessment. This article uses simulated examples to illustrate…

  6. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichara, Karim; Protopapas, Pavlos

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine howmore » classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.« less

  8. A measure of association for ordered categorical data in population-based studies

    PubMed Central

    Nelson, Kerrie P; Edwards, Don

    2016-01-01

    Ordinal classification scales are commonly used to define a patient’s disease status in screening and diagnostic tests such as mammography. Challenges arise in agreement studies when evaluating the association between many raters’ classifications of patients’ disease or health status when an ordered categorical scale is used. In this paper, we describe a population-based approach and chance-corrected measure of association to evaluate the strength of relationship between multiple raters’ ordinal classifications where any number of raters can be accommodated. In contrast to Shrout and Fleiss’ intraclass correlation coefficient, the proposed measure of association is invariant with respect to changes in disease prevalence. We demonstrate how unique characteristics of individual raters can be explored using random effects. Simulation studies are conducted to demonstrate the properties of the proposed method under varying assumptions. The methods are applied to two large-scale agreement studies of breast cancer screening and prostate cancer severity. PMID:27184590

  9. CNS embryonal tumours: WHO 2016 and beyond.

    PubMed

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  10. Automated classification of Permanent Scatterers time-series based on statistical characterization tests

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Corsini, Alessandro; Franceschini, Silvia; Iannacone, Jean Pascal

    2013-04-01

    The application of space borne synthetic aperture radar interferometry has progressed, over the last two decades, from the pioneer use of single interferograms for analyzing changes on the earth's surface to the development of advanced multi-interferogram techniques to analyze any sort of natural phenomena which involves movements of the ground. The success of multi-interferograms techniques in the analysis of natural hazards such as landslides and subsidence is widely documented in the scientific literature and demonstrated by the consensus among the end-users. Despite the great potential of this technique, radar interpretation of slope movements is generally based on the sole analysis of average displacement velocities, while the information embraced in multi interferogram time series is often overlooked if not completely neglected. The underuse of PS time series is probably due to the detrimental effect of residual atmospheric errors, which make the PS time series characterized by erratic, irregular fluctuations often difficult to interpret, and also to the difficulty of performing a visual, supervised analysis of the time series for a large dataset. In this work is we present a procedure for automatic classification of PS time series based on a series of statistical characterization tests. The procedure allows to classify the time series into six distinctive target trends (0=uncorrelated; 1=linear; 2=quadratic; 3=bilinear; 4=discontinuous without constant velocity; 5=discontinuous with change in velocity) and retrieve for each trend a series of descriptive parameters which can be efficiently used to characterize the temporal changes of ground motion. The classification algorithms were developed and tested using an ENVISAT datasets available in the frame of EPRS-E project (Extraordinary Plan of Environmental Remote Sensing) of the Italian Ministry of Environment (track "Modena", Northern Apennines). This dataset was generated using standard processing, then the time series are typically affected by a significant noise to signal ratio. The results of the analysis show that even with such a rough-quality dataset, our automated classification procedure can greatly improve radar interpretation of mass movements. In general, uncorrelated PS (type 0) are concentrated in flat areas such as fluvial terraces and valley bottoms, and along stable watershed divides; linear PS (type 1) are mainly located on slopes (both inside or outside mapped landslides) or near the edge of scarps or steep slopes; non-linear PS (types 2 to 5) typically fall inside landslide deposits or in the surrounding areas. The spatial distribution of classified PS allows to detect deformation phenomena not visible by considering the average velocity alone, and provide important information on the temporal evolution of the phenomena such as acceleration, deceleration, seasonal fluctuations, abrupt or continuous changes of the displacement rate. Based on these encouraging results we integrated all the classification algorithms into a Graphical User Interface (called PSTime) which is freely available as a standalone application.

  11. 8 CFR 248.1 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS CHANGE OF NONIMMIGRANT CLASSIFICATION... apply to have his or her nonimmigrant classification changed to any nonimmigrant classification other.... 1101(a)(15)(C). An alien defined by section 101(a)(15)(V), or 101(a)(15)(U) of the Act, 8 U.S.C. 1101(a...

  12. 8 CFR 248.1 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS CHANGE OF NONIMMIGRANT CLASSIFICATION... apply to have his or her nonimmigrant classification changed to any nonimmigrant classification other.... 1101(a)(15)(C). An alien defined by section 101(a)(15)(V), or 101(a)(15)(U) of the Act, 8 U.S.C. 1101(a...

  13. Effect of reclassification of cannabis on hospital admissions for cannabis psychosis: a time series analysis.

    PubMed

    Hamilton, Ian; Lloyd, Charlie; Hewitt, Catherine; Godfrey, Christine

    2014-01-01

    The UK Misuse of Drugs Act (1971) divided controlled drugs into three groups A, B and C, with descending criminal sanctions attached to each class. Cannabis was originally assigned by the Act to Group B but in 2004, it was transferred to the lowest risk group, Group C. Then in 2009, on the basis of increasing concerns about a link between high strength cannabis and schizophrenia, it was moved back to Group B. The aim of this study is to test the assumption that changes in classification lead to changes in levels of psychosis. In particular, it explores whether the two changes in 2004 and 2009 were associated with changes in the numbers of people admitted for cannabis psychosis. An interrupted time series was used to investigate the relationship between the two changes in cannabis classification and their impact on hospital admissions for cannabis psychosis. Reflecting the two policy changes, two interruptions to the time series were made. Hospital Episode Statistics admissions data was analysed covering the period 1999 through to 2010. There was a significantly increasing trend in cannabis psychosis admissions from 1999 to 2004. However, following the reclassification of cannabis from B to C in 2004, there was a significant change in the trend such that cannabis psychosis admissions declined to 2009. Following the second reclassification of cannabis back to class B in 2009, there was a significant change to increasing admissions. This study shows a statistical association between the reclassification of cannabis and hospital admissions for cannabis psychosis in the opposite direction to that predicted by the presumed relationship between the two. However, the reasons for this statistical association are unclear. It is unlikely to be due to changes in cannabis use over this period. Other possible explanations include changes in policing and systemic changes in mental health services unrelated to classification decisions. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A Biome map for Modelling Global Mid-Pliocene Climate Change

    NASA Astrophysics Data System (ADS)

    Salzmann, U.; Haywood, A. M.

    2006-12-01

    The importance of vegetation-climate feedbacks was highlighted by several paleo-climate modelling exercises but their role as a boundary condition in Tertiary modelling has not been fully recognised or explored. Several paleo-vegetation datasets and maps have been produced for specific time slabs or regions for the Tertiary, but the vegetation classifications that have been used differ, thus making meaningful comparisons difficult. In order to facilitate further investigations into Tertiary climate and environmental change we are presently implementing the comprehensive GIS database TEVIS (Tertiary Environment and Vegetation Information System). TEVIS integrates marine and terrestrial vegetation data, taken from fossil pollen, leaf or wood, into an internally consistent classification scheme to produce for different time slabs global Tertiary Biome and Mega- Biome maps (Harrison & Prentice, 2003). In the frame of our ongoing 5-year programme we present a first global vegetation map for the mid-Pliocene time slab, a period of sustained global warmth. Data were synthesised from the PRISM data set (Thompson and Fleming 1996) after translating them to the Biome classification scheme and from new literature. The outcomes of the Biome map are compared with modelling results using an advanced numerical general circulation model (HadAM3) and the BIOME 4 vegetation model. Our combined proxy data and modelling approach will provide new palaeoclimate datasets to test models that are used to predict future climate change, and provide a more rigorous picture of climate and environmental changes during the Neogene.

  15. MC3196 Detonator Shipping Package Hazard Classification Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones; Robert B.

    1979-05-31

    An investigation was made to determine whether the MC3196 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosives per 49 CFR 173.113. This study covers the Propagation Test and the External Heat Test as approved by DOE Albuquerque Operations Office. Test data led to the recommeded hazard classification of detonating fuze, Class C explosives.

  16. ASTM standards for fire debris analysis: a review.

    PubMed

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  17. 18 CFR 3a.31 - Classification markings and special notations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... unit taking the action. When classification changes are made, the classification markings themselves... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Classification markings... REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification...

  18. The Development of Categorization: Effects of Classification and Inference Training on Category Representation

    PubMed Central

    Deng, Wei (Sophia); Sloutsky, Vladimir M.

    2015-01-01

    Does category representation change in the course of development? And if so, how and why? The current study attempted to answer these questions by examining category learning and category representation. In Experiment 1, 4-year-olds, 6-year-olds, and adults were trained with either a classification task or an inference task and their categorization performance and memory for items were tested. Adults and 6-year-olds exhibited an important asymmetry: they relied on a single deterministic feature during classification training, but not during inference training. In contrast, regardless of the training condition, 4-year-olds relied on multiple probabilistic features. In Experiment 2, 4-year-olds were presented with classification training and their attention was explicitly directed to the deterministic feature. Under this condition, their categorization performance was similar to that of older participants in Experiment 1, yet their memory performance pointed to a similarity-based representation, which was similar to that of 4-year-olds in Experiment 1. These results are discussed in relation to theories of categorization and the role of selective attention in the development of category learning. PMID:25602938

  19. Change classification in SAR time series: a functional approach

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2017-10-01

    Change detection represents a broad field of research in SAR remote sensing, consisting of many different approaches. Besides the simple recognition of change areas, the analysis of type, category or class of the change areas is at least as important for creating a comprehensive result. Conventional strategies for change classification are based on supervised or unsupervised landuse / landcover classifications. The main drawback of such approaches is that the quality of the classification result directly depends on the selection of training and reference data. Additionally, supervised processing methods require an experienced operator who capably selects the training samples. This training step is not necessary when using unsupervised strategies, but nevertheless meaningful reference data must be available for identifying the resulting classes. Consequently, an experienced operator is indispensable. In this study, an innovative concept for the classification of changes in SAR time series data is proposed. Regarding the drawbacks of traditional strategies given above, it copes without using any training data. Moreover, the method can be applied by an operator, who does not have detailed knowledge about the available scenery yet. This knowledge is provided by the algorithm. The final step of the procedure, which main aspect is given by the iterative optimization of an initial class scheme with respect to the categorized change objects, is represented by the classification of these objects to the finally resulting classes. This assignment step is subject of this paper.

  20. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  1. 7 CFR 28.903 - Classification of samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification and Market News Services § 28.903 Classification of samples. The Director, or an...

  2. 7 CFR 28.903 - Classification of samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification and Market News Services § 28.903 Classification of samples. The Director, or an...

  3. 7 CFR 28.903 - Classification of samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification and Market News Services § 28.903 Classification of samples. The Director, or an...

  4. 7 CFR 28.903 - Classification of samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification and Market News Services § 28.903 Classification of samples. The Director, or an...

  5. 7 CFR 28.903 - Classification of samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification and Market News Services § 28.903 Classification of samples. The Director, or an...

  6. High-resolution manometry classifications for idiopathic achalasia in patients with Chagas' disease esophagopathy.

    PubMed

    Vicentine, Fernando P P; Herbella, Fernando A M; Allaix, Marco E; Silva, Luciana C; Patti, Marco G

    2014-02-01

    Idiopathic achalasia (IA) and Chagas' disease esophagopathy (CDE) share several similarities. The comparison between IA and CDE is important to evaluate whether treatment options and their results can be accepted universally. High-resolution manometry (HRM) has proved a better diagnostic tool compared to conventional manometry. This study aims to evaluate HRM classifications for idiopathic achalasia in patients with CDE. We studied 98 patients: 52 patients with CDE (52 % females, mean age, 57 ± 14 years) and 46 patients with IA (54 % females; mean age 48 ± 19 years). All patients underwent a HRM and barium esophagogram. The Chicago classification was distributed in IA as Chicago I, 35 %; Chicago II, 63 %; and Chicago III, 2 %, and in CDE as Chicago I, 52 %; Chicago II, 48 %; and Chicago III, 0 % (p = 0.1, 0.1, and 0.5, respectively). All patients had the classic Rochester type. CDE patients had more pronounced degrees of esophageal dilatation (p < 0.002). The degree of esophageal dilatation did not correlate with Chicago classification (p = 0.08). In nine (9 %) patients, the HRM pattern changed during the test from Chicago I to II. Our results show that (a) HRM classifications for IA can be applied in patients with CDE and (b) HRM classifications did not correlate with the degree of esophageal dilatation. HRM classifications may reflect esophageal repletion and pressurization instead of muscular contraction. The correlation between manometric findings and treatment outcomes for CDE needs to be answered in the near future.

  7. Naval Recruit Classification Tests As Predictors of Performance in 87 Class "A" Enlisted Schools (1964-1966). Final Report.

    ERIC Educational Resources Information Center

    Thomas, Edmund D.

    Scores earned on the Navy's enlisted classification tests determine, in large part, the type of job specialty training a recruit will receive. About 50% of recruits qualify for academic training in Basic Class "A" level schools. How well the classification tests predict performance in these schools is important from both a cost and a…

  8. Peatland classification of West Siberia based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Terentieva, I.; Glagolev, M.; Lapshina, E.; Maksyutov, S. S.

    2014-12-01

    Increasing interest in peatlands for prediction of environmental changes requires an understanding of its geographical distribution. West Siberia Plain is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. West Siberian taiga mires are important globally, accounting for about 12.5% of the global wetland area. A number of peatland maps of the West Siberia was developed in 1970s, but their accuracy is limited. Here we report the effort in mapping West Siberian peatlands using 30 m resolution Landsat imagery. As a first step, peatland classification scheme oriented on environmental parameter upscaling was developed. The overall workflow involves data pre-processing, training data collection, image classification on a scene-by-scene basis, regrouping of the derived classes into final peatland types and accuracy assessment. To avoid misclassification peatlands were distinguished from other landscapes using threshold method: for each scene, Green-Red Vegetation Indices was used for peatland masking and 5th channel was used for masking water bodies. Peatland image masks were made in Quantum GIS, filtered in MATLAB and then classified in Multispec (Purdue Research Foundation) using maximum likelihood algorithm of supervised classification method. Training sample selection was mostly based on spectral signatures due to limited ancillary and high-resolution image data. As an additional source of information, we applied our field knowledge resulting from more than 10 years of fieldwork in West Siberia summarized in an extensive dataset of botanical relevés, field photos, pH and electrical conductivity data from 40 test sites. After the classification procedure, discriminated spectral classes were generalized into 12 peatland types. Overall accuracy assessment was based on 439 randomly assigned test sites showing final map accuracy was 80%. Total peatland area was estimated at 73.0 Mha. Various ridge-hollow and ridge-hollow-pool bog complexes prevail here occupying 34.5 Mha. They are followed by lakes (11.1 Mha), fens (10.7 Mha), pine-dwarf-shrub sphagnum bogs (9.3 Mha) and palsa complexes (7.4 Mha).

  9. Termination Criteria for Computerized Classification Testing

    ERIC Educational Resources Information Center

    Thompson, Nathan A.

    2011-01-01

    Computerized classification testing (CCT) is an approach to designing tests with intelligent algorithms, similar to adaptive testing, but specifically designed for the purpose of classifying examinees into categories such as "pass" and "fail." Like adaptive testing for point estimation of ability, the key component is the…

  10. Changes in classification of genetic variants in BRCA1 and BRCA2.

    PubMed

    Kast, Karin; Wimberger, Pauline; Arnold, Norbert

    2018-02-01

    Classification of variants of unknown significance (VUS) in the breast cancer genes BRCA1 and BRCA2 changes with accumulating evidence for clinical relevance. In most cases down-staging towards neutral variants without clinical significance is possible. We searched the database of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for changes in classification of genetic variants as an update to our earlier publication on genetic variants in the Centre of Dresden. Changes between 2015 and 2017 were recorded. In the group of variants of unclassified significance (VUS, Class 3, uncertain), only changes of classification towards neutral genetic variants were noted. In BRCA1, 25% of the Class 3 variants (n = 2/8) changed to Class 2 (likely benign) and Class 1 (benign). In BRCA2, in 50% of the Class 3 variants (n = 16/32), a change to Class 2 (n = 10/16) or Class 1 (n = 6/16) was observed. No change in classification was noted in Class 4 (likely pathogenic) and Class 5 (pathogenic) genetic variants in both genes. No up-staging from Class 1, Class 2 or Class 3 to more clinical significance was observed. All variants with a change in classification in our cohort were down-staged towards no clinical significance by a panel of experts of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevention in families with Class 3 variants should be based on pedigree based risks and should not be guided by the presence of a VUS.

  11. Using Norm-Referenced Data to Set Standards for a Minimum Competency Program in the State of South Carolina.

    ERIC Educational Resources Information Center

    Garcia-Quintana, Roan A.; Mappus, M. Lynne

    1980-01-01

    Norm referenced data were utilized for determining the mastery cutoff score on a criterion referenced test. Once a cutoff score on the norm referenced measure is selected, the cutoff score on the criterion referenced measure becomes that score which maximizes proportion of consistent classifications and proportion of improvement beyond change. (CP)

  12. 7 CFR 28.911 - Review classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Review classification. 28.911 Section 28.911... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification § 28.911 Review classification. (a) A producer may request one review...

  13. 7 CFR 28.911 - Review classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Review classification. 28.911 Section 28.911... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification § 28.911 Review classification. (a) A producer may request one review...

  14. 7 CFR 28.911 - Review classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Review classification. 28.911 Section 28.911... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification § 28.911 Review classification. (a) A producer may request one review...

  15. 7 CFR 28.911 - Review classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Review classification. 28.911 Section 28.911... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Classification § 28.911 Review classification. (a) A producer may request one review...

  16. Item Selection Criteria with Practical Constraints for Computerized Classification Testing

    ERIC Educational Resources Information Center

    Lin, Chuan-Ju

    2011-01-01

    This study compares four item selection criteria for a two-category computerized classification testing: (1) Fisher information (FI), (2) Kullback-Leibler information (KLI), (3) weighted log-odds ratio (WLOR), and (4) mutual information (MI), with respect to the efficiency and accuracy of classification decision using the sequential probability…

  17. A Study of Hierarchical Classification in Concrete and Formal Thought.

    ERIC Educational Resources Information Center

    Lowell, Walter E.

    This researcher investigated the relationship of hierarchical classification processes in subjects categorized as to developmental level as defined by Piaget's theory, and explored the validity of the hierarchical model and test used in the study. A hierarchical classification test and a battery of four Piaget-type tasks were administered…

  18. Towards a robust framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Samal, A.; Singh, R.

    2017-12-01

    Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.

  19. Managing the Sick Child in the Era of Declining Malaria Transmission: Development of ALMANACH, an Electronic Algorithm for Appropriate Use of Antimicrobials.

    PubMed

    Rambaud-Althaus, Clotilde; Shao, Amani Flexson; Kahama-Maro, Judith; Genton, Blaise; d'Acremont, Valérie

    2015-01-01

    To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2 years to consider urinary tract infection, vi) classification of 'possible typhoid' for febrile children >2 years with abdominal tenderness; and lastly vii) classification of 'likely viral infection' in case of negative results. This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials.

  20. Managing the Sick Child in the Era of Declining Malaria Transmission: Development of ALMANACH, an Electronic Algorithm for Appropriate Use of Antimicrobials

    PubMed Central

    Rambaud-Althaus, Clotilde; Shao, Amani Flexson; Genton, Blaise; d’Acremont, Valérie

    2015-01-01

    Objective To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. Methods A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. Findings The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2years to consider urinary tract infection, vi) classification of ‘possible typhoid’ for febrile children >2 years with abdominal tenderness; and lastly vii) classification of ‘likely viral infection’ in case of negative results. Conclusion This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials. PMID:26161753

  1. Slow updating of the achromatic point after a change in illumination

    PubMed Central

    Lee, R. J.; Dawson, K. A.; Smithson, H. E.

    2015-01-01

    For a colour constant observer, the colour appearance of a surface is independent of the spectral composition of the light illuminating it. We ask how rapidly colour appearance judgements are updated following a change in illumination. We obtained repeated binary colour classifications for a set of stimuli defined by their reflectance functions and rendered under either sunlight or skylight. We used these classifications to derive boundaries in colour space that identify the observer’s achromatic point. In steady-state conditions of illumination, the achromatic point lay close to the illuminant chromaticity. In our experiment the illuminant changed abruptly every 21 seconds (at the onset of every 10th trial), allowing us to track changes in the achromatic point that were caused by the cycle of illuminant changes. In one condition, the test reflectance was embedded in a spatial pattern of reflectance samples under consistent illumination. The achromatic point migrated across colour space between the chromaticities of the steady-state achromatic points. This update took several trials rather than being immediate. To identify the factors that governed perceptual updating of appearance judgements we used two further conditions, one in which the test reflectance was presented in isolation and one in which the surrounding reflectances were rendered under an inconsistent and unchanging illumination. Achromatic settings were not well predicted by the information available from scenes at a single time-point. Instead the achromatic points showed a strong dependence on the history of chromatic samples. The strength of this dependence differed between observers and was modulated by the spatial context. PMID:22275468

  2. Generating virtual training samples for sparse representation of face images and face recognition

    NASA Astrophysics Data System (ADS)

    Du, Yong; Wang, Yu

    2016-03-01

    There are many challenges in face recognition. In real-world scenes, images of the same face vary with changing illuminations, different expressions and poses, multiform ornaments, or even altered mental status. Limited available training samples cannot convey these possible changes in the training phase sufficiently, and this has become one of the restrictions to improve the face recognition accuracy. In this article, we view the multiplication of two images of the face as a virtual face image to expand the training set and devise a representation-based method to perform face recognition. The generated virtual samples really reflect some possible appearance and pose variations of the face. By multiplying a training sample with another sample from the same subject, we can strengthen the facial contour feature and greatly suppress the noise. Thus, more human essential information is retained. Also, uncertainty of the training data is simultaneously reduced with the increase of the training samples, which is beneficial for the training phase. The devised representation-based classifier uses both the original and new generated samples to perform the classification. In the classification phase, we first determine K nearest training samples for the current test sample by calculating the Euclidean distances between the test sample and training samples. Then, a linear combination of these selected training samples is used to represent the test sample, and the representation result is used to classify the test sample. The experimental results show that the proposed method outperforms some state-of-the-art face recognition methods.

  3. 7 CFR 28.179 - Methods of cotton classification and comparison.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...

  4. 7 CFR 28.179 - Methods of cotton classification and comparison.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...

  5. 7 CFR 28.180 - Issuance of cotton classification memoranda.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Issuance of cotton classification memoranda. 28.180... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.180 Issuance of cotton classification memoranda. As soon as practicable after the classification or...

  6. 7 CFR 28.179 - Methods of cotton classification and comparison.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...

  7. 7 CFR 28.179 - Methods of cotton classification and comparison.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...

  8. 7 CFR 28.179 - Methods of cotton classification and comparison.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...

  9. 7 CFR 28.180 - Issuance of cotton classification memoranda.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Issuance of cotton classification memoranda. 28.180... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.180 Issuance of cotton classification memoranda. As soon as practicable after the classification or...

  10. 7 CFR 28.180 - Issuance of cotton classification memoranda.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Issuance of cotton classification memoranda. 28.180... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.180 Issuance of cotton classification memoranda. As soon as practicable after the classification or...

  11. 7 CFR 28.180 - Issuance of cotton classification memoranda.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Issuance of cotton classification memoranda. 28.180... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.180 Issuance of cotton classification memoranda. As soon as practicable after the classification or...

  12. 7 CFR 28.180 - Issuance of cotton classification memoranda.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Issuance of cotton classification memoranda. 28.180... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.180 Issuance of cotton classification memoranda. As soon as practicable after the classification or...

  13. Bio-geographic classification of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Fendereski, F.; Vogt, M.; Payne, M. R.; Lachkar, Z.; Gruber, N.; Salmanmahiny, A.; Hosseini, S. A.

    2014-03-01

    Like other inland seas, the Caspian Sea (CS) has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. In this study, an eco-geographical classification of the CS based on physical information derived from space and in-situ data is developed and tested against a set of biological observations. We used a two-step classification procedure, consisting of (i) a data reduction with self-organizing maps (SOMs) and (ii) a synthesis of the most relevant features into a reduced number of marine ecoregions using the Hierarchical Agglomerative Clustering (HAC) method. From an initial set of 12 potential physical variables, 6 independent variables were selected for the classification algorithm, i.e., sea surface temperature (SST), bathymetry, sea ice, seasonal variation of sea surface salinity (DSSS), total suspended matter (TSM) and its seasonal variation (DTSM). The classification results reveal a robust separation between the northern and the middle/southern basins as well as a separation of the shallow near-shore waters from those off-shore. The observed patterns in ecoregions can be attributed to differences in climate and geochemical factors such as distance from river, water depth and currents. A comparison of the annual and monthly mean Chl a concentrations between the different ecoregions shows significant differences (Kruskal-Wallis rank test, P < 0.05). In particular, we found differences in phytoplankton phenology, with differences in the date of bloom initiation, its duration and amplitude between ecoregions. A first qualitative evaluation of differences in community composition based on recorded presence-absence patterns of 27 different species of plankton, fish and benthic invertebrate also confirms the relevance of the ecoregions as proxies for habitats with common biological characteristics.

  14. The additional benefit of the ML Flow test to classify leprosy patients.

    PubMed

    Bührer-Sékula, Samira; Illarramendi, Ximena; Teles, Rose B; Penna, Maria Lucia F; Nery, José Augusto C; Sales, Anna Maria; Oskam, Linda; Sampaio, Elizabeth P; Sarno, Euzenir N

    2009-08-01

    The use of the skin lesion counting classification leads to both under and over diagnosis of leprosy in many instances. Thus, there is a need to complement this classification with another simple and robust test for use in the field. Data of 202 untreated leprosy patients diagnosed at FIOCRUZ, Rio de Janeiro, Brazil, was analyzed. There were 90 patients classified as PB and 112 classified as MB according to the reference standard. The BI was positive in 111 (55%) patients and the ML Flow test in 116 (57.4%) patients. The ML Flow test was positive in 95 (86%) of the patients with a positive BI. The lesion counting classification was confirmed by both BI and ML Flow tests in 65% of the 92 patients with 5 or fewer lesions, and in 76% of the 110 patients with 6 or more lesions. The combination of skin lesion counting and the ML Flow test results yielded a sensitivity of 85% and a specificity of 87% for MB classification, and correctly classified 86% of the patients when compared to the standard reference. A considerable proportion of the patients (43.5%) with discordant test results in relation to standard classification was in reaction. The use of any classification system has limitations, especially those that oversimplify a complex disease such as leprosy. In the absence of an experienced dermatologist and slit skin smear, the ML Flow test could be used to improve treatment decisions in field conditions.

  15. Towards an International Classification for Patient Safety: a Delphi survey.

    PubMed

    Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard

    2009-02-01

    Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. International web-based survey of expert opinion. Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur.

  16. Towards an International Classification for Patient Safety: a Delphi survey

    PubMed Central

    Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard

    2009-01-01

    Objective Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Design Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. Setting International web-based survey of expert opinion. Participants Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. Results In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. Conclusions The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur. PMID:19147596

  17. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury.

    PubMed

    West, Christopher R; Krassioukov, Andrei V

    2017-01-01

    Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p < 0.010), independent of sport played. There was no association between self-report OH and measured OH (χ 2  =   1.63, p = 0.20). Conclusion We provide definitive evidence that sports specific classification is not related to the degree of remaining autonomic cardiovascular control in Paralympic athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some athletes at a distinct disadvantage/advantage within their respective sport.

  18. Analyzing thematic maps and mapping for accuracy

    USGS Publications Warehouse

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.

  19. Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments

    NASA Technical Reports Server (NTRS)

    Abbey, Craig K.; Eckstein, Miguel P.

    2002-01-01

    We consider estimation and statistical hypothesis testing on classification images obtained from the two-alternative forced-choice experimental paradigm. We begin with a probabilistic model of task performance for simple forced-choice detection and discrimination tasks. Particular attention is paid to general linear filter models because these models lead to a direct interpretation of the classification image as an estimate of the filter weights. We then describe an estimation procedure for obtaining classification images from observer data. A number of statistical tests are presented for testing various hypotheses from classification images based on some more compact set of features derived from them. As an example of how the methods we describe can be used, we present a case study investigating detection of a Gaussian bump profile.

  20. Interactive color display for multispectral imagery using correlation clustering

    NASA Technical Reports Server (NTRS)

    Haskell, R. E. (Inventor)

    1979-01-01

    A method for processing multispectral data is provided, which permits an operator to make parameter level changes during the processing of the data. The system is directed to production of a color classification map on a video display in which a given color represents a localized region in multispectral feature space. Interactive controls permit an operator to alter the size and change the location of these regions, permitting the classification of such region to be changed from a broad to a narrow classification.

  1. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  2. A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives.

    PubMed

    Algamal, Z Y; Lee, M H

    2017-01-01

    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.

  3. Understanding exercise behavior among Korean adults: a test of the transtheoretical model.

    PubMed

    Kim, YoungHo; Cardinal, Bradley J; Lee, JongYoung

    2006-01-01

    The purpose of this study was to examine the theorized association of Transtheoretical Model (TTM) of behavior change constructs by stage of change for exercise behavior among Korean adults. A total of 1,335 Korean adults were recruited and surveyed from the Nowon district, geographically located in northern Seoul. Four Korean-version questionnaires were used to identify the stage of exercise behavior and psychological attributes of adolescents. Data were analyzed by frequency analysis, MANOVA, correlation analysis, and discriminant analysis. Multivariate F tests indicated that behavioral and cognitive processes of change, exercise efficacy, and pros differentiated participants across the stages of exercise behavior. Furthermore, the findings revealed that adults' exercise behavior was significantly correlated with the TTM constructs and that overall classification accuracy across the stages of change was 50.6%. This study supports the internal and external validity of the TTM for explaining exercise behavior.

  4. 7 CFR 28.40 - Terms defined; cotton classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Terms defined; cotton classification. 28.40 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.40 Terms defined; cotton classification. For the purposes of classification of any cotton or...

  5. 7 CFR 28.40 - Terms defined; cotton classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Terms defined; cotton classification. 28.40 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.40 Terms defined; cotton classification. For the purposes of classification of any cotton or...

  6. 7 CFR 28.181 - Review of cotton classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...

  7. 7 CFR 28.40 - Terms defined; cotton classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Terms defined; cotton classification. 28.40 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.40 Terms defined; cotton classification. For the purposes of classification of any cotton or...

  8. 7 CFR 28.181 - Review of cotton classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...

  9. 7 CFR 28.40 - Terms defined; cotton classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Terms defined; cotton classification. 28.40 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.40 Terms defined; cotton classification. For the purposes of classification of any cotton or...

  10. 7 CFR 28.181 - Review of cotton classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...

  11. 7 CFR 28.181 - Review of cotton classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...

  12. 7 CFR 28.40 - Terms defined; cotton classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Terms defined; cotton classification. 28.40 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.40 Terms defined; cotton classification. For the purposes of classification of any cotton or...

  13. 7 CFR 28.181 - Review of cotton classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...

  14. Effects of pressure ulcer classification system education programme on knowledge and visual differential diagnostic ability of pressure ulcer classification and incontinence-associated dermatitis for clinical nurses in Korea.

    PubMed

    Lee, Yun Jin; Kim, Jung Yoon

    2016-03-01

    The objective of this study was to evaluate the effect of pressure ulcer classification system education on clinical nurses' knowledge and visual differential diagnostic ability of pressure ulcer (PU) classification and incontinence-associated dermatitis (IAD). One group pre and post-test was used. A convenience sample of 407 nurses, participating in PU classification education programme of continuing education, were enrolled. The education programme was composed of a 50-minute lecture on PU classification and case-studies. The PU Classification system and IAD knowledge test (PUCS-KT) and visual differential diagnostic ability tool (VDDAT), consisting of 21 photographs including clinical information were used. Paired t-test was performed using SPSS/WIN 20.0. The overall mean difference of PUCS-KT (t = -11·437, P<0·001) and VDDAT (t = -21·113, P<0·001) was significantly increased after PU classification education. Overall understanding of six PU classification and IAD after education programme was increased, but lacked visual differential diagnostic ability regarding Stage III PU, suspected deep tissue injury (SDTI), and Unstageable. Continuous differentiated education based on clinical practice is needed to improve knowledge and visual differential diagnostic ability for PU classification, and comparison experiment study is required to examine effects of education programmes. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Hybrid analysis for indicating patients with breast cancer using temperature time series.

    PubMed

    Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura

    2016-07-01

    Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Bearing damage assessment using Jensen-Rényi Divergence based on EEMD

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Darpe, A. K.; Singh, S. P.

    2017-03-01

    An Ensemble Empirical Mode Decomposition (EEMD) and Jensen Rényi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data. The EEMD decomposes vibration signals into a set of intrinsic mode functions (IMFs). A systematic methodology to select IMFs that are sensitive and closely related to the fault is proposed in the paper. The change in probability distribution of the energies of the sensitive IMFs is measured through JRD which acts as a damage identification parameter. Evaluation of JRD with sensitive IMFs makes it largely unaffected by change/fluctuations in operating conditions. Further, an algorithm based on Chebyshev's inequality is applied to JRD to identify exact points of change in bearing health and remove outliers. The identified change points are investigated for fault classification as possible locations where specific defect initiation could have taken place. For fault classification, two new parameters are proposed: 'α value' and Probable Fault Index, which together classify the fault. To standardize the degradation process, a Confidence Value parameter is proposed to quantify the bearing degradation value in a range of zero to unity. A simulation study is first carried out to demonstrate the robustness of the proposed JRD parameter under variable operating conditions of load and speed. The proposed methodology is then validated on experimental data (seeded defect data and accelerated bearing life test data). The first validation on two different vibration datasets (inner/outer) obtained from seeded defect experiments demonstrate the effectiveness of JRD parameter in detecting a change in health state as the severity of fault changes. The second validation is on two accelerated life tests. The results demonstrate the proposed approach as a potential tool for bearing performance degradation assessment.

  17. The Future of Classification in Wheelchair Sports; Can Data Science and Technological Advancement Offer an Alternative Point of View?

    PubMed

    van der Slikke, Rienk M A; Bregman, Daan J J; Berger, Monique A M; de Witte, Annemarie M H; Veeger, Dirk-Jan H E J

    2017-11-01

    Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity. 1 New inertial sensor based measurement methods applied in match play and field tests, allow for more precise and objective estimates of the impairment effect on wheelchair mobility performance. It was evaluated if these measures could offer an alternative point of view for classification. Six standard wheelchair mobility performance outcomes of different classification groups were measured in match play (n=29), as well as best possible performance in a field test (n=47). In match-results a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher classification group. Three outcomes differed significantly between the low and mid-class groups, and one between the mid and high-class groups. In best performance (field test), a split between the low and mid-class groups shows (5 out of 6 outcomes differed significantly) but hardly any difference between the mid and high-class groups. This observed split was confirmed by cluster analysis, revealing the existence of only two performance based clusters. The use of inertial sensor technology to get objective measures of wheelchair mobility performance, combined with a standardized field-test, brought alternative views for evidence based classification. The results of this approach provided arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and in field testing could enhance evaluation of classification guidelines as well as individual athlete performance.

  18. New GOLD classification: longitudinal data on group assignment

    PubMed Central

    2014-01-01

    Rationale Little is known about the longitudinal changes associated with using the 2013 update of the multidimensional GOLD strategy for chronic obstructive pulmonary disease (COPD). Objective To determine the COPD patient distribution of the new GOLD proposal and evaluate how this classification changes over one year compared with the previous GOLD staging based on spirometry only. Methods We analyzed data from the CHAIN study, a multicenter observational Spanish cohort of COPD patients who are monitored annually. Categories were defined according to the proposed GOLD: FEV1%, mMRC dyspnea, COPD Assessment Test (CAT), Clinical COPD Questionnaire (CCQ), and exacerbations-hospitalizations. One-year follow-up information was available for all variables except CCQ data. Results At baseline, 828 stable COPD patients were evaluated. On the basis of mMRC dyspnea versus CAT, the patients were distributed as follows: 38.2% vs. 27.2% in group A, 17.6% vs. 28.3% in group B, 15.8% vs. 12.9% in group C, and 28.4% vs. 31.6% in group D. Information was available for 526 patients at one year: 64.2% of patients remained in the same group but groups C and D show different degrees of variability. The annual progression by group was mainly associated with one-year changes in CAT scores (RR, 1.138; 95%CI: 1.074-1.206) and BODE index values (RR, 2.012; 95%CI: 1.487-2.722). Conclusions In the new GOLD grading classification, the type of tool used to determine the level of symptoms can substantially alter the group assignment. A change in category after one year was associated with longitudinal changes in the CAT and BODE index. PMID:24417879

  19. 75 FR 69143 - Postal Rate and Classification Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ...This document addresses a recently-filed Postal Service request for three postal rate and classification changes. One change will affect certain senders of First-Class Mail Presort and Automation Letters. Another change will affect Standard Mail and High Density milers. The third change affects the Move Update Charge threshold. This document provides details about the anticipated changes and addresses procedural steps associated with this filing.

  20. The Potential Impact of Not Being Able to Create Parallel Tests on Expected Classification Accuracy

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2011-01-01

    In many practical testing situations, alternate test forms from the same testing program are not strictly parallel to each other and instead the test forms exhibit small psychometric differences. This article investigates the potential practical impact that these small psychometric differences can have on expected classification accuracy. Ten…

  1. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less

  2. Changes in Crohn's disease phenotype over time in the Chinese population: validation of the Montreal classification system.

    PubMed

    Chow, Dorothy K L; Leong, Rupert W L; Lai, Larry H; Wong, Grace L H; Leung, Wai-Keung; Chan, Francis K L; Sung, Joseph J Y

    2008-04-01

    Phenotypic evolution of Crohn's disease occurs in whites but has never been described in other populations. The Montreal classification may describe phenotypes more precisely. The aim of this study was to validate the Montreal classification through a longitudinal sensitivity analysis in detecting phenotypic variation compared to the Vienna classification. This was a retrospective longitudinal study of consecutive Chinese Crohn's disease patients. All cases were classified by the Montreal classification and the Vienna classification for behavior and location. The evolution of these characteristics and the need for surgery were evaluated. A total of 109 patients were recruited (median follow-up: 4 years, range: 6 months-18 years). Crohn's disease behavior changed 3 years after diagnosis (P = 0.025), with an increase in stricturing and penetrating phenotypes, as determined by the Montreal classification, but was only detected by the Vienna classification after 5 years (P = 0.015). Disease location remained stable on follow-up in both classifications. Thirty-four patients (31%) underwent major surgery during the follow-up period with the stricturing [P = 0.002; hazard ratio (HR): 3.3; 95% CI: 1.5-7.0] and penetrating (P = 0.03; HR: 5.8; 95% CI: 1.2-28.2) phenotypes according to the Montreal classification associated with the need for major surgery. In contrast, colonic disease was protective against a major operation (P = 0.02; HR: 0.3; 95% CI: 0.08-0.8). This is the first study demonstrating phenotypic evolution of Crohn's disease in a nonwhite population. The Montreal classification is more sensitive to behavior phenotypic changes than is the Vienna classification after excluding perianal disease from the penetrating disease category and was useful in predicting course and the need for surgery.

  3. Use of an automatic procedure for determination of classes of land use in the Teste Araras area of the peripheral Paulist depression

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Valeriano, D. D.

    1981-01-01

    An evaluation of the multispectral image analyzer (system Image 1-100), using automatic classification, is presented. The region studied is situated. The automatic was carried out using the maximum likelihood (MAXVER) classification system. The following classes were established: urban area, bare soil, sugar cane, citrus culture (oranges), pastures, and reforestation. The classification matrix of the test sites indicate that the percentage of correct classification varied between 63% and 100%.

  4. Diagnostic Classification Models and Multidimensional Adaptive Testing: A Commentary on Rupp and Templin

    ERIC Educational Resources Information Center

    Frey, Andreas; Carstensen, Claus H.

    2009-01-01

    On a general level, the objective of diagnostic classifications models (DCMs) lies in a classification of individuals regarding multiple latent skills. In this article, the authors show that this objective can be achieved by multidimensional adaptive testing (MAT) as well. The authors discuss whether or not the restricted applicability of DCMs can…

  5. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    ERIC Educational Resources Information Center

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  6. Binning in Gaussian Kernel Regularization

    DTIC Science & Technology

    2005-04-01

    OSU-SVM Matlab package, the SVM trained on 966 bins has a comparable test classification rate as the SVM trained on 27,179 samples, but reduces the...71.40%) on 966 randomly sampled data. Using the OSU-SVM Matlab package, the SVM trained on 966 bins has a comparable test classification rate as the...the OSU-SVM Matlab package, the SVM trained on 966 bins has a comparable test classification rate as the SVM trained on 27,179 samples, and reduces

  7. [Changes of 2015 WHO Histological Classification of Lung Cancer 
and the Clinical Significance].

    PubMed

    Yang, Xin; Lin, Dongmei

    2016-06-20

    Due in part to remarkable advances over the past decade in our understanding of lung cancer, particularly in area of medical oncology, molecular biology, and radiology, there is a pressing need for a revised classification, based not on pathology alone, but rather on an integrated multidisciplinary approach to classification of lung cancer. The 2015 World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart has just been published with numerous important changes from the 2004 WHO classification. The revised classification has been greatly improved in helping advance the field, increasing the impact of research, improving patient care and assisting in predicting outcome. The most significant changes will be summarized in this paper as follows: (1) main changes of lung adenocarcinoma as proposed by the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) classification, (2) reclassifying squamous cell carcinomas into keratinizing, nonkeratinizing, and basaloid subtypes with the nonkeratinizing tumors requiring immunohistochemistry proof of squamous differentiation, (3) restricting the diagnosis of large cell carcinoma only to resected tumors that lack any clear morphologic or immunohistochemical differentiation with reclassification of the remaining former large cell carcinoma subtypes into different categories, (4) grouping of neuroendocrine tumors together in one category, (5) and the current viewpoint of histologic grading of lung cancer.

  8. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary.

    PubMed

    Lopes, M Beatriz S

    2017-10-01

    The 4th edition of the World Health Organization (WHO) classification of endocrine tumors has been recently released. In this new edition, major changes are recommended in several areas of the classification of tumors of the anterior pituitary gland (adenophypophysis). The scope of the present manuscript is to summarize these recommended changes, emphasizing a few significant topics. These changes include the following: (1) a novel approach for classifying pituitary neuroendocrine tumors according to pituitary adenohypophyseal cell lineages; (2) changes to the histological grading of pituitary neuroendocrine tumors with the elimination of the term "atypical adenoma;" and (3) introduction of new entities like the pituitary blastoma and re-definition of old entities like the null-cell adenoma. This new classification is very practical and mostly based on immunohistochemistry for pituitary hormones, pituitary-specific transcription factors, and other immunohistochemical markers commonly used in pathology practice, not requiring routine ultrastructural analysis of the tumors. Evaluation of tumor proliferation potential, by mitotic count and Ki-67 labeling index, and tumor invasion is strongly recommended on individual case basis to identify clinically aggressive adenomas. In addition, the classification offers the treating clinical team information on tumor prognosis by identifying specific variants of adenomas associated with an elevated risk for recurrence. Changes in the classification of non-neuroendocrine tumors are also proposed, in particular those tumors arising in the posterior pituitary including pituicytoma, granular cell tumor of the posterior pituitary, and spindle cell oncocytoma. These changes endorse those previously published in the 2016 WHO classification of CNS tumors. Other tumors arising in the sellar region are also reviewed in detail including craniopharyngiomas, mesenchymal and stromal tumors, germ cell tumors, and hematopoietic tumors. It is hoped that the 2017 WHO classification of pituitary tumors will establish more biologically and clinically uniform groups of tumors, make it possible for practicing pathologists to better diagnose these tumors, and contribute to our understanding of clinical outcomes for patients harboring pituitary tumors.

  9. 77 FR 4403 - Proposed Collection; Comment Request for Form 8832

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... 8832, Entity Classification Election. DATES: Written comments should be received on or before March 27... INFORMATION: Title: Entity Classification Election. OMB Number: 1545-1516. Form Number: Form 8832. Abstract... its current classification must file Form 8832 to elect a classification. Current Actions: Changes...

  10. Government Classification: An Overview.

    ERIC Educational Resources Information Center

    Brown, Karen M.

    Classification of government documents (confidential, secret, top secret) is a system used by the executive branch to, in part, protect national security and foreign policy interests. The systematic use of classification markings with precise definitions was established during World War I, and since 1936 major changes in classification have…

  11. Mapping land use changes in the carboniferous region of Santa Catarina, report 2

    NASA Technical Reports Server (NTRS)

    Valeriano, D. D. (Principal Investigator); Bitencourtpereira, M. D.

    1983-01-01

    The techniques applied to MSS-LANDSAT data in the land-use mapping of Criciuma region (Santa Catarina state, Brazil) are presented along with the results of a classification accuracy estimate tested on the resulting map. The MSS-LANDSAT data digital processing involves noise suppression, features selection and a hybrid classifier. The accuracy test is made through comparisons with aerial photographs of sampled points. The utilization of digital processing to map the classes agricultural lands, forest lands and urban areas is recommended, while the coal refuse areas should be mapped visually.

  12. Application of Convolution Neural Network to the forecasts of flare classification and occurrence using SOHO MDI data

    NASA Astrophysics Data System (ADS)

    Park, Eunsu; Moon, Yong-Jae

    2017-08-01

    A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.86 for flare classification and 0.84 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.

  13. Ototoxicity (cochleotoxicity) classifications: A review.

    PubMed

    Crundwell, Gemma; Gomersall, Phil; Baguley, David M

    2016-01-01

    Drug-mediated ototoxicity, specifically cochleotoxicity, is a concern for patients receiving medications for the treatment of serious illness. A number of classification schemes exist, most of which are based on pure-tone audiometry, in order to assist non-audiological/non-otological specialists in the identification and monitoring of iatrogenic hearing loss. This review identifies the primary classification systems used in cochleototoxicity monitoring. By bringing together classifications published in discipline-specific literature, the paper aims to increase awareness of their relative strengths and limitations in the assessment and monitoring of ototoxic hearing loss and to indicate how future classification systems may improve upon the status-quo. Literature review. PubMed identified 4878 articles containing the search term ototox*. A systematic search identified 13 key classification systems. Cochleotoxicity classification systems can be divided into those which focus on hearing change from a baseline audiogram and those that focus on the functional impact of the hearing loss. Common weaknesses of these grading scales included a lack of sensitivity to small adverse changes in hearing thresholds, a lack of high-frequency audiometry (>8 kHz), and lack of indication of which changes are likely to be clinically significant for communication and quality of life.

  14. Median Robust Extended Local Binary Pattern for Texture Classification.

    PubMed

    Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti

    2016-03-01

    Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

  15. Defining functional biomes and monitoring their change globally.

    PubMed

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.

  16. Automatic breast tissue density estimation scheme in digital mammography images

    NASA Astrophysics Data System (ADS)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  17. SCOPE - Stellar Classification Online Public Exploration

    NASA Astrophysics Data System (ADS)

    Harenberg, Steven

    2010-01-01

    The Astronomical Photographic Data Archive (APDA) has been established to be the primary North American archive for the collections of astronomical photographic plates. Located at the Pisgah Astronomical Research Institute (PARI) in Rosman, NC, the archive contains hundreds of thousands stellar spectra, many of which have never before been classified. To help classify the vast number of stars, the public is invited to participate in a distributed computing online environment called Stellar Classification Online - Public Exploration (SCOPE). Through a website, the participants will have a tutorial on stellar spectra and practice classifying. After practice, the participants classify spectra on photographic plates uploaded online from APDA. These classifications will be recorded in a database where the results from many users will be statistically analyzed. Stars with known spectral types will be included to test the reliability of classifications. The process of building the database of stars from APDA, which the citizen scientist will be able to classify, includes: scanning the photographic plates, orienting the plate to correct for the change in right ascension/declination using Aladin, stellar HD catalog identification using Simbad, marking the boundaries for each spectrum, and setting up the image for use on the website. We will describe the details of this process.

  18. The development of categorization: effects of classification and inference training on category representation.

    PubMed

    Deng, Wei Sophia; Sloutsky, Vladimir M

    2015-03-01

    Does category representation change in the course of development? And if so, how and why? The current study attempted to answer these questions by examining category learning and category representation. In Experiment 1, 4-year-olds, 6-year-olds, and adults were trained with either a classification task or an inference task and their categorization performance and memory for items were tested. Adults and 6-year-olds exhibited an important asymmetry: they relied on a single deterministic feature during classification training, but not during inference training. In contrast, regardless of the training condition, 4-year-olds relied on multiple probabilistic features. In Experiment 2, 4-year-olds were presented with classification training and their attention was explicitly directed to the deterministic feature. Under this condition, their categorization performance was similar to that of older participants in Experiment 1, yet their memory performance pointed to a similarity-based representation, which was similar to that of 4-year-olds in Experiment 1. These results are discussed in relation to theories of categorization and the role of selective attention in the development of category learning. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Test Bias in the Intermediate Mental Alertness, Mechanical Comprehension, Blox and High Level Figure Classification Tests. An NTB/HSRC Report.

    ERIC Educational Resources Information Center

    Holburn, P. T.

    Research is reported on four tests commonly used in South Africa to select apprentices, the Intermediate Mental Alertness Test, the High Level Figure Classification Test, the Blox Test, and the Mechanical Comprehension Test. Samples were as follows: (1) 206 Asian, 208 Black, 102 Coloured, and 99 White mostly male applicants for sugar industry…

  20. Weight-elimination neural networks applied to coronary surgery mortality prediction.

    PubMed

    Ennett, Colleen M; Frize, Monique

    2003-06-01

    The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.

  1. Big genomics and clinical data analytics strategies for precision cancer prognosis.

    PubMed

    Ow, Ghim Siong; Kuznetsov, Vladimir A

    2016-11-07

    The field of personalized and precise medicine in the era of big data analytics is growing rapidly. Previously, we proposed our model of patient classification termed Prognostic Signature Vector Matching (PSVM) and identified a 37 variable signature comprising 36 let-7b associated prognostic significant mRNAs and the age risk factor that stratified large high-grade serous ovarian cancer patient cohorts into three survival-significant risk groups. Here, we investigated the predictive performance of PSVM via optimization of the prognostic variable weights, which represent the relative importance of one prognostic variable over the others. In addition, we compared several multivariate prognostic models based on PSVM with classical machine learning techniques such as K-nearest-neighbor, support vector machine, random forest, neural networks and logistic regression. Our results revealed that negative log-rank p-values provides more robust weight values as opposed to the use of other quantities such as hazard ratios, fold change, or a combination of those factors. PSVM, together with the classical machine learning classifiers were combined in an ensemble (multi-test) voting system, which collectively provides a more precise and reproducible patient stratification. The use of the multi-test system approach, rather than the search for the ideal classification/prediction method, might help to address limitations of the individual classification algorithm in specific situation.

  2. 76 FR 17794 - Post Office Organization and Administration: Establishment, Classification, and Discontinuance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Organization and Administration: Establishment, Classification, and Discontinuance AGENCY: Postal Service... classification of affected facilities as Post Offices, stations, or branches. The conversion of an independent... classification system for Post Offices in accordance with Postal Operations Manual (POM) 123.11. The change in...

  3. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    NASA Astrophysics Data System (ADS)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to proper wages usage. Thus a more precise and unambiguous boundaries of segments (objects) were received. As a results of the classification 5 classes of land cover (buildings, water, high and low vegetation and others) were extracted. Both pixel-based image analysis and OBIA were conducted with a minimum mapping unit of 10m2. Results were validated on the basis on manual classification and random points (80 per test area), reference data set was manually interpreted using ortophotomaps and expert knowledge of the test site areas.

  4. 40 CFR 164.120 - Notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... imminent hazard during the time required for cancellation or change in classification proceedings, but that...

  5. 40 CFR 164.120 - Notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... imminent hazard during the time required for cancellation or change in classification proceedings, but that...

  6. Development and Field Test of the Trial Battery for Project A. Improving the Selection, Classification and Utilization of Army Enlisted Personnel. Project A: Improving the Selection, Classification and Utilization of Army Enlisted Personnel. ARI Technical Report 739.

    ERIC Educational Resources Information Center

    Peterson, Norman G., Ed.

    As part of the United States Army's Project A, research has been conducted to develop and field test a battery of experimental tests to complement the Armed Services Vocational Aptitude Battery in predicting soldiers' job performance. Project A is the United States Army's large-scale manpower effort to improve selection, classification, and…

  7. HARD PAN I Test Series Test and Instrumentation Plans. Volume I. Test Plan

    DTIC Science & Technology

    1975-12-01

    t.jw .y..,,^.,^,. Ä!»,,«-* :,,; .trwev* ’ UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGt ’Wh&n Data Entered) J?)REPORT DOCUMENTATION PAGE...to facility-l—> DO ,: FORM A’J 73 1473 EDITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED fNW SECURITY CLASSIFICATION OF THIS PAGE (Wfien Data Entered...y^o ... — ppiiw’.^y.-.j-w... v»t \\ UNCLASSIFIED iCURITY CLASSIFICATION CF THIS PAGEfWlon Data Entered) design, modification, and hardness

  8. A Response to an Article Published in "Educational Research"'s Special Issue on Assessment (June 2009). What Can Be Inferred about Classification Accuracy from Classification Consistency?

    ERIC Educational Resources Information Center

    Bramley, Tom

    2010-01-01

    Background: A recent article published in "Educational Research" on the reliability of results in National Curriculum testing in England (Newton, "The reliability of results from national curriculum testing in England," "Educational Research" 51, no. 2: 181-212, 2009) suggested that: (1) classification accuracy can be…

  9. Assessment of the MC3608 detonator shipping package hazard classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.

    1981-08-07

    An investigation was made to determine whether the MC 3608 Detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosive, per 49 CFR 173.113. This study covers the propagation test as approved by DOE-Albuquerque Operations Office. Analysis of the test data led to the recommended hazard classification of Detonating Fuze, Class C Explosive.

  10. Feasibility of Multispectral Airborne Laser Scanning for Land Cover Classification, Road Mapping and Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.

    2017-10-01

    This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.

  11. A low-cost machine vision system for the recognition and sorting of small parts

    NASA Astrophysics Data System (ADS)

    Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.

    2018-04-01

    An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.

  12. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    ERIC Educational Resources Information Center

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  13. Utility of Intelligence Tests for Treatment Planning, Classification, and Placement Decisions: Recent Empirical Findings and Future Directions.

    ERIC Educational Resources Information Center

    Gresham, Frank M.; Witt, Joseph C.

    1997-01-01

    Maintains that intelligence tests contribute little to the planning, implementation, and evaluation of instructional interventions for children. Suggests that intelligence tests are not useful in making differential diagnostic and classification determinations for children with mild learning problems and that such testing is not a cost-beneficial…

  14. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a controlled...

  15. 46 CFR 565.3 - Classification as controlled carrier.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Classification as controlled carrier. 565.3 Section 565... MARITIME PRACTICES CONTROLLED CARRIERS § 565.3 Classification as controlled carrier. (a) Notification. The... States and will notify any ocean common carrier of any change in its classification as a controlled...

  16. 7 CFR 1951.885 - Loan classifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Loan classifications. 1951.885 Section 1951.885... classifications. All loans to intermediaries in the FmHA or its successor agency under Public Law 103-354... again whenever there is a change in the loan which would impact on the original classification. No one...

  17. 7 CFR 1951.885 - Loan classifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Loan classifications. 1951.885 Section 1951.885... classifications. All loans to intermediaries in the FmHA or its successor agency under Public Law 103-354... again whenever there is a change in the loan which would impact on the original classification. No one...

  18. 7 CFR 1951.885 - Loan classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Loan classifications. 1951.885 Section 1951.885... classifications. All loans to intermediaries in the FmHA or its successor agency under Public Law 103-354... again whenever there is a change in the loan which would impact on the original classification. No one...

  19. 34 CFR 222.8 - What action must an applicant take upon a change in its boundary, classification, control...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boundary, classification, control, governing authority, or identity? 222.8 Section 222.8 Education... in its boundary, classification, control, governing authority, or identity? (a) Any applicant that is... its boundaries, classification, control, governing authority, or identity must provide the following...

  20. 34 CFR 222.8 - What action must an applicant take upon a change in its boundary, classification, control...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boundary, classification, control, governing authority, or identity? 222.8 Section 222.8 Education... in its boundary, classification, control, governing authority, or identity? (a) Any applicant that is... its boundaries, classification, control, governing authority, or identity must provide the following...

  1. 34 CFR 222.8 - What action must an applicant take upon a change in its boundary, classification, control...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boundary, classification, control, governing authority, or identity? 222.8 Section 222.8 Education... in its boundary, classification, control, governing authority, or identity? (a) Any applicant that is... its boundaries, classification, control, governing authority, or identity must provide the following...

  2. 34 CFR 222.8 - What action must an applicant take upon a change in its boundary, classification, control...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boundary, classification, control, governing authority, or identity? 222.8 Section 222.8 Education... in its boundary, classification, control, governing authority, or identity? (a) Any applicant that is... its boundaries, classification, control, governing authority, or identity must provide the following...

  3. 34 CFR 222.8 - What action must an applicant take upon a change in its boundary, classification, control...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boundary, classification, control, governing authority, or identity? 222.8 Section 222.8 Education... in its boundary, classification, control, governing authority, or identity? (a) Any applicant that is... its boundaries, classification, control, governing authority, or identity must provide the following...

  4. Extreme weather events in southern Germany - Climatological risk and development of a large-scale identification procedure

    NASA Astrophysics Data System (ADS)

    Matthies, A.; Leckebusch, G. C.; Rohlfing, G.; Ulbrich, U.

    2009-04-01

    Extreme weather events such as thunderstorms, hail and heavy rain or snowfall can pose a threat to human life and to considerable tangible assets. Yet there is a lack of knowledge about present day climatological risk and its economic effects, and its changes due to rising greenhouse gas concentrations. Therefore, parts of economy particularly sensitve to extreme weather events such as insurance companies and airports require regional risk-analyses, early warning and prediction systems to cope with such events. Such an attempt is made for southern Germany, in close cooperation with stakeholders. Comparing ERA40 and station data with impact records of Munich Re and Munich Airport, the 90th percentile was found to be a suitable threshold for extreme impact relevant precipitation events. Different methods for the classification of causing synoptic situations have been tested on ERA40 reanalyses. An objective scheme for the classification of Lamb's circulation weather types (CWT's) has proved to be most suitable for correct classification of the large-scale flow conditions. Certain CWT's have been turned out to be prone to heavy precipitation or on the other side to have a very low risk of such events. Other large-scale parameters are tested in connection with CWT's to find out a combination that has the highest skill to identify extreme precipitation events in climate model data (ECHAM5 and CLM). For example vorticity advection in 700 hPa shows good results, but assumes knowledge of regional orographic particularities. Therefore ongoing work is focused on additional testing of parameters that indicate deviations of a basic state of the atmosphere like the Eady Growth Rate or the newly developed Dynamic State Index. Evaluation results will be used to estimate the skill of the regional climate model CLM concerning the simulation of frequency and intensity of the extreme weather events. Data of the A1B scenario (2000-2050) will be examined for a possible climate change signal.

  5. Color Image Classification Using Block Matching and Learning

    NASA Astrophysics Data System (ADS)

    Kondo, Kazuki; Hotta, Seiji

    In this paper, we propose block matching and learning for color image classification. In our method, training images are partitioned into small blocks. Given a test image, it is also partitioned into small blocks, and mean-blocks corresponding to each test block are calculated with neighbor training blocks. Our method classifies a test image into the class that has the shortest total sum of distances between mean blocks and test ones. We also propose a learning method for reducing memory requirement. Experimental results show that our classification outperforms other classifiers such as support vector machine with bag of keypoints.

  6. SB certification handout material requirements, test methods, responsibilities, and minimum classification levels for mixture-based specification for flexible base.

    DOT National Transportation Integrated Search

    2012-10-01

    A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...

  7. The classification of anxiety and hysterical states. Part I. Historical review and empirical delineation.

    PubMed

    Sheehan, D V; Sheehan, K H

    1982-08-01

    The history of the classification of anxiety, hysterical, and hypochondriacal disorders is reviewed. Problems in the ability of current classification schemes to predict, control, and describe the relationship between the symptoms and other phenomena are outlined. Existing classification schemes failed the first test of a good classification model--that of providing categories that are mutually exclusive. The independence of these diagnostic categories from each other does not appear to hold up on empirical testing. In the absence of inherently mutually exclusive categories, further empirical investigation of these classes is obstructed since statistically valid analysis of the nominal data and any useful multivariate analysis would be difficult if not impossible. It is concluded that the existing classifications are unsatisfactory and require some fundamental reconceptualization.

  8. Automatic Author Profiling of Online Chat Logs

    DTIC Science & Technology

    2007-03-01

    CLASSIFICATION WITH PRIOR ..........91 1. All Test Data ................................91 2. Extracted Test Data: Teens and 20s ...........92 3...Extracted Test Data: Teens and 30s ...........92 4. Extracted Test Data: Teens and 40s ...........93 5. Extracted Test Data: Teens and 50s ...........93 6...Data ................................97 C. AGE: BINARY CLASSIFICATION WITH PRIOR .............98 1. Extracted Test Data: Teens and 20s ...........98 2

  9. Effects of classification context on categorization in natural categories.

    PubMed

    Hampton, James A; Dubois, Danièle; Yeh, Wenchi

    2006-10-01

    The patterns of classification of borderline instances of eight common taxonomic categories were examined under three different instructional conditions to test two predictions: first, that lack of a specified context contributes to vagueness in categorization, and second, that altering the purpose of classification can lead to greater or lesser dependence on similarity in classification. The instructional conditions contrasted purely pragmatic with more technical/quasi-legal contexts as purposes for classification, and these were compared with a no-context control. The measures of category vagueness were between-subjects disagreement and within-subjects consistency, and the measures of similarity-based categorization were category breadth and the correlation of instance categorization probability with mean rated typicality, independently measured in a neutral context. Contrary to predictions, none of the measures of vagueness, reliability, category breadth, or correlation with typicality were generally affected by the instructional setting as a function of pragmatic versus technical purposes. Only one subcondition, in which a situational context was implied in addition to a purposive context, produced a significant change in categorization. Further experiments demonstrated that the effect of context was not increased when participants talked their way through the task, and that a technical context did not elicit more all-or-none categorization than did a pragmatic context. These findings place an important boundary condition on the effects of instructional context on conceptual categorization.

  10. Eating disorders and weight control behaviors change over a collegiate sport season.

    PubMed

    Thompson, Alexandra; Petrie, Trent; Anderson, Carlin

    2017-09-01

    Determine whether the prevalence of eating disorder classifications (i.e., clinical eating disorder, subclinical eating disorder, and asymptomatic) and pathogenic weight control behaviors (e.g., bingeing, vomiting) change over a five-month sport season. Longitudinal study. Female collegiate gymnasts and swimmers (N=325) completed the Questionnaire for Eating Disorder Diagnoses as well as six items from the Bulimia Test-Revised at Time 1 (two weeks into the beginning of their athletic season) and Time 2 (final two weeks of the athletic season); data collections were separated by five months. Over the course of the season, 90% of the athletes (18 out of 20) retained a clinical eating disorder diagnosis or moved to the subclinical classification. Of the 83 subclinical athletes at Time 1, 37.3% persisted with that classification and 10.8% developed a clinical eating disorder; the remainder became asymptomatic/healthy eaters by Time 2. The majority of Time 1 asymptomatic athletes (92.3%) remained so at Time 2. Exercise and dieting/fasting were the most frequent forms of weight control behaviors, though each was used less frequently at Time 2 (exercise=35.4%; dieting=9.2%) than at Time 1 (exercise=42.5%; dieting=12.3%). Eating disorder classifications, particularly clinical and subclinical, remain stable across a competitive season, supporting the need for early detection and purposeful intervention. Athletes engage in weight control behaviors that may be reinforced in the sport environment (e.g., supplemental exercise), making identification more challenging for sports medicine professionals. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. 40 CFR 164.20 - Commencement of proceeding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 164.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS..., ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS... registration or to change the classification of a pesticide. A proceeding shall likewise be commenced whenever...

  12. 40 CFR 164.20 - Commencement of proceeding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 164.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS..., ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS... registration or to change the classification of a pesticide. A proceeding shall likewise be commenced whenever...

  13. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  14. Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images

    NASA Astrophysics Data System (ADS)

    Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai

    2017-02-01

    It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.

  15. Expert Reliability for the World Health Organization Standardized Ultrasound Classification of Cystic Echinococcosis

    PubMed Central

    Solomon, Nadia; Fields, Paul J.; Tamarozzi, Francesca; Brunetti, Enrico; Macpherson, Calum N. L.

    2017-01-01

    Cystic echinococcosis (CE), a parasitic zoonosis, results in cyst formation in the viscera. Cyst morphology depends on developmental stage. In 2003, the World Health Organization (WHO) published a standardized ultrasound (US) classification for CE, for use among experts as a standard of comparison. This study examined the reliability of this classification. Eleven international CE and US experts completed an assessment of eight WHO classification images and 88 test images representing cyst stages. Inter- and intraobserver reliability and observer performance were assessed using Fleiss' and Cohen's kappa. Interobserver reliability was moderate for WHO images (κ = 0.600, P < 0.0001) and substantial for test images (κ = 0.644, P < 0.0001), with substantial to almost perfect interobserver reliability for stages with pathognomonic signs (CE1, CE2, and CE3) for WHO (0.618 < κ < 0.904) and test images (0.642 < κ < 0.768). Comparisons of expert performances against the majority classification for each image were significant for WHO (0.413 < κ < 1.000, P < 0.005) and test images (0.718 < κ < 0.905, P < 0.0001); and intraobserver reliability was significant for WHO (0.520 < κ < 1.000, P < 0.005) and test images (0.690 < κ < 0.896, P < 0.0001). Findings demonstrate moderate to substantial interobserver and substantial to almost perfect intraobserver reliability for the WHO classification, with substantial to almost perfect interobserver reliability for pathognomonic stages. This confirms experts' abilities to reliably identify WHO-defined pathognomonic signs of CE, demonstrating that the WHO classification provides a reproducible way of staging CE. PMID:28070008

  16. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C.

    PubMed

    Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul

    2011-11-30

    Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.

  17. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C

    PubMed Central

    2011-01-01

    Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438

  18. Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-08-01

    One objective of the present study was to evaluate the performance of support vector machine (SVM)-based image classification technique with the maximum likelihood classification (MLC) technique for a rapidly changing landscape of an open-cast mine. The other objective was to assess the change in land use pattern due to coal mining from 2006 to 2016. Assessing the change in land use pattern accurately is important for the development and monitoring of coalfields in conjunction with sustainable development. For the present study, Landsat 5 Thematic Mapper (TM) data of 2006 and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data of 2016 of a part of Jharia Coalfield, Dhanbad, India, were used. The SVM classification technique provided greater overall classification accuracy when compared to the MLC technique in classifying heterogeneous landscape with limited training dataset. SVM exceeded MLC in handling a difficult challenge of classifying features having near similar reflectance on the mean signature plot, an improvement of over 11 % was observed in classification of built-up area, and an improvement of 24 % was observed in classification of surface water using SVM; similarly, the SVM technique improved the overall land use classification accuracy by almost 6 and 3 % for Landsat 5 and Landsat 8 images, respectively. Results indicated that land degradation increased significantly from 2006 to 2016 in the study area. This study will help in quantifying the changes and can also serve as a basis for further decision support system studies aiding a variety of purposes such as planning and management of mines and environmental impact assessment.

  19. 46 CFR 151.10-1 - Barge hull classifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Barge hull classifications. 151.10-1 Section 151.10-1... classifications. (a) Each barge constructed or converted in conformance with this subpart shall be assigned a hull... the hull type classification for the service for which they were originally approved. Changes in...

  20. Attribute-Level and Pattern-Level Classification Consistency and Accuracy Indices for Cognitive Diagnostic Assessment

    ERIC Educational Resources Information Center

    Wang, Wenyi; Song, Lihong; Chen, Ping; Meng, Yaru; Ding, Shuliang

    2015-01-01

    Classification consistency and accuracy are viewed as important indicators for evaluating the reliability and validity of classification results in cognitive diagnostic assessment (CDA). Pattern-level classification consistency and accuracy indices were introduced by Cui, Gierl, and Chang. However, the indices at the attribute level have not yet…

  1. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal

    USGS Publications Warehouse

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.

    2012-01-01

    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  2. MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification

    NASA Technical Reports Server (NTRS)

    Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.

    1993-01-01

    During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.

  3. Patient characteristics in low back pain subgroups based on an existing classification system. A descriptive cohort study in chiropractic practice.

    PubMed

    Eirikstoft, Heidi; Kongsted, Alice

    2014-02-01

    Sub-grouping of low back pain (LBP) is believed to improve prediction of prognosis and treatment effects. The objectives of this study were: (1) to examine whether chiropractic patients could be sub-grouped according to an existing pathoanatomically-based classification system, (2) to describe patient characteristics within each subgroup, and (3) to determine the proportion of patients in whom clinicians considered the classification to be unchanged after approximately 10 days. A cohort of 923 LBP patients was included during their first consultation. Patients completed an extensive questionnaire and were examined according to a standardised protocol. Based on the clinical examination, patients were classified into diagnostic subgroups. After approximately 10 days, chiropractors reported whether they considered the subgroup had changed. The most frequent subgroups were reducible and partly reducible disc syndromes followed by facet joint pain, dysfunction and sacroiliac (SI)-joint pain. Classification was inconclusive in 5% of the patients. Differences in pain, activity limitation, and psychological factors were small across subgroups. Within 10 days, 82% were reported to belong to the same subgroup as at the first visit. In conclusion, LBP patients could be classified according to a standardised protocol, and chiropractors considered most patient classifications to be unchanged within 10 days. Differences in patient characteristics between subgroups were very small, and the clinical relevance of the classification system should be investigated by testing its value as a prognostic factor or a treatment effect modifier. It is recommended that this classification system be combined with psychological and social factors if it is to be useful. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  5. Seizure classification in EEG signals utilizing Hilbert-Huang transform

    PubMed Central

    2011-01-01

    Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool. PMID:21609459

  6. Seizure classification in EEG signals utilizing Hilbert-Huang transform.

    PubMed

    Oweis, Rami J; Abdulhay, Enas W

    2011-05-24

    Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.

  7. Mapping and improving frequency, accuracy, and interpretation of land cover change: Classifying coastal Louisiana with 1990, 1993, 1996, and 1999 Landsat Thematic Mapper image data

    USGS Publications Warehouse

    Nelson, G.; Ramsey, Elijah W.; Rangoonwala, A.

    2005-01-01

    Landsat Thematic Mapper images and collateral data sources were used to classify the land cover of the Mermentau River Basin within the chenier coastal plain and the adjacent uplands of Louisiana, USA. Landcover classes followed that of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods needed to be developed to meet these national standards. Our first classification was limited to the Mermentau River Basin (MRB) in southcentral Louisiana, and the years of 1990, 1993, and 1996. To overcome problems due to class spectral inseparable, spatial and spectra continuums, mixed landcovers, and abnormal transitions, we separated the coastal area into regions of commonality and applying masks to specific land mixtures. Over the three years and 14 landcover classes (aggregating the cultivated land and grassland, and water and floating vegetation classes), overall accuracies ranged from 82% to 90%. To enhance landcover change interpretation, three indicators were introduced as Location Stability, Residence stability, and Turnover. Implementing methods substantiated in the multiple date MRB classification, we spatially extended the classification to the entire Louisiana coast and temporally extended the original 1990, 1993, 1996 classifications to 1999 (Figure 1). We also advanced the operational functionality of the classification and increased the credibility of change detection results. Increased operational functionality that resulted in diminished user input was for the most part gained by implementing a classification logic based on forbidden transitions. The logic detected and corrected misclassifications and mostly alleviated the necessity of subregion separation prior to the classification. The new methods provided an improved ability for more timely detection and response to landcover impact. ?? 2005 IEEE.

  8. 7 CFR 28.177 - Request for classification and comparison of cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...

  9. 7 CFR 28.177 - Request for classification and comparison of cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...

  10. 7 CFR 28.177 - Request for classification and comparison of cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...

  11. 7 CFR 28.177 - Request for classification and comparison of cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...

  12. 7 CFR 28.177 - Request for classification and comparison of cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...

  13. Mutual Information Item Selection in Adaptive Classification Testing

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2007-01-01

    A general approach for item selection in adaptive multiple-category classification tests is provided. The approach uses mutual information (MI), a special case of the Kullback-Leibler distance, or relative entropy. MI works efficiently with the sequential probability ratio test and alleviates the difficulties encountered with using other local-…

  14. The 7th lung cancer TNM classification and staging system: Review of the changes and implications.

    PubMed

    Mirsadraee, Saeed; Oswal, Dilip; Alizadeh, Yalda; Caulo, Andrea; van Beek, Edwin

    2012-04-28

    Lung cancer is the most common cause of death from cancer in males, accounting for more than 1.4 million deaths in 2008. It is a growing concern in China, Asia and Africa as well. Accurate staging of the disease is an important part of the management as it provides estimation of patient's prognosis and identifies treatment sterategies. It also helps to build a database for future staging projects. A major revision of lung cancer staging has been announced with effect from January 2010. The new classification is based on a larger surgical and non-surgical cohort of patients, and thus more accurate in terms of outcome prediction compared to the previous classification. There are several original papers regarding this new classification which give comprehensive description of the methodology, the changes in the staging and the statistical analysis. This overview is a simplified description of the changes in the new classification and their potential impact on patients' treatment and prognosis.

  15. Hazard classification assessment for the MC3423 detonator shipping package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.

    1981-11-05

    An investigation was made to determine whether the MC3423 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosive, per Federal Register 49 CFR 173.113, when packaged as specified. This study covers two propagation tests which evaluated the effects of two orientations of the MC3423 in its shipping tray. The method of testing was approved by DOE, Albuquerque Operations Office. Test data led to the recommended hazard classification of Detonating Fuze, Class C Explosive for both orientations of the detonator.

  16. Flood Mapping in the Lower Mekong River Basin Using Daily MODIS Observations

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica V.; Bolten, John D.; Doyle, Colin S.; Fuhrmann, Sven; Rice, Matthew T.; Houser, Paul R.; Lakshmi, Venkat

    2017-01-01

    In flat homogenous terrain such as in Cambodia and Vietnam, the monsoon season brings significant and consistent flooding between May and November. To monitor flooding in the Lower Mekong region, the near real-time NASA Flood Extent Product (NASA-FEP) was developed using seasonal normalized difference vegetation index (NDVI) differences from the 250 m resolution Moderate Resolution Imaging Spectroradiometer (MODIS) sensor compared to daily observations. The use of a percentage change interval classification relating to various stages of flooding reduces might be confusing to viewers or potential users, and therefore reducing the product usage. To increase the product usability through simplification, the classification intervals were compared with other commonly used change detection schemes to identify the change classification scheme that best delineates flooded areas. The percentage change method used in the NASA-FEP proved to be helpful in delineating flood boundaries compared to other change detection methods. The results of the accuracy assessments indicate that the -75% NDVI change interval can be reclassified to a descriptive 'flood' classification. A binary system was used to simplify the interpretation of the NASA-FEP by removing extraneous information from lower interval change classes.

  17. [The electronic use of the NANDA-, NOC- and NIC- classifications and implications for nursing practice].

    PubMed

    Bernhart-Just, Alexandra; Hillewerth, Kathrin; Holzer-Pruss, Christina; Paprotny, Monika; Zimmermann Heinrich, Heidi

    2009-12-01

    The data model developed on behalf of the Nursing Service Commission of the Canton of Zurich (Pflegedienstkommission des Kantons Zürich) is based on the NANDA nursing diagnoses, the Nursing Outcome Classification, and the Nursing Intervention Classification (NNN Classifications). It also includes integrated functions for cost-centered accounting, service recording, and the Swiss Nursing Minimum Data Set. The data model uses the NNN classifications to map a possible form of the nursing process in the electronic patient health record, where the nurse can choose nursing diagnoses, outcomes, and interventions relevant to the patient situation. The nurses' choice is guided both by the different classifications and their linkages, and the use of specific text components pre-defined for each classification and accessible through the respective linkages. This article describes the developed data model and illustrates its clinical application in a specific patient's situation. Preparatory work required for the implementation of NNN classifications in practical nursing such as content filtering and the creation of linkages between the NNN classifications are described. Against the background of documentation of the nursing process based on the DAPEP(1) data model, possible changes and requirements are deduced. The article provides a contribution to the discussion of a change in documentation of the nursing process by implementing nursing classifications in electronic patient records.

  18. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  19. Liver fibrosis diagnosis by blood test and elastography in chronic hepatitis C: agreement or combination?

    PubMed

    Calès, P; Boursier, J; Lebigot, J; de Ledinghen, V; Aubé, C; Hubert, I; Oberti, F

    2017-04-01

    In chronic hepatitis C, the European Association for the Study of the Liver and the Asociacion Latinoamericana para el Estudio del Higado recommend performing transient elastography plus a blood test to diagnose significant fibrosis; test concordance confirms the diagnosis. To validate this rule and improve it by combining a blood test, FibroMeter (virus second generation, Echosens, Paris, France) and transient elastography (constitutive tests) into a single combined test, as suggested by the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America. A total of 1199 patients were included in an exploratory set (HCV, n = 679) or in two validation sets (HCV ± HIV, HBV, n = 520). Accuracy was mainly evaluated by correct diagnosis rate for severe fibrosis (pathological Metavir F ≥ 3, primary outcome) by classical test scores or a fibrosis classification, reflecting Metavir staging, as a function of test concordance. Score accuracy: there were no significant differences between the blood test (75.7%), elastography (79.1%) and the combined test (79.4%) (P = 0.066); the score accuracy of each test was significantly (P < 0.001) decreased in discordant vs. concordant tests. Classification accuracy: combined test accuracy (91.7%) was significantly (P < 0.001) increased vs. the blood test (84.1%) and elastography (88.2%); accuracy of each constitutive test was significantly (P < 0.001) decreased in discordant vs. concordant tests but not with combined test: 89.0 vs. 92.7% (P = 0.118). Multivariate analysis for accuracy showed an interaction between concordance and fibrosis level: in the 1% of patients with full classification discordance and severe fibrosis, non-invasive tests were unreliable. The advantage of combined test classification was confirmed in the validation sets. The concordance recommendation is validated. A combined test, expressed in classification instead of score, improves this rule and validates the recommendation of a combined test, avoiding 99% of biopsies, and offering precise staging. © 2017 John Wiley & Sons Ltd.

  20. Should Classification of the UK Honours Degree Have a Future?

    ERIC Educational Resources Information Center

    Elton, Lewis

    2004-01-01

    The classified honours degree has so much prestige and so venerable a tradition that only very serious and systemic changes could justify the question as to whether classification has a future. However, while this paper argues that such changes have indeed taken place in the past 30 years, the main arguments for change are pedagogical. The…

  1. Forest land cover change (1975-2000) in the Greater Border Lakes region

    Treesearch

    Peter T. Wolter; Brian R. Sturtevant; Brian R. Miranda; Sue M. Lietz; Phillip A. Townsend; John Pastor

    2012-01-01

    This document and accompanying maps describe land cover classifications and change detection for a 13.8 million ha landscape straddling the border between Minnesota, and Ontario, Canada (greater Border Lakes Region). Land cover classifications focus on discerning Anderson Level II forest and nonforest cover to track spatiotemporal changes in forest cover. Multi-...

  2. Evaluation criteria for software classification inventories, accuracies, and maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.

  3. Evaluation of a New Software Version of the RTVue Optical Coherence Tomograph for Image Segmentation and Detection of Glaucoma in High Myopia.

    PubMed

    Holló, Gábor; Shu-Wei, Hsu; Naghizadeh, Farzaneh

    2016-06-01

    To compare the current (6.3) and a novel software version (6.12) of the RTVue-100 optical coherence tomograph (RTVue-OCT) for ganglion cell complex (GCC) and retinal nerve fiber layer thickness (RNFLT) image segmentation and detection of glaucoma in high myopia. RNFLT and GCC scans were acquired with software version 6.3 of the RTVue-OCT on 51 highly myopic eyes (spherical refractive error ≤-6.0 D) of 51 patients, and were analyzed with both the software versions. Twenty-two eyes were nonglaucomatous, 13 were ocular hypertensive and 16 eyes had glaucoma. No difference was seen for any RNFLT, and average GCC parameter between the software versions (paired t test, P≥0.084). Global loss volume was significantly lower (more normal) with version 6.12 than with version 6.3 (Wilcoxon signed-rank test, P<0.001). The percentage agreement (κ) between the clinical (normal and ocular hypertensive vs. glaucoma) and the software-provided classifications (normal and borderline vs. outside normal limits) were 0.3219 and 0.4442 for average RNFLT, and 0.2926 and 0.4977 for average GCC with versions 1 and 2, respectively (McNemar symmetry test, P≥0.289). No difference in average RNFLT and GCC classification (McNemar symmetry test, P≥0.727) and the number of eyes with at least 1 segmentation error (P≥0.109) was found between the software versions, respectively. Although GCC segmentation was improved with software version 6.12 compared with the current version in highly myopic eyes, this did not result in a significant change of the average RNFLT and GCC values, and did not significantly improve the software-provided classification for glaucoma.

  4. A Guide for Setting the Cut-Scores to Minimize Weighted Classification Errors in Test Batteries

    ERIC Educational Resources Information Center

    Grabovsky, Irina; Wainer, Howard

    2017-01-01

    In this article, we extend the methodology of the Cut-Score Operating Function that we introduced previously and apply it to a testing scenario with multiple independent components and different testing policies. We derive analytically the overall classification error rate for a test battery under the policy when several retakes are allowed for…

  5. 40 CFR 164.3 - Scope and applicability of this part.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 164.3 Section 164.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE... ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS... registration, changes of classifications or hearings called by the Administrator; the provisions of subpart C...

  6. 40 CFR 164.22 - Contents of document setting forth objections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... objections. 164.22 Section 164.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... RODENTICIDE ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS... registration, or change the classification of a pesticide, shall clearly and concisely set forth such...

  7. 40 CFR 164.3 - Scope and applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 164.3 Section 164.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE... ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS... registration, changes of classifications or hearings called by the Administrator; the provisions of subpart C...

  8. 40 CFR 164.22 - Contents of document setting forth objections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... objections. 164.22 Section 164.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... RODENTICIDE ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS... registration, or change the classification of a pesticide, shall clearly and concisely set forth such...

  9. [Addictive behaviours from DSM-IV to DSM-5].

    PubMed

    van den Brink, W

    2014-01-01

    The 5th edition of the DSM was published in May, 2013. The new edition incorporates important changes in the classification of addiction. To compare the classification of addictive behaviours presented in DSM-IV with the classification presented in DSM-5 and to comment on the changes introduced into the new version. First of all, the historical developments of the concept of addiction and the classification of addictive behaviours up to DSM-IV are summarised. Then the changes that have been incorporated into DSM-5 are described. The main changes are: (1) DSM-IV substance related disorders and DSM-IV pathological gambling have been combined into one new DSM-5 category, namely 'Substance Related and Addictive Disorders'; (2) DSM-IV abuse and dependence have been combined into one new DSM-5 diagnosis, namely 'Substance Use Disorder'; (2a) the DSM-IV abuse criterion 'recurrent substance-related legal problems' and the DSM-5 criterion 'craving' has been introduced; and (2b) the criteria for (partial) remission have been sharpened. DSM-5 is an improvement on DSM-IV, but for the diagnosis of a psychiatric disorder and the treatment of a psychiatric patient, classification needs to be complemented with staging and profiling.

  10. Classification of Radiological Changes in Burst Fractures

    PubMed Central

    Şentürk, Salim; Öğrenci, Ahmet; Gürçay, Ahmet Gürhan; Abdioğlu, Ahmet Atilla; Yaman, Onur; Özer, Ali Fahir

    2018-01-01

    AIM: Burst fractures can occur with different radiological images after high energy. We aimed to simplify radiological staging of burst fractures. METHODS: Eighty patients whom exposed spinal trauma and had burst fracture were evaluated concerning age, sex, fracture segment, neurological deficit, secondary organ injury and radiological changes that occurred. RESULTS: We performed a new classification in burst fractures at radiological images. CONCLUSIONS: According to this classification system, secondary organ injury and neurological deficit can be an indicator of energy exposure. If energy is high, the clinical status will be worse. Thus, we can get an idea about the likelihood of neurological deficit and secondary organ injuries. This classification has simplified the radiological staging of burst fractures and is a classification that gives a very accurate idea about the neurological condition. PMID:29531604

  11. Supervised segmentation of microelectrode recording artifacts using power spectral density.

    PubMed

    Bakstein, Eduard; Schneider, Jakub; Sieger, Tomas; Novak, Daniel; Wild, Jiri; Jech, Robert

    2015-08-01

    Appropriate detection of clean signal segments in extracellular microelectrode recordings (MER) is vital for maintaining high signal-to-noise ratio in MER studies. Existing alternatives to manual signal inspection are based on unsupervised change-point detection. We present a method of supervised MER artifact classification, based on power spectral density (PSD) and evaluate its performance on a database of 95 labelled MER signals. The proposed method yielded test-set accuracy of 90%, which was close to the accuracy of annotation (94%). The unsupervised methods achieved accuracy of about 77% on both training and testing data.

  12. The Continuous Plankton Imaging and Classification Sensor (CPICS): A Sensor for Quantifying Mesoplankton Biodiversity and Community Structure

    NASA Astrophysics Data System (ADS)

    Gallager, S. M.

    2016-02-01

    Marine ecosystems are changing at a variety of time scales as a function of a diverse suite of forcing functions both natural and anthropogenic. Establishing a continuous plankton time series consisting of scales from rapid (seconds) to long-term (decades), provides a sentinel for ecosystem change. The key is to measure plankton biodiversity at sufficiently fast time scales that allow disentanglement of physical (transport) and biological (growth) properties of an ecosystem. CPICS is a plankton and particle imaging microscope system that is designed to produce crisp darkfield images of light scattering material in aquatic environments. The open flow design is non-invasive and non-restrictive providing images of very fragile plankton in their natural orientation. Several magnifications are possible from 0.5 to 5x forming a field of view of 10cm to 1mm, respectively. CPICS has been installed on several cabled observing systems called OceanCubes off the coast of Okinawa and Tokyo, Japan providing a continuous stream of plankton images to a machine vision image classifier located at WHOI. Image features include custom algorithms for texture, color pattern, morphology and shape, which are extracted from in-focus target. The features are then used to train a classifier (e.g., Random Forest) resulting in classifications that are tested using cross-validation, confusion matrices and ROC curves. High (>90%) classification accuracies are possible depending on the number of training categories and target complexity. A web-based utility allows access to raw images, training sets, classifiers and classification results. Combined with chemical and physical data from the observatories, an ecologically meaningful plankton index of biodiversity and its variance is developed using a combination of species and taxon groups, which provides an approach for understanding ecosystem change without the need to identify all targets to species. http://oceancubes.whoi.edu/instruments/CPICS

  13. A Nonparametric Approach to Estimate Classification Accuracy and Consistency

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2014-01-01

    When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…

  14. A preliminary evaluation of land use mapping and change detection capabilities using an ERTS image covering a portion of the CARETS region

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, K. A.; Lins, H. F., Jr.

    1972-01-01

    The author has identified the following significant results. A preliminary study on the capabilities of ERTS data in land use mapping and change detection was carried out in the area around Frederick County, Maryland, which lies in the northwest corner of the Central Atlantic Regional Ecological Test Site. The investigation has revealed that Level 1 (of the Anderson classification system) land use mapping can be performed and that, in some cases, land undergoing change can be identified. Results to date suggest that more work should be done in areas where land use changes are known to exist, in order to establish some form of base for recognizing the spectral signature indicative of change areas.

  15. Classification of weld defect based on information fusion technology for radiographic testing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less

  16. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  17. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.

    PubMed

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

  18. SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier

    PubMed Central

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306

  19. Do Reading Experts Agree with MCAT Verbal Reasoning Item Classifications?

    ERIC Educational Resources Information Center

    Jackson, Evelyn W.; And Others

    1994-01-01

    Examined whether expert raters (n=5) could agree about classification of Medical College Admission Test (MCAT) items and whether they agreed with MCAT student manual in labeling skill being measured by each test item. Results revealed difficulties in replicating authors' labeling of skills for reading items on practice test provided with 1991 MCAT…

  20. Some Exact Conditional Tests of Independence for R X C Cross-Classification Tables

    ERIC Educational Resources Information Center

    Agresti, Alan; Wackerly, Dennis

    1977-01-01

    Exact conditional tests of independence in cross-classification tables are formulated based on chi square and other statistics with stronger operational interpretations, such as some nominal and ordinal measures of association. Guidelines for table dimensions and sample sizes for which the tests are economically implemented on a computer are…

  1. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  2. Cognitive-motivational deficits in ADHD: development of a classification system.

    PubMed

    Gupta, Rashmi; Kar, Bhoomika R; Srinivasan, Narayanan

    2011-01-01

    The classification systems developed so far to detect attention deficit/hyperactivity disorder (ADHD) do not have high sensitivity and specificity. We have developed a classification system based on several neuropsychological tests that measure cognitive-motivational functions that are specifically impaired in ADHD children. A total of 240 (120 ADHD children and 120 healthy controls) children in the age range of 6-9 years and 32 Oppositional Defiant Disorder (ODD) children (aged 9 years) participated in the study. Stop-Signal, Task-Switching, Attentional Network, and Choice Delay tests were administered to all the participants. Receiver operating characteristic (ROC) analysis indicated that percentage choice of long-delay reward best classified the ADHD children from healthy controls. Single parameters were not helpful in making a differential classification of ADHD with ODD. Multinominal logistic regression (MLR) was performed with multiple parameters (data fusion) that produced improved overall classification accuracy. A combination of stop-signal reaction time, posterror-slowing, mean delay, switch cost, and percentage choice of long-delay reward produced an overall classification accuracy of 97.8%; with internal validation, the overall accuracy was 92.2%. Combining parameters from different tests of control functions not only enabled us to accurately classify ADHD children from healthy controls but also in making a differential classification with ODD. These results have implications for the theories of ADHD.

  3. A machine learning approach to multi-level ECG signal quality classification.

    PubMed

    Li, Qiao; Rajagopalan, Cadathur; Clifford, Gari D

    2014-12-01

    Current electrocardiogram (ECG) signal quality assessment studies have aimed to provide a two-level classification: clean or noisy. However, clinical usage demands more specific noise level classification for varying applications. This work outlines a five-level ECG signal quality classification algorithm. A total of 13 signal quality metrics were derived from segments of ECG waveforms, which were labeled by experts. A support vector machine (SVM) was trained to perform the classification and tested on a simulated dataset and was validated using data from the MIT-BIH arrhythmia database (MITDB). The simulated training and test datasets were created by selecting clean segments of the ECG in the 2011 PhysioNet/Computing in Cardiology Challenge database, and adding three types of real ECG noise at different signal-to-noise ratio (SNR) levels from the MIT-BIH Noise Stress Test Database (NSTDB). The MITDB was re-annotated for five levels of signal quality. Different combinations of the 13 metrics were trained and tested on the simulated datasets and the best combination that produced the highest classification accuracy was selected and validated on the MITDB. Performance was assessed using classification accuracy (Ac), and a single class overlap accuracy (OAc), which assumes that an individual type classified into an adjacent class is acceptable. An Ac of 80.26% and an OAc of 98.60% on the test set were obtained by selecting 10 metrics while 57.26% (Ac) and 94.23% (OAc) were the numbers for the unseen MITDB validation data without retraining. By performing the fivefold cross validation, an Ac of 88.07±0.32% and OAc of 99.34±0.07% were gained on the validation fold of MITDB. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales.

    PubMed

    Ryan, D; Shephard, S; Kelly, F L

    2016-09-01

    This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.

  5. A Land System representation for global assessments and land-use modeling.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2012-10-01

    Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.

  6. An assessment of streamflow vulnerability to climate using ...

    EPA Pesticide Factsheets

    Identifying regions with similar hydrology is useful for assessing water quality and quantity across the U.S., especially areas that are difficult or costly to monitor. For example, hydrologic landscapes (HLs) have been used to map streamflow variability and assess the spatial distribution of climatic response in Oregon, Alaska, and the Pacific Northwest. HLs have also been applied to assess historic and projected climatic impacts across the Western U.S. In this project, we summarized (1) the HL classification methodology and (2) the utility of using HLs as a tool to classify the vulnerability of streams to climatic changes in the Western U.S. During the HL classification process, we analyzed climate, seasonality, aquifer permeability, terrain, and soil permeability as the primary hydrologic drivers (and precipitation intensity as a secondary driver) associated with large scale hydrologic processes (storage, conveyance, and flow of water into or out of the watershed) in the West. We derived the dominant hydrologic pathways (surface runoff or deep or shallow groundwater) from the HL classification of different catchments to test our hypotheses: 1) Changes in climate will have greater impacts on streamflow in catchments dominated by surface runoff. 2) Catchments historically fed by surface runoff from winter snowmelt in the spring will experience greater impact if precipitation falls as rain instead of snow. We calculated S* (precipitation surplus, which includes

  7. Inter-hemispheric Intrinsic Connectivity as a Neuromarker for the Diagnosis of Boys with Tourette Syndrome.

    PubMed

    Liao, Wei; Yu, Yang; Miao, Huan-Huan; Feng, Yi-Xuan; Ji, Gong-Jun; Feng, Jian-Hua

    2017-05-01

    Tourette syndrome (TS) is associated with gross morphological changes in the corpus callosum, suggesting deficits in inter-hemispheric coordination. The present study sought to identify changes in inter-hemispheric functional and anatomical connectivity in boys with "pure" TS as well as their potential value for clinical diagnosis. TS boys without comorbidity (pure TS, n = 24) were selected from a large dataset and compared to age- and education-matched controls (n = 32). Intrinsic functional connectivity (iFC) between bilateral homotopic voxels was computed and compared between groups. Abnormal iFC was found in the bilateral prefronto-striatum-midbrain networks as well as bilateral sensorimotor and temporal cortices. The iFC between the bilateral anterior cingulate cortex (ACC) was negatively correlated with symptom severity. Anatomical connectivity strengths between functionally abnormal regions were estimated by diffusion probabilistic tractography, but no significant between-group difference was found. To test the clinical applicability of these neuroimaging findings, multivariate pattern analysis was used to develop a classification model in half of the total sample. The classification model exhibited excellent classification power for discriminating TS patients from controls in the other half samples. In summary, our findings emphasize the role of inter-hemispheric communication deficits in the pathophysiology of TS and suggest that iFC is a potential quantitative neuromarker for clinical diagnosis.

  8. The Analysis of Object-Based Change Detection in Mining Area: a Case Study with Pingshuo Coal Mine

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zhou, W.; Li, Y.

    2017-09-01

    Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in highresolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software. The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient of the classification of the change region map were 86.67 % and 89.44 %. It's obvious that object-based classification and change vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially reclaiming mining land; (2) the vegetation area changed from 46 % to 40 % accounted for the proportion of the total area from 2012 to 2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51 % to 70 %; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic procedure.

  9. Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA

    EPA Science Inventory

    Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL ...

  10. 19 CFR 146.41 - Privileged foreign status.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... change in tariff classification will be given status as privileged foreign merchandise on proper application to the port director. (b) Application. Each application for this status will be made on Customs... which has effected a change in tariff classification. (c) Supporting documentation. Each applicant for...

  11. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    PubMed Central

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  12. The Communication Function Classification System: cultural adaptation, validity, and reliability of the Farsi version for patients with cerebral palsy.

    PubMed

    Soleymani, Zahra; Joveini, Ghodsiye; Baghestani, Ahmad Reza

    2015-03-01

    This study developed a Farsi language Communication Function Classification System and then tested its reliability and validity. Communication Function Classification System is designed to classify the communication functions of individuals with cerebral palsy. Up until now, there has been no instrument for assessment of this communication function in Iran. The English Communication Function Classification System was translated into Farsi and cross-culturally modified by a panel of experts. Professionals and parents then assessed the content validity of the modified version. A backtranslation of the Farsi version was confirmed by the developer of the English Communication Function Classification System. Face validity was assessed by therapists and parents of 10 patients. The Farsi Communication Function Classification System was administered to 152 individuals with cerebral palsy (age, 2 to 18 years; median age, 10 years; mean age, 9.9 years; standard deviation, 4.3 years). Inter-rater reliability was analyzed between parents, occupational therapists, and speech and language pathologists. The test-retest reliability was assessed for 75 patients with a 14 day interval between tests. The inter-rater reliability of the Communication Function Classification System was 0.81 between speech and language pathologists and occupational therapists, 0.74 between parents and occupational therapists, and 0.88 between parents and speech and language pathologists. The test-retest reliability was 0.96 for occupational therapists, 0.98 for speech and language pathologists, and 0.94 for parents. The findings suggest that the Farsi version of Communication Function Classification System is a reliable and valid measure that can be used in clinical settings to assess communication function in patients with cerebral palsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    PubMed

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  14. Criteria for solvent-induced chronic toxic encephalopathy: a systematic review.

    PubMed

    van der Hoek, J A; Verberk, M M; Hageman, G

    2000-08-01

    In 1985, a WHO Working Group presented diagnostic criteria and a classification for solvent-induced chronic toxic encephalopathy (CTE). In the same year, the "Workshop on neurobehavioral effects of solvents" in Raleigh, N.C., USA introduced a somewhat different classification for CTE. The objective of this review is to study the diagnostic procedures that are used to establish the diagnosis of CTE, and the extent to which the diagnostic criteria and classification of the WHO, and the classification of the Raleigh Working Group, are applied. A systematic search of studies on CTE was performed, and the diagnostic criteria and use of the WHO and Raleigh classifications were listed. We retrieved 30 original articles published in English from 1985 to 1998, in which CTE was diagnosed. Only two articles did not report the duration of solvent exposure. The type of solvent(s) involved was described in detail in four articles, poorly in 17 articles, and not at all in nine articles. Tests of general intelligence were used in 19 articles, and tests of both attention and mental flexibility and of learning and memory were used in 18 articles. Exclusion, by interview, of potentially confounding conditions, such as somatic diseases with central nervous effects and psychiatric diseases, was reported in 21 and 16 articles, respectively. In only six of the articles were both the WHO diagnostic criteria and the WHO or Raleigh classifications used. In the future, parameters of exposure, psychological test results, and use of medication that possibly affects psychological test results should always be described. We list some advantages and disadvantages of the Raleigh and WHO classifications. To aid inter-study comparisons, the diagnosis of CTE should be categorized and reported according to an internationally accepted classification.

  15. Testing Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover Classification of TERRA-ASTER Satellite Images.

    PubMed

    Quirós, Elia; Felicísimo, Angel M; Cuartero, Aurora

    2009-01-01

    This work proposes a new method to classify multi-spectral satellite images based on multivariate adaptive regression splines (MARS) and compares this classification system with the more common parallelepiped and maximum likelihood (ML) methods. We apply the classification methods to the land cover classification of a test zone located in southwestern Spain. The basis of the MARS method and its associated procedures are explained in detail, and the area under the ROC curve (AUC) is compared for the three methods. The results show that the MARS method provides better results than the parallelepiped method in all cases, and it provides better results than the maximum likelihood method in 13 cases out of 17. These results demonstrate that the MARS method can be used in isolation or in combination with other methods to improve the accuracy of soil cover classification. The improvement is statistically significant according to the Wilcoxon signed rank test.

  16. Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System Implementation.

    PubMed

    Zhang, Y N

    2017-01-01

    Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.

  17. Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System Implementation

    PubMed Central

    2017-01-01

    Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed. PMID:29075547

  18. 75 FR 73861 - Change in Rates and Classes of General Applicability for Competitive Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... under 39 U.S.C. 3632, the Governors of the Postal Service established prices and classification changes... find that the new prices and classification changes are in accordance with 39 U.S.C. 3632-3633 and 39... Commercial Plus will be 2.0 percent. C. Parcel Select On average, prices for Parcel Select, the Postal...

  19. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    PubMed

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  1. [Cardiorespiratory fitness and cardiometabolic risk in young adults].

    PubMed

    Secchi, Jeremías D; García, Gastón C

    2013-01-01

    The assessment of VO₂max allow classify subjects according to the health risk. However the factors that may affect the classifications have been little studied. The main purpose was to determine whether the type of VO₂max prediction equation and the Fitnessgram criterion-referenced standards modified the proportion of young adults classified with a level of aerobic capacity cardiometabolic risk indicative. The study design was observational, cross-sectional and relational. Young adults (n= 240) participated voluntarily. The VO₂max was estimated by 20-m shuttle run test applying 9 predictive equations. The differences in the classifications were analyzed with the Cochran Q and McNemar tests. The level of aerobic capacity indicative of cardiometabolic risk ranged between 7.1% and 70.4% depending on the criterion-referenced standards and predictive equation used (p<0.001). A higher percentage of women were classified with an unhealthy level in all equations (women: 29.4% to 85.3% vs 4.8% to 51% in men), regardless of the criterion-referenced standards (p<0.001). Both sexes and irrespective of the equation applied the old criterion-referenced standards classified a lower proportion of subjects (men: 4.8% to 48.1% and women: 39.4% a 68.4%) with unhealthy aerobic capacity (p ≤ 0.004). The type of VO₂max prediction equation and Fitnessgram criterion-referenced standards changed classifications young adults with a level of aerobic capacity of cardiometabolic risk indicative.

  2. Waveform classification and statistical analysis of seismic precursors to the July 2008 Vulcanian Eruption of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Pyle, David; Mather, Tamsin

    2016-04-01

    Understanding the transition between quiescence and eruption at dome-forming volcanoes, such as Soufrière Hills Volcano (SHV), Montserrat, is important for monitoring volcanic activity during long-lived eruptions. Statistical analysis of seismic events (e.g. spectral analysis and identification of multiplets via cross-correlation) can be useful for characterising seismicity patterns and can be a powerful tool for analysing temporal changes in behaviour. Waveform classification is crucial for volcano monitoring, but consistent classification, both during real-time analysis and for retrospective analysis of previous volcanic activity, remains a challenge. Automated classification allows consistent re-classification of events. We present a machine learning (random forest) approach to rapidly classify waveforms that requires minimal training data. We analyse the seismic precursors to the July 2008 Vulcanian explosion at SHV and show systematic changes in frequency content and multiplet behaviour that had not previously been recognised. These precursory patterns of seismicity may be interpreted as changes in pressure conditions within the conduit during magma ascent and could be linked to magma flow rates. Frequency analysis of the different waveform classes supports the growing consensus that LP and Hybrid events should be considered end members of a continuum of low-frequency source processes. By using both supervised and unsupervised machine-learning methods we investigate the nature of waveform classification and assess current classification schemes.

  3. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

    PubMed

    Pascual-García, Alberto; Abia, David; Ortiz, Angel R; Bastolla, Ugo

    2009-03-01

    Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.

  4. Pyrotechnic hazards classification and evaluation program. Phase 3, segments 1-4: Investigation of sensitivity test methods and procedures for pyrotechnic hazards evaluation and classification, part A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The findings, conclusions, and recommendations relative to the investigations conducted to evaluate tests for classifying pyrotechnic materials and end items as to their hazard potential are presented. Information required to establish an applicable means of determining the potential hazards of pyrotechnics is described. Hazard evaluations are based on the peak overpressure or impulse resulting from the explosion as a function of distance from the source. Other hazard classification tests include dust ignition sensitivity, impact ignition sensitivity, spark ignition sensitivity, and differential thermal analysis.

  5. Enhancing navigation in biomedical databases by community voting and database-driven text classification

    PubMed Central

    Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph

    2009-01-01

    Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796

  6. Rule-based land use/land cover classification in coastal areas using seasonal remote sensing imagery: a case study from Lianyungang City, China.

    PubMed

    Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian

    2015-07-01

    Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.

  7. Sex estimation standards for medieval and contemporary Croats

    PubMed Central

    Bašić, Željana; Kružić, Ivana; Jerković, Ivan; Anđelinović, Deny; Anđelinović, Šimun

    2017-01-01

    Aim To develop discriminant functions for sex estimation on medieval Croatian population and test their application on contemporary Croatian population. Methods From a total of 519 skeletons, we chose 84 adult excellently preserved skeletons free of antemortem and postmortem changes and took all standard measurements. Sex was estimated/determined using standard anthropological procedures and ancient DNA (amelogenin analysis) where pelvis was insufficiently preserved or where sex morphological indicators were not consistent. We explored which measurements showed sexual dimorphism and used them for developing univariate and multivariate discriminant functions for sex estimation. We included only those functions that reached accuracy rate ≥80%. We tested the applicability of developed functions on modern Croatian sample (n = 37). Results From 69 standard skeletal measurements used in this study, 56 of them showed statistically significant sexual dimorphism (74.7%). We developed five univariate discriminant functions with classification rate 80.6%-85.2% and seven multivariate discriminant functions with an accuracy rate of 81.8%-93.0%. When tested on the modern population functions showed classification rates 74.1%-100%, and ten of them reached aimed accuracy rate. Females showed higher classification rates in the medieval populations, whereas males were better classified in the modern populations. Conclusion Developed discriminant functions are sufficiently accurate for reliable sex estimation in both medieval Croatian population and modern Croatian samples and may be used in forensic settings. The methodological issues that emerged regarding the importance of considering external factors in development and application of discriminant functions for sex estimation should be further explored. PMID:28613039

  8. Multiple Scale Landscape Pattern Index Interpretation for the Persistent Monitoring of Land-Cover and Land-Use

    NASA Astrophysics Data System (ADS)

    Spivey, Alvin J.

    Mapping land-cover land-use change (LCLUC) over regional and continental scales, and long time scales (years and decades), can be accomplished using thematically identified classification maps of a landscape---a LCLU class map. Observations of a landscape's LCLU class map pattern can indicate the most relevant process, like hydrologic or ecologic function, causing landscape scale environmental change. Quantified as Landscape Pattern Metrics (LPM), emergent landscape patterns act as Landscape Indicators (LI) when physically interpreted. The common mathematical approach to quantifying observed landscape scale pattern is to have LPM measure how connected a class exists within the landscape, through nonlinear local kernel operations of edges and gradients in class maps. Commonly applied kernel-based LPM that consistently reveal causal processes are Dominance, Contagion, and Fractal Dimension. These kernel-based LPM can be difficult to interpret. The emphasis on an image pixel's edge by gradient operations and dependence on an image pixel's existence according to classification accuracy limit the interpretation of LPM. For example, the Dominance and Contagion kernel-based LPM very similarly measure how connected a landscape is. Because of this, their reported edge measurements of connected pattern correlate strongly, making their results ambiguous. Additionally, each of these kernel-based LPM are unscalable when comparing class maps from separate imaging system sensor scenarios that change the image pixel's edge position (i.e. changes in landscape extent, changes in pixel size, changes in orientation, etc), and can only interpret landscape pattern as accurately as the LCLU map classification will allow. This dissertation discusses the reliability of common LPM in light of imaging system effects such as: algorithm classification likelihoods, LCLU classification accuracy due to random image sensor noise, and image scale. A description of an approach to generating well behaved LPM through a Fourier system analysis of the entire class map, or any subset of the class map (e.g. the watershed) is the focus of this work. The Fourier approach provides four improvements for LPM. First, the approach reduces any correlation between metrics by developing them within an independent (i.e. orthogonal) Fourier vector space; a Fourier vector space that includes relevant physically representative parameters ( i.e. between class Euclidean distance). Second, accounting for LCLU classification accuracy the LPM measurement precision and measurement accuracy are reported. Third, the mathematics of this approach makes it possible to compare image data captured at separate pixel resolutions or even from separate landscape scenes. Fourth, Fourier interpreted landscape pattern measurement can be a measure of the entire landscape shape, of individual landscape cover change, or as exchanges between class map subsets by operating on the entire class map, subset of class map, or separate subsets of class map[s] respectively. These LCLUC LPM are examined along the 1991-1992 and 2000-2001 records of National Land Cover Database Landsat data products. Those LPM results are used in a predictive fecal coliform model at the South Carolina watershed level in the context of past (validation study) change. Finally, the proposed LPM ability to be used as ecologically relevant environmental indicators is tested by correlating metrics with other, well known LI that consistently reveal causal processes in the literature.

  9. Theory of Image Analysis and Recognition.

    DTIC Science & Technology

    1983-01-24

    Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures

  10. 75 FR 23824 - New Postal Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... of Classification Change to Add Existing Shipping Charges to the Mail Classification Schedule for... Form 3202-X, October 2009). Id., Attachment A. The Postal Service states further its belief that the... MCS.\\2\\ Attachment B to the Notice shows the proposed changes to the Stamped Envelope MCS language in...

  11. 40 CFR 164.80 - Order of proceeding and burden of proof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... proof. 164.80 Section 164.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... RODENTICIDE ACT, ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS... and burden of proof. (a) At the hearing, the proponent of cancellation or change in classification has...

  12. 76 FR 16460 - Parcel Select Price and Classification Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... POSTAL REGULATORY COMMISSION [Docket No. CP2011-64; Order No. 698] Parcel Select Price and... a recently-filed Postal Service notice of rate and classification changes affecting Parcel Select. The Postal Service seeks to implement new prices for Parcel Select for forwarding and return to sender...

  13. Supervised Classification Processes for the Characterization of Heritage Elements, Case Study: Cuenca-Ecuador

    NASA Astrophysics Data System (ADS)

    Briones, J. C.; Heras, V.; Abril, C.; Sinchi, E.

    2017-08-01

    The proper control of built heritage entails many challenges related to the complexity of heritage elements and the extent of the area to be managed, for which the available resources must be efficiently used. In this scenario, the preventive conservation approach, based on the concept that prevent is better than cure, emerges as a strategy to avoid the progressive and imminent loss of monuments and heritage sites. Regular monitoring appears as a key tool to identify timely changes in heritage assets. This research demonstrates that the supervised learning model (Support Vector Machines - SVM) is an ideal tool that supports the monitoring process detecting visible elements in aerial images such as roofs structures, vegetation and pavements. The linear, gaussian and polynomial kernel functions were tested; the lineal function provided better results over the other functions. It is important to mention that due to the high level of segmentation generated by the classification procedure, it was necessary to apply a generalization process through opening a mathematical morphological operation, which simplified the over classification for the monitored elements.

  14. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  15. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  16. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  17. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain.

    PubMed

    Stanwell, Peter; Siddall, Philip; Keshava, Nirmal; Cocuzzo, Daniel; Ramadan, Saadallah; Lin, Alexander; Herbert, David; Craig, Ashley; Tran, Yvonne; Middleton, James; Gautam, Shiva; Cousins, Michael; Mountford, Carolyn

    2010-11-01

    Spinal cord injury (SCI) can be accompanied by chronic pain, the mechanisms for which are poorly understood. Here we report that magnetic resonance spectroscopy measurements from the brain, collected at 3T, and processed using wavelet-based feature extraction and classification algorithms, can identify biochemical changes that distinguish control subjects from subjects with SCI as well as subdividing the SCI group into those with and without chronic pain. The results from control subjects (n=10) were compared to those with SCI (n=10). The SCI cohort was made up of subjects with chronic neuropathic pain (n=5) and those without chronic pain (n=5). The wavelet-based decomposition of frequency domain MRS signals employs statistical significance testing to identify features best suited to discriminate different classes. Moreover, the features benefit from careful attention to the post-processing of the spectroscopy data prior to the comparison of the three cohorts. The spectroscopy data, from the thalamus, best distinguished control subjects without SCI from those with SCI with a sensitivity and specificity of 0.9 (Percentage of Correct Classification). The spectroscopy data obtained from the prefrontal cortex and anterior cingulate cortex both distinguished between SCI subjects with chronic neuropathic pain and those without pain with a sensitivity and specificity of 1.0. In this study, where two underlying mechanisms co-exist (i.e. SCI and pain), the thalamic changes appear to be linked more strongly to SCI, while the anterior cingulate cortex and prefrontal cortex changes appear to be specifically linked to the presence of pain. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Comparing and Combining Dichotomous and Polytomous Items with SPRT Procedure in Computerized Classification Testing.

    ERIC Educational Resources Information Center

    Lau, C. Allen; Wang, Tianyou

    The purposes of this study were to: (1) extend the sequential probability ratio testing (SPRT) procedure to polytomous item response theory (IRT) models in computerized classification testing (CCT); (2) compare polytomous items with dichotomous items using the SPRT procedure for their accuracy and efficiency; (3) study a direct approach in…

  19. A New Item Selection Procedure for Mixed Item Type in Computerized Classification Testing.

    ERIC Educational Resources Information Center

    Lau, C. Allen; Wang, Tianyou

    This paper proposes a new Information-Time index as the basis for item selection in computerized classification testing (CCT) and investigates how this new item selection algorithm can help improve test efficiency for item pools with mixed item types. It also investigates how practical constraints such as item exposure rate control, test…

  20. Practical Procedures for Constructing Mastery Tests to Minimize Errors of Classification and to Maximize or Optimize Decision Reliability.

    ERIC Educational Resources Information Center

    Byars, Alvin Gregg

    The objectives of this investigation are to develop, describe, assess, and demonstrate procedures for constructing mastery tests to minimize errors of classification and to maximize decision reliability. The guidelines are based on conditions where item exchangeability is a reasonable assumption and the test constructor can control the number of…

  1. Improved semi-supervised online boosting for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Yicui; Qi, Lin; Tan, Shukun

    2016-10-01

    The advantage of an online semi-supervised boosting method which takes object tracking problem as a classification problem, is training a binary classifier from labeled and unlabeled examples. Appropriate object features are selected based on real time changes in the object. However, the online semi-supervised boosting method faces one key problem: The traditional self-training using the classification results to update the classifier itself, often leads to drifting or tracking failure, due to the accumulated error during each update of the tracker. To overcome the disadvantages of semi-supervised online boosting based on object tracking methods, the contribution of this paper is an improved online semi-supervised boosting method, in which the learning process is guided by positive (P) and negative (N) constraints, termed P-N constraints, which restrict the labeling of the unlabeled samples. First, we train the classification by an online semi-supervised boosting. Then, this classification is used to process the next frame. Finally, the classification is analyzed by the P-N constraints, which are used to verify if the labels of unlabeled data assigned by the classifier are in line with the assumptions made about positive and negative samples. The proposed algorithm can effectively improve the discriminative ability of the classifier and significantly alleviate the drifting problem in tracking applications. In the experiments, we demonstrate real-time tracking of our tracker on several challenging test sequences where our tracker outperforms other related on-line tracking methods and achieves promising tracking performance.

  2. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  3. GHS additivity formula: can it predict the acute systemic toxicity of agrochemical formulations that contain acutely toxic ingredients?

    PubMed

    Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan

    2018-02-01

    In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Test of spectral/spatial classifier

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.

    1977-01-01

    The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.

  5. The Reliability of Galaxy Classifications by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Francis, Lennox; Kautsch, Stefan J.; Bizyaev, Dmitry

    2017-01-01

    Citizen scientists are becoming more and more important in helping professionals working through big data. An example in astronomy is crowdsourced galaxy classification. But how reliable are these classifications for studies of galaxy evolution? We present a tool in order to investigate those morphological classifications and test it on a diverse population on our campus. We observe a slight offset towards earlier Hubble types in the crowdsourced morphologies, when compared to professional classifications.

  6. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. 7 CFR 28.909 - Costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... services provide under this section when billing is made to voluntary agents. Classification ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.909 Costs... the service. After classification the samples shall become the property of the Government. The...

  8. Asthma in pregnancy: association between the Asthma Control Test and the Global Initiative for Asthma classification and comparisons with spirometry.

    PubMed

    de Araujo, Georgia Véras; Leite, Débora F B; Rizzo, José A; Sarinho, Emanuel S C

    2016-08-01

    The aim of this study was to identify a possible association between the assessment of clinical asthma control using the Asthma Control Test (ACT) and the Global Initiative for Asthma (GINA) classification and to perform comparisons with values of spirometry. Through this cross-sectional study, 103 pregnant women with asthma were assessed in the period from October 2010 to October 2013 in the asthma pregnancy clinic at the Clinical Hospital of the Federal University of Pernambuco. Questionnaires concerning the level of asthma control were administered using the Global Initiative for Asthma classification, the Asthma Control Test validated for asthmatic expectant mothers and spirometry; all three methods of assessing asthma control were performed during the same visit between the twenty-first and twenty-seventh weeks of pregnancy. There was a significant association between clinical asthma control assessment using the Asthma Control Test and the Global Initiative for Asthma classification (p<0.001). There were also significant associations between the results of the subjective instruments of asthma (the GINA classification and the ACT) and evidence of lung function by spirometry. This study shows that both the Global Initiative for Asthma classification and the Asthma Control Test can be used for asthmatic expectant mothers to assess the clinical control of asthma, especially at the end of the second trimester, which is assumed to be the period of worsening asthma exacerbations during pregnancy. We highlight the importance of the Asthma Control Test as a subjective instrument with easy application, easy interpretation and good reproducibility that does not require spirometry to assess the level of asthma control and can be used in the primary care of asthmatic expectant mothers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Change in Autism Classification with Early Intervention: Predictors and Outcomes

    ERIC Educational Resources Information Center

    Ben Itzchak, Esther; Zachor, Ditza A.

    2009-01-01

    The current study characterized stability and changes of autism diagnostic classification with intervention in very young children and examined pre-treatment predictors and post-intervention outcome. Sixty-eight children diagnosed with autism, aged 18-35 months (M = 25.4, SD = 4.0) participated in the study. Children underwent comprehensive…

  10. 76 FR 77856 - International Mail Price Change for Inbound Air Parcel Post

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... POSTAL REGULATORY COMMISSION [Docket No. CP2012-3; Order No. 1033] International Mail Price Change..., Notice of Establishment of Prices and Classifications Not of General Applicability for Inbound Air Parcel... Governors' Decision No. 09-15 which establishes prices and classifications for Inbound Air Parcel Post at...

  11. 19 CFR 10.918 - De minimis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 32(n), HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10...

  12. 19 CFR 10.3018 - De minimis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this section, a good that does not undergo a change in tariff classification pursuant to General Note 34, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10...

  13. 19 CFR 10.2018 - De minimis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 35, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10 percent...

  14. 19 CFR 10.1018 - De minimis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 33, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10 percent...

  15. 19 CFR 10.1018 - De minimis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 33, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10 percent...

  16. 19 CFR 10.918 - De minimis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 32(n), HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10...

  17. 19 CFR 10.918 - De minimis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 32(n), HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10...

  18. 19 CFR 10.1018 - De minimis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section, a good that does not undergo a change in tariff classification pursuant to General Note 33, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10 percent...

  19. 19 CFR 10.3018 - De minimis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section, a good that does not undergo a change in tariff classification pursuant to General Note 34, HTSUS, is an originating good if: (1) The value of all non-originating materials used in the production of the good that do not undergo the applicable change in tariff classification does not exceed 10...

  20. USUING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  1. USING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  2. Conceptual Change through Changing the Process of Comparison

    ERIC Educational Resources Information Center

    Wasmann-Frahm, Astrid

    2009-01-01

    Classification can serve as a tool for conceptualising ideas about vertebrates. Training enhances classification skills as well as sharpening concepts. The method described in this paper is based on the "hybrid-model" of comparison that proposes two independently working processes: associative and theory-based. The two interact during a…

  3. Integrating conventional and inverse representation for face recognition.

    PubMed

    Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David

    2014-10-01

    Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.

  4. A summary of recent developments in transportation hazard classification activities for ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Hannum, J. A. E.

    1983-01-01

    The transportation hazard classification of Ammonium Perchlorate is discussed. A test program was completed and data were forwarded to retain a Class 5.1 designation (oxidizer) for AP which is shipped internationally. As a follow-on to the initial team effort to conduct AP tests existing data were examined and a matrix which catalogs test parameters and findings was compiled. A collection of test protocols is developed to standardize test methods for energetic materials of all types. The actions to date are summarized; the participating organizations and their roles as presently understood; specific findings on AP (matrix); and issues, lessons learned, and potential actions of particular interest to the propulsion community which may evolve as a result of future U.N. propellant transportation classification activities.

  5. Correspondence between EQ-5D health state classifications and EQ VAS scores.

    PubMed

    Whynes, David K

    2008-11-07

    The EQ-5D health-related quality of life instrument comprises a health state classification followed by a health evaluation using a visual analogue scale (VAS). The EQ-5D has been employed frequently in economic evaluations, yet the relationship between the two parts of the instrument remains ill-understood. In this paper, we examine the correspondence between VAS scores and health state classifications for a large sample, and identify variables which contribute to determining the VAS scores independently of the health states as classified. A UK trial of management of low-grade abnormalities detected on screening for cervical pre-cancer (TOMBOLA) provided EQ-5D data for over 3,000 women. Information on distress and multi-dimensional health locus of control had been collected using other instruments. A linear regression model was fitted, with VAS score as the dependent variable. Independent variables comprised EQ-5D health state classifications, distress, locus of control, and socio-demographic characteristics. Equivalent EQ-5D and distress data, collected at twelve months, were available for over 2,000 of the women, enabling us to predict changes in VAS score over time from changes in EQ-5D classification and distress. In addition to EQ-5D health state classification, VAS score was influenced by the subject's perceived locus of control, and by her age, educational attainment, ethnic origin and smoking behaviour. Although the EQ-5D classification includes a distress dimension, the independent measure of distress was an additional determinant of VAS score. Changes in VAS score over time were explained by changes in both EQ-5D severities and distress. Women allocated to the experimental management arm of the trial reported an increase in VAS score, independently of any changes in health state and distress. In this sample, EQ VAS scores were predictable from the EQ-5D health state classification, although there also existed other group variables which contributed systematically and independently towards determining such scores. These variables comprised psychological disposition, socio-demographic factors such as age and education, clinically-important distress, and the clinical intervention itself. ISRCTN34841617.

  6. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  7. Phylogenetic classification of Aureobasidium pullulans strains for production of pullulan and xylanase

    USDA-ARS?s Scientific Manuscript database

    This study tests the hypothesis that phylogenetic classification can predict whether A. pullulans strains will produce useful levels of the commercial polysaccharide, pullulan, or the valuable enzyme, xylanase. To test this hypothesis, 19 strains of A. pullulans with previously described phenotypes...

  8. Age group classification and gender detection based on forced expiratory spirometry.

    PubMed

    Cosgun, Sema; Ozbek, I Yucel

    2015-08-01

    This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.

  9. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-06-01

    In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.

  10. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  11. CLARIPED: a new tool for risk classification in pediatric emergencies.

    PubMed

    Magalhães-Barbosa, Maria Clara de; Prata-Barbosa, Arnaldo; Alves da Cunha, Antonio José Ledo; Lopes, Cláudia de Souza

    2016-09-01

    To present a new pediatric risk classification tool, CLARIPED, and describe its development steps. Development steps: (i) first round of discussion among experts, first prototype; (ii) pre-test of reliability, 36 hypothetical cases; (iii) second round of discussion to perform adjustments; (iv) team training; (v) pre-test with patients in real time; (vi) third round of discussion to perform new adjustments; (vii) final pre-test of validity (20% of medical treatments in five days). CLARIPED features five urgency categories: Red (Emergency), Orange (very urgent), Yellow (urgent), Green (little urgent) and Blue (not urgent). The first classification step includes the measurement of four vital signs (Vipe score); the second step consists in the urgency discrimination assessment. Each step results in assigning a color, selecting the most urgent one for the final classification. Each color corresponds to a maximum waiting time for medical care and referral to the most appropriate physical area for the patient's clinical condition. The interobserver agreement was substantial (kappa=0.79) and the final pre-test, with 82 medical treatments, showed good correlation between the proportion of patients in each urgency category and the number of used resources (p<0.001). CLARIPED is an objective and easy-to-use tool for simple risk classification, of which pre-tests suggest good reliability and validity. Larger-scale studies on its validity and reliability in different health contexts are ongoing and can contribute to the implementation of a nationwide pediatric risk classification system. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Investigating Elementary Teachers' Conceptions of Animal Classification

    ERIC Educational Resources Information Center

    Burgoon, Jacob N.; Duran, Emilio

    2012-01-01

    Numerous studies have been conducted regarding alternative conceptions about animal diversity and classification, many of which have used a cross-age approach to investigate how students' conceptions change over time. None of these studies, however, have investigated teachers' conceptions of animal classification. This study was intended to…

  13. A targeted change-detection procedure by combining change vector analysis and post-classification approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Chen, Dongmei; Yu, Jie

    2016-04-01

    In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as "targeted change detection". Based on a one-class classifier "Support Vector Domain Description (SVDD)", a novel algorithm named "Three-layer SVDD Fusion (TLSF)" is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.

  14. Retrospective analysis of the Draize test for serious eye damage/eye irritation: importance of understanding the in vivo endpoints under UN GHS/EU CLP for the development and evaluation of in vitro test methods.

    PubMed

    Adriaens, Els; Barroso, João; Eskes, Chantra; Hoffmann, Sebastian; McNamee, Pauline; Alépée, Nathalie; Bessou-Touya, Sandrine; De Smedt, Ann; De Wever, Bart; Pfannenbecker, Uwe; Tailhardat, Magalie; Zuang, Valérie

    2014-03-01

    For more than two decades, scientists have been trying to replace the regulatory in vivo Draize eye test by in vitro methods, but so far only partial replacement has been achieved. In order to better understand the reasons for this, historical in vivo rabbit data were analysed in detail and resampled with the purpose of (1) revealing which of the in vivo endpoints are most important in driving United Nations Globally Harmonized System/European Union Regulation on Classification, Labelling and Packaging (UN GHS/EU CLP) classification for serious eye damage/eye irritation and (2) evaluating the method's within-test variability for proposing acceptable and justifiable target values of sensitivity and specificity for alternative methods and their combinations in testing strategies. Among the Cat 1 chemicals evaluated, 36-65 % (depending on the database) were classified based only on persistence of effects, with the remaining being classified mostly based on severe corneal effects. Iritis was found to rarely drive the classification (<4 % of both Cat 1 and Cat 2 chemicals). The two most important endpoints driving Cat 2 classification are conjunctiva redness (75-81 %) and corneal opacity (54-75 %). The resampling analyses demonstrated an overall probability of at least 11 % that chemicals classified as Cat 1 by the Draize eye test could be equally identified as Cat 2 and of about 12 % for Cat 2 chemicals to be equally identified as No Cat. On the other hand, the over-classification error for No Cat and Cat 2 was negligible (<1 %), which strongly suggests a high over-predictive power of the Draize eye test. Moreover, our analyses of the classification drivers suggest a critical revision of the UN GHS/EU CLP decision criteria for the classification of chemicals based on Draize eye test data, in particular Cat 1 based only on persistence of conjunctiva effects or corneal opacity scores of 4. In order to successfully replace the regulatory in vivo Draize eye test, it will be important to recognise these uncertainties and to have in vitro tools to address the most important in vivo endpoints identified in this paper.

  15. Is overall similarity classification less effortful than single-dimension classification?

    PubMed

    Wills, Andy J; Milton, Fraser; Longmore, Christopher A; Hester, Sarah; Robinson, Jo

    2013-01-01

    It is sometimes argued that the implementation of an overall similarity classification is less effortful than the implementation of a single-dimension classification. In the current article, we argue that the evidence securely in support of this view is limited, and report additional evidence in support of the opposite proposition--overall similarity classification is more effortful than single-dimension classification. Using a match-to-standards procedure, Experiments 1A, 1B and 2 demonstrate that concurrent load reduces the prevalence of overall similarity classification, and that this effect is robust to changes in the concurrent load task employed, the level of time pressure experienced, and the short-term memory requirements of the classification task. Experiment 3 demonstrates that participants who produced overall similarity classifications from the outset have larger working memory capacities than those who produced single-dimension classifications initially, and Experiment 4 demonstrates that instructions to respond meticulously increase the prevalence of overall similarity classification.

  16. Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.

    ERIC Educational Resources Information Center

    Griffiths, Alan; And Others

    1984-01-01

    Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…

  17. 7 CFR 28.909 - Costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.909 Costs... the service. After classification the samples shall become the property of the Government. The... this subpart. (b) The cost of High Volume Instrument (HVI) cotton classification service to producers...

  18. Discrimination thresholds of normal and anomalous trichromats: Model of senescent changes in ocular media density on the Cambridge Colour Test

    PubMed Central

    Shinomori, Keizo; Panorgias, Athanasios; Werner, John S.

    2017-01-01

    Age-related changes in chromatic discrimination along dichromatic confusion lines were measured with the Cambridge Colour Test (CCT). One hundred and sixty-two individuals (16 to 88 years old) with normal Rayleigh matches were the major focus of this paper. An additional 32 anomalous trichromats classified by their Rayleigh matches were also tested. All subjects were screened to rule out abnormalities of the anterior and posterior segments. Thresholds on all three chromatic vectors measured with the CCT showed age-related increases. Protan and deutan vector thresholds increased linearly with age while the tritan vector threshold was described with a bilinear model. Analysis and modeling demonstrated that the nominal vectors of the CCT are shifted by senescent changes in ocular media density, and a method for correcting the CCT vectors is demonstrated. A correction for these shifts indicates that classification among individuals of different ages is unaffected. New vector thresholds for elderly observers and for all age groups are suggested based on calculated tolerance limits. PMID:26974943

  19. A method to determine the mammographic regions that show early changes due to the development of breast cancer

    NASA Astrophysics Data System (ADS)

    Karemore, Gopal; Nielsen, Mads; Karssemeijer, Nico; Brandt, Sami S.

    2014-11-01

    It is well understood nowadays that changes in the mammographic parenchymal pattern are an indicator of a risk of breast cancer and we have developed a statistical method that estimates the mammogram regions where the parenchymal changes, due to breast cancer, occur. This region of interest is computed from a score map by utilising the anatomical breast coordinate system developed in our previous work. The method also makes an automatic scale selection to avoid overfitting while the region estimates are computed by a nested cross-validation scheme. In this way, it is possible to recover those mammogram regions that show a significant difference in classification scores between the cancer and the control group. Our experiments suggested that the most significant mammogram region is the region behind the nipple and that can be justified by previous findings from other research groups. This result was conducted on the basis of the cross-validation experiments on independent training, validation and testing sets from the case-control study of 490 women, of which 245 women were diagnosed with breast cancer within a period of 2-4 years after the baseline mammograms. We additionally generalised the estimated region to another, mini-MIAS study and showed that the transferred region estimate gives at least a similar classification result when compared to the case where the whole breast region is used. In all, by following our method, one most likely improves both preclinical and follow-up breast cancer screening, but a larger study population will be required to test this hypothesis.

  20. 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints

    NASA Astrophysics Data System (ADS)

    Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent

    2017-12-01

    The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.

  1. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  2. Reliability of McConnell's classification of patellar orientation in symptomatic and asymptomatic subjects.

    PubMed

    Watson, C J; Propps, M; Galt, W; Redding, A; Dobbs, D

    1999-07-01

    Test-retest reliability study with blinded testers. To determine the intratester reliability of the McConnell classification system and to determine whether the intertester reliability of this system would be improved by one-on-one training of the testers, increasing the variability and numbers of subjects, blinding the testers to the absence or presence of patellofemoral pain syndrome, and adhering to the McConnell classification system as it is taught in the "McConnell Patellofemoral Treatment Plan" continuing education course. The McConnell classification system is currently used by physical therapy clinicians to quantify static patellar orientation. The measurements generated from this system purportedly guide the therapist in the application of patellofemoral tape and in assessment of the efficacy of treatment interventions on changing patellar orientation. Fifty-six subjects (age range, 21-65 years) provided a total of 101 knees for assessment. Seventy-six knees did not produce symptoms. A researcher who did not participate in the measuring process determined that 17 subjects had patellofemoral pain syndrome in 25 knees. Two testers concurrently measured static patellar orientation (anterior/posterior and medial/lateral tilt, medial/lateral glide, and patellar rotation) on subjects, using the McConnell classification system. Repeat measures were performed 3-7 days later. A kappa (kappa) statistic was used to assess the degree of agreement within each tester and between testers. The kappa coefficients for intratester reliability varied from -0.06 to 0.35. Intertester reliability ranged from -0.03 to 0.19. The McConnell classification system, in its current form, does not appear to be very reliable. Intratester reliability ranged from poor to fair, and intertester reliability was poor to slight. This system should not be used as a measurement tool or as a basis for treatment decisions.

  3. Speech Enhancement based on the Dominant Classification Between Speech and Noise Using Feature Data in Spectrogram of Observation Signal

    NASA Astrophysics Data System (ADS)

    Nomura, Yukihiro; Lu, Jianming; Sekiya, Hiroo; Yahagi, Takashi

    This paper presents a speech enhancement using the classification between the dominants of speech and noise. In our system, a new classification scheme between the dominants of speech and noise is proposed. The proposed classifications use the standard deviation of the spectrum of observation signal in each band. We introduce two oversubtraction factors for the dominants of speech and noise, respectively. And spectral subtraction is carried out after the classification. The proposed method is tested on several noise types from the Noisex-92 database. From the investigation of segmental SNR, Itakura-Saito distance measure, inspection of spectrograms and listening tests, the proposed system is shown to be effective to reduce background noise. Moreover, the enhanced speech using our system generates less musical noise and distortion than that of conventional systems.

  4. [TNM 2010. What's new?].

    PubMed

    Wittekind, C

    2010-10-01

    In the seventh edition of the TNM Classification of Malignant Tumours there are several entirely new classifications: upper aerodigestive mucosal melanoma, gastrointestinal stromal tumour, gastrointestinal carcinoid (neuroendocrine tumour), intrahepatic cholangiocarcinoma, Merkel cell carcinoma, uterine sarcomas, and adrenal cortical carcinoma. Significant modifications concern carcinomas of the oesophagus, oesophagogastric junction, stomach, appendix, biliary tract, lung, skin, prostate and ophthalmic tumours, which will be not addressed in this article. For several tumour entities only minor changes were introduced which might be of importance in daily practice. The new classifications and changes will be commented on without going into details.

  5. Test Operation Procedure (TOP) 01-1-010A Vehicle Test Course Severity (Surface Roughness)

    DTIC Science & Technology

    2017-12-12

    Department of Agriculture (USDA) classifications, respectively. TABLE 10. PARTICLE SIZE CLASSES CLASS SIZE Cobble and Gravel >4.75 mm particle diameter...ABBREVIATIONS. USCS Unified Soil Classification System USDA United States Department of Agriculture UTM Universal Transverse Mercator WNS wave number

  6. Estimating the Classification Efficiency of a Test Battery.

    ERIC Educational Resources Information Center

    De Corte, Wilfried

    2000-01-01

    Shows how a theorem proven by H. Brogden (1951, 1959) can be used to estimate the allocation average (a predictor based classification of a test battery) assuming that the predictor intercorrelations and validities are known and that the predictor variables have a joint multivariate normal distribution. (SLD)

  7. Support Vector Machines for Multitemporal and Multisensor Change Detection in a Mining Area

    NASA Astrophysics Data System (ADS)

    Hecheltjen, Antje; Waske, Bjorn; Thonfeld, Frank; Braun, Matthias; Menz, Gunter

    2010-12-01

    Long-term change detection often implies the challenge of incorporating multitemporal data from different sensors. Most of the conventional change detection algorithms are designed for bi-temporal datasets from the same sensors detecting only the existence of changes. The labeling of change areas remains a difficult task. To overcome such drawbacks, much attention has been given lately to algorithms arising from machine learning, such as Support Vector Machines (SVMs). While SVMs have been applied successfully for land cover classifications, the exploitation of this approach for change detection is still in its infancy. Few studies have already proven the applicability of SVMs for bi- and multitemporal change detection using data from one sensor only. In this paper we demonstrate the application of SVM for multitemporal and -sensor change detection. Our study site covers lignite open pit mining areas in the German state North Rhine-Westphalia. The dataset consists of bi-temporal Landsat data and multi-temporal ERS SAR data covering two time slots (2001 and 2009). The SVM is conducted using the IDL program imageSVM. Change is deduced from one time slot to the next resulting in two change maps. In contrast to change detection, which is based on post-classification comparison, change detection is seen here as a specific classification problem. Thus, changes are directly classified from a layer-stack of the two years. To reduce the number of change classes, we created a change mask using the magnitude of Change Vector Analysis (CVA). Training data were selected for different change classes (e.g. forest to mining or mining to agriculture) as well as for the no-change classes (e.g. agriculture). Subsequently, they were divided in two independent sets for training the SVMs and accuracy assessment, respectively. Our study shows the applicability of SVMs to classify changes via SVMs. The proposed method yielded a change map of reclaimed and active mines. The use of ERS SAR data, however, did not add to the accuracy compared to Landsat data only. A great advantage compared to other change detection approaches are the labeled change maps, which are a direct output of the methodology. Our approach also overcomes the drawback of post-classification comparison, namely the propagation of classification inaccuracies.

  8. 78 FR 59995 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Change To Clarify the Classification and Reporting of Certain Securities to FINRA September 24, 2013... interpretation to clarify the classification and the reporting of certain securities to FINRA. The proposed rule....'' FINRA recently has received inquiries regarding the appropriate classification of certain ``hybrid...

  9. Network-based high level data classification.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-06-01

    Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.

  10. A Review of the Research in Emotionally Focused Therapy for Couples.

    PubMed

    Wiebe, Stephanie A; Johnson, Susan M

    2016-09-01

    Emotionally Focused Therapy for Couples (EFT) is a brief evidence-based couple therapy based in attachment theory. Since the development of EFT, efficacy and effectiveness research has accumulated to address a range of couple concerns. EFT meets or exceeds the guidelines for classification as an evidence-based couple therapy outlined for couple and family research. Furthermore, EFT researchers have examined the process of change and predictors of outcome in EFT. Future research in EFT will continue to examine the process of change in EFT and test the efficacy and effectiveness of EFT in new applications and for couples of diverse backgrounds and concerns. © 2016 Family Process Institute.

  11. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes.

    PubMed

    Eggington, J M; Bowles, K R; Moyes, K; Manley, S; Esterling, L; Sizemore, S; Rosenthal, E; Theisen, A; Saam, J; Arnell, C; Pruss, D; Bennett, J; Burbidge, L A; Roa, B; Wenstrup, R J

    2014-09-01

    Genetic testing has the potential to guide the prevention and treatment of disease in a variety of settings, and recent technical advances have greatly increased our ability to acquire large amounts of genetic data. The interpretation of this data remains challenging, as the clinical significance of genetic variation detected in the laboratory is not always clear. Although regulatory agencies and professional societies provide some guidance regarding the classification, reporting, and long-term follow-up of variants, few protocols for the implementation of these guidelines have been described. Because the primary aim of clinical testing is to provide results to inform medical management, a variant classification program that offers timely, accurate, confident and cost-effective interpretation of variants should be an integral component of the laboratory process. Here we describe the components of our laboratory's current variant classification program (VCP), based on 20 years of experience and over one million samples tested, using the BRCA1/2 genes as a model. Our VCP has lowered the percentage of tests in which one or more BRCA1/2 variants of uncertain significance (VUSs) are detected to 2.1% in the absence of a pathogenic mutation, demonstrating how the coordinated application of resources toward classification and reclassification significantly impacts the clinical utility of testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 7 CFR 28.908 - Samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.908... submitted for classification under this subpart. This does not prohibit the submission of an additional sample from a bale for review classification if the producer so desires. (b) Drawing of samples manual...

  13. 7 CFR 28.908 - Samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.908... submitted for classification under this subpart. This does not prohibit the submission of an additional sample from a bale for review classification if the producer so desires. (b) Drawing of samples manual...

  14. 7 CFR 28.908 - Samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.908... submitted for classification under this subpart. This does not prohibit the submission of an additional sample from a bale for review classification if the producer so desires. (b) Drawing of samples manual...

  15. 7 CFR 28.908 - Samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.908... submitted for classification under this subpart. This does not prohibit the submission of an additional sample from a bale for review classification if the producer so desires. (b) Drawing of samples manual...

  16. A quantitative index for classification of plantar thermal changes in the diabetic foot

    NASA Astrophysics Data System (ADS)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Gonzalez-Bernal, J. A.; Altamirano-Robles, L.

    2017-03-01

    One of the main complications caused by diabetes mellitus is the development of diabetic foot, which in turn, can lead to ulcerations. Because ulceration risks are linked to an increase in plantar temperatures, recent approaches analyze thermal changes. These approaches try to identify spatial patterns of temperature that could be characteristic of a diabetic group. However, this is a difficult task since thermal patterns have wide variations resulting on complex classification. Moreover, the measurement of contralateral plantar temperatures is important to determine whether there is an abnormal difference but, this only provides information when thermal changes are asymmetric and in absence of ulceration or amputation. Therefore, in this work is proposed a quantitative index for measuring the thermal change in the plantar region of participants diagnosed diabetes mellitus regards to a reliable reference (control) or regards to the contralateral foot (as usual). Also, a classification of the thermal changes based on a quantitative index is proposed. Such classification demonstrate the wide diversity of spatial distributions in the diabetic foot but also demonstrate that it is possible to identify common characteristics. An automatic process, based on the analysis of plantar angiosomes and image processing, is presented to quantify these thermal changes and to provide valuable information to the medical expert.

  17. 10 CFR 1016.36 - Changes in classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Changes in classification. 1016.36 Section 1016.36 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Control of Information § 1016.36... holders of all copies as shown in their records. [48 FR 36432, Aug. 10, 1983, as amended at 71 FR 68735...

  18. 10 CFR 1016.36 - Changes in classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Changes in classification. 1016.36 Section 1016.36 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Control of Information § 1016.36... holders of all copies as shown in their records. [48 FR 36432, Aug. 10, 1983, as amended at 71 FR 68735...

  19. 40 CFR 164.21 - Contents of a denial of registration, notice of intent to cancel a registration, or notice of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., notice of intent to cancel a registration, or notice of intent to change a classification. 164.21 Section 164.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES..., ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS...

  20. An Examination of the Changing Rates of Autism in Special Education

    ERIC Educational Resources Information Center

    Brock, Stephen E.

    2006-01-01

    Using U.S. Department of Education data, the current study examined changes in the rates of special education eligibility classifications. This was done to determine if classification substitution might be an explanation for increases in the number of students being found eligible for special education using the Autism criteria. Results reveal…

  1. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    PubMed

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  2. The P600 in Implicit Artificial Grammar Learning.

    PubMed

    Silva, Susana; Folia, Vasiliki; Hagoort, Peter; Petersson, Karl Magnus

    2017-01-01

    The suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere-exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test. Copyright © 2016 Cognitive Science Society, Inc.

  3. ERTS-1 data applications to Minnesota forest land use classification

    NASA Technical Reports Server (NTRS)

    Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.

    1973-01-01

    The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.

  4. Locality-preserving sparse representation-based classification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  5. Statistical inference for template aging

    NASA Astrophysics Data System (ADS)

    Schuckers, Michael E.

    2006-04-01

    A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.

  6. Methods for Monitoring the Detection of Multi-Temporal Land Use Change Through the Classification of Urban Areas

    NASA Astrophysics Data System (ADS)

    Alhaddad, B. I.; Burns, M. C.; Roca, J.

    2011-08-01

    Urban areas are complicated due to the mix of man-made features and natural features. A higher level of structural information plays an important role in land cover/use classification of urban areas. Additional spatial indicators have to be extracted based on structural analysis in order to understand and identify spatial patterns or the spatial organization of features, especially for man-made feature. It's very difficult to extract such spatial patterns by using only classification approaches. Clusters of urban patterns which are integral parts of other uses may be difficult to identify. A lot of public resources have been directed towards seeking to develop a standardized classification system and to provide as much compatibility as possible to ensure the widespread use of such categorized data obtained from remote sensor sources. In this paper different methods applied to understand the change in the land use areas by understanding and monitoring the change in urban areas and as its hard to apply those methods to classification results for high elements quantities, dusts and scratches (Roca and Alhaddad, 2005). This paper focuses on a methodology developed based relation between urban elements and how to join this elements in zones or clusters have commune behaviours such as form, pattern, size. The main objective is to convert urban class category in to various structure densities depend on conjunction of pixel and shortest distance between them, Delaunay triangulation has been widely used in spatial analysis and spatial modelling. To identify these different zones, a spatial density-based clustering technique was adopted. In highly urban zones, the spatial density of the pixels is high, while in sparsely areas the density of points is much lower. Once the groups of pixels are identified, the calculation of the boundaries of the areas containing each group of pixels defines the new regions indicate the different contains inside such as high or low urban areas. Multi-temporal datasets from 1986, 1995 and 2004 used to urban region centroid to be our reference in this study which allow us to follow the urban movement, increase and decrease by the time. Kernel Density function used to Calculates urban magnitude, Voronoi algorithm is proposed for deriving explicit boundaries between objects units. To test the approach, we selected a site in a suburban area in Barcelona Municipality, the Spain.

  7. Influence of Fines Content on Consolidation and Compressibility Characteristics of Granular Materials

    NASA Astrophysics Data System (ADS)

    Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz

    2017-10-01

    Various behaviour of soil under loading results to large extent from kind of soil considered. There is a lot of literature concerning pure sand or plastic clays, while little is known about materials, which are from classification point of view, between those soils. These materials can be considered as cohesionless soils with various fines content. The paper present results of tests carried out in large consolidometer on three kinds of soil, containing 10, 36 and 97% of fines content. Consolidation, permeability and compressibility characteristics were determined. Analysis of the test results allowed to formulate conclusion concerning change in soil behaviour resulting from fines content.

  8. An approach for combining airborne LiDAR and high-resolution aerial color imagery using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli

    2015-10-01

    Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.

  9. Automatic intelligibility classification of sentence-level pathological speech

    PubMed Central

    Kim, Jangwon; Kumar, Naveen; Tsiartas, Andreas; Li, Ming; Narayanan, Shrikanth S.

    2014-01-01

    Pathological speech usually refers to the condition of speech distortion resulting from atypicalities in voice and/or in the articulatory mechanisms owing to disease, illness or other physical or biological insult to the production system. Although automatic evaluation of speech intelligibility and quality could come in handy in these scenarios to assist experts in diagnosis and treatment design, the many sources and types of variability often make it a very challenging computational processing problem. In this work we propose novel sentence-level features to capture abnormal variation in the prosodic, voice quality and pronunciation aspects in pathological speech. In addition, we propose a post-classification posterior smoothing scheme which refines the posterior of a test sample based on the posteriors of other test samples. Finally, we perform feature-level fusions and subsystem decision fusion for arriving at a final intelligibility decision. The performances are tested on two pathological speech datasets, the NKI CCRT Speech Corpus (advanced head and neck cancer) and the TORGO database (cerebral palsy or amyotrophic lateral sclerosis), by evaluating classification accuracy without overlapping subjects’ data among training and test partitions. Results show that the feature sets of each of the voice quality subsystem, prosodic subsystem, and pronunciation subsystem, offer significant discriminating power for binary intelligibility classification. We observe that the proposed posterior smoothing in the acoustic space can further reduce classification errors. The smoothed posterior score fusion of subsystems shows the best classification performance (73.5% for unweighted, and 72.8% for weighted, average recalls of the binary classes). PMID:25414544

  10. Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing.

    PubMed

    Dottori, Martin; Sedeño, Lucas; Martorell Caro, Miguel; Alifano, Florencia; Hesse, Eugenia; Mikulan, Ezequiel; García, Adolfo M; Ruiz-Tagle, Amparo; Lillo, Patricia; Slachevsky, Andrea; Serrano, Cecilia; Fraiman, Daniel; Ibanez, Agustin

    2017-06-19

    Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.

  11. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    USGS Publications Warehouse

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  12. Development of the Enlisted Panel Research Data Base

    DTIC Science & Technology

    1990-01-01

    Loss Files, Accession File, Army Classification Battery Composite Scores pertaining to accession, the Skills Qualifying Test (SQT) data from the SQT...inclusive. Specific accession data variables, including composite score data from the Army Classification Battery Test (ACB), are cap- tured for each...included. To broaden the scope of information for each individual, Skill Qualifying Test (SQT) scores were kept beginning in 1980 and, as of fiscal year

  13. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMES IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...

  14. THE WESTERN LAKE SUPERIOR COMPARATIVE WATERSHED FRAMEWORK: A FIELD TEST OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED GEOGRAPHICALLY-INDEPENDENT CLASSIFICATION

    EPA Science Inventory

    Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...

  15. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMED IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  16. 7 CFR 28.8 - Classification of cotton; determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of cotton; determination. 28.8 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of...

  17. 7 CFR 28.8 - Classification of cotton; determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of cotton; determination. 28.8 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of...

  18. 7 CFR 28.8 - Classification of cotton; determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of cotton; determination. 28.8 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of...

  19. 7 CFR 28.8 - Classification of cotton; determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of cotton; determination. 28.8 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of...

  20. 7 CFR 28.8 - Classification of cotton; determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of cotton; determination. 28.8 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of...

  1. The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy).

    PubMed

    Reichenbach, P; Busca, C; Mondini, A C; Rossi, M

    2014-12-01

    The spatial distribution of landslides is influenced by different climatic conditions and environmental settings including topography, morphology, hydrology, lithology, and land use. In this work, we have attempted to evaluate the influence of land use change on landslide susceptibility (LS) for a small study area located in the southern part of the Briga catchment, along the Ionian coast of Sicily (Italy). On October 1, 2009, the area was hit by an intense rainfall event that triggered abundant slope failures and resulted in widespread erosion. After the storm, an inventory map showing the distribution of pre-event and event landslides was prepared for the area. Moreover, two different land use maps were developed: the first was obtained through a semi-automatic classification of digitized aerial photographs acquired in 1954, the second through the combination of supervised classifications of two recent QuickBird images. Exploiting the two land use maps and different land use scenarios, LS zonations were prepared through multivariate statistical analyses. Differences in the susceptibility models were analyzed and quantified to evaluate the effects of land use change on the susceptibility zonation. Susceptibility maps show an increase in the areal percentage and number of slope units classified as unstable related to the increase in bare soils to the detriment of forested areas.

  2. An overview of the neuron ring model

    NASA Technical Reports Server (NTRS)

    Taber, Rod

    1991-01-01

    The Neuron Ring model employs an avalanche structure with two important distinctions at the neuron level. Each neuron has two memory latches; one traps maximum neuronal activation during pattern presentation, and the other records the time of latch content change. The latches filter short term memory. In the process, they preserve length 1 snapshots of activation theory history. The model finds utility in pattern classification. Its synaptic weights are first conditioned with sample spectra. The model then receives a test or unknown signal. The objective is to identify the sample closest to the test signal. Class decision follows complete presentation of the test data. The decision maker relies exclusively on the latch contents. Presented here is an overview of the Neuron Ring at the seminar level.

  3. Changing Patient Classification System for Hospital Reimbursement in Romania

    PubMed Central

    Radu, Ciprian-Paul; Chiriac, Delia Nona; Vladescu, Cristian

    2010-01-01

    Aim To evaluate the effects of the change in the diagnosis-related group (DRG) system on patient morbidity and hospital financial performance in the Romanian public health care system. Methods Three variables were assessed before and after the classification switch in July 2007: clinical outcomes, the case mix index, and hospital budgets, using the database of the National School of Public Health and Health Services Management, which contains data regularly received from hospitals reimbursed through the Romanian DRG scheme (291 in 2009). Results The lack of a Romanian system for the calculation of cost-weights imposed the necessity to use an imported system, which was criticized by some clinicians for not accurately reflecting resource consumption in Romanian hospitals. The new DRG classification system allowed a more accurate clinical classification. However, it also exposed a lack of physicians’ knowledge on diagnosing and coding procedures, which led to incorrect coding. Consequently, the reported hospital morbidity changed after the DRG switch, reflecting an increase in the national case mix index of 25% in 2009 (compared with 2007). Since hospitals received the same reimbursement over the first two years after the classification switch, the new DRG system led them sometimes to change patients' diagnoses in order to receive more funding. Conclusion Lack of oversight of hospital coding and reporting to the national reimbursement scheme allowed the increase in the case mix index. The complexity of the new classification system requires more resources (human and financial), better monitoring and evaluation, and improved legislation in order to achieve better hospital resource allocation and more efficient patient care. PMID:20564769

  4. Changing patient classification system for hospital reimbursement in Romania.

    PubMed

    Radu, Ciprian-Paul; Chiriac, Delia Nona; Vladescu, Cristian

    2010-06-01

    To evaluate the effects of the change in the diagnosis-related group (DRG) system on patient morbidity and hospital financial performance in the Romanian public health care system. Three variables were assessed before and after the classification switch in July 2007: clinical outcomes, the case mix index, and hospital budgets, using the database of the National School of Public Health and Health Services Management, which contains data regularly received from hospitals reimbursed through the Romanian DRG scheme (291 in 2009). The lack of a Romanian system for the calculation of cost-weights imposed the necessity to use an imported system, which was criticized by some clinicians for not accurately reflecting resource consumption in Romanian hospitals. The new DRG classification system allowed a more accurate clinical classification. However, it also exposed a lack of physicians' knowledge on diagnosing and coding procedures, which led to incorrect coding. Consequently, the reported hospital morbidity changed after the DRG switch, reflecting an increase in the national case-mix index of 25% in 2009 (compared with 2007). Since hospitals received the same reimbursement over the first two years after the classification switch, the new DRG system led them sometimes to change patients' diagnoses in order to receive more funding. Lack of oversight of hospital coding and reporting to the national reimbursement scheme allowed the increase in the case-mix index. The complexity of the new classification system requires more resources (human and financial), better monitoring and evaluation, and improved legislation in order to achieve better hospital resource allocation and more efficient patient care.

  5. Advanced eddy current test signal analysis for steam generator tube defect classification and characterization

    NASA Astrophysics Data System (ADS)

    McClanahan, James Patrick

    Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.

  6. Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco

    2017-04-01

    Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from each test set. The control dataset consist of an independent visual classification done by an expert over the whole area. The classes are (i) broadleaf, (ii) building, (iii) grass, (iv) headland access path, (v) road, (vi) sowed land, (vii) vegetable. The RF and SVM are applied to the test set. The performances of the methods are evaluated using the three following accuracy metrics: Kappa index, Classification accuracy and Classification Error. All three are calculated in three different ways: with K-fold cross validation, using the validation test set and using the full test set. The analysis indicates that SVM gets better results in terms of good scores using K-fold cross or validation test set. Using the full test set, RF achieves a better result in comparison to SVM. It also seems that SVM performs better with smaller training sets, whereas RF performs better as training sets get larger.

  7. Updating Landsat-derived land-cover maps using change detection and masking techniques

    NASA Technical Reports Server (NTRS)

    Likens, W.; Maw, K.

    1982-01-01

    The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.

  8. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  9. How to Determine Training Device Requirements and Characteristics: A Handbook for Training Developers

    DTIC Science & Technology

    1980-05-01

    AOOSagln For mIS GR&I WeC TAB Dist S *pecial UNCLASSIFIED if SECURITY CLASSIFICATION OF THIS PAGEIPAU Date Sedw0 ’ , !( ....... .. / .i r ARI 9EWPRUT I /o...parallel effort with any of the preceding steps or events in the methodology. These data will later impact the determination of training device...reviews and test and evaluations. The 2-1.3 training developer should remain abreast of these changes, Deeop assess the impact on the collected

  10. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  11. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory. [Open-Air Tests and X-Tunnel Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DUmore » use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.« less

  12. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  13. In Vivo Testing of Chemopreventive Agents Using the Dog Model of Spontaneous Prostate Carcinogenesis

    DTIC Science & Technology

    2001-03-01

    SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT...retarded tate Cancer Research Program (PC-970492, awarded to population. J Gerontol 1969;24:395-411. 19. Hayflick LH. How and why we age. Exp Gerontol

  14. Applications of Diagnostic Classification Models: A Literature Review and Critical Commentary

    ERIC Educational Resources Information Center

    Sessoms, John; Henson, Robert A.

    2018-01-01

    Diagnostic classification models (DCMs) classify examinees based on the skills they have mastered given their test performance. This classification enables targeted feedback that can inform remedial instruction. Unfortunately, applications of DCMs have been criticized (e.g., no validity support). Generally, these evaluations have been brief and…

  15. Contribution of space platforms to a ground and airborne remote-sensing programme over active Italian volcanoes

    NASA Technical Reports Server (NTRS)

    Cassinis, R.; Lechi, G. M.; Tonelli, A. M.

    1974-01-01

    ERTS-1 imagery of the volcanic areas of southern Italy was used primarily for the evaluation of space platform capabilties in the domains of regional geology, soil and rock-type classification and, more generally, to study the environment of active volcanoes. The test sites were selected and equipped primarily to monitor thermal emission, but ground truth data was also collected in other domains (reflectance of rocks, soils and vegetation). The test areas were overflown with a two channel thermal scanner, while a thermo camera was used on the ground to monitor the hot spots. The primary goal of this survey was to plot the changes in thermal emission with time in the framework of a research program for the surveillance of active volcanoes. However, another task was an evaluation of emissivity changes by comparing the outputs of the two thermal channels. These results were compared with the reflectance changes observed on multispectral ERTS-1 imagery.

  16. Documentation and Detection of Colour Changes of Bas Relieves Using Close Range Photogrammetry

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Pierdicca, R.; Sturari, M.; Colosi, F.; Orazi, R.

    2017-05-01

    The digitization of complex buildings, findings or bas relieves can strongly facilitate the work of archaeologists, mainly for in depth analysis tasks. Notwithstanding, whether new visualization techniques ease the study phase, a classical naked-eye approach for determining changes or surface alteration could bring towards several drawbacks. The research work described in these pages is aimed at providing experts with a workflow for the evaluation of alterations (e.g. color decay or surface alterations), allowing a more rapid and objective monitoring of monuments. More in deep, a pipeline of work has been tested in order to evaluate the color variation between surfaces acquired at different époques. The introduction of reliable tools of change detection in the archaeological domain is needful; in fact, the most widespread practice, among archaeologists and practitioners, is to perform a traditional monitoring of surfaces that is made of three main steps: production of a hand-made map based on a subjective analysis, selection of a sub-set of regions of interest, removal of small portion of surface for in depth analysis conducted in laboratory. To overcome this risky and time consuming process, digital automatic change detection procedure represents a turning point. To do so, automatic classification has been carried out according to two approaches: a pixel-based and an object-based method. Pixel-based classification aims to identify the classes by means of the spectral information provided by each pixel belonging to the original bands. The object-based approach operates on sets of pixels (objects/regions) grouped together by means of an image segmentation technique. The methodology was tested by studying the bas-relieves of a temple located in Peru, named Huaca de la Luna. Despite the data sources were collected with unplanned surveys, the workflow proved to be a valuable solution useful to understand which are the main changes over time.

  17. Classification of parotidectomy: a proposed modification to the European Salivary Gland Society classification system.

    PubMed

    Wong, Wai Keat; Shetty, Subhaschandra

    2017-08-01

    Parotidectomy remains the mainstay of treatment for both benign and malignant lesions of the parotid gland. There exists a wide range of possible surgical options in parotidectomy in terms of extent of parotid tissue removed. There is increasing need for uniformity of terminology resulting from growing interest in modifications of the conventional parotidectomy. It is, therefore, of paramount importance for a standardized classification system in describing extent of parotidectomy. Recently, the European Salivary Gland Society (ESGS) proposed a novel classification system for parotidectomy. The aim of this study is to evaluate this system. A classification system proposed by the ESGS was critically re-evaluated and modified to increase its accuracy and its acceptability. Modifications mainly focused on subdividing Levels I and II into IA, IB, IIA, and IIB. From June 2006 to June 2016, 126 patients underwent 130 parotidectomies at our hospital. The classification system was tested in that cohort of patient. While the ESGS classification system is comprehensive, it does not cover all possibilities. The addition of Sublevels IA, IB, IIA, and IIB may help to address some of the clinical situations seen and is clinically relevant. We aim to test the modified classification system for partial parotidectomy to address some of the challenges mentioned.

  18. Classification of right-hand grasp movement based on EMOTIV Epoc+

    NASA Astrophysics Data System (ADS)

    Tobing, T. A. M. L.; Prawito, Wijaya, S. K.

    2017-07-01

    Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.

  19. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  20. 40 CFR 164.23 - Contents of the statement of issues to accompany notice of intent to hold a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accompany notice of intent to hold a hearing. 164.23 Section 164.23 Protection of Environment ENVIRONMENTAL..., CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND OTHER HEARINGS CALLED PURSUANT TO SECTION 6... registration should be canceled or its classification changed, whether its composition is such as to warrant...

  1. 40 CFR 164.23 - Contents of the statement of issues to accompany notice of intent to hold a hearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accompany notice of intent to hold a hearing. 164.23 Section 164.23 Protection of Environment ENVIRONMENTAL..., CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND OTHER HEARINGS CALLED PURSUANT TO SECTION 6... registration should be canceled or its classification changed, whether its composition is such as to warrant...

  2. Effect of nutritional status on Tuberculin skin testing.

    PubMed

    Piñeiro, Roi; Cilleruelo, María José; García-Hortelano, Milagros; García-Ascaso, Marta; Medina-Claros, Antonio; Mellado, María José

    2013-04-01

    To evaluate Tuberculin skin test (TST) results in a population of immigrants and internationally adopted children from several geographical areas; to analyze whether nutritional status can modify TST results. This cross-sectional observational study included adopted children and immigrants evaluated in the authors' unit between January 2003 and December 2008. Children diagnosed with tuberculosis, or vaccinated with live attenuated virus 2 mo earlier, HIV-infected, chronically ill or under treatment with immunosuppressive agents were excluded. TST was considered as dependent variable. Independent variables were gender, age, geographical origin, BCG scar, nutritional status, immune status and intestinal parasitism. One thousand seventy four children were included; 69.6 % were girls. There was a BCG scar in 79 % of children. Mantoux = 0 mm was found in 84.4 %, <10 mm in 4.1 %, and ≥10 mm in 11.4 % of children. Nutrition (McLaren's classification) was normal (≥90 %) in 26.7 % of the subjects, with mild malnutrition (80-89 %) in 36 %, moderate (70-79 %) in 23.2 % and severe (≤69 %) in 14.1 %. There was no difference in TST results among different nutritional status children. The nutritional status, measured by McLaren's classification, does not changes the results of TST. McLaren's classification only grades protein-caloric malnutrition, so in authors' experience this type of malnutrition does not interfere with TST results. Implementing other nutritional parameters could help to determine whether nutritional status should be taken into account when interpreting TST results.

  3. Empirical evaluation of data normalization methods for molecular classification.

    PubMed

    Huang, Huei-Chung; Qin, Li-Xuan

    2018-01-01

    Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers-an increasingly important application of microarrays in the era of personalized medicine. In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy.

  4. Image enhancements of Landsat 8 (OLI) and SAR data for preliminary landslide identification and mapping applied to the central region of Kenya

    NASA Astrophysics Data System (ADS)

    Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.

    2017-04-01

    Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.

  5. Effects of two classification strategies on a Benthic Community Index for streams in the Northern Lakes and Forests Ecoregion

    USGS Publications Warehouse

    Butcher, Jason T.; Stewart, Paul M.; Simon, Thomas P.

    2003-01-01

    Ninety-four sites were used to analyze the effects of two different classification strategies on the Benthic Community Index (BCI). The first, a priori classification, reflected the wetland status of the streams; the second, a posteriori classification, used a bio-environmental analysis to select classification variables. Both classifications were examined by measuring classification strength and testing differences in metric values with respect to group membership. The a priori (wetland) classification strength (83.3%) was greater than the a posteriori (bio-environmental) classification strength (76.8%). Both classifications found one metric that had significant differences between groups. The original index was modified to reflect the wetland classification by re-calibrating the scoring criteria for percent Crustacea and Mollusca. A proposed refinement to the original Benthic Community Index is suggested. This study shows the importance of using hypothesis-driven classifications, as well as exploratory statistical analysis, to evaluate alternative ways to reveal environmental variability in biological assessment tools.

  6. Geospatial Method for Computing Supplemental Multi-Decadal U.S. Coastal Land-Use and Land-Cover Classification Products, Using Landsat Data and C-CAP Products

    NASA Technical Reports Server (NTRS)

    Spruce, J. P.; Smoot, James; Ellis, Jean; Hilbert, Kent; Swann, Roberta

    2012-01-01

    This paper discusses the development and implementation of a geospatial data processing method and multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products by almost two decades, assuming the availability of one cloud free Landsat scene from any season for each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, and validate the method that was applied to derive LULC products for nine dates at approximate five year intervals across a 34-year time span, using single dates of data for each classification in which forests were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-added products. Each classification's overall accuracy was assessed by comparing stratified random locations to available reference data, including higher spatial resolution satellite and aerial imagery, field survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed for all nine dates, yielding effective results regardless of season. This classification method yielded products that were used to compute LULC change products via additive GIS overlay techniques.

  7. Drug-resistant MS spasticity treatment with Sativex(®) add-on and driving ability.

    PubMed

    Freidel, M; Tiel-Wilck, K; Schreiber, H; Prechtl, A; Essner, U; Lang, M

    2015-01-01

    The aim of the present observational study was to determine the effects of a delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) oromucosal spray (Sativex(®) spray), brand name Sativex(®), indicated for drug-resistant MS spasticity, on the driving ability of treated MS patients. The study was conducted over a period of 4-6 weeks. Thirty-three MS patients with moderate to severe treatment-resistant spasticity and planned to begin add-on treatment with Sativex(®) were enrolled at three specialized MS centres in Germany. A set of five driving test procedures from a validated computerized test battery was used to evaluate the driving ability of eligible patients. Tests were performed by patients at baseline and repeated after 4-6 weeks of treatment with Sativex(®) oromucosal spray. According to German normative data, the test thresholds achieved by the general population served as a reference to allow for a fitness/unfitness to drive classification. Patients showed comparable driving test results at baseline and at final visits. Only two patients changed classification shifting from 'unfit' to drive to 'fit' and vice versa. The mean severity of spasticity, as self-reported by the patients, improved with statistical significance. Sativex(®) was generally well tolerated. Treatment of MS patients with Sativex(®) does not negatively impact on driving ability and may improve moderate to severe treatment-resistant MS spasticity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    PubMed

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  9. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  10. WND-CHARM: Multi-purpose image classification using compound image transforms

    PubMed Central

    Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.

    2008-01-01

    We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301

  11. Real-time, resource-constrained object classification on a micro-air vehicle

    NASA Astrophysics Data System (ADS)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  12. Advances in the Application of Decision Theory to Test-Based Decision Making.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…

  13. Implications of the International Classification of Functioning, Disability and Health (ICF) for Test Development and Use

    ERIC Educational Resources Information Center

    Carlson, Janet F.; Benson, Nicholas; Oakland, Thomas

    2010-01-01

    Implications of the International Classification of Functioning, Disability and Health (ICF) on the development and use of tests in school settings are enumerated. We predict increased demand for behavioural assessments that consider a person's activities, participation and person-environment interactions, including measures that: (a) address…

  14. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    ERIC Educational Resources Information Center

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  15. 9 CFR 145.23 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Terminology and classification; flocks and products. 145.23 Section 145.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... year; Provided, That an Authorized Testing Agent must blood test up to 300 birds per flock, as...

  16. 9 CFR 145.23 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Terminology and classification; flocks and products. 145.23 Section 145.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... year; Provided, That an Authorized Testing Agent must blood test up to 300 birds per flock, as...

  17. Cases of Coastal Zone Change and Land Use/Land Cover Change: a learning module that goes beyond the "how" of doing image processing and change detection to asking the "why" about what are the "driving forces" of global change.

    NASA Astrophysics Data System (ADS)

    Ford, R. E.

    2006-12-01

    In 2006 the Loma Linda University ESSE21 Mesoamerican Project (Earth System Science Education for the 21st Century) along with partners such as the University of Redlands and California State University, Pomona, produced an online learning module that is designed to help students learn critical remote sensing skills-- specifically: ecosystem characterization, i.e. doing a supervised or unsupervised classification of satellite imagery in a tropical coastal environment. And, it would teach how to measure land use / land cover change (LULC) over time and then encourage students to use that data to assess the Human Dimensions of Global Change (HDGC). Specific objectives include: 1. Learn where to find remote sensing data and practice downloading, pre-processing, and "cleaning" the data for image analysis. 2. Use Leica-Geosystems ERDAS Imagine or IDRISI Kilimanjaro to analyze and display the data. 3. Do an unsupervised classification of a LANDSAT image of a protected area in Honduras, i.e. Cuero y Salado, Pico Bonito, or Isla del Tigre. 4. Virtually participate in a ground-validation exercise that would allow one to re-classify the image into a supervised classification using the FAO Global Land Cover Network (GLCN) classification system. 5. Learn more about each protected area's landscape, history, livelihood patterns and "sustainability" issues via virtual online tours that provide ground and space photos of different sites. This will help students in identifying potential "training sites" for doing a supervised classification. 6. Study other global, US, Canadian, and European land use/land cover classification systems and compare their advantages and disadvantages over the FAO/GLCN system. 7. Learn to appreciate the advantages and disadvantages of existing LULC classification schemes and adapt them to local-level user needs. 8. Carry out a change detection exercise that shows how land use and/or land cover has changed over time for the protected area of your choice. The presenter will demonstrate the module, assess the collaborative process which created it, and describe how it has been used so far by users in the US as well as in Honduras and elsewhere via a series joint workshops held in Mesoamerica. Suggestions for improvement will be requested. See the module and related content resources at: http://resweb.llu.edu/rford/ESSE21/LUCCModule/

  18. Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen

    2016-05-01

    Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.

  19. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  20. Trends and concepts in fern classification.

    PubMed

    Christenhusz, Maarten J M; Chase, Mark W

    2014-03-01

    Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.

  1. [To represent needs of nursing care using nursing diagnoses: potentials and restrictions of the NANDA classification and ICNP].

    PubMed

    Schilder, Michael

    2005-03-01

    Nursing diagnoses represent individual reactions to existing or potential changes in one's state of health. They are result of a diagnostic process, which is part of the dynamic nursing care process in its whole. Thus, as a basis of nursing interventions diagnoses have to be proved continuously. The classification of the North American Nursing Diagnosis Association (NANDA) as well as the International Classification for Nursing Practice (ICNP) can be account to the international well-known classifications of nursing diagnoses. Comparing their structures, some fundamental differences between both classifications become obvious. While the NANDA classification represents a systematic structured body of nursing knowledge with regard to human health reactions patterns, the ICNP reflects a more comprehensive part of the nursing reality, since it also contains nursing interventions and outcomes. Until the latest changes by establishing the taxonomy II, NANDA diagnoses have primarily focused deficits. But in contrast to the diagnoses of the ICNP they also comprise etiological factors. To prove the applicability of both classifications to nursing practice, they have been applied to a case study of a female resident living in a nursing home. The results of analysis show that because of their different structures the NANDA classification and ICNP have their own possibilities and limitations in covering the resident's individual needs of nursing care. These characteristic potentials and restrictions have to be taken into account when one of the classification systems is going to be implemented into nursing practice.

  2. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DUmore » use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.« less

  3. 46 CFR 159.001-3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... part: Classification society means an organization involved in the inspection of ships and ship... addition to commercial testing laboratories, the Commandant may also accept classification societies and...

  4. The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes.

    PubMed

    Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert

    2015-07-01

    The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations. 2015 FRAME.

  5. Effect of e-learning program on risk assessment and pressure ulcer classification - A randomized study.

    PubMed

    Bredesen, Ida Marie; Bjøro, Karen; Gunningberg, Lena; Hofoss, Dag

    2016-05-01

    Pressure ulcers (PUs) are a problem in health care. Staff competency is paramount to PU prevention. Education is essential to increase skills in pressure ulcer classification and risk assessment. Currently, no pressure ulcer learning programs are available in Norwegian. Develop and test an e-learning program for assessment of pressure ulcer risk and pressure ulcer classification. Forty-four nurses working in acute care hospital wards or nursing homes participated and were assigned randomly into two groups: an e-learning program group (intervention) and a traditional classroom lecture group (control). Data was collected immediately before and after training, and again after three months. The study was conducted at one nursing home and two hospitals between May and December 2012. Accuracy of risk assessment (five patient cases) and pressure ulcer classification (40 photos [normal skin, pressure ulcer categories I-IV] split in two sets) were measured by comparing nurse evaluations in each of the two groups to a pre-established standard based on ratings by experts in pressure ulcer classification and risk assessment. Inter-rater reliability was measured by exact percent agreement and multi-rater Fleiss kappa. A Mann-Whitney U test was used for continuous sum score variables. An e-learning program did not improve Braden subscale scoring. For pressure ulcer classification, however, the intervention group scored significantly higher than the control group on several of the categories in post-test immediately after training. However, after three months there were no significant differences in classification skills between the groups. An e-learning program appears to have a greater effect on the accuracy of pressure ulcer classification than classroom teaching in the short term. For proficiency in Braden scoring, no significant effect of educational methods on learning results was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  7. International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance.

    PubMed

    Schuld, Christian; Franz, Steffen; Brüggemann, Karin; Heutehaus, Laura; Weidner, Norbert; Kirshblum, Steven C; Rupp, Rüdiger

    2016-09-01

    Prospective cohort study. Comparison of the classification performance between the worksheet revisions of 2011 and 2013 of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Ongoing ISNCSCI instructional courses of the European Multicenter Study on Human Spinal Cord Injury (EMSCI). For quality control all participants were requested to classify five ISNCSCI cases directly before (pre-test) and after (post-test) the workshop. One hundred twenty-five clinicians working in 22 SCI centers attended the instructional course between November 2011 and March 2015. Seventy-two clinicians completed the post-test with the 2011 revision of the worksheet and 53 with the 2013 revision. Not applicable. The clinicians' classification performance assessed by the percentage of correctly determined motor levels (ML) and sensory levels, neurological levels of injury (NLI), ASIA Impairment Scales and zones of partial preservations. While no group differences were found in the pre-tests, the overall performance (rev2011: 92.2% ± 6.7%, rev2013: 94.3% ± 7.7%; P = 0.010), the percentage of correct MLs (83.2% ± 14.5% vs. 88.1% ± 15.3%; P = 0.046) and NLIs (86.1% ± 16.7% vs. 90.9% ± 18.6%; P = 0.043) improved significantly in the post-tests. Detailed ML analysis revealed the largest benefit of the 2013 revision (50.0% vs. 67.0%) in a case with a high cervical injury (NLI C2). The results from the EMSCI ISNCSCI post-tests show a significantly better classification performance using the revised 2013 worksheet presumably due to the body-side based grouping of myotomes and dermatomes and their correct horizontal alignment. Even with these proven advantages of the new layout, the correct determination of MLs in the segments C2-C4 remains difficult.

  8. Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2015.

    PubMed

    Janda, J Michael

    2016-10-01

    A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate and rapid reporting and communication regarding infectious agents of clinical significance. Microbial taxonomy in the age of molecular diagnostics and phylogenetics creates changes in taxonomy at a rapid rate further complicating this process. This update focuses on the description of new species and classification changes proposed in 2015. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug

    2013-05-15

    Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less

  10. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  11. Coping with Changes in International Classifications of Sectors and Occupations: Application in Skills Forecasting. Research Paper No 43

    ERIC Educational Resources Information Center

    Kvetan, Vladimir, Ed.

    2014-01-01

    Reliable and consistent time series are essential to any kind of economic forecasting. Skills forecasting needs to combine data from national accounts and labour force surveys, with the pan-European dimension of Cedefop's skills supply and demand forecasts, relying on different international classification standards. Sectoral classification (NACE)…

  12. CON4EI: EpiOcular™ Eye Irritation Test (EpiOcular™ EIT) for hazard identification and labelling of eye irritating chemicals.

    PubMed

    Kandarova, H; Letasiova, S; Adriaens, E; Guest, R; Willoughby, J A; Drzewiecka, A; Gruszka, K; Alépée, Nathalie; Verstraelen, Sandra; Van Rompay, An R

    2018-06-01

    Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI project was to develop tiered testing strategies for eye irritation assessment. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different methods. Here, the results obtained with the EpiOcular™ Eye Irritation Test (EIT), adopted as OECD TG 492, are shown. The primary aim of this study was to evaluate of the performance of the test method to discriminate between chemicals not requiring classification for serious eye damage/eye irritancy (No Category) and chemicals requiring classification and labelling. In addition, the predictive capacity in terms of in vivo drivers of classification (i.e. corneal opacity, conjunctival redness and persistence at day 21) was investigated. EpiOcular™ EIT achieved a sensitivity of 97%, a specificity of 87% and accuracy of 95% and also confirmed its excellent reproducibility (100%) from the original validation. The assay was applicable to all chemical categories tested in this project and its performance was not limited to the particular driver of the classification. In addition to the existing prediction model for dichotomous categorization, a new prediction model for Cat 1 is suggested. Copyright © 2017. Published by Elsevier Ltd.

  13. A Bayesian state-space approach for damage detection and classification

    NASA Astrophysics Data System (ADS)

    Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.

    2017-11-01

    The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.

  14. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    NASA Astrophysics Data System (ADS)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  15. Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover

    NASA Astrophysics Data System (ADS)

    de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio

    2017-07-01

    Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.

  16. Unraveling cognitive traits using the Morris water maze unbiased strategy classification (MUST-C) algorithm.

    PubMed

    Illouz, Tomer; Madar, Ravit; Louzon, Yoram; Griffioen, Kathleen J; Okun, Eitan

    2016-02-01

    The assessment of spatial cognitive learning in rodents is a central approach in neuroscience, as it enables one to assess and quantify the effects of treatments and genetic manipulations from a broad perspective. Although the Morris water maze (MWM) is a well-validated paradigm for testing spatial learning abilities, manual categorization of performance in the MWM into behavioral strategies is subject to individual interpretation, and thus to biases. Here we offer a support vector machine (SVM) - based, automated, MWM unbiased strategy classification (MUST-C) algorithm, as well as a cognitive score scale. This model was examined and validated by analyzing data obtained from five MWM experiments with changing platform sizes, revealing a limitation in the spatial capacity of the hippocampus. We have further employed this algorithm to extract novel mechanistic insights on the impact of members of the Toll-like receptor pathway on cognitive spatial learning and memory. The MUST-C algorithm can greatly benefit MWM users as it provides a standardized method of strategy classification as well as a cognitive scoring scale, which cannot be derived from typical analysis of MWM data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. All Rural Places Are Not Created Equal: Revisiting the Rural Mortality Penalty in the United States

    PubMed Central

    2014-01-01

    Objectives. I investigated mortality disparities between urban and rural areas by measuring disparities in urban US areas compared with 6 rural classifications, ranging from suburban to remote locales. Methods. Data from the Compressed Mortality File, National Center for Health Statistics, from 1968 to 2007, was used to calculate age-adjusted mortality rates for all rural and urban regions by year. Criteria measuring disparity between regions included excess deaths, annual rate of change in mortality, and proportion of excess deaths by population size. I used multivariable analysis to test for differences in determinants across regions. Results. The rural mortality penalty existed in all rural classifications, but the degree of disparity varied considerably. Rural–urban continuum code 6 was highly disadvantaged, and rural–urban continuum code 9 displayed a favorable mortality profile. Population, socioeconomic, and health care determinants of mortality varied across regions. Conclusions. A 2-decade long trend in mortality disparities existed in all rural classifications, but the penalty was not distributed evenly. This constitutes an important public health problem. Research should target the slow rates of improvement in mortality in the rural United States as an area of concern. PMID:25211763

  18. The Ocean Colour Climate Change Initiative: III. A Round-Robin Comparison on In-Water Bio-Optical Algorithms

    NASA Technical Reports Server (NTRS)

    Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike; hide

    2013-01-01

    Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semianalytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.

  19. Comparative Analysis of RF Emission Based Fingerprinting Techniques for ZigBee Device Classification

    DTIC Science & Technology

    quantify the differences invarious RF fingerprinting techniques via comparative analysis of MDA/ML classification results. The findings herein demonstrate...correct classification rates followed by COR-DNA and then RF-DNA in most test cases and especially in low Eb/N0 ranges, where ZigBee is designed to operate.

  20. Classification Behavior in Children Thirty-Six Months of Age.

    ERIC Educational Resources Information Center

    Shimada, Shoko; Sano, Ryogoro

    The purposes of this study were to examine the development of classification ability in 36 month olds and to clarify the positive relationship between classification ability and general cognitive development. Subjects, 16 Japanese children (8 males, 8 females), were individually tested by the use of 12 colored pictures of animals and vehicles.…

  1. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  2. Assessing the Effectiveness of Statistical Classification Techniques in Predicting Future Employment of Participants in the Temporary Assistance for Needy Families Program

    ERIC Educational Resources Information Center

    Montoya, Isaac D.

    2008-01-01

    Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…

  3. A Lifespan Study of Classification Preference.

    ERIC Educational Resources Information Center

    Pearce, Kathy A.; Denney, Nancy Wadsworth

    Previous research in classification preference has focused on only a few selected age groups. To investigate the classification preferences of individuals from early childhood through old age in the same study, 144 individuals between the ages of 4 and 70 completed a revised version of the Conceptual Styles Test. Analysis of results showed that…

  4. 78 FR 79423 - Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    .... Evaluation and Testing CSA Group with the manufacturer's assistance prepares a motor control list...-0053] Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...: This notice announces receipt of a petition from CSA Group (CSA) seeking classification as a nationally...

  5. A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area

    USGS Publications Warehouse

    McCabe, Gregory J.

    1990-01-01

    A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.

  6. [Clinical Implications of Changes in Child Psychiatry in the DSM-5. Strengths and Weaknesses of the Changes].

    PubMed

    Botero-Franco, Diana; Palacio-Ortíz, Juan David; Arroyave-Sierra, Pilar; Piñeros-Ortíz, Sandra

    2016-01-01

    The Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International Statistical Classification of Diseases and related health problems (ICD) integrate the diagnostic criteria commonly used in psychiatric practice, but the DSM-IV-TR was insufficient for current clinical work. The DSM-5 was first made public in May at the Congress of the American Psychiatric Association, and it includes changes to some aspects of Child Psychiatry, as many of the conditions that were at the beginning in chapter of infancy, childhood and adolescence disorders have been transferred to other chapters and there are new diagnostic criteria or new terms are added. It is therefore important to provide it to Psychiatrists who attend children in order to assess the changes they will be facing in the nomenclature and classification in pursuit of a better classification of the childhood psychopathology. Copyright © 2016. Publicado por Elsevier España.

  7. A Comparative Review of North American Tundra Delineations

    NASA Technical Reports Server (NTRS)

    Silver, Kirk C.; Carroll, Mark

    2013-01-01

    Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.

  8. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  9. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  10. HEp-2 cell image classification method based on very deep convolutional networks with small datasets

    NASA Astrophysics Data System (ADS)

    Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping

    2017-07-01

    Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.

  11. Verification and classification bias interactions in diagnostic test accuracy studies for fine-needle aspiration biopsy.

    PubMed

    Schmidt, Robert L; Walker, Brandon S; Cohen, Michael B

    2015-03-01

    Reliable estimates of accuracy are important for any diagnostic test. Diagnostic accuracy studies are subject to unique sources of bias. Verification bias and classification bias are 2 sources of bias that commonly occur in diagnostic accuracy studies. Statistical methods are available to estimate the impact of these sources of bias when they occur alone. The impact of interactions when these types of bias occur together has not been investigated. We developed mathematical relationships to show the combined effect of verification bias and classification bias. A wide range of case scenarios were generated to assess the impact of bias components and interactions on total bias. Interactions between verification bias and classification bias caused overestimation of sensitivity and underestimation of specificity. Interactions had more effect on sensitivity than specificity. Sensitivity was overestimated by at least 7% in approximately 6% of the tested scenarios. Specificity was underestimated by at least 7% in less than 0.1% of the scenarios. Interactions between verification bias and classification bias create distortions in accuracy estimates that are greater than would be predicted from each source of bias acting independently. © 2014 American Cancer Society.

  12. Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts' Law test.

    PubMed

    Scheme, Erik J; Englehart, Kevin B

    2013-07-01

    When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.

  13. Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.

    2017-05-01

    A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.

  14. Why is the Diagnostic and Statistical Manual of Mental Disorders so hard to revise? Path-dependence and "lock-in" in classification.

    PubMed

    Cooper, Rachel

    2015-06-01

    The latest edition of the Diagnostic and Statistical Manual of Mental Disorders, the D.S.M.-5, was published in May 2013. In the lead up to publication, radical changes to the classification were anticipated; there was widespread dissatisfaction with the previous edition and it was accepted that a "paradigm shift" might be required. In the end, however, and despite huge efforts at revision, the published D.S.M.-5 differs far less than originally envisaged from its predecessor. This paper considers why it is that revising the D.S.M. has become so difficult. The D.S.M. is such an important classification that this question is worth asking in its own right. The case of the D.S.M. can also serve as a study for considering stasis in classification more broadly; why and how can classifications become resistant to change? I suggest that classifications like the D.S.M. can be thought of as forming part of the infrastructure of science, and have much in common with material infrastructure. In particular, as with material technologies, it is possible for "path dependent" development to cause a sub-optimal classification to become "locked in" and hard to replace. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fatigue Damage Assessment Leveraging Nondestructive Evaluation Data

    NASA Astrophysics Data System (ADS)

    Mazur, K.; Wisner, B.; Kontsos, A.

    2018-05-01

    Fatigue in materials depends on several microstructural parameters. The length and time scales involved in such processes have been investigated by characterization methods that target microstructural effects or that rely on specimen-level observations. Combinations of in situ and ex situ techniques are also used to correlate microstructural changes to bulk properties. We present herein an effort to directly link local changes with specimen-level fatigue damage assessment. To achieve this goal, grain-scale observations in an aluminum alloy are linked with deformation measurements made by digital image correlation and with acoustic emission monitoring obtained from inside the scanning electron microscope. Damage assessment is attempted using a data-processing framework that involves noise removal, data reduction, and classification. The results demonstrate that nondestructive evaluation combined with small-scale testing can provide a means for fatigue damage assessment applicable to a broad range of materials and testing conditions.

  16. Intervention for an Adolescent With Cerebral Palsy During Period of Accelerated Growth.

    PubMed

    Reubens, Rebecca; Silkwood-Sherer, Debbie J

    2016-01-01

    The purpose of this case report was to describe changes in body functions and structures, activities, and participation after a biweekly 10-week program of home physical therapy and hippotherapy using a weighted compressor belt. A 13-year-old boy with spastic diplegic cerebral palsy, Gross Motor Function Classification System level II, was referred because of accelerated growth and functional impairments that limited daily activities. The Modified Ashworth Scale, passive range of motion, 1-Minute Walk Test, Timed Up and Down Stairs, Pediatric Balance Scale, Pediatric Evaluation of Disability Inventory Computer Adaptive Test, and Dimensions of Mastery Questionnaire 17 were examined at baseline, 5, and 10 weeks. Data at 5 and 10 weeks demonstrated positive changes in passive range of motion, balance, strength, functional activities, and motivation, with additional improvements in endurance and speed after 10 weeks. This report reveals enhanced body functions and structures and activities and improved participation and motivation.

  17. 7 CFR 28.902 - Director.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Administration § 28.902... Administrator may require in enforcing the regulations in this subpart. Classification and Market News Services ...

  18. 7 CFR 28.902 - Director.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Administration § 28.902... Administrator may require in enforcing the regulations in this subpart. Classification and Market News Services ...

  19. 7 CFR 28.902 - Director.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Administration § 28.902... Administrator may require in enforcing the regulations in this subpart. Classification and Market News Services ...

  20. 7 CFR 28.902 - Director.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Administration § 28.902... Administrator may require in enforcing the regulations in this subpart. Classification and Market News Services ...

Top