Science.gov

Sample records for channel antikaon-nucleon system

  1. Three-Body Antikaon-Nucleon Systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, N. V.

    2017-01-01

    The paper contains a review of the exact or accurate results achieved in the field of the three-body antikaon-nucleon physics. Different states and processes in bar{K}NN and bar{K}bar{K}N systems are considered. In particular, quasi-bound states in K^- pp and K^- K^- p systems were investigated together with antikaonic deuterium atom. Near-threshold scattering of antikaons on deuteron, including the K^- d scattering length, and applications of the scattering amplitudes are also discussed. All exact three-body results were calculated using some form of Faddeev equations. Different versions of bar{K}N, {\\varSigma }N, bar{K}bar{K}, and NN potentials, specially constructed for the calculations, allowed investigation of the dependence of the three-body results on the two-body input. Special attention is paid to the antikaon-nucleon interaction, being the most important for the three-body systems. Approximate calculations, performed additionally to the exact ones, demonstrate accuracy of the commonly used approaches.

  2. A Cloudy Quark Bag Model of S, P, and D wave interactions for the coupled channel antikaon-nucleon system

    SciTech Connect

    He, Guangliang.

    1992-05-15

    The Cloudy Quark Bag Model is extended from S-wave to P- and D-wave. The parameters of the model are determined by K{sup {minus}}p scattering cross section data, K{sup {minus}}p {yields}{Sigma}{pi}{pi}{pi} production data, K{sup {minus}}p threshold branching ratio data, and K{sup {minus}}p {yields}{Lambda}{pi}{pi}{pi} production data. The resonance structure of the {Lambda}(1405), {Sigma}(1385), and {Lambda}(1520) are studied in the model. The shift and width of kaonic hydrogen are calculated using the model.

  3. A Cloudy Quark Bag Model of S, P, and D wave interactions for the coupled channel antikaon-nucleon system

    SciTech Connect

    He, Guangliang

    1992-05-15

    The Cloudy Quark Bag Model is extended from S-wave to P- and D-wave. The parameters of the model are determined by K-p scattering cross section data, K-p →Σπππ production data, K-p threshold branching ratio data, and K-p →Λπππ production data. The resonance structure of the Λ(1405), Σ(1385), and Λ(1520) are studied in the model. The shift and width of kaonic hydrogen are calculated using the model.

  4. Lattice QCD evidence that the Λ(1405) resonance is an antikaon-nucleon molecule.

    PubMed

    Hall, Jonathan M M; Kamleh, Waseem; Leinweber, Derek B; Menadue, Benjamin J; Owen, Benjamin J; Thomas, Anthony W; Young, Ross D

    2015-04-03

    For almost 50 years the structure of the Λ(1405) resonance has been a mystery. Even though it contains a heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a standard quark-model structure is also admissible. Although the intervening years have seen considerable effort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that the strange magnetic form factor of the Λ(1405) vanishes, signaling the formation of an antikaon-nucleon molecule. Together with a Hamiltonian effective-field-theory model analysis of the lattice QCD energy levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This result clarifies that not all states occurring in nature can be described within a simple quark model framework and points to the existence of exotic molecular meson-nucleon bound states.

  5. A three channel telemetry system

    NASA Technical Reports Server (NTRS)

    Lesho, Jeffery C.; Eaton, Harry A. C.

    1993-01-01

    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.

  6. Multiple channel data acquisition system

    DOEpatents

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  7. Multiple channel data acquisition system

    DOEpatents

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  8. Spiking neural P systems with multiple channels.

    PubMed

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. KATP Channels in the Cardiovascular System

    PubMed Central

    Foster, Monique N.; Coetzee, William A.

    2015-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852

  10. KATP Channels in the Cardiovascular System.

    PubMed

    Foster, Monique N; Coetzee, William A

    2016-01-01

    KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. Copyright © 2016 the American Physiological Society.

  11. Studying Ionic Channels as Physical Systems

    NASA Astrophysics Data System (ADS)

    Eisenberg, Bob

    2000-03-01

    Ionic channels are proteins with holes down their middle that act as gatekeepers for cells by controlling flow of ions across otherwise insulating membranes. Ionic channels are a large class of proteins of great biological/clinical importance, investigated in hundreds of laboratories every day. The techniques of molecular biology allow channel proteins to be studied easily one molecule at a time, with knowledge and control of the location of charges of the protein in several favorable cases. Once open, channels have simple unchanging structure. Ionic channels are a biological system of considerable importance that can be studied as a physical system of known structure. The natural function of channels is to pass current, driven by gradients of concentration and electrical potential across the membrane. Ions diffuse in electric fields created by the protein and neighboring charges. A simple mean field theory of electrostatics and electrodiffusion using Poisson and Nernst-Planck (diffusion) equations fits a wide range of data from many channel types, provided the protein is described as a distribution of fixed charge, not as a fixed profile of potential or as rate constants. These PNP equations can be generalized to deal with chemical specificity and selectivity. Some ionic channels preferentially conduct a particular type of ion (e.g., Ca) even in the presence of large excess of other ions. If ions and charges of the active site of the channel are described as spheres, using the mean spherical approximation of physical chemistry, the excluded volume of the ions and active site account quantitatively for the excess free energy and thus selectivity of the channel. The PNP equations are nearly the Poisson drift diffusion equations of semiconductor physics. They are a nonequilibrium and highly nonlinear system, easily solved by Gummel iteration, that describe (with one set of parameters) a variety of different physical devices. They also describe ionic channels.

  12. BK Channels in the Central Nervous System

    PubMed Central

    Contet, C.; Goulding, S. P.; Kuljis, D. A.; Barth, A. L.

    2016-01-01

    Large conductance Ca2+- and voltage-activated K+ (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca2+ concentrations. In neurons, they regulate the timing and duration of K+ influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction. PMID:27238267

  13. Multi-channel automotive night vision system

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  14. Multi-channel gas-delivery system

    SciTech Connect

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  15. A multi-channel waveform digitizer system

    SciTech Connect

    Bieser, F.; Muller, W.F.J. )

    1990-04-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus.

  16. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    PubMed

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  17. Channel simulation for optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is reported for simulating the signal fading that will be experienced by typical optical communication systems. The desired irradiance or amplitude fading statistics can be simulated by incorporating a linearized optical modulator subsystem between the transmitter and receiver. This technique has been implemented in the design and construction of a laboratory channel simulator. The design of the processing electronics is discussed along with the results of tests performed for each mode of operation.

  18. Single-channel prototype terahertz endoscopic system

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil; Giles, Robert

    2014-08-01

    We demonstrate the design and development of an innovative single-channel terahertz (THz) prototype endoscopic imaging system based on flexible metal-coated THz waveguides and a polarization specific detection technique. The continuous-wave (CW) THz imaging system utilizes a single channel to transmit and collect the reflected intrinsic THz signal from the sample. Since the prototype system relies on a flexible waveguide assembly that is small enough in diameter, it can be readily integrated with a conventional optical endoscope. This study aims to show the feasibility of waveguide enabled THz imaging. We image various objects in transmission and reflection modes. We also image normal and cancerous colonic tissues in reflectance mode using a polarization specific imaging technique. The resulting cross-polarized THz reflectance images showed contrast between normal and cancerous colonic tissues at 584 GHz. The level of contrast observed using endoscopic imaging correlates well with contrast levels observed in ex vivo THz reflectance studies of colon cancer. This indicates that the single-channel flexible waveguide-based THz endoscope presented here represents a significant step forward in clinical endoscopic application of THz technology to aid in in vivo cancer screening.

  19. Multi-channel medical imaging system

    SciTech Connect

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  20. Multi-channel medical imaging system

    SciTech Connect

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  1. 16. VIEW NORTH FROM SWINGSPAN DECK, CHANNEL OPEN, FENDER SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW NORTH FROM SWING-SPAN DECK, CHANNEL OPEN, FENDER SYSTEM AND ABUTMENT ON CHANNEL END OF NORTHERN FIXED SPAN; new bridge located on right - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  2. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  3. The Discovery Channel Telescope optical coating system

    NASA Astrophysics Data System (ADS)

    Marshall, Heather K.; Ash, Gary S.; Parsley, William F.

    2010-07-01

    The Discovery Channel Telescope (DCT) is a project of Lowell Observatory, undertaken with support from Discovery Communications, Inc., to design and construct a 4-meter class telescope and support facility on a site approximately 40 miles southeast of Flagstaff, AZ. Lowell Observatory contracted with Dynavac of Hingham, MA to design and build an optical coating system for the DCT optics. The DCT Optical Coating System includes a mechanical roughing pump, two high-vacuum cryogenic pumps, a Meissner trap, evaporative filament aluminum deposition system, LabView software and PLC-based control system, and all ancillary support equipment. The system was installed at the site and acceptance testing was completed in October 2009. The Optical Coating System achieved near perfect reflectivity performance, thickness uniformity of 1000 angstroms +/-10%, and adhesion conforming to MIL-F-48616, Section 4.6.8.1. This paper discusses the design and analysis of the coating system, the process of transportation and assembly as well as testing results.

  4. A 1000+ channel bionic communication system.

    PubMed

    Schulman, Joseph H; Mobley, J Phil; Wolfe, James; Stover, Howard; Krag, Adrian

    2006-01-01

    The wireless electronic nervous system interface known as the functional electrical stimulation-battery powered bion system is being developed at the Alfred Mann Foundation. It contains a real-time propagated wave micro-powered multichannel communication system. This system is designed to send bi-directional messages between an external master controller unit (MCU), and each one of a group of injectable stimulator-sensor battery powered bion implants (BPB). The system is capable of communicating in each direction about 90 times per second using a structure of 850 time slots within a repeating 11 millisecond time window. The system's total Time Division Multiple Access (TDMA) communication capability is about 77,000 two-way communications per second on a single 5 MHz wide radio channel. Each time slot can be used by one BPB, or shared alternately by two or more BPBs. Each bidirectional communication consists of a 15 data bit message sent from the MCU sequentially to each BPB and 10 data bit message sent sequentially from each BPB to the MCU. Redundancy bits are included to provide error detection and correction. This communication system is designed to draw only a few microamps from the 3.6 volt, 3.0 mAHr lithium ion (LiIon) battery contained in each BPB, and the majority of the communications circuitry is contained within a 1.4x5 mm integrated circuit.

  5. Multiple channel optical data acquisition system

    DOEpatents

    Fasching, G.E.; Goff, D.R.

    1985-02-22

    A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

  6. Channel estimation for OFDM in mobile communication systems

    NASA Astrophysics Data System (ADS)

    Zheng, Kan; Zeng, Guoyan; Wang, Wenbo

    2004-04-01

    Orthogonal Frequency Division Multiplexing (OFDM)is one of the best candidates for the future mobile communication systems. This paper analyzes channel estimation algorithms for OFDM systems not only for the downlink but also for the uplink. With reasonable constraint and well-designed preambles for each user, the DFT-based uplink channel estimation algorithm on the uplink can achieve good estimation accuracy without sacrificing much system capacity. Computer simulation demonstrates effectiveness of channel estimation algorithms and conclusion is followed.

  7. From natural to bioassisted and biomimetic artificial water channel systems.

    PubMed

    Barboiu, Mihail; Gilles, Arnaud

    2013-12-17

    Within biological systems, natural channels and pores transport metabolites across the cell membranes. Researchers have explored artificial ion-channel architectures as potential mimics of natural ionic conduction. All these synthetic systems have produced an impressive collection of alternative artificial ion-channels. Amazingly, researchers have made far less progress in the area of synthetic water channels. The development of synthetic biomimetic water channels and pores could contribute to a better understanding of the natural function of protein channels and could offer new strategies to generate highly selective, advanced water purification systems. Despite the imaginative work by synthetic chemists to produce sophisticated architectures that confine water clusters, most synthetic water channels have used natural proteins channels as the selectivity components, embedded in the diverse arrays of bioassisted artificial systems. These systems combine natural proteins that present high water conductance states under natural conditions with artificial lipidic or polymeric matrixes. Experimental results have demonstrated that natural biomolecules can be used as bioassisted building blocks for the construction of highly selective water transport through artificial membranes. A next step to further the potential of these systems was the design and construction of simpler compounds that maintain the high conduction activity obtained with natural compounds leading to fully synthetic artificial biomimetic systems. Such studies aim to use constitutional selective artificial superstructures for water/proton transport to select functions similar to the natural structures. Moving to simpler water channel systems offers a chance to better understand mechanistic and structural behaviors and to uncover novel interactive water-channels that might parallel those in biomolecular systems. This Account discusses the incipient development of the first artificial water channels

  8. Role of TRP channels in the cardiovascular system.

    PubMed

    Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia

    2015-02-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  9. Role of TRP channels in the cardiovascular system

    PubMed Central

    Yue, Zhichao; Xie, Jia; Yu, Albert S.; Stock, Jonathan; Du, Jianyang

    2014-01-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca2+-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca2+ entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. PMID:25416190

  10. TRPV1 channels in cardiovascular system: A double edged sword?

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Apart from modulating nociception, there is vital role of TRPV1 channels in modulating atherosclerosis, congestive heart failure, systemic hypertension, pulmonary hypertension, hemorrhagic shock and vascular remodeling. TRPV1 channel activation has shielding effect against the development of atherosclerosis and systemic hypertension. TRPV1 channel activation alleviates the formation of atherosclerotic lesions via increasing the expression of cholesterol efflux regulatory protein, UCP 2 and enhancing autophagy. Furthermore, activation of these channels enhances Na(+) excretion and NO release to reduce the blood pressure. TRPV1 channel activation in the cardiac sensory neurons and subsequent CGRP release reduces ischemia-reperfusion injury. Activation of these channels during conditioning enhances CGRP and SP release from the sensory nerve fibers innervating the heart to induce cardioprotection. However, activation of these channels may elicit detrimental effects in pulmonary hypertension, hemorrhage and vascular remodeling. Activation of TRPV1 channels enhances smooth muscle cell proliferation to promote pulmonary hypertension. Moreover, TRPV1 channel inhibition reduces massive catecholamine release, improves survival during hemorrhage. Activation of these channels enhances vascular remodeling via enhancing NO release. Furthermore, dual role of TRPV1 channels has been reported in the perpetuation of congestive heart failure. On one hand, TRPV1 channel activation increases the expression of UCP2, PPAR- δ and mitochondrial sirtuin 3 to decrease oxidative stress and reduce heart injury. On the other hand, activation of these channels may enhance the expression of hypertrophic fibrotic proteins viz. GATA4, MMP to promote cardiac fibrosis. The present review discusses the dual role of activation of TRPV1 channels in diseases associated with cardiovascular system.

  11. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  12. Energy, time, and channel evolution in catastrophically disturbed fluvial systems

    USGS Publications Warehouse

    Simon, A.

    1992-01-01

    Specific energy is shown to decrease nonlinearly with time during channel evolution and provides a measure of reductions in available energy at the channel bed. Data from two sites show convergence towards a minimum specific energy with time. Time-dependent reductions in specific energy at a point act in concert with minimization of the rate of energy dissipation over a reach during channel evolution as the fluvial systems adjust to a new equilibrium.

  13. The new secondary channel control system at TRIUMF

    NASA Astrophysics Data System (ADS)

    Keitel, R.; Bishop, D.; Dale, D.; England, N.; Harrison, D.

    1990-08-01

    The control of the secondary channels at TRIUMF has been decentralized. Each channel is now controlled through a single CAMAC crate from an IBM PC in the experimental counting room. Intelligent motor controllers were developed to replace the ageing slit control system. Advanced features of the control software package TICS, such as computer optimization of channel parameters and high-voltage conditioning of the de separators, are described.

  14. Channel cooperation for anti-occlusion visible light communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-10-01

    The need to exchange data wirelessly has increased as the growth of the number of mobile devices. Visible light communication (VLC) is a promising technology to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in VLC system. In order to solve the problem, an anti-occlusion VLC system has been proposed in this article. In this VLC system, we propose the channel cooperative selection mechanism, which is based on the best-response dynamics and best response strategies of the game theory. This mechanism uses bit error ratio (BER) as the utility function to optimize system performance. In addition, the system provides three candidate communication channels, including direct channel, indirect channel, and mixed channel, to active users who will select the optimal communication channel. Moreover, the anti-occlusion VLC system has many application scenarios, such as the office, which has practical significance. For verifying the validity of the proposed mechanism, we accomplish the simulation results in terms of BER and throughput in different communication cases. It is demonstrated that the proposed channel cooperative selection mechanism in VLC systems offers superior performance in environment of obstructions.

  15. TRP channels in the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca2+ and Mg2+, respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established. PMID:20932260

  16. A unique modulation system for two channel data transmission

    NASA Technical Reports Server (NTRS)

    Melrose, B. T.

    1972-01-01

    A simple low cost system is reported for the telemetry of information from meteorological rocket payloads including parachute borne systems. It uses S- or L-band microwave links with low cost oscillator type transmitters. An extension of this system to transmit two channels of data simultaneously by standard time and frequency multiplexing techniques as a sampled pulse is described. One channel is represented by the pulse repetition rate while the other channel is represented by the instantaneous duty cycle of the pulse train.

  17. Channels

    NASA Image and Video Library

    2014-04-29

    Two channels are visible in this image from NASA 2001 Mars Odyssey spacecraft . The smaller one near the bottom did not carve as deeply as the larger channel at the top. The channel near the top of the image is near the origin of Mamers Valles.

  18. Channel Modelling and Characterization of Mobile Satellite Communication Systems

    NASA Astrophysics Data System (ADS)

    Mohammed, Abbas; Seun, Ajayi; Yang, Zhe; Erman, Maria; Hult, Tommy

    2009-03-01

    Reliable characterization of the propagation environment and channel modelling of mobile satellite communication systems is necessary in order to provide better quality of service and efficient design of these systems. In this paper, the channel impairments affecting the performance and an overview of the satellite channel models are presented. The statistical distributions of the received signal that can be used to characterize the dynamic nature of these propagation channels are also presented. The main modelling parameters are investigated and simulation results show that the bit error rate (BER) performance is predominantly affected by the shadowing factor. Finally, in order to further test the channel models and the effect of the propagation environment, we investigate a novel application of using satellite diversity in conjunction with compact MIMO (multiple-input multiple-output) antenna array configurations in order to enhance the capacity of satellite communication links.

  19. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  20. Design and performance of the LANL 158-channel magnetoencephalography system

    SciTech Connect

    Matlachov, A. N.; Kraus, Robert H., Jr.; Espy, M. A.; Best, E. D.; Briles, M. Carolyn; Raby, E. Y.; Flynn, E. R.

    2002-01-01

    Design and performance for a recently completed whole-head magnetoencephalography (MEG) system using a superconducting imaging-surface (SIS) surrounding an array of SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. The SIS images nearby sources while shields sensors from ambient magnetic noise. The shielding factor depends on magnetometer position and orientation. Typical shielding values of 200 in central sulcus area have been observed. Nine reference channels form three vector magnetometers, which are placed outside SIS. Signal channels consist of 149 SQUID magnetometers with 0.84nT/{Phi}{sub 0} field sensitivity and less then 3 fT/{radical}Hz noise. Typical SQUID - room temperature separations are about 20mm in the cooled state. Twelve 16-channel flux-lock loop units are connected to two 96-channel control units allowing up to 192 total SQUID channels. The control unit includes signal conditioning circuits as well as system test and control circuits. After conditioning all signals are fed to 192-channel, 24-bit data acquisition system capable of sampling up to 48kSa/sec/channel. The SIS-MEG system enables high-quality human functional brain data to be recorded in a one-layer magnetically shielded room.

  1. Optimization and characterization of a fibre channel switching system

    SciTech Connect

    Weber, M.

    1994-04-01

    Fibre Channel, as defined in the ANSI standard X3T9.3, is an emerging technology in high speed data communications and has become the choice of many organizations for their future data networking needs. The system tested is a distributed three stage switching system based on the Fibre Channel Standard. Testing and Optimization of the three stage switching system is necessary to characterize the performance of the prototype system before a production system is implemented. This paper presents a discussion of optimization techniques and achieved performance numbers under different conditions as well as a comparison to a single stage switching system.

  2. Three-channel telemetry system with optical interface

    NASA Astrophysics Data System (ADS)

    Lesho, Jeffrey C.; Eaton, Harry A.

    1994-10-01

    An optical interface was incorporated into a three channel telemetry device to allow for communication to a packaged telemeter. Information transmitted on the optical link includes calibration parameters and commands to program the operation of the telemeter. The optical ink allows calibration information to be programmed into a telemeter, without the need for a bio-compatible electrical connection. The optical link was designed to completely reside on an integrated circuit chip. One of the three channels of the telemeter is dedicated to temperature measurement, while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The calibration information that is programmed into the telemeter is retrieved by time division multiplexing it with one of the generic channels.

  3. Note: optical receiver system for 152-channel magnetoencephalography.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  4. Note: Optical receiver system for 152-channel magnetoencephalography

    SciTech Connect

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-15

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  5. Power Control of Turbo Coded System in Lognormal Shadowing Channel

    NASA Astrophysics Data System (ADS)

    Park, Sung-Joon

    Traditionally, it has been considered that the received signal to noise power ratio should be uniformly preserved to maximize system capacity for uncoded system with reliable feedback channel. However, once channel coding is employed as a building block, another power control scheme presents better performance. In this paper, we consider several power reallocation schemes for an effective use of limited power in a turbo coded system in lognormal shadowing channel. We show that the proposed power reallocation can reduce the decoding error probability by almost two orders of magnitude and provide a power gain of 0.87dB at a target bit error rate of 10-4 over the equal power allocation among all code symbols. We also propose applying different power levels and cut-off thresholds on systematic and parity bits, and investigate the effect of channel estimation error.

  6. Multiple-channel Streaming Delivery for Omnidirectional Vision System

    NASA Astrophysics Data System (ADS)

    Iwai, Yoshio; Nagahara, Hajime; Yachida, Masahiko

    An omnidirectional vision is an imaging system that can capture a surrounding image in whole direction by using a hyperbolic mirror and a conventional CCD camera. This paper proposes a streaming server that can efficiently transfer movies captured by an omnidirectional vision system through the Internet. The proposed system uses multiple channels to deliver multiple movies synchronously. Through this method, the system enables clients to view the different direction of omnidirectional movies and also support the function to change the view are during playback period. Our evaluation experiments show that our proposed streaming server can effectively deliver multiple movies via multiple channels.

  7. Pre-experiment testing of the Multi Channel Systems 16-channel preamplifier CPA16

    SciTech Connect

    Patin, J B; Stoyer, M A; Moody, K J; Friensehner, A V

    2003-11-03

    The 16-channel preamplifier model CPA16 from Multi Channel Systems was studied. The CPA16 preamplifier/amplifier module is a candidate to be used as the preamplifiers and amplifiers for the focal plane detectors of the Mass Analyzer of Super Heavy Atoms (MASHA). The equipment used to test the CPA16, the results of testing the CPA16 with a pulser, a mixed {sup 229}Th/{sup 148}Gd source and a {sup 252}Cf source, and a summary of the results will be presented.

  8. Establishment of 37 channel SQUID system for magnetocardiography

    NASA Astrophysics Data System (ADS)

    Parasakthi, C.; Patel, Rajesh; Sengottuvel, S.; Mariyappa, N.; Gireesan, K.; Janawadkar, M. P.; Radhakrishnan, T. S.

    2012-06-01

    We report the development of a thirty seven channel SQUID based Magnetocardiography (MCG) system for the measurement of biomagnetic fields originating from the human heart. These fields are extremely weak and can be non-invasively measured only by using SQUID sensors. The system can simultaneously record biomagnetic signals at thirty seven spatial locations on the chest with a total coverage area of 300 cm2. The typical noise level of the system is measured to be about 2.5 fTrms/cm/√Hz for most gradiometer channels and around 7.3 fTrms/√Hz for magnetometer channels. The measurement of Magnetocardiogram (MCG) from human heart carried out using this system is shown.

  9. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  10. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  11. Identified ion channels in the squid nervous system.

    PubMed

    Rosenthal, J J C; Gilly, W F

    2003-01-01

    Our modern understanding of channels as discrete voltage-sensitive and ion-selective entities comes largely from a series of classical studies using the squid giant axon. This system has also been critical for understanding how transporters and synaptic transmission operate. This review outlines attempts to assign molecular identities to the extensively studied physiological properties of this system. As it turns out, this is no simple task. Molecular candidates for voltage-gated Na(+), K(+), and Ca(2+) channels, as well as ion transporters have been isolated from the squid nervous system. Both physiological and molecular approaches have been used to equate these cloned gene products with their native counterparts. In the case of the delayed rectifier K(+) conductance, the most thoroughly studied example, two major issues further complicate the equation. First, the ability of K(+) channel monomers to form heteromultimers with unique properties must be considered. Second, squid K(+) channel mRNAs are extensively edited, a process that can generate a wide variety of channel proteins from a common gene. The giant axon system is beginning to play an important role in understanding the biological relevance of this latter process. Copyright 2003 S. Karger AG, Basel

  12. A Fully Implantable 96-channel Neural Data Acquisition System

    PubMed Central

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-01-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively-coupled coils. The system was implanted acutely in sheep and successfully recorded, processed, and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface. PMID:19255459

  13. A fully implantable 96-channel neural data acquisition system

    NASA Astrophysics Data System (ADS)

    Rizk, Michael; Bossetti, Chad A.; Jochum, Thomas A.; Callender, Stephen H.; Nicolelis, Miguel A. L.; Turner, Dennis A.; Wolf, Patrick D.

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  14. A fully implantable 96-channel neural data acquisition system.

    PubMed

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  15. Real space channelization for generic DBT system image quality evaluation with channelized Hotelling observer

    NASA Astrophysics Data System (ADS)

    Petrov, Dimitar; Cockmartin, Lesley; Marshall, Nicholas; Vancoillie, Liesbeth; Young, Kenneth; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new 3D mammography technique that promises better detection of low contrast masses than conventional 2D mammography. The parameter space for DBT is large however and finding an optimal balance between dose and image quality remains challenging. Given the large number of conditions and images required in optimization studies, the use of human observers (HO) is time consuming and certainly not feasible for the tuning of all degrees of freedom. Our goal was to develop a model observer (MO) that could predict human detectability for clinically relevant details embedded within a newly developed structured phantom for DBT applications. DBT series were acquired on GE SenoClaire 3D, Giotto Class, Fujifilm AMULET Innovality and Philips MicroDose systems at different dose levels, Siemens Inspiration DBT acquisitions were reconstructed with different algorithms, while a larger set of DBT series was acquired on Hologic Dimensions system for first reproducibility testing. A channelized Hotelling observer (CHO) with Gabor channels was developed The parameters of the Gabor channels were tuned on all systems at standard scanning conditions and the candidate that produced the best fit for all systems was chosen. After tuning, the MO was applied to all systems and conditions. Linear regression lines between MO and HO scores were calculated, giving correlation coefficients between 0.87 and 0.99 for all tested conditions.

  16. Joint Channel Estimation and Phase Noise Suppression for OFDM Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hwa; Kim, Seong-Cheol

    Phase noise (PHN) can cause the common phase error (CPE) and the inter-carrier interference (ICI), both of which impair the accurate channel estimation in orthogonal frequency division multiplexing (OFDM) systems. In this letter, we build a new signal model parameterized by the channel impulse response, the CPE and the ICI. Based on this model, we derive the maximum likelihood estimator (MLE) and the minimum mean square error estimator (MMSEE). Simulation results show that the proposed schemes significantly improve the performance of OFDM systems in the presence of PHN.

  17. Uplink channel estimation error for large scale MIMO system

    NASA Astrophysics Data System (ADS)

    Albdran, Saleh; Alshammari, Ahmad; Matin, Mohammad

    2016-09-01

    The high demand on the wireless networks and the need for higher data rates are the motivation to develop new technologies. Recently, the idea of using large-scale MIMO systems has grabbed great attention from the researchers due to its high spectral and energy efficiency. In this paper, we analyze the UL channel estimation error using large number of antennas in the base station where the UL channel is based on predefined pilot signal. By making a comparison between the identified UL pilot signal and the received UL signal we can get the realization of the channel. We choose to deal with one cell scenario where the effect of inter-cell interference is eliminated for the sake of studying simple approach. While the number of antennas is very large in the base station side, we choose to have one antennal in the user terminal side. We choose to have two models to generate the channel covariance matrix includes one-ring model and exponential correlation model. Figures of channel estimation error are generated where the performance of the mean square error MSE per antenna is presented as a function signal to noise ratio SNR. The simulation results show that the higher the SNR the better the performance. Furthermore, the affect of the pilot length on the channel estimation error is studied where two different covariance models are used to see the impact of the two cases. In the two cases, the increase of the pilot length has improved the estimation accuracy.

  18. Eight-channel telephone telemetry system

    NASA Technical Reports Server (NTRS)

    Smith, R.; Carr, T.

    1973-01-01

    Portable telemetry system uses conventional telephone link which eliminates mailing or messenger service between physician and analyst. Transmitter is used by physician; receiver is used by analyst. Each unit is inductively coupled to its respective telephone set, transmitter converting EEG into audio frequency and receiver converting this frequency back to EEG.

  19. Visualization of an entangled channel spin-1 system

    SciTech Connect

    Sirsi, Swarnamala; Adiga, Veena

    2010-08-15

    Covariance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.

  20. Channel capacity of next generation large scale MIMO systems

    NASA Astrophysics Data System (ADS)

    Alshammari, A.; Albdran, S.; Matin, M.

    2016-09-01

    Information rate that can be transferred over a given bandwidth is limited by the information theory. Capacity depends on many factors such as the signal to noise ratio (SNR), channel state information (CSI) and the spatial correlation in the propagation environment. It is very important to increase spectral efficiency in order to meet the growing demand for wireless services. Thus, Multiple input multiple output (MIMO) technology has been developed and applied in most of the wireless standards and it has been very successful in increasing capacity and reliability. As the demand is still increasing, attention now is shifting towards large scale multiple input multiple output (MIMO) which has a potential of bringing orders of magnitude of improvement in spectral and energy efficiency. It has been shown that users channels decorrelate after increasing the number of antennas. As a result, inter-user interference can be avoided since energy can be focused on precise directions. This paper investigates the limits of channel capacity for large scale MIMO. We study the relation between spectral efficiency and the number of antenna N. We use time division duplex (TDD) system in order to obtain CSI using training sequence in the uplink. The same CSI is used for the downlink because the channel is reciprocal. Spectral efficiency is measured for channel model that account for small scale fading while ignoring the effect of large scale fading. It is shown the spectral efficiency can be improved significantly when compared to single antenna systems in ideal circumstances.

  1. Capacity of UWB wireless channel for neural recording systems.

    PubMed

    El Khaled, Mohamad; Bahrami, Hadi; Fortier, Paul; Gosselin, Benoit; Rusch, Leslie Ann

    2014-01-01

    Ultra wide-band (UWB) short-range communication systems are valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size and high data rates. Monitoring of neural responses in the brain requires high data rate if we target a system supporting a large number of sensors. In this work, we are interested in the evaluation of the capacity of the ultra wide-band (UWB) channel that we could exploit using a realistic model of the biological channel. The channel characteristics are examined under two scenarios that are related to TX antenna placements. Using optimal power spectrum allocation (OPSA) at the transmitter side, we have computed this capacity by taking into account the fading characteristics of the channel. The results show the pertinence of the optimal power spectrum allocation for this type of channel. An improvement by a factor of 2 to 3 over a uniform power spectrum allocation (UPSA) when the SNR <; 0 dB was obtained. When the SNR is > 40 dB, both approaches give similar results. Antennas placement is examined under two scenarios having contrasting power constraints.

  2. Channels

    NASA Image and Video Library

    2015-11-20

    Today's VIS image shows a number of unnamed channels located on the northeastern margin of Terra Sabaea. Orbit Number: 61049 Latitude: 33.5036 Longitude: 58.6967 Instrument: VIS Captured: 2015-09-18 12:54 http://photojournal.jpl.nasa.gov/catalog/PIA20097

  3. Nonlinear hopping transport in ring systems and open channels.

    PubMed

    Einax, Mario; Körner, Martin; Maass, Philipp; Nitzan, Abraham

    2010-01-21

    We study the nonlinear hopping transport in one-dimensional rings and open channels. Analytical results are derived for the stationary current response to a constant bias without assuming any specific coupling of the rates to the external fields. It is shown that anomalous large effective jump lengths, as observed in recent experiments by taking the ratio of the third-order nonlinear and the linear conductivity, can occur already in ordered systems. Rectification effects due to site energy disorder in ring systems are expected to become irrelevant for large system sizes. In open channels, in contrast, rectification effects occur already for disorder in the jump barriers and do not vanish in the thermodynamic limit. Numerical solutions for a sinusoidal bias show that the ring system provides a good description for the transport behavior in the open channel for intermediate and high frequencies. For low frequencies temporal variations in the mean particle number have to be taken into account in the open channel, which cannot be captured in the more simple ring model.

  4. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Trumpis, B. D.; Udalov, S.

    1975-01-01

    Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.

  5. Channel systems and lobe construction in the Mississippi Fan

    USGS Publications Warehouse

    Garrison, L. E.; Kenyon, Neil H.; Bouma, A.H.

    1982-01-01

    Morphological features on the Mississippi Fan in the eastern Gulf of Mexico were mapped using GLORIA II, a long-range side-scan sonar system. Prominent is a sinuous channel flanked by well-developed levees and occasional crevasse splays. The channel follows the axis and thickest part of the youngest fan lobe; seismic-reflection profiles offer evidence that its course has remained essentially constant throughout lobe development. Local modification and possible erosion of levees by currents indicates a present state of inactivity. Superficial sliding has affected part of the fan lobe, but does not appear to have been a factor in lobe construction. ?? 1982 A. M. Dowden, Inc.

  6. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  7. Athabasca Valles, Mars: A lava-draped channel system

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Dundas, C.M.; Russell, P.S.

    2007-01-01

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava - the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  8. Athabasca Valles, Mars: a lava-draped channel system.

    PubMed

    Jaeger, W L; Keszthelyi, L P; McEwen, A S; Dundas, C M; Russell, P S

    2007-09-21

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava-the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  9. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  10. A 96-channel neural stimulation system for driving AIROF microelectrodes.

    PubMed

    Hu, Z; Troyk, P; Cogan, S

    2004-01-01

    We present the design and testing of a 96-channel stimulation system to drive activated iridium oxide (AIROF) microelectrodes within safe charge-injection limits. Our system improves upon the traditional capacitively coupled, symmetric charge-balanced biphasic stimulation waveform so as to maximize charge-injection capacity without endangering the microelectrodes. It can deliver computer-controlled cathodic current pulse for to up to 96 AIROF microelectrodes and positively bias them during the inter-pulse interval. The stimulation system is comprised of (1) 12 custom-designed PCB boards each hosting an 8-channel ASIC chip, (2) a motherboard to communicate between these 12 boards and the PC, (3) the PC interface equipped with a DIO card and the corresponding software. We plan to use this system in animal experiments for intracortical neural stimulation of implanted electrodes within our visual prosthesis project.

  11. Dual-channel and multifrequency radar system calibration

    NASA Astrophysics Data System (ADS)

    Stjernman, Anders; Vivekanandan, J.; Nystrom, Anders

    1995-03-01

    Uncertainty in absolute gain and crosstalk factors are the primary sources of error in dual-channel radar measurements. A full two-port calibration technique compensates for the errors introduced due to an imperfect antenna system and improves the isolation between orthogonal polarization channels as long as the observed cross section is above the equivalent system noise cross section. A novel technique for calibrating a dual-polarized network analyzer-based scatterometer system is discussed. Rigorous two-port S-parameter representation is used to describe absolute gain and crosstalk characteristics. Validity of the crosstalk correction is demonstrated by measuring the point target scattering matrix. Correction factors are obtained by measuring the S-parameters of trihedral and dihedral corner reflectors of known sizes. Results of absolute gain of the antenna system are verified using independent test target cross section measurements.

  12. Marine information systems and new measuring channels for hydrophysical parameters

    NASA Astrophysics Data System (ADS)

    Smirnov, G. V.; Olenin, A. L.

    2015-03-01

    The results of the development and implementation of oceanographic information-measuring systems in the 1960s to 1970s and 1980s to 1990s are analytically treated and the basic principles of present-day systems for collecting data on oceanographic parameters are considered. We present the design of a technological platform for multichannel complexes aimed at concurrent measurements of hydrological, optical, and chemical characteristics. The platform allows one to combine the conventional and new channels for measuring oceanographic parameters.

  13. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  14. Adaptive Channel-Tracking Method and Equalization for MC-CDMA Systems over Rapidly Fading Channel under Colored Noise

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Yi; Chen, Bor-Sen

    2010-12-01

    A recursive maximum-likelihood (RML) algorithm for channel estimation under rapidly fading channel and colored noise in a multicarrier code-division multiple-access (MC-CDMA) system is proposed in this paper. A moving-average model with exogenous input (MAX) is given to describe the transmission channel and colored noise. Based on the pseudoregression method, the proposed RML algorithm can simultaneously estimate the parameters of channel and colored noise. Following the estimation results, these parameters can be used to enhance the minimum mean-square error (MMSE) equalizer. Considering high-speed mobile stations, a one-step linear trend predictor is added to improve symbol detection. Simulation results indicate that the proposed RML estimator can track the channel more precisely than the conventional estimator. Meanwhile, the performance of the proposed enhanced MMSE equalizer is robust to the rapidly Rayleigh fading channel under colored noise in the MC-CDMA systems.

  15. A Fast Channel Switching Method in EPON System for IPTV Service

    NASA Astrophysics Data System (ADS)

    Nie, Yaling; Yoshiuchi, Hideya

    This paper presents a fast channel switching method in Ethernet Passive Optical Network (EPON) system for IPTV service. Fast channel switching is one of the important features of successful IPTV systems. Users surely prefer IPTV systems with small channel switching time rather than a longer one. Thus a channel switching control module and a channel/permission list in EPON system’s ONU or OLT is designed. When EPON system receives channel switching message from IPTV end user, the channel switching control module will catch the message and search the channel list and permission list maintained in EPON system, then got the matching parameter of EPON for the new channel. The new channel’s data transmission will be enabled by directly updating the optical filter of the ONU that end user connected. By using this method in EPON system, it provides a solution for dealing with channel switching delays in IPTV service.

  16. Evaluation of a stream channel-type system for southeast Alaska.

    Treesearch

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  17. A multi-channel high-? SQUID system and its application

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Tanaka, Saburou; Toyoda, Haruhisa; Hirano, Tetsuya; Haruta, Yasuhiro; Nomura, Masahiro; Saijou, Tetsuya; Kado, Hisashi

    1996-04-01

    A multi-channel high-temperature superconducting interference device (high-0953-2048/9/4A/011/img11 SQUID) system has been developed. Step edge junctions were employed for the SQUID. Magnetic field resolution was in the range 0953-2048/9/4A/011/img12 at 1 Hz, 0953-2048/9/4A/011/img13 at 10 Hz and 0953-2048/9/4A/011/img14 at 1 kHz. We have designed and developed 16-channel and 32-channel high-0953-2048/9/4A/011/img11 SQUID systems. We used them in a magnetically shielded room to measure magnetic signals of the human heart. We obtained clear multi-channel magnetocardiac signals, which showed clearly the R, S, and T wave peaks. A clear isofield contour map of magnetocardiac signals was also obtained. We also observed activities of the stomach using a tiny steel ball as a tracer. These data indicate that the use of the high-0953-2048/9/4A/011/img11 SQUID is feasible for these biomagnetic applications.

  18. Alpha Channeling in Open-System Magnetic Devices

    SciTech Connect

    Fisch, Nathaniel

    2016-06-19

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  19. Dynamics of Ceramide Channels Detected Using a Microfluidic System

    PubMed Central

    DeVoe, Don L.; Colombini, Marco

    2012-01-01

    Ceramide, a proapoptotic sphingolipid, has been shown to form channels, in mitochondrial outer membranes, large enough to translocate proteins. In phospholipid membranes, electrophysiological studies and electron microscopic visualization both report that these channels form in a range of sizes with a modal value of 10 nm in diameter. A hydrogen bonded barrel-like structure consisting of hundreds of ceramide molecules has been proposed for the structure of the channel and this is supported by electrophysiological studies and molecular dynamic simulations. To our knowledge, the mechanical strength and deformability of such a large diameter but extremely thin cylindrical structure has never been reported. Here we present evidence for a reversible mechanical distortion of the cylinder following the addition of La3+. A microfluidic system was used to repeatedly lower and then restore the conductance by alternatively perfusing La3+ and EDTA. Although aspects of the kinetics of conductance drop and recovery are consistent with a disassembly/diffusion/reassembly model, others are inconsistent with the expected time scale of lateral diffusion of disassembled channel fragments in the membrane. The presence of a residual conductance following La3+ treatment and the relationship between the residual conductance and the initial conductance were both indicative of a distortion/recovery process in analogy with a pressure-induced distortion of a flexible cylinder. PMID:22984432

  20. A Helical Cooling Channel System for Muon Colliders

    SciTech Connect

    Katsuya Yonehara, Rolland Johnson, Michael Neubauer, Yaroslav Derbenev

    2010-03-01

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  1. Coupled-channel systems in a finite volume

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh

    2012-10-01

    In this talk I will motivate studies of two-body coupled-channel systems in a finite volume in connection with the ultimate goal of studying nuclear reactions, as well as hadronic resonances, directly from lattice QCD. I will discuss how one can determine phase shifts and mixing parameters of coupled-channels such as that of pipi-KK isosinglet system from the energy spectrum in a finite volume with periodic boundary conditions. From the energy quantization condition, the volume dependence of electroweak matrix elements of two-hadron processes can also be extracted. This is necessary for studying weak processes that mix isosinglet-isotriplet two-nucleon states, e.g. proton-proton fusion. I will show how one can obtain such transition amplitudes from lattice QCD using the formalism developed.

  2. 48-channel coincidence counting system for multiphoton experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Li, Wei; Hu, Yi; Yang, Tao; Jin, Ge; Jiang, Xiao

    2016-11-01

    In this paper, we demonstrate a coincidence counting system with 48 input channels which is aimed to count all coincidence events, up to 531 441 kinds, in a multiphoton experiment. Using the dynamic delay adjusting inside the Field Programmable Gate Array, the alignment of photon signals of 48 channels is achieved. After the alignment, clock phase shifting is used to sample signal pulses. Logic constraints are used to stabilize the pulse width. The coincidence counting data stored in a 1G bit external random access memory will be sent to the computer to analyze the amount of 2-, 3-, 4-, 5-, and 6-fold coincidence events. This system is designed for multiphoton entanglement experiments with multiple degrees of freedom of photons.

  3. Interactive full channel teletext system for cable television nets

    NASA Astrophysics Data System (ADS)

    Vandenboom, H. P. A.

    1984-08-01

    A demonstration set-up of an interactive full channel teletext (FCT) system for cable TV networks with two-way data communication possibilities was designed and realized. In FCT all image lines are used for teletext data lines. The FCT decoder was placed in the mini-star, and the FCT encoder which provides the FCT signal was placed in the local center. From the FCT signal a number of data lines are selected using an extra FCT decoder. They are placed on the image lines reserved for teletext so that a normal TV receiver equipped with a teletext decoder, can process the selected data lines. For texts not on hand in the FCT signal, a command can be sent to the local center via the data communication path. A cheap and simple system is offered in which the number of commanded pages or books is in principle unlimited, while the used waiting time and channel capacity is limited.

  4. Understanding channel tropism in traditional Chinese medicine in the context of systems biology.

    PubMed

    Liu, Ping; Liu, Songlin; Chen, Gang; Wang, Ping

    2013-09-01

    Channel tropism is investigated and developed through long-term clinical practice. In recent years, the development of channel tropism theory has attracted increasing attention. This study analyzed channel tropism theory and the problems associated with it. Results showed that this theory and systems biology have a similar holistic viewpoint. Systems biology could provide novel insights and platform in the study of channel tropism. Some problems in channel tropism theory, including pharmacology and action mechanism, were investigated.

  5. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    USGS Publications Warehouse

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (<10 m), discontinuous conduits over ~70 km2. Continuous channel thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  6. Channel capacity of an array system for Gaussian channels with applications to combining and noise cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  7. Localization in chaotic systems with a single-channel opening.

    PubMed

    Lippolis, Domenico; Ryu, Jung-Wan; Kim, Sang Wook

    2015-07-01

    We introduce a single-channel opening in a random Hamiltonian and a quantized chaotic map: localization on the opening occurs as a sensible deviation of the wave-function statistics from the predictions of random matrix theory, even in the semiclassical limit. Increasing the coupling to the open channel in the quantum model, we observe a similar picture to resonance trapping, made of a few fast-decaying states, whose left (right) eigenfunctions are entirely localized on the (preimage of the) opening, and plentiful long-lived states, whose probability density is instead suppressed at the opening. For the latter, we derive and test a linear relation between the wave-function intensities and the decay rates, similar to the Breit-Wigner law. We then analyze the statistics of the eigenfunctions of the corresponding (discretized) classical propagator, finding a similar behavior to the quantum system only in the weak-coupling regime.

  8. Transmission over UWB channels with OFDM system using LDPC coding

    NASA Astrophysics Data System (ADS)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  9. A Multiple-Channel Sub-Band Transient Detection System

    SciTech Connect

    David A. Smith

    1998-11-01

    We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of

  10. Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.

    2003-01-01

    A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.

  11. Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.

    2003-01-01

    A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.

  12. The Quaternary North Channel-Pitas Point Fault System in Northwest Santa Barbara Channel, California.

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Nicholson, C.; Behl, R. J.; Marshall, C. J.; Kennett, J.

    2014-12-01

    The north margin of the rapidly-shortening, rapidly subsiding offshore and western onshore Ventura Basin is comprised of major N-dipping faults that step left. Offshore in Santa Barbara Channel, part of the shortening accommodated by the shallow Red Mountain fault is transferred farther offshore to the North Channel-Pitas Point fault system (NC-PP). We previously investigated the eastern offshore 50 km of this fault system using dense grids of industry multichannel seismic reflection (MCS) data and local grids of high resolution MCS data. Timing and rates of the observed deformation were determined by correlation to a detailed dated stratigraphy derived from piston cores that sampled seafloor outcrops back to 740 ka, as well as biostratigraphy, oxygen isotopic stratigraphy, a dated industry well-log horizon, and tephrochonology of the 639 ka Lava Creek ash. We are now continuing our interpretation of the NC-PP through its western 50 km using 2D and 3D MCS data and this previous dated seismic stratigraphy. The PP-NC is variably blind along strike, with its upper tips in places below the 1 Ma horizon and in other locations cutting up to higher levels. The blind slip is absorbed by a progressively-tilting S-dipping forelimb everywhere. Preliminary examination of cross sections through our 8 gridded, depth-converted horizons suggests that the rate of tilting has not significantly changed during the last 1 Myr, and that dips and structural relief, although variable, are not systematically greater in the east than in the west between Carpinteria and the UCSB campus at 119° 50' W.. Farther westward, the rate of tilting, and probably the rate of offshore shortening, decreases steadily through 40 km between 120° 05' W. and the end of the system beyond Point Conception. This trend mirrors the decrease in elevation and structural relief of the Santa Ynez Mountains above the deep fault. As in its eastern part, there is no evidence of a major change in tilt rate through the

  13. Channeling power across ecological systems: social regularities in community organizing.

    PubMed

    Christens, Brian D; Inzeo, Paula Tran; Faust, Victoria

    2014-06-01

    Relational and social network perspectives provide opportunities for more holistic conceptualizations of phenomena of interest in community psychology, including power and empowerment. In this article, we apply these tools to build on multilevel frameworks of empowerment by proposing that networks of relationships between individuals constitute the connective spaces between ecological systems. Drawing on an example of a model for grassroots community organizing practiced by WISDOM—a statewide federation supporting local community organizing initiatives in Wisconsin—we identify social regularities (i.e., relational and temporal patterns) that promote empowerment and the development and exercise of social power through building and altering relational ties. Through an emphasis on listening-focused one-to-one meetings, reflection, and social analysis, WISDOM organizing initiatives construct and reinforce social regularities that develop social power in the organizing initiatives and advance psychological empowerment among participant leaders in organizing. These patterns are established by organizationally driven brokerage and mobilization of interpersonal ties, some of which span ecological systems.Hence, elements of these power-focused social regularities can be conceptualized as cross-system channels through which micro-level empowerment processes feed into macro-level exercise of social power, and vice versa. We describe examples of these channels in action, and offer recommendations for theory and design of future action research [corrected] .

  14. Traveling Wave RF Systems for Helical Cooling Channels

    SciTech Connect

    Yonehara, K.; Lunin, A.; Moretti, A.; Popovic, M.; Romanov, G.; Neubauer, M.; Johnson, R.P.; Thorndahl, L.; /CERN

    2009-05-01

    The great advantage of the helical ionization cooling channel (HCC) is its compact structure that enables the fast cooling of muon beam 6-dimensional phase space. This compact aspect requires a high average RF gradient, with few places that do not have cavities. Also, the muon beam is diffuse and requires an RF system with large transverse and longitudinal acceptance. A traveling wave system can address these requirements. First, the number of RF power coupling ports can be significantly reduced compared with our previous pillbox concept. Secondly, by adding a nose on the cell iris, the presence of thin metal foils traversed by the muons can possibly be avoided. We show simulations of the cooling performance of a traveling wave RF system in a HCC, including cavity geometries with inter-cell RF power couplers needed for power propagation.

  15. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725 are...

  16. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725 are...

  17. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725 are...

  18. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725 are...

  19. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725 are...

  20. A Channel System and Patterned Ground near Hellas Basin

    NASA Image and Video Library

    2015-07-01

    This image from NASA Mars Reconnaissance Orbiter shows the southwestern floor of a 50-kilometer diameter unnamed crater, about 100 kilometers northeast of Hellas Basin. The crater's rim is breached on both the north and south by a valley system that previously flowed across the crater floor, leaving behind an interesting array of channel patterns and deposits as it transported water and sediments into and out of the crater. In this image, we see a portion of the channel system along the southwestern crater floor near where the valley breaches the southern rim. The darker-toned surface has a pattern similar to the texture of a basketball, and blankets the region both in the channel belt and in the basin below the cliffs. Superposed on this patterned surface are clusters of larger, circular mounds that may be related to the thawing and freezing of ice-rich sediment, which is unusual at this relatively low latitude. Extensional cracks and clusters of pits make this topography more complicated. The southern part of this image reveals a prominent irregular scarp with light-toned layered deposits exposed along the margin beneath this textured surface. The light-toned layers look like an ancient mosaic in some areas as they are irregularly fractured and brecciated. Individual blocks and large boulders of this material are visible at full-resolution near the scarp, just about to fall and already lying on the debris slopes below the scarp. Some are brighter than the others: these may be dust-free, indicating that they have detached from the cliff more recently. http://photojournal.jpl.nasa.gov/catalog/PIA19850

  1. Eag1 K+ Channel: Endogenous Regulation and Functions in Nervous System

    PubMed Central

    Tokay, Tursonjan; Zhang, Guangming; Sun, Peng

    2017-01-01

    Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases. PMID:28367272

  2. Eag1 K(+) Channel: Endogenous Regulation and Functions in Nervous System.

    PubMed

    Han, Bo; Tokay, Tursonjan; Zhang, Guangming; Sun, Peng; Hou, Shangwei

    2017-01-01

    Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K(+) channel is a member of the voltage-gated K(+) channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K(+) channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.

  3. A portable fNIRS system with eight channels

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhao, Ruirui; Zhang, Yujin; Zuo, Nianming; Zhang, Xin; Jiang, Tianzi

    2015-03-01

    Abundant study on the hemodynamic response of a brain have brought quite a few advances in technologies of measuring it. The most benefitted is the functional near infrared spectroscope (fNIRS). A variety of devices have been developed for different applications. Because portable fNIRS systems were more competent to measure responses either of special subjects or in natural environment, several kinds of portable fNIRS systems have been reported. However, they all required a computer for receiving data. The extra computer increases the cost of a fNIRS system. What's more noticeable is the space required to locate the computer even for a portable system. It will discount the portability of the fNIRS system. So we designed a self-contained eight channel fNIRS system, which does not demand a computer to receive data and display data in a monitor. Instead, the system is centered by an ARM core CPU, which takes charge in organizing data and saving data, and then displays data on a touch screen. The system has also been validated by experiments on phantoms and on subjects in tasks.

  4. Application of a multi-channel system for continuous monitoring and an early warning system.

    PubMed

    Lee, J H; Song, C H; Kim, B C; Gu, M B

    2006-01-01

    A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.

  5. THz channel characterization for future wireless gigabit indoor communication systems

    NASA Astrophysics Data System (ADS)

    Piesiewicz, Radoslaw; Jemai, Jaouhar; Koch, Martin; Kurner, Thomas

    2005-03-01

    Short range wireless communication systems are expanding at rapid rate, finding application in offices, congested urban areas and homes. Development of wireless local area networks is accompanied by a steady increase in the demand for ever higher data rates. This in turn entails the necessity to develop communication systems which operate at higher frequencies. Currently WLAN works at a few GHz, while systems operating at several ten GHz appear already feasible. It can be expected that wireless short-range communication networks will soon push towards the THz frequency range and that systems which handle high-density information and support wider bandwidth communications will be developed in a few years time. Since THz radiation is strongly absorbed by the atmosphere, working distances may be short and individual THz pico-cells may cover only single rooms or at most one building. For an indoor system of practical importance it must be robust against shadowing. Recently, flexible all-plastic mirrors, supporting specular reflections in the THz range have been demonstrated. They are cheap and easy to produce and can be used as frequency selective wall-paper to enhance the reflectivity of walls and hence facilitate non-line-of-sight communication in a THz cell. For this case the spatial and temporal characteristics of the indoor THz propagation channel in a room with randomly placed objects and moving people are derived with ray-tracing methodology and Monte Carlo simulations. Our simulations show that high-gain antennas will be needed for the realization of THz communication in indoor environments. Furthermore, indirect transmission paths between transmitter and receiver, supported by dielectric mirrors make the communication channel much more robust against shadowing.

  6. A multi-channel, optically coupled spark gap monitor system

    SciTech Connect

    Gribble, R.; Barnes, G.A.

    1987-10-01

    A spark gap monitor system has been installed on FRX-C Large Source Modification, a theta pinch experiment which forms field-reversed configuration (FRC) compact toroids. The field reversing theta pinch produces a vacuum magnetic field of 10kG inside the single turn, 2-m-long straight 0.7-id coil by discharging in series two 50kV, 200..mu..F capacitor banks with a total of 140 2.8..mu..F capacitors each with a start spark-gap switch and a ''piggy-back'' crowbar spark-gap switch. Efficient operation of the bank requires information on the timing and function of each capacitor-spark gap unit. Diagnosing the capacitor-spark-gap unit load cable current (approximately 3kA per cable) is complicated by the fact that the ground return for the capacitor is of a relatively high impedance. Units that are allowed to prefire or postfire not only degrade the performance of the bank but will self destruct or destroy their neighbors. To provide this information without introducing high voltage transients into the data acquisition and control system as optically coupled, 140 channel gap monitor system has been installed. Simplicity and reliability were key requirements in the design of the system. A resistor made of thin wall stainless steel tubing replaces a short section of the braid on one load cable on each capacitor. The voltage developed across the resistor provides the current source to drive an LED. The relatively linear output from the LED is transmitted through approximately 30m of fiber optic cable to the FRX-C control room. The signal is received by a photo diode and simple amplifier circuit that feeds the signal into a 12 channel charge integrating ADC CAMAC module for processing by the computer. The information provided by this system informs the operator as to when and how each gap fired. 2 refs., 8 figs.

  7. Automatic channel trimming for control systems: A concept

    NASA Technical Reports Server (NTRS)

    Vandervoort, R. J.; Sykes, H. A.

    1977-01-01

    Set of bias signals added to channel inputs automatically normalize differences between channels. Algorithm and second feedback loop compute trim biases. Concept could be applied to regulators and multichannel servosystems for remote manipulators in undersea mining.

  8. Automatic channel trimming for control systems: A concept

    NASA Technical Reports Server (NTRS)

    Vandervoort, R. J.; Sykes, H. A.

    1977-01-01

    Set of bias signals added to channel inputs automatically normalize differences between channels. Algorithm and second feedback loop compute trim biases. Concept could be applied to regulators and multichannel servosystems for remote manipulators in undersea mining.

  9. Fully integrated control system for the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Wiecha, Oliver M.; Sebring, Thomas A.

    2004-09-01

    The Discovery Channel Telescope control system incorporates very demanding requirements regarding fast serviceability and remote operation of the telescope itself as well as facility management tools and security systems. All system capabilities are accessible from a central user interface anywhere, anytime. Although the mature stage of telescope control technology allows focusing more on science rather than on telescope operation, the time and effort needed to integrate a large suite of software modules still impose a challenge to which reusing existing software is one of the answers, especially for advanced subsystems with distributed collaborative development teams. DCT's large CCD camera presents enormous computational problems due to the overwhelming amount of generated data. Properly implemented preventive maintenance and reliability aspects of telescope operation call for historical and real time data in order to determine behavioral trends and permit early detection of failure factors. In this new approach utility monitoring and power conditioning and management are integral parts of the control system. Proposed real time spectral analysis system of sound and vibration of key mount components allows tracking mechanical component deterioration that could lead to performance degradation. Survival control cells and unmanned operation systems are other options being explored for operation in harsh climatic conditions.

  10. Single transmission line interrogated multiple channel data acquisition system

    DOEpatents

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  11. Miniaturized multi channel infrared optical gas sensor system

    NASA Astrophysics Data System (ADS)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  12. Detection System for Metallic Contaminants by Eight-Channel SQUIDs

    NASA Astrophysics Data System (ADS)

    Kitamura, Y.; Hatsukade, Y.; Tanaka, S.; Ohtani, T.; Suzuki, S.

    2012-03-01

    We developed a magnetic contaminant detection system for industrial products such as electrode foils of lithium ion battery employing eight high-Tc SQUID gradiometers. The system was based on pre-magnetization of a contaminant in an object under test by means of permanent magnets of 0.5 T, which magnetization direction was horizontal, in order to suppress the edge effect from the object composed of magnetic material. The object was conveyed to pass under the eight-channel gradiometer array, in which a pair of four gradiometers was aligned in two rows to cover target foils of several tens mm in width. The magnetization from the contaminant in the object was detected by the gradiometers of averaged flux white noise level of 25 μphi0/Hz1/2. In case that an iron ball passed just under one gradiometer, an iron ball of about phi30 μm in diameter was successfully detected with a signal to noise ratio (S/N) of 5. From measurement results using an iron ball of about 100 μm in diameter, it was demonstrated that the system had a detectable range of 70 mm in width. There results suggest that the system is a promising tool for the quality control of lithium ion batteries.

  13. Control system devices : architectures and supply channels overview.

    SciTech Connect

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  14. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  15. Flexible waveguide enabled single-channel terahertz endoscopic system

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2015-03-01

    Colorectal cancer is the third most commonly diagnosed cancer in the world. The current standard of care for colorectal cancer is the conventional colonoscopy, which relies exclusively on the Physician's experience. Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for detecting cancers. The current study demonstrates the design and development of a prototype terahertz endoscopic system based on flexible metal-coated terahertz waveguides. A CO2 pumped Far-Infrared molecular gas laser operating at 584 GHz frequency was used for illuminating the tissue, while the reflected signals were detected using liquid Helium cooled silicon bolometer. The continuous-wave terahertz imaging system utilizes a single waveguide channel to transmit the radiation and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. The two dimensional reflectance images obtained using a prototype terahertz endoscopic system showed intrinsic contrast between cancerous and normal regions of the colorectal tissue, thereby demonstrating the potential impact of terahertz imaging for in vivo cancer detection.

  16. Speed of disentanglement in multiqubit systems under a depolarizing channel

    SciTech Connect

    Zhang, Fu-Lin Jiang, Yue; Liang, Mai-Lin

    2013-06-15

    We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants is derived. The speed is enhanced by the three-tangle which is the entanglement among the three qubits, but reduced by the two-qubit correlations outside the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce the speed of disentanglement of the remaining qubit in the system, and even can retrieve the entanglement partially. For the k-qubit systems in an arbitrary superposition of Greenberger–Horne–Zeilinger state and W state, the speed depends almost entirely on the amount of the negativity when k increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the Greenberger–Horne–Zeilinger-type states is inversely proportional to k, and the one of the W states approaches 1/√(k)

  17. Speed of disentanglement in multiqubit systems under a depolarizing channel

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-Lin; Jiang, Yue; Liang, Mai-Lin

    2013-06-01

    We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants is derived. The speed is enhanced by the three-tangle which is the entanglement among the three qubits, but reduced by the two-qubit correlations outside the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce the speed of disentanglement of the remaining qubit in the system, and even can retrieve the entanglement partially. For the k-qubit systems in an arbitrary superposition of Greenberger-Horne-Zeilinger state and W state, the speed depends almost entirely on the amount of the negativity when k increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the Greenberger-Horne-Zeilinger-type states is inversely proportional to k, and the one of the W states approaches 1/√{k}.

  18. A Guide to Understanding Covert Channel Analysis of Trusted Systems

    DTIC Science & Technology

    1993-11-01

    computer products for use by any organization desiring better protection of its important data . One way we do this is by supporting the Trusted Product...I/O Operation Completion Channels ................... 113 A.2.3 Memory Resource Management Channels .............. 114 A.2.3.1 Data Page Pool Channels...normally viewed as data objects to transfer information from one subject to another." [Kemmerer83] The last three of the above definitions have been

  19. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.

  20. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.

  1. Channel morphology investigations using Geographic Information Systems and field research

    Treesearch

    Scott N. Miller; Ann Youberg; D. Phillip Guertin; David C. Goodrich

    2000-01-01

    Stream channels are integral to watershed function and are affected by watershed management decisions. Given an understanding of the relationships among channel and watershed variables, they may serve as indicators of upland condition or used in distributed rainfall-runoff models. This paper presents a quantitative analysis of fluvial morphology as related to watershed...

  2. 47 CFR 22.1007 - Channels for offshore radiotelephone systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRIER SERVICES PUBLIC MOBILE SERVICES Offshore Radiotelephone Service § 22.1007 Channels for offshore... located in the specified geographical zones that provide offshore radiotelephone service. All channels... and/or airborne mobile) as indicated, for voice-grade general communications and private line...

  3. 47 CFR 22.1007 - Channels for offshore radiotelephone systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES PUBLIC MOBILE SERVICES Offshore Radiotelephone Service § 22.1007 Channels for offshore... located in the specified geographical zones that provide offshore radiotelephone service. All channels... and/or airborne mobile) as indicated, for voice-grade general communications and private line...

  4. Stochastic simulation of channelized sedimentary bodies using a constrained L-system

    NASA Astrophysics Data System (ADS)

    Rongier, Guillaume; Collon, Pauline; Renard, Philippe

    2017-08-01

    Simulating realistic sedimentary bodies while conditioning all the available data is a major topic of research. We present a new method to simulate the channel morphologies resulting from the deposition processes. It relies on a formal grammar system, the Lindenmayer system, or L-system. The L-system puts together channel segments based on user-defined rules and parameters. The succession of segments is then interpreted to generate non-rational uniform B-splines representing straight to meandering channels. Constraints attract or repulse the channel from the data during the channel development. They enable to condition various data types, from well data to probability cubes or a confinement. The application to a synthetic case highlights the method's ability to manage various data while preserving at best the channel morphology.

  5. A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems

    SciTech Connect

    Follum, James D.; Tuffner, Francis K.

    2016-11-14

    Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpart and is suitable for real-world applications.

  6. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target.

    PubMed

    Goonetilleke, Lakshman; Quayle, John

    2012-02-01

    Potassium (K(+) ) channels are important in cardiovascular disease both as drug targets and as a cause of underlying pathology. Voltage-dependent K(+) (K(V) ) channels are inhibited by the class III antiarrhythmic agents. Certain vasodilators work by opening K(+) channels in vascular smooth muscle cells (VSMCs), and K(+) channel activation may also be a route to improving endothelial function. The two-pore domain K(+) (K(2P) ) channels form a group of 15 known channels with an expanding list of functions in the cardiovascular system. One of these K(2P) channels, TREK-1, is the focus of this review. TREK-1 channel activity is tightly regulated by intracellular and extracellular pH, membrane stretch, polyunsaturated fatty acids (PUFAs), temperature, and receptor-coupled second messenger systems. TREK-1 channels are also activated by volatile anesthetics and some neuroprotectant agents, and they are inhibited by selective serotonin reuptake inhibitors (SSRIs) as well as amide local anesthetics. Some of the clinical cardiovascular effects and side effects of these drugs may be through their actions on TREK-1 channels. It has recently been suggested that TREK-1 channels have a role in mechano-electrical coupling in the heart. They also seem important in the vascular responses to PUFAs, and this may underlie some of the beneficial cardiovascular effects of the essential dietary fatty acids. Development of selective TREK-1 openers and inhibitors may provide promising routes for intervention in cardiovascular diseases. Copyright © 2010 Blackwell Publishing Ltd.

  7. Extensional channel flow revisited: a dynamical systems perspective

    NASA Astrophysics Data System (ADS)

    Marques, Francisco; Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.

    2017-06-01

    Extensional self-similar flows in a channel are explored numerically for arbitrary stretching-shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching-shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier-Stokes solutions.

  8. K/Ka-band channel characterization for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Pinck, Deborah S.; Rice, Michael D.

    1995-01-01

    Mobile satellite systems allow truly ubiquitous wireless communications to users anywhere and anytime. NASA's Advanced Communications Technology Satellite (ACTS) provides an ideal space-based platform for the measurement of K/Ka band propagation characteristics in a land mobile satellite application. Field tests conducted in Southern California during the first seven months of 1994 using JPL's ACTS Mobile Terminal (AMT) provided channel characterization data for the K/Ka-band link. A pilot tone was transmitted from a fixed station in Cleveland, Ohio through the satellite and downlinked at 20 GHz in the Southern California spot beam. The AMT was equipped with a narrow beam, high gain antenna which tracked the satellite in azimuth for a fixed elevation angle (46 degrees for this case). The field tests were conducted in three basic environments: clear line-of-sight (LOS) highways, lightly shadowed suburban, and heavily shadowed suburban. Preliminary results of these field tests indicate very little multipath for rural environments and for clear LOS links (as expected with a narrow beam antenna). Deep fades were experienced in shadowed areas, especially those where tree canopies covered the road.

  9. Average capacity for optical wireless communication systems over exponentiated Weibull distribution non-Kolmogorov turbulent channels.

    PubMed

    Cheng, Mingjian; Zhang, Yixin; Gao, Jie; Wang, Fei; Zhao, Fengsheng

    2014-06-20

    We model the average channel capacity of optical wireless communication systems for cases of weak to strong turbulence channels, using the exponentiation Weibull distribution model. The joint effects of the beam wander and spread, pointing errors, atmospheric attenuation, and the spectral index of non-Kolmogorov turbulence on system performance are included. Our results show that the average capacity decreases steeply as the propagation length L changes from 0 to 200 m and decreases slowly down or tends to a stable value as the propagation length L is greater than 200 m. In the weak turbulence region, by increasing the detection aperture, we can improve the average channel capacity and the atmospheric visibility as an important issue affecting the average channel capacity. In the strong turbulence region, the increase of the radius of the detection aperture cannot reduce the effects of the atmospheric turbulence on the average channel capacity, and the effect of atmospheric visibility on the channel information capacity can be ignored. The effect of the spectral power exponent on the average channel capacity in the strong turbulence region is higher than weak turbulence region. Irrespective of the details determining the turbulent channel, we can say that pointing errors have a significant effect on the average channel capacity of optical wireless communication systems in turbulence channels.

  10. Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore.

    PubMed

    Stiber, Jonathan A; Seth, Malini; Rosenberg, Paul B

    2009-08-01

    Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.

  11. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  12. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  13. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  14. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  15. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  16. Performance of a temperate-zone channel catfish biofloc technology production system during winter

    USDA-ARS?s Scientific Manuscript database

    Channel catfish (Ictalurus punctatus) have been grown successfully in an outdoor biofloc technology production system. Outdoor biofloc production systems in the tropics are operated year-round, whereas the channel catfish studies were conducted only during the growing season and biofloc production t...

  17. Monitoring system determines amplitude and time of vibration channel peaks

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1966-01-01

    Adaptive scheme advocated in this innovation will reduce processing time and is applicable to environmental testing and to space-borne or aircraft-borne vibration monitoring devices requiring a large number of channels.

  18. Multi-channel amplifier system for computerized topographic EEG analysis.

    PubMed

    Coppola, R; Morgan, N T

    1987-08-01

    Topographic analysis of EEG and evoked potentials requires the computer processing of data from multi-lead recording. The use of 20 or more channels is now quite common, straining the resources of the usual EEG machine. We present a design for a high gain, low noise, 32-channel amplifier matched to computer data acquisition requirements. Low cost and small size are additional benefits to the design.

  19. Quantifying Channelized Submarine Depositional Systems From Bed to Basin Scale

    DTIC Science & Technology

    2004-09-01

    Biostratigraphic appli- cation and ecology of agglutinated foraminifera in Gulf of Mexico Basin Cenozoic exploration. GCAGS Transactions, 52:65-76, 2002. S.Q...Using seismic data from the Fisk Basin, Gulf of Mexico , I find that, during periods of broadly distributed, sheet-like deposition, equilibrium time is on...time scales for channel/levee com- plexes and sheet-like deposits: Fisk Basin, Gulf of Mexico 97 3.1 Introduction - Channel/levee complexes and

  20. Drainage systems associated with mid-ocean channels and submarine Yazoos: Alternative to submarine fan depositional systems

    SciTech Connect

    Hesse, R. )

    1989-12-01

    Submarine drainage systems associated with mid-ocean channels and Yazoo River-type tributaries in small ocean basins represent a contrast to deep-sea fan depositional systems. Deep-sea fans are diverging sediment-dispersal systems of distributary fan valleys. Deep-sea channel-submarine-yazoo systems, on the other hand, form centripetally converging patterns of tributaries and yazoo-type satellite channels that join a major basin-draining (mid-ocean) channel. The facies model for such systems is characterized by randomly stacked fining-upward, gravelly, and sandy channel-fill and submarine point-bar sequences of the main channel encased in fine-grained overbank deposits. Second-order channels contain sandy proximal overbank deposits, whereas the levees of the main channel are predominantly composed of silt and clay. Second-order channels may be braided and may broaden into braid plains. Morphology and surficial sediment distribution have been studied within the Northwest Atlantic Mid-Ocean Channel of the Labrador Sea and its associated levees and yazoo-type (and other) tributaries.

  1. Performance Characterization of a Hybrid Satellite-Terrestrial System with Co-Channel Interference over Generalized Fading Channels

    PubMed Central

    Javed, Umer; He, Di; Liu, Peilin

    2016-01-01

    The transmission of signals in a hybrid satellite-terrestrial system (HSTS) in the presence of co-channel interference (CCI) is considered in this study. Specifically, we examine the problem of amplify-and-forward (AF)-based relaying in a hybrid satellite-terrestrial link, where the relay node is operating in the presence of a dominant co-channel interferer. It is assumed that direct connection between a source node (satellite) and a destination node (terrestrial receiver) is not available due to masking by obstacles in the surrounding. The destination node is only able to receive signals from the satellite with the help of a relay node located at the ground. In the proposed HSTS, the satellite-relay channel follows the shadowed Rice fading; and the channels of interferer-relay and relay-destination links experience generalized Nakagami-m fading. For the considered AF-based HSTS, we first develop the analytical expression for the moment generating function (MGF) of the overall output signal-to-interference-plus-noise ratio (SINR). Then, based on the derived exact MGF, we derive novel expressions for the average symbol error rate (SER) of the considered HSTS for the following digital modulation techniques: M-ary phase shift keying (M-PSK), M-ary quadrature amplitude modulation (M-QAM) and M-ary pulse amplitude modulation (M-PAM). To significantly reduce the computational complexity for utility in system-level simulations, simple analytical approximation for the exact SER in the high signal-to-noise ratio (SNR) regime is presented to provide key insights. Finally, numerical results and the corresponding analysis are presented to demonstrate the effectiveness of the developed performance evaluation framework and to view the impact of CCI on the considered HSTS under varying channel conditions and with different modulation schemes. PMID:27527182

  2. Performance Characterization of a Hybrid Satellite-Terrestrial System with Co-Channel Interference over Generalized Fading Channels.

    PubMed

    Javed, Umer; He, Di; Liu, Peilin

    2016-08-05

    The transmission of signals in a hybrid satellite-terrestrial system (HSTS) in the presence of co-channel interference (CCI) is considered in this study. Specifically, we examine the problem of amplify-and-forward (AF)-based relaying in a hybrid satellite-terrestrial link, where the relay node is operating in the presence of a dominant co-channel interferer. It is assumed that direct connection between a source node (satellite) and a destination node (terrestrial receiver) is not available due to masking by obstacles in the surrounding. The destination node is only able to receive signals from the satellite with the help of a relay node located at the ground. In the proposed HSTS, the satellite-relay channel follows the shadowed Rice fading; and the channels of interferer-relay and relay-destination links experience generalized Nakagami-m fading. For the considered AF-based HSTS, we first develop the analytical expression for the moment generating function (MGF) of the overall output signal-to-interference-plus-noise ratio (SINR). Then, based on the derived exact MGF, we derive novel expressions for the average symbol error rate (SER) of the considered HSTS for the following digital modulation techniques: M-ary phase shift keying (M-PSK), M-ary quadrature amplitude modulation (M-QAM) and M-ary pulse amplitude modulation (M-PAM). To significantly reduce the computational complexity for utility in system-level simulations, simple analytical approximation for the exact SER in the high signal-to-noise ratio (SNR) regime is presented to provide key insights. Finally, numerical results and the corresponding analysis are presented to demonstrate the effectiveness of the developed performance evaluation framework and to view the impact of CCI on the considered HSTS under varying channel conditions and with different modulation schemes.

  3. Linux-PC based 1024-Channel Transient Digitizer System for the DRIFT Experiment Acquisition System

    NASA Astrophysics Data System (ADS)

    Ayad, R.; Hanson-Hart, Z.; Hyatt, M.; Katz-Hyman, M.; Maher, P.; Martoff, C. J.; Posner, A.; Freytag, D.; Freytag, M.; Haller, G.; Nelson, D.

    2003-04-01

    The DRIFT Experiment [1] is an underground search for WIMP Dark Matter using a novel detector invented for this purpose: the Negative Ion TPC (NITPC). The data acquisition system for DRIFT had to allow acquisition of long duration time digitized data from the 1024 analog channels at an affordable price. This was accomplished with a system based on a Linux PC, the Comedi [2] open-source device driver software, the inexpensive PCI-DIO-32HS National Instruments high speed digital I/O board, and custom 32-channel preamp+digitizer boards built at SLAC. System architecture, testing, and performance will be discussed, as well as further upgrade plans. [1] Low Pressure Negative Ion TPC for Dark Matter Search. D. P. Snowden-Ifft, C. J. Martoff, J. M. Burwell, Phys Rev. D. Rapid Comm. 61, 101301 (2000) [2] Comedi: linux Control and MEasurement Device Interface : http://stm.lbl.gov/comedi/

  4. An Extension of Workload Capacity Space for Systems With More Than Two Channels

    DTIC Science & Technology

    2015-04-05

    parallel processing (Colonius & Vorberg, 1994), so the restriction to n = 2 channels is an unnecessary limitation of the applicability for the new ...workload capacity space for systems with more than two channels . 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...88ABW-2014-0140. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We provide the n- channel extension of the unified workload capacity space bounds for

  5. Euclid imaging channels: from science to system requirements

    NASA Astrophysics Data System (ADS)

    Amiaux, J.; Auguères, J. L.; Boulade, O.; Cara, C.; Paulin-Henriksson, S.; Réfrégier, A.; Ronayette, S.; Amara, A.; Glauser, A.; Dumesnil, C.; di Giorgio, A. M.; Booth, J.; Schweitzer, M.; Holmes, R.; Cropper, M.; Atad-Ettedgui, E.; Duvet, L.; Lumb, D.

    2010-07-01

    Euclid is an ESA Cosmic Vision wide-field space mission concept dedicated to the high-precision study of Dark Energy and Dark Matter. The mission relies on two primary cosmological probes: Weak gravitational Lensing (WL) and Baryon Acoustic Oscillations (BAO). The first probe requires the measurement of the shape and photometric redshifts of distant galaxies. The second probe is based on the 3-dimensional distribution of galaxies through spectroscopic redshifts. Additional cosmological probes are also used and include cluster counts, redshift space distortions, the integrated Sachs-Wolfe effect (ISW) and galaxy clustering, which can all be derived from a combination of imaging and spectroscopy. Euclid Imaging Channels Instrument of the Euclid mission is designed to study the weak gravitational lensing cosmological probe. The combined Visible and Near InfraRed imaging channels form the basis of the weak lensing measurements. The VIS channel provides high-precision galaxy shape measurements for the measurement of weak lensing shear. The NIP channel provides the deep NIR multi-band photometry necessary to derive the photometric redshifts and thus a distance estimate for the lensed galaxies. This paper describes the Imaging Channels design driver requirements to reach the challenging science goals and the design that has been studied during the Cosmic Vision Assessment Phase.

  6. A three-channel miniaturized optical system for multi-resolution imaging

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2013-09-01

    Inspired by the natural compound eyes of insects, multichannel imaging systems embrace many channels that scramble their entire Field-Of-View (FOV). Our aim in this work was to attain multi-resolution capability into a multi-channel imaging system by manipulating the available channels to possess different imaging properties (focal length, angular resolution). We have designed a three-channel imaging system where the first and third channels have highest and lowest angular resolution of 0.0096° and 0.078° and narrowest and widest FOVs of 7° and 80°, respectively. The design of the channels has been done for a single wavelength of 587.6 nm using CODE V. The three channels each consist of 4 aspherical lens surfaces and an absorbing baffle that avoids crosstalk among the neighbouring channels. The aspherical lens surfaces have been fabricated in PMMA by ultra-precision diamond tooling and the baffles by metal additive manufacturing. The profiles of the fabricated lens surfaces have been measured with an accurate multi-sensor coordinate measuring machine and compared with the corresponding profiles of the designed lens surfaces. The fabricated lens profiles are then incorporated into CODE V to realistically model the three channels and also compare their performances with those of the nominal design. We can conclude that the performances of the two latter models are in a good agreement.

  7. Progress towards a 256 channel multi-anode microchannel plate photomultiplier system with picosecond timing

    PubMed Central

    Lapington, J.S.; Ashton, T.J.R.; Ross, D.; Conneely, T.

    2012-01-01

    Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout. Initially this will be populated with a 256 channel electronics system comprising four sets of modular 64 channel preamplifier/discriminator, and time-to-digital converter units, arranged in a compact three dimensional configuration. We describe the detector and electronics design and operation, and present performance measurements from the 256 channel development system. We discuss enhancements to the system including higher channel count and the use of application specific on-board signal processing capabilities. PMID:25843997

  8. Progress towards a 256 channel multi-anode microchannel plate photomultiplier system with picosecond timing.

    PubMed

    Lapington, J S; Ashton, T J R; Ross, D; Conneely, T

    2012-12-11

    Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout. Initially this will be populated with a 256 channel electronics system comprising four sets of modular 64 channel preamplifier/discriminator, and time-to-digital converter units, arranged in a compact three dimensional configuration. We describe the detector and electronics design and operation, and present performance measurements from the 256 channel development system. We discuss enhancements to the system including higher channel count and the use of application specific on-board signal processing capabilities.

  9. Pricing strategy in a dual-channel and remanufacturing supply chain system

    NASA Astrophysics Data System (ADS)

    Jiang, Chengzhi; Xu, Feng; Sheng, Zhaohan

    2010-07-01

    This article addresses the pricing strategy problems in a supply chain system where the manufacturer sells original products and remanufactured products via indirect retailer channels and direct Internet channels. Due to the complexity of that system, agent technologies that provide a new way for analysing complex systems are used for modelling. Meanwhile, in order to reduce the computational load of searching procedure for optimal prices and profits, a learning search algorithm is designed and implemented within the multi-agent supply chain model. The simulation results show that the proposed model can find out optimal prices of original products and remanufactured products in both channels, which lead to optimal profits of the manufacturer and the retailer. It is also found that the optimal profits are increased by introducing direct channel and remanufacturing. Furthermore, the effect of customer preference, direct channel cost and remanufactured unit cost on optimal prices and profits are examined.

  10. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  11. Destiny-yield relationship for channel catfish reared in a biofloc technology production system

    USDA-ARS?s Scientific Manuscript database

    The effect of stocking density on yield of stocker channel catfish and water quality in a biofloc technology production system was studied in this completely randomized design experiment. Fingerling channel catfish (Ictalurus punctatus; 48.0 g/fish, 17.8 cm/fish) were stocked into nine continuously ...

  12. A wideband channel model for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.

  13. A wideband channel model for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.

  14. 47 CFR 22.1007 - Channels for offshore radiotelephone systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... located in the specified geographical zones that provide offshore radiotelephone service. All channels have a bandwidth of 20 kHz and are designated by their center frequencies in MegaHertz. (a) Zone A—Southern Louisiana. The geographical area in Zone A is bounded as follows: From longitude W.87°45′ on...

  15. 47 CFR 22.1007 - Channels for offshore radiotelephone systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... located in the specified geographical zones that provide offshore radiotelephone service. All channels have a bandwidth of 20 kHz and are designated by their center frequencies in MegaHertz. (a) Zone A—Southern Louisiana. The geographical area in Zone A is bounded as follows: From longitude W.87°45′ on...

  16. 47 CFR 22.1007 - Channels for offshore radiotelephone systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... located in the specified geographical zones that provide offshore radiotelephone service. All channels have a bandwidth of 20 kHz and are designated by their center frequencies in MegaHertz. (a) Zone A—Southern Louisiana. The geographical area in Zone A is bounded as follows: From longitude W.87°45′ on...

  17. An Analysis of Three-Channel RSNS Virtual Spacing Direction Finding System

    DTIC Science & Technology

    2007-12-01

    understand and predict the performance of a three-channel RSNS virtual spacing DF system , simulations in MATLAB were carried out. This chapter...introduces all the models that were used in the MATLAB simulations. A. NOISE MODEL It is assumed that the noise in the system is random in nature and...CHANNEL RSNS VIRTUAL SPACING DIRECTION FINDING SYSTEM by Kevin Kwai December 2007 Thesis Advisors: Phillip Pace David Jenn

  18. Effective light bending and controlling in a chamber-channel waveguide system.

    PubMed

    Guo, Yingnan; Wang, Haining; Reed, Jennifer M; Pan, Shi; Zou, Shengli

    2013-07-01

    A novel chamber-channel system is proposed to achieve the bending of light at a 90 deg angle with relatively high transmission efficiencies. An ultrathin film is introduced into the chamber to couple more light into the system, which makes the chamber as a light absorber, while the channel serves as an output pathway to guide the light through the system. We show that the light propagation is significantly affected by the output position of the channels. By setting the output to specific positions, the device can be considered as a light switch, amplifier, or filter. This work holds great potential for controlling light in nanoscale photonic devices.

  19. A Serial Unequal Error Protection Codes System Using MMSE-FDE for Fading Channels

    NASA Astrophysics Data System (ADS)

    Yamazaki, Satoshi; Asano, David K.

    In our previous research, to achieve unequal error protection (UEP), we proposed a scheme which encodes the data by randomly switching between several codes which use different signal constellations and showed the effectiveness in AWGN channels. In this letter, we propose our UEP system using MMSE-FDE for fast and selective fading by using the fact that importance levels are changed every few symbols, i.e., every block, in the proposed system. We confirmed the improvement in BER performance and the effectiveness of adaptive equalization for the proposed system in fading channels. Moreover, in fading channels we confirmed the validity of the theoretical tradeoff shown in static conditions.

  20. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  1. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  2. Pilot Beam Pattern Design for Channel Estimation in Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Noh, Song; Zoltowski, Michael D.; Sung, Youngchul; Love, David J.

    2014-10-01

    In this paper, the problem of pilot beam pattern design for channel estimation in massive multiple-input multiple-output systems with a large number of transmit antennas at the base station is considered, and a new algorithm for pilot beam pattern design for optimal channel estimation is proposed under the assumption that the channel is a stationary Gauss-Markov random process. The proposed algorithm designs the pilot beam pattern sequentially by exploiting the properties of Kalman filtering and the associated prediction error covariance matrices and also the channel statistics such as spatial and temporal channel correlation. The resulting design generates a sequentially-optimal sequence of pilot beam patterns with low complexity for a given set of system parameters. Numerical results show the effectiveness of the proposed algorithm.

  3. Feedback channel in linear noiseless dynamic systems controlled over the packet erasure network

    NASA Astrophysics Data System (ADS)

    Farhadi, Alireza

    2015-08-01

    This paper is concerned with tracking state trajectory at remote controller, stability and performance of linear time-invariant noiseless dynamic systems with multiple observations over the packet erasure network subject to random packet dropout and transmission delay that does not necessarily use feedback channel full time. Three cases are considered in this paper: (1) without feedback channel, (2) with feedback channel intermittently and (3) with full time availability of feedback channel. For all three cases, coding strategies that result in reliable tracking of state trajectory at remote controller with asymptotically zero mean absolute estimation error are presented. Asymptotic mean absolute stability of the controlled system equipped with each of these coding strategies is shown; trade-offs between duty cycle for feedback channel use, transmission delay and performance, which is defined in terms of the settling time, are studied.

  4. Global coverage Mobile Satellite Systems: System availability versus channel propagation impairments

    NASA Technical Reports Server (NTRS)

    Sforza, M.; Buonomo, S.; Poiaresbaptista, J. P. V.

    1993-01-01

    Mobile Satellite Systems (MSS) in Highly Elliptical (HEO) and circular Earth orbits at Medium (MEO) and Low (LEO) altitudes have been intensively studied in the last few years as an effective means of providing global communication services. Such global coverage MSS networks are also expected to mitigate typical channel impairments usually encountered in geostationary Land Mobile Satellite (LMS) systems. In the design stages of these satellite networks, information regarding the mobile propagation channel is needed to assess the overall link availability versus elevation angle and environmental scenarios. For multisatellite LMS configurations, the mobile user on the Earth surface sees, at any given time, more than one satellite of the constellation. In our paper, it is shown that, under certain working assumptions regarding the statistics of the propagation channel, an improvement of the link availability may be achieved through the use of a multisatellite constellation. The analyses have been carried out using the European Space Agency (ESA) LMS propagation data base which presently covers a wide range of elevation angles and environmental scenarios.

  5. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized. © 2016 Authors; published by Portland Press Limited.

  6. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, G.E.

    1985-02-22

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  7. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, George E.

    1987-01-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  8. Proof-of-concept demonstration of a miniaturized three-channel multiresolution imaging system

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Vervaeke, Michael; Van Erps, Jürgen; Thienpont, Hugo

    2014-05-01

    Multichannel imaging systems have several potential applications such as multimedia, surveillance, medical imaging and machine vision, and have therefore been a hot research topic in recent years. Such imaging systems, inspired by natural compound eyes, have many channels, each covering only a portion of the total field-of-view of the system. As a result, these systems provide a wide field-of-view (FOV) while having a small volume and a low weight. Different approaches have been employed to realize a multichannel imaging system. We demonstrated that the different channels of the imaging system can be designed in such a way that they can have each different imaging properties (angular resolution, FOV, focal length). Using optical ray-tracing software (CODE V), we have designed a miniaturized multiresolution imaging system that contains three channels each consisting of four aspherical lens surfaces fabricated from PMMA material through ultra-precision diamond tooling. The first channel possesses the largest angular resolution (0.0096°) and narrowest FOV (7°), whereas the third channel has the widest FOV (80°) and the smallest angular resolution (0.078°). The second channel has intermediate properties. Such a multiresolution capability allows different image processing algorithms to be implemented on the different segments of an image sensor. This paper presents the experimental proof-of-concept demonstration of the imaging system using a commercial CMOS sensor and gives an in-depth analysis of the obtained results. Experimental images captured with the three channels are compared with the corresponding simulated images. The experimental MTF of the channels have also been calculated from the captured images of a slanted edge target test. This multichannel multiresolution approach opens the opportunity for low-cost compact imaging systems that can be equipped with smart imaging capabilities.

  9. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2012-08-01

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.

  10. A slow-speed multiple-channel analog-to-digital data logging system

    NASA Technical Reports Server (NTRS)

    Lloyd, T. C.; Flaherty, B. J.

    1973-01-01

    The system was developed to record from one up to a maximum of sixteen channels of analog data onto magnetic tape. Each analog channel of data can be sampled at rates of 1, 2, 6, 12, or 60 times per minute. The system is divided into three subunits: a digital clock, an incremental magnetic tape recorder, and a sequential converter. The interfacing requirements of these subunits are presented.

  11. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  12. Operations Considerations in Designing a High Speed Multi Channel Data Acquisition System

    DTIC Science & Technology

    1985-06-01

    performance monitoring and evaluation system (PMES). The system, Which is similar to that of PBFA I [1], consists of approximately 300 channels of single...will be found and new system capabilities must be added; References 1. E. L. Neau and W. B. Boyer, "PBFA-II Performance Monitoring and Evaluation System

  13. VECOM: A powerful local communication channel between vehicle-borne and roadside systems

    NASA Astrophysics Data System (ADS)

    Ros, W.

    1986-09-01

    A system which provides for an inductive data transmission channel for local communication is described. Data exchange takes place at strategic spots via communication loops, embedded in the road. Though the main applications of the system are in the field of public transit, in other fields of transportation the system might offer interesting possibilities, especially when combined with a long range data communication system.

  14. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  15. Reduced-rank technique for joint channel estimation in TD-SCDMA systems

    NASA Astrophysics Data System (ADS)

    Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira

    2013-02-01

    In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.

  16. Design of a communications system for multiple telemetry data channels operating simultaneously with a coherent turn-around ranging channel

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Hinedi, Sami M.; Gevargiz, John M.

    1991-01-01

    This paper presents a simple technique to design a phase-modulated residual carrier communications link for optimum performance. The emphasis is on two data channels which are operated simultaneously with a ranging signal. The data channels employ PCM/PM and PCM/PSK/PM modulation schemes for high and low data rate channels, respectively. The technique proposed here selects the optimum (1) subcarrier frequency to minimize the interference between the two data channels, and (2) modulation indices for optimum balance of power between the two telemetry data channels and the coherent turn around ranging channel. The selected set of optimum modulation indices will allow for the specified bit error rate (BER) degradations in the two data channels. Although this technique is proposed to optimize the performance degradation for two data channels, generalizations can be made for more than two data channels.

  17. Design of a communications system for multiple telemetry data channels operating simultaneously with a coherent turn-around ranging channel

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Hinedi, Sami M.; Gevargiz, John M.

    1991-01-01

    This paper presents a simple technique to design a phase-modulated residual carrier communications link for optimum performance. The emphasis is on two data channels which are operated simultaneously with a ranging signal. The data channels employ PCM/PM and PCM/PSK/PM modulation schemes for high and low data rate channels, respectively. The technique proposed here selects the optimum (1) subcarrier frequency to minimize the interference between the two data channels, and (2) modulation indices for optimum balance of power between the two telemetry data channels and the coherent turn around ranging channel. The selected set of optimum modulation indices will allow for the specified bit error rate (BER) degradations in the two data channels. Although this technique is proposed to optimize the performance degradation for two data channels, generalizations can be made for more than two data channels.

  18. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Su, Hong; Chen, Zhi-Qiang; Dong, Cheng-Fu; Qian, Yi; Gao, Shan-Shan; Zhou, Chao-Yang; Lu, Wan; Ye, Rui-Ping; Ma, Jun-Bing

    2010-10-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  19. On Bit Rate Reduction of Inter-Channel Communication for a Binaural Hearing Assistance System

    NASA Astrophysics Data System (ADS)

    Chisaki, Yoshifumi; Kawano, Ryouji; Usagawa, Tsuyoshi

    A binaural hearing assistance system based on the frequency domain binaural model has been previously proposed. The system can enhance a signal coming from a specific direction. Since the system utilizes a binaural signal, an inter-channel communication between left and right subsystems is required. The bit rate reduction in inter-channel communication is essential for the detachment of the headset from the processing system. In this paper, the performance of a system which uses a differential pulse code modulation codec is examined and the relationship between the bit rate and sound quality is discussed.

  20. Use Channel Reconfiguration Technique to Improve the Spatial Multiplexing Gain of MIMO Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Yi; Yang, Shih-Jen; Chen, Jiunn-Tsair

    Multiple-input-multiple-output (MIMO) wireless systems can not always have full spatial multiplexing gain due to the channel correlation problem caused by various factors such as the coupled antenna elements, and the key-hole effect of the propagation environment. In this paper, we proposed a channel reconfiguration technique to combat the rank deficiency problem of the involved MIMO wireless channels that can not afford high-order multiplexing gains. In the proposed approach, each mobile station can simultaneously receive several independent data streams from multiple base stations through a set of MMSE-based receive beamformers to suppress the multiple access interferences. Making use of the receive beamforming, which virtually produce the effect of a single antenna at each receive mobile, makes the transmit base station possible to reconfigure the MIMO downlink channel and then pre-cancel the co-channel interferences. The proposed signal processing mechanism that iteratively optimized the MMSE receive weights and the transmit precoders, which brings the reconfigured MIMO system about the high data throughput seen only with indoor MIMO systems having rich wireless channels. It is shown that as compared to the conventional MIMO system, the M4 system can achieve a significantly higher capacity which is proportional to the number of the linked base stations.

  1. 47 CFR 90.717 - Channels available for nationwide systems in the 220-222 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., commercial Phase I systems. (c) Channels 111-115 and 116-120 are 5-channel blocks available for Government... 47 Telecommunication 5 2010-10-01 2010-10-01 false Channels available for nationwide systems in... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Regulations...

  2. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Udalov, S.

    1974-01-01

    This study investigated the configuration and integration of a wideband communication system with a Ku-band rendezvous radar system. The goal of the study was to provide as much commonality between the two systems as possible. The antenna design was described with the only change being the requirement for dual polarization (linear for the radar system and circular for the communication system).

  3. Inter-channel nonlinear crosstalk in analog phase-modulated wavelength-division-multiplexed systems.

    PubMed

    Kim, Hoon; Lee, J H; Ji, Ho-Chul

    2008-12-08

    We investigate the inter-channel nonlinear optical crosstalk in analog phase-modulated (PM) wavelength-division-multiplexed systems. The optical transmitters of the PM system produce constant optical intensity at the output. However, the chromatic dispersion of fiber induces amplitude fluctuations which in turn give rise to fiber nonlinearities to other channels through stimulated Raman scattering (SRS) and optical Kerr effect. We present theoretical analysis on SRS and cross-phase modulation (XPM) for PM systems and compare it with two-channel experiment and numerical simulation. The results show that PM systems significantly suppress SRS and XPM, compared to intensity-modulated systems. Our experiment and simulation results confirm that the total nonlinear crosstalk in the analog PM WDM system is reduced up to 15 dB.

  4. Identical synchronization of chaotic secure communication systems with channel induced coherence resonance

    NASA Astrophysics Data System (ADS)

    Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.

    2016-05-01

    This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.

  5. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  6. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  7. Cloud and Aerosol Lidar Channel Design and Performance of the Geoscience Laser Altimeter System on the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Krainak, Michael A.; Spinhirne, James D.; Palm, Steve S.; Lancaster, Redgie S.; Allan, Graham R.

    2004-01-01

    The design of the 532 and 1064nm wavelength atmosphere lidar channels of the Geoscience Laser Altimeter System on the ICESat spacecraft is described. The lidar channel performance per on orbit measurements data will be presented.

  8. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    NASA Astrophysics Data System (ADS)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  9. System design for a million channel digital spectrum analyzer /MCSA/. [of bandpass filtering in SETI receivers

    NASA Technical Reports Server (NTRS)

    Peterson, A.; Narasimha, M.; Narayan, S.

    1980-01-01

    The system design of a wideband (8 MHz) million-channel digital spectrum analyzer for use with a SETI receiver is presented. The analyzer makes use of a digital bandpass filter bank for transforming the wideband input signal into a specified number (120) of uniform narrowband output channels by the use of a Fourier transform digital processor combined with a prototype digital weighting network (finite impulse response filter). The output is then processed separately by 120 microprocessor-based discrete Fourier transform computers, each producing 8190 output channels of approximately 8 Hz bandwidth by the use of an 8190-point prime factor algorithm.

  10. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    SciTech Connect

    Mohan, Kavya; Mondal, Partha Pratim

    2016-06-15

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  11. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    NASA Astrophysics Data System (ADS)

    Mohan, Kavya; Mondal, Partha Pratim

    2016-06-01

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  12. The design and analysis of channel transmission communication system of XCTD profiler.

    PubMed

    Zheng, Yu; Wang, Xiao-Rui; Jin, Xiang-Yu; Song, Guo-Min; Shang, Ying-Sheng; Li, Hong-Zhi

    2016-10-01

    In this paper, a channel transmission communication system of expendable conductivity-temperature-depth is established in accordance to the operation characteristics of the transmission line to more accurately assess the characteristics of deep-sea abandoned profiler channel. The wrapping inductance is eliminated to maximum extent through the wrapping pattern of the underwater spool and the overwater spool and the calculation of the wrapping diameter. The feasibility of the proposed channel transmission communication system is verified through theoretical analysis and practical measurement of the transmission signal error rate in the amplitude shift keying (ASK) modulation. The proposed design provides a new research method for the channel assessment of complex abandoned measuring instrument and an important experiment evidence for the rapid development of the deep-sea abandoned measuring instrument.

  13. Super multi-channel recording systems with UWB wireless transmitter for BMI.

    PubMed

    Suzuki, Takafumi; Ando, Hiroshi; Yoshida, Takeshi; Sawahata, Hirohito; Kawasaki, Keisuke; Hasegawa, Isao; Matsushita, Kojiro; Hirata, Masayuki; Yoshimine, Toshiki; Takizawa, Kenichi

    2014-01-01

    In order to realize a low-invasive and high accuracy Brain-Machine Interface (BMI) system for clinical applications, a super multi-channel recording system was developed in which 4096 channels of Electrocorticogram (ECoG) signal can be amplified and transmitted to outside the body by using an Ultra Wide Band (UWB) wireless system. Also, a high density, flexible electrode array made by using a Parylene-C substrate was developed that is composed of units of 32-ch recording arrays. We have succeeded in an evaluation test of UWB wireless transmitting using a body phantom system.

  14. The multi-channel laser focusing transceiver system and analysis of the image quality

    NASA Astrophysics Data System (ADS)

    Sui, Xin; Sun, Hongri; Yang, Kun; Qu, Zhou; Zhang, Bo; Cui, Yihan

    2015-10-01

    This paper has investigated and designed a multi-channel laser focusing transceiver system based on the combination of the laser technology, the space technology and the modern photoelectric detection technology which has the feather of wide wave band, non-chromatic aberration and high quality of image quality etc. The system could be synchronized and can change the distance of detection in a particular direction and obtain the image of atmospheric echo signals at different distances. In this paper we established a multi-channel and variable range laser focusing transceiver system that consists of a single-channel laser focusing transmitter system and a dual-channel receiving telescope system. The three channels of the system depend on the same reference axis. We propose a new method that is capable to improve the laser focusing transceiver system performance. The method is implemented by using parabolic reflector design in the primary and secondary mirror of the variable range laser focusing transmitter system, dual-channel off-axis design in the receiver system and simultaneous imaging design in the different regions of the same CCD target surface of the subsequent imaging system. The detection by two channels using off-axis design would be convenient for computing follow up information. On the base of theoretical basis of the reflective double mirror system and the theory Gaussian beam propagation, this paper calculates the actual converging sot size of the transmitter system and analyzes the wavefront aberration the defocus incidence. The oblique incidence will introduce the certain astigmatism and a small amount of coma and the defocus incidence will produce the certain coma and a small amount of spherical aberration and astigmatism. Finally, an experimental multi-channel laser focusing transceiver system was established and the image quality of the transceiver system on the base of wavefront aberrations, the spot diagram and the MTF curve of some fields is

  15. Towards a multi-channel TOF-PET system with SiPM readout

    NASA Astrophysics Data System (ADS)

    Garutti, Erika; Göttlich, Martin; Harion, Tobias; Hegemann, Niklas; Schmidt, Maximilian; Schultz-Coulon, Hans-Christian; Shen, Wei; Silenzi, Alessandro; Stamen, Rainer; Tadday, Alexander; Xu, Chen

    2012-12-01

    The goal of this project is to develop a multi-channel TOF-PET system with a 300 ps FWHM time resolution, a factor two improvement with respect to commercially available systems (Surti et al., 2007 [1]). In a TOF-PET system, the time-of-flight information can be used to improve significantly the sensitivity of the detector as shown in Karp et al. (2008) [2]. The target time resolution has been achieved in two channel systems with LYSO (Kim and Wang, 2008 [3]), the aim is to port this results into a multi-channel system. This work extends the results shown in Göttlich et al. (2010) [4], studying the stability of the detector performance in different geometries and configurations.

  16. Guidance of the divertor channel outside the main coil system for heliotron/torsatron devices

    NASA Astrophysics Data System (ADS)

    Takase, H.; Ohyabu, N.

    1995-02-01

    A divertor magnetic configuration is proposed that significantly reduces heat load on the divertor plates in heliotron/torsatron devices. The proposed configuration utilizes an octupole field for guiding the divertor channels to a remote area outside the main coil system, where the magnetic field is weak. This allows a significant reduction of the heat load due to expansion of the divertor channels as well as substantially easier access to the divertor plates for maintenance, the key requirements for toroidal fusion reactor designs

  17. Decomposite channel estimation and equalization for GMSK-based system with transmit diversity

    NASA Astrophysics Data System (ADS)

    Yao, Timothy S.; Gudena, Chandragupta

    2004-08-01

    In this paper, multi-channel estimation schemes for a GMSK-based system with transmit diversity (space-time coding) are presented. For such a system, the channel information (impulse response) is critical for both space-time decoding and equalization at the receiver. Three non-blind estimation schemes, which decompose the channel in the process, are proposed for the GMSK receiver to obtain the impulse response of each of the multipath channels (i.e. transmit antennas): oversampling deconvolution, minimum mean-square error, and joint adaptive and correlation estimation. Since the received signal is the sum of emitted GMSK signals, interference cancellation is employed to facilitate the estimation process. Three cancellation algorithms, including direct cancellation, mean-square cancellation, and iterative cancellation, combined with each channel estimation method are investigated and compared. The estimated channel information will feed to the receiver consisting of space-time decoder and equalizer to decode the symbols of interest. Two receiver architectures are investigated in this paper, where the first design is the space-time decoder followed by the equalizer, the other is in the reverse way (equalizer followed by space-time decoder). In each of the two receiver architectures, the channel estimation needs additional modification and so does the equalizer. The equalizer in the design is a maximum likelihood sequence estimation (MLSE) based on Viterbi algorithm. To prove the concept and algorithms, both simulation and hardware implementation are performed. From the experimental results, it is shown that all the channel estimation algorithms can produce acceptable impulse response for space-time decoding and equalizer, in which the joint adaptive estimation with iterative cancellation is superior to the others. It is also shown that the diversity gain of this transmit diversity system is as good as a system with the same degree of receive diversity.

  18. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  19. Potassium channels in the central nervous system of the snail, Helix pomatia: localization and functional characterization.

    PubMed

    Battonyai, I; Krajcs, N; Serfőző, Z; Kiss, T; Elekes, K

    2014-05-30

    The distribution and functional presence of three voltage-dependent potassium channels, Kv2.1, Kv3.4, Kv4.3, respectively, were studied in the central nervous system of the snail Helix pomatia by immunohistochemical and electrophysiological methods. Cell clusters displaying immunoreactivity for the different channels were observed in all parts of the CNS, although their localization and number partly varied. Differences were also found in their intracellular, perikaryonal and axonal localization, as well as in their presence in non-neuronal tissues nearby the CNS, such as the perineurium and the aorta wall. At ultrastructural level Kv4.3 channel immunolabeling was observed in axon profiles containing large 80-100nm granular vesicles. Blotting analyses revealed specific signals for the Kv2.1, Kv3.4 and Kv4.3 channels, confirming the presence of the channels in the Helix CNS. Voltage-clamp recordings proved that outward currents obtained from neurons displaying Kv3.4 or Kv4.3 immunoreactivity contained transient components while Kv2.1 immunoreactive cells were characterized by delayed currents. The distribution of the K(+)-channels containing neurons suggests specific roles in intercellular signaling processes in the Helix CNS, most probably related to well-defined, partly local events. The cellular localization of the K(+)-channels studied supports their involvement in both pre- and postsynaptic events at perikaryonal and axonal levels. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. DLG differentially localizes Shaker K+-channels in the central nervous system and retina of Drosophila.

    PubMed

    Ruiz-Cañada, C; Koh, Y H; Budnik, V; Tejedor, F J

    2002-09-01

    Subcellular localization of ion channels is crucial for the transmission of electrical signals in the nervous system. Here we show that Discs-Large (DLG), a member of the MAGUK (membrane-associated guanylate kinases) family in Drosophila, co-localizes with Shaker potassium channels (Sh Kch) in most synaptic areas of the adult brain and in the outer membrane of photoreceptors. However, DLG is absent from axonal tracts in which Sh channels are concentrated. Truncation of the C-terminal of Sh (including the PDZ binding site) disturbs its pattern of distribution in both CNS and retina, while truncation of the guanylate kinase/C-terminal domain of DLG induces ectopic localization of these channels to neuronal somata in the CNS, but does not alter the distribution of channels in photoreceptors. Immunocytochemical, membrane fractionation and detergent solubilization analysis indicate that the C-terminal of Sh Kch is required for proper trafficking to its final destination. Thus, several major conclusions emerge from this study. First, DLG plays a major role in the localization of Sh channels in the CNS and retina. Second, localization of DLG in photoreceptors but not in the CNS seems to depend on its interaction with Sh. Third, the guanylate kinase/C-terminal domain of DLG is involved in the trafficking of Shaker channels but not of DLG in the CNS. Fourth, different mechanisms for the localization of Sh Kch operate in different cell types.

  1. Modeling of multi-channel MIMO-VLC systems in the indoor environment

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Marcin

    2016-09-01

    The article presents a concept of simultaneous using multiple channels for data transmission (an approach MIMO- multiple input multiple output) in the visible light communication systems (VLC), which are considered here as their implementation inside buildings, in the aspect of their numerical modeling. There was presented both a mathematical description (a model) of such systems as well as obtained on this basis results in relation to the instances of MIMO-VLC system with two and four channels, respectively. The so-called non-imaging detectors were used at the receiver side . Obtained results allowed to gain a few valuable conclusions that were included in the last section of article.

  2. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    NASA Astrophysics Data System (ADS)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.

  3. Reduced Complexity in Antenna Selection for Polarized MIMO System with SVD for the Practical MIMO Communication Channel Environment

    NASA Astrophysics Data System (ADS)

    Sann Maw, Maung; Sasase, Iwao

    In the conventional multi-input multi-output (MIMO) communication systems, most of the antenna selection methods considered are suitable only for spatially separated uni-polarized system under Rayleigh fading channel in non-line of sight (NLOS) condition. There have a few antenna selection schemes for the cross-polarized system in LOS condition and Ricean fading channel, and no antenna selection scheme for the MIMO channel with both LOS and NLOS. In the practical MIMO channel case, influence of LOS and NLOS conditions in the channel can vary from time to time according to the channel parameters and user movement in the system. Based on these influences and channel condition, uni-polarized system may outperform a cross-polarized. Thus, we should consider this kind of practical MIMO channel environment when developing the antenna selection scheme. Moreover, no research work has been done on reducing the complexity of antenna selection for this kind of practical MIMO channel environment. In this paper, reduced complexity in antenna selection is proposed to give the higher throughput in the practical MIMO channel environment. In the proposed scheme, suitable polarized antennas are selected based on the calculation of singular value decomposition (SVD) of channel matrix and then adaptive bit loading is applied. Simulation results show that throughput of the system can be improved under the constraint of target BER and total transmit power of the MIMO system.

  4. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Huth, G. K.; Simon, M. K.

    1978-01-01

    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.

  5. Long-term morphological response to dredging including cut-across-shoal in a tidal channel-shoal system

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Hai; Wang, Chong-Hao; Tang, Li-Qun; Liu, Da-Bin; Guo, Chuan-Sheng; Liu, Chun-Jing; Zhao, Hui-Ming

    2014-12-01

    This study examines long-term channel-shoal stability in the Tieshan Bay, which is located on the southwest coast of China. A large-scale channel-shoal system has historically existed in the outer Tieshan Bay. A navigation waterway is initiated by cutting and dredging a mid-channel shoal to supply coal to a power plant on the middle coast of the Tieshan Bay. Dredging of the access channel to the Tieshan Port was conducted in two stages followed by land reclamation. It is thus of practical meaning to explore how the channel-shoal system will evolve in long term afterwards. This study uses the process-based finite-volume coastal ocean model (FVCOM) to investigate long-term (centennial) morphological evolution of the channel-shoal system. After well calibration of hydrodynamics and sediment transport, the model forecasts morphodynamic evolution in hundred years. The simulations show that continuous erosion in tidal channels and accretion over shoals and intertidal flats occur. However, the cutting and access channels will be subjected to long-term siltation. A secondary channel indicating the reorientation of the access channel will emerge, and a localized channel-ridge system at the junction of the major channels will be formed. The overall erosion/accretion pattern demonstrates the combined effect of bottom friction and advective sediment transport processes to be responsible for the channel-shoal formation. Dredging of the tidal channels will stimulate the stability of the channel-shoal pattern. It suggests that the navigation waterway should be set up following the long-term morphological evolution of the channel-shoal system at a design stage and maintenance dredging volume might thus be minimized.

  6. Optimized joint timing synchronization and channel estimation for communications systems with multiple transmit antennas

    NASA Astrophysics Data System (ADS)

    Kung, Te-Lung; Parhi, Keshab K.

    2013-12-01

    This paper proposes a joint timing synchronization and channel estimation scheme for communications systems with multiple transmit antennas based on a well-designed training sequence arrangement. In addition, a generalized maximum-likelihood (ML) channel estimation scheme is presented, and this one-shot scheme is applied to obtain all channel impulse responses (CIR) from different transmit antennas. The proposed approach consists of three stages at each receive antenna. First, coarse timing and frequency offset estimates are obtained. Then, an advanced timing, relative timing indices, and the corresponding CIR estimates at the second stage are obtained using the generalized ML estimation based on a sliding observation vector. Finally, the fine time adjustment based on the minimum mean squared error criterion is performed. From the simulation results, the proposed approach has excellent performance in timing synchronization under several channel models at signal-to-noise ratio smaller than 1dB.

  7. Pilot symbol assisted channel estimation for OFDM-based cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Manasseh, Emmanuel; Ohno, Shuichi; Nakamoto, Masayoshi

    2013-12-01

    In this article, challenges regarding the provision of channel state information (CSI) in non-contiguous orthogonal frequency division multiplexing (NC-OFDM) cognitive radio (CR) systems are addressed. We propose a novel scheme that utilizes cross entropy (CE) optimization together with an analytical pilot power distribution technique to design pilot symbols that minimizes the channel estimate mean squared error (MSE) of frequency-selective channels. The optimal selection of pilot subcarriers is a combinatorial problem that requires heavy computations. To reduce the computational complexity, the CE optimization is utilized to determine the position of pilot subcarriers. Then, for a given pilot placement obtained by the CE algorithm, a closed form expression to obtain optimal pilot power distribution is employed. Simulation results indicate that, the proposed pilot symbol design provides better channel estimate MSE as well as the bit error rate (BER) performance when compared with the conventional equal powered pilot design.

  8. TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology.

    PubMed

    Abriel, Hugues; Syam, Ninda; Sottas, Valentin; Amarouch, Mohamed Yassine; Rougier, Jean-Sébastien

    2012-10-01

    The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.

  9. Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Qingsong; Hao, Shiqi; Geng, Hongjian; Sun, Han

    2015-10-01

    Orthogonal frequency division multiplexing (OFDM) technique applied to the atmospheric optical communication can improve data transmission rate, restrain pulse interference, and reduce effect of multipath caused by atmospheric scattering. Channel estimation, as one of the important modules in OFDM, has been investigated thoroughly and widely with great progress. In atmospheric optical communication system, channel estimation methods based on pilot are common approaches, such as traditional least-squares (LS) algorithm and minimum mean square error (MMSE) algorithm. However, sensitivity of the noise effects and high complexity of computation are shortcomings of LS algorithm and MMSE algorithm, respectively. Here, a new method based on compressive sensing is proposed to estimate the channel state information of atmospheric optical communication OFDM system, especially when the condition is closely associated with turbulence. Firstly, time-varying channel model is established under the condition of turbulence. Then, in consideration of multipath effect, sparse channel model is available for compressive sensing. And, the pilot signal is reconstructed with orthogonal matching tracking (OMP) algorithm, which is used for reconstruction. By contrast, the work of channel estimation is completed by LS algorithm as well. After that, simulations are conducted respectively in two different indexes -signal error rate (SER) and mean square error (MSE). Finally, result shows that compared with LS algorithm, the application of compressive sensing can improve the performance of SER and MSE. Theoretical analysis and simulation results show that the proposed method is reasonable and efficient.

  10. Use of the Nucleus 22 Channel Cochlear Implant System with Children.

    ERIC Educational Resources Information Center

    Staller, Steven J.; And Others

    1994-01-01

    This paper describes components of the Nucleus 22 Channel Cochlear Implant System used with deaf children and adults. It discusses speech coding strategies, programming concepts, programming the device for children, trouble-shooting, and fitting an FM system to a speech processor. It reports data showing improved ability to use auditory…

  11. A bidirection-adjustable ionic current rectification system based on a biconical micro-channel.

    PubMed

    Chang, Fengxia; Chen, Cheng; Xie, Xia; Chen, Lisha; Li, Meixian; Zhu, Zhiwei

    2015-10-25

    We developed a simple, cheap and bidirectional ionic current rectification system based on the integration of a biconical micro-channel, working electrode and reference electrode. This system may have potential and realistic future value for studying two-way ionic transport in the cell membrane.

  12. Winter performance of an outdoor biofloc production system for channel catfish

    USDA-ARS?s Scientific Manuscript database

    In the tropics, outdoor biofloc technology production systems are operated year-round. While channel catfish (Ictalurus punctatus) have been grown successfully in an outdoor biofloc production system, these studies were conducted only during the growing season and production tanks were idled for the...

  13. Multiple channel secure communication using chaotic system encoding

    SciTech Connect

    Miller, S.L.

    1996-12-31

    fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.

  14. Solids management in a channel catfish biofloc technology production system

    USDA-ARS?s Scientific Manuscript database

    Biofloc technology (BFT) production systems are being used more commonly to produce high yields of fish or shrimp because very high feed rates are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particulate organic matter and is maintained in s...

  15. Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange.

    PubMed

    Tsuji, Yutaro; Kawano, Ryuji; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2013-04-21

    This paper proposes a solution exchange of a droplet-based lipid bilayer system, in which the inner solution of a droplet is replaced for the purpose of efficient ion channel analyses. In our previous report, we successfully recorded the channel conductance of alpha-hemolysin in a bilayer lipid membrane using a droplet contact method that can create a spontaneous lipid bilayer at the interface of contacting droplets; this method is widely used as highly efficient method for preparing planar lipid membranes. When only pipetting droplets of the solution, this method is highly efficient for preparing lipid membranes. However, the drawback of droplet-based systems is their inability to exchange the solution within the droplets. To study the effect of inhibitors and promoters of ion channels in drug discovery, it would be beneficial to conduct a solution exchange of droplets to introduce membrane proteins and to apply or wash-out the chemicals. In this study, we propose a droplet contact method that allows for the solution exchange of droplets via microfluidic channels. We experimentally and numerically investigated the bilayer stability with respect to exchanging flow rates, and then demonstrated a binding assay of an alpha-hemolysin using one of its blockers. The solution exchange in this system was conducted in less than 20 s without rupturing the membrane. We believe that the proposed system will enhance the efficiency of ion channel analyses.

  16. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    NASA Astrophysics Data System (ADS)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  17. Channel Estimation and Performance Analysis of One-Bit Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Li, Yongzhi; Tao, Cheng; Seco-Granados, Gonzalo; Mezghani, Amine; Swindlehurst, A. Lee; Liu, Liu

    2017-08-01

    This paper considers channel estimation and system performance for the uplink of a single-cell massive multiple-input multiple-output (MIMO) system. Each receive antenna of the base station (BS) is assumed to be equipped with a pair of one-bit analog-to-digital converters (ADCs) to quantize the real and imaginary part of the received signal. We first propose an approach for channel estimation that is applicable for both flat and frequency-selective fading, based on the Bussgang decomposition that reformulates the nonlinear quantizer as a linear functionwith identical first- and second-order statistics. The resulting channel estimator outperforms previously proposed approaches across all SNRs. We then derive closed-form expressions for the achievable rate in flat fading channels assuming low SNR and a large number of users for the maximal ratio and zero forcing receivers that takes channel estimation error due to both noise and one-bit quantization into account. The closed-form expressions in turn allow us to obtain insight into important system design issues such as optimal resource allocation, maximal sum spectral efficiency, overall energy efficiency, and number of antennas. Numerical results are presented to verify our analytical results and demonstrate the benefit of optimizing system performance accordingly.

  18. Extended Horizon Liftings for Periodic Gain Adjustments in Control Systems, and for Equalization of Communication Channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1996-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  19. Parallel Interconnection of Broadcast Systems with Multiple FIFO Channels

    NASA Astrophysics Data System (ADS)

    de Juan Marín, Ruben; Cholvi, Vicent; Jiménez, Ernesto; Muñoz-Escoí, Francesc D.

    This paper proposes new protocols for the interconnection of FIFO- and causal-ordered broadcast systems, thus increasing their scalability. They use several interconnection links between systems, which avoids bottleneck problems due to the network traffic, since messages are not forced to go throughout a single link but instead through the several links we establish. General architectures to interconnect FIFO- and causal-ordered systems are proposed. Failure management is also discussed and a performance analysis is given, detailing the benefits introduced by these interconnection approaches that are able to easily increase the resulting interconnection bandwidth.

  20. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the

  1. Interactive multimedia systems as communication channels in color workshops

    NASA Astrophysics Data System (ADS)

    Gaudio, Alejandra; De Ponti, Javier

    2002-06-01

    Great technological advances can help us to recover communication areas that might otherwise be lost. Media competition and visual contamination frequently appear in daily communication. A notable anonymity in human relationship has emerged as a consequence of this. Educational establishments receive an overflowing number of students. Schools and students are overwhelmed by this situation. Teachers don't know their students and students usually don't know their own classmates, with all the consequences that this implies. In front of this inadequate structure of educational institutions, technology has improved the possibilities of instant answers and the dialogue between teachers and students; the unilateral exposition pronounced by teachers in front of the anonymous mass finds an alternative in multimedia systems. The present work describes Interactive Multimedia System's utilization for teaching the chromatic circle as a system of color organization. The proposed method intends to devise a theoretical and conceptual frame and its production for multimedia systems oriented to elaborate, represent, store, interact with and access to knowledge Its relevance comes from the potential contribution to build up knowledge systems that value cultural codes and at the same time make creative and motivating interactive experiences. This work concerns the realization and understanding of the chromatic circle, selection of different color systems, logical strategies for playing and studying theory and multimedia. Levels of visualization: theory, practice, developing skills, works and evaluation. Levels to study: teaching chromatic circle, multimedia supports, quality, application and linking screens, help, theory, etc; without losing the interdisciplinary nature of the work, specialist participation, and Multimedia Systems in the steps of its realization.

  2. Anisoplanatic studies and Fried parameter estimation via multi-channel laser communication system

    NASA Astrophysics Data System (ADS)

    Sergeyev, A.; Roggemann, M.

    The knowledge of the turbulence conditions and the ability to describe its properties are the key aspects to improve performance and extend the range of optical communication systems. The developed multi-channel, outdoor 3.2 km, partially over water, turbulence measurement and monitoring communication platform is directed to collect significant amount of the experimental data with the goal of statistically describe atmospheric turbulence. The communication system described in this paper has two transmitters and two receivers. The transmitter side is equipped with the laser and the bank of 14 horizontally, in-line mounted LEDs. The receiver side consists of two channels for wave front sensor (WFS) and point spread function (PSF) measurements. Data collected via both channels is further used for Fried parameter estimation and anisoplanatic studies. In this article authors provide comprehensive analysis of the turbulence statistics extracted from the experimental data. Statistics of Freid parameter r0 is derived from 6 Tb of data collected through 40 days time interval, and under various day and night atmospheric conditions. These data collected from WFS and PSF channels are digitally post processed and results obtained from PSF measurements are compared with the ones derived from the WFS data. Consistent results obtained via both channels allows authors to conclude that the entire system performs reliably and generates trustworthy results. Results extracted from the data collected via both channels show significant fluctuations of r0 with the values ranging from 2mm and up to 20 cm. The data collected from the PSF channel is also used for measurements of anisoplanetic effects. Theoretically, the severe anisoplanatic conditions found in horizontally imaging scenarios can be approximated by a finite number of phase screens placed along the imaging path. However, comparison of adjacent PSFs generated in this manner reveals significant correlation a- angles much larger

  3. Single layer, multi-channel band-gear system for rotary joint

    NASA Technical Reports Server (NTRS)

    Kong, Kin Yuen (Inventor)

    1998-01-01

    A multi-channel band-gear system for a rotary joint has a ring gear assembly with a conducting ring band in electrical contact with corresponding conducting bands of a set of intermediary planetary gears, which in turn are in electrical contact with a conducting sun band of a sun gear assembly. The ring band is formed with a plurality of conducting segments which are electrically insulated from each other and positioned angularly in a circumferential direction of the ring gear, such that separate electrical power/signal channels are formed across the rotary joint. In a preferred embodiment having continuously connected channels, the ring band has four conducting segments at 90.degree. intervals, the sun band has two conducting segments at 180.degree. intervals, and three planetary bands are in rolling electrical contact at 120.degree. intervals between the ring band segments and the sun band segments, forming two continuously connected channels in a single layer of the band-gear system. Multiple sets of ring gear, planetary gear, and sun gear assemblies may be used in a stacked configuration in a single axial layer to further increase the number of channels provided through the band-gear system.

  4. Indoor positioning system using WLAN channel estimates as fingerprints for mobile devices

    NASA Astrophysics Data System (ADS)

    Schmidt, Erick; Akopian, David

    2015-03-01

    With the growing integration of location based services (LBS) such as GPS in mobile devices, indoor position systems (IPS) have become an important role for research. There are several IPS methods such as AOA, TOA, TDOA, which use trilateration for indoor location estimation but are generally based on line-of-sight. Other methods rely on classification such as fingerprinting which uses WLAN indoor signals. This paper re-examines the classical WLAN fingerprinting accuracy which uses received signal strength (RSS) measurements by introducing channel estimates for improvements in the classification of indoor locations. The purpose of this paper is to improve existing classification algorithms used in fingerprinting by introducing channel estimates when there are a low number of APs available. The channel impulse response, or in this case the channel estimation from the receiver, should characterize a complex indoor area which usually has multipath, thus providing a unique signature for each location which proves useful for better pattern recognition. In this experiment, channel estimates are extracted from a Software-Defined Radio (SDR) environment, thus exploiting the benefits of SDR from a NI-USRP model and LabVIEW software. Measurements are taken from a known building, and several scenarios with one and two access points (APs) are used in this experiment. Also, three granularities in distance between locations are analyzed. A Support Vector Machine (SVM) is used as the algorithm for pattern recognition of different locations based on the samples taken from RSS and channel estimation coefficients.

  5. Patterns in abundance of fishes in main channels of the upper Mississippi River system

    USGS Publications Warehouse

    Dettmers, J.M.; Gutreuter, S.; Wahl, David H.; Soluk, D.A.

    2001-01-01

    Abundance of fishes of the main channels of the upper Mississippi River system and of other large North American rivers is largely unknown because historic sampling methods have been inadequate. We used a bottom trawl to estimate spatial and temporal patterns in abundance in the navigation channels of Pool 26 of the Mississippi River and the lower Illinois River. Total biomass density averaged 21 and 29 kg·ha-1 in the navigation channels of Pool 26 and the lower Illinois River, respectively. We identified spatial and temporal patterns in catches of key species using a generalized linear model based on the negative binomial distribution. Some species, including shovelnose sturgeon (Scaphirhynchus platorynchus), are persistent residents of the main channel. Multiple-season residents, including freshwater drum (Aplodinotus grunniens), rely heavily on the main channel during most of the year but leave it briefly, for example to seek thermal refugia in backwaters during winters. We suggest revision of the prevailing notion that main channels of large temperate rivers serve mainly as corridors for movement among other habitat types.

  6. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    SciTech Connect

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; Spilatro, Michael; Hill, Elizabeth M.; Kosc, Tanya Z.; Kelly, John H.; Zuegel, Jonathan D.

    2016-12-06

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO3 demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.

  7. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    DOE PAGES

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; ...

    2016-12-06

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO3 demultiplexermore » composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less

  8. Down regulation of sodium channels in the central nervous system of hibernating snails.

    PubMed

    Kiss, T; Battonyai, I; Pirger, Z

    2014-05-28

    Hibernation, as behavior, is an evolutionary mode of adaptation of animal species to unfavorable environmental conditions. It is generally characterized by suppressed metabolism, which also includes down regulation of the energy consuming ion-channel functioning. Experimental data regarding decreased ion-channel function are scarce. Therefore, our goal was to study the possible down regulation of voltage-gated sodium channel (NaV) subtypes in the neurons of hibernating snails. Our immunohistochemical experiments revealed that the expression of NaV1.8-like channels in the central nervous system was substantially down regulated in hibernating animals. In contrast to NaV1.8-like, the NaV1.9-like channels were present in neurons independently from hibernating and non-hibernating states. Our western blot data supported the immunohistochemical results according to which the band of the NaV1.8-like channel protein was less intensively labeled in the homogenate of the hibernating snails. The NaV1.9-like immunoreactivity was equally present both in hibernating and active snails. Micro-electrophysiological experiments show that in hibernating snails both NaV1.8- and NaV1.9-like currents are substantially decreased compared to that of the active snails. The contradictory electrophysiological and immunohistochemical or western blot data suggest that the molecular mechanisms of the "channel arrest" could be different in diverse NaV channel subtypes. Climate changes will affect temperature extremes and a question is how different species beyond their physiological tolerance will or able to adapt to changing environment. Hibernation is an important mode of adaptation to extreme climatic variations, and pursuant to this the present results may contribute to the study of the behavioral ecology. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Analysing connectivity through landslide-channel geomorphic coupling in a large drainage system of Southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta

    2014-05-01

    Unlike creep, splash erosion and linear erosion which sometimes are called "continuous" slope processes, since they are perceived as causing relatively continuous erosion on slopes and a rather rapid transport towards river channels, mass movement processes, excepting flows, have a discontinuous behavior, manifesting stochastically on time intervals ranging from one year to tens of years, while the displaced material can remain suspended in different parts of the slope forming sediment stores. It is obviously why estimating the sediment delivered to the river network by landslides becomes a difficult task. Landslide control on channel dynamics is just one of the several forms of hillslope-channel coupling. Landslide-channel connectivity is relevant for understanding the way landslides are contributing to the sediment flux within catchments and how their study should be integrated in the estimation of sediment budgets. This paper explores the geomorphic coupling of landslides with river channels based on an extensive landslide inventory. The study area is a large drainage basin (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which contribute to supplying sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets, the first stage of which consists in studying sediment sources. High sediment transport is associated to flash floods, a fraction of which is due to the slope failures occurring in response to the undercutting of river channels. Nominal classification systems as well as quantitative measures available in the connectivity literature are adopted here to describe the landslides-channels contact zones. Characteristics of the geomorphic coupling interfaces are further linked to the resulting geomorphic effects of landslides on the drainage

  10. Elastic, inelastic, and 1-nucleon transfer channels in the 7Li+120Sn system

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-03-01

    Background: Simultaneous description of major outgoing channels for a nuclear reaction by coupled-channels calculations using the same set of potential and coupling parameters is one of the difficult tasks to accomplish in nuclear reaction studies. Purpose: To measure the elastic, inelastic, and transfer cross sections for as many channels as possible in 7Li+120Sn system at different beam energies and simultaneously describe them by a single set of model calculations using fresco. Methods: Projectile-like fragments were detected using six sets of Si-detector telescopes to measure the cross sections for elastic, inelastic, and 1-nucleon transfer channels at two beam energies of 28 and 30 MeV. Optical model analysis of elastic data and coupled-reaction-channels (CRC) calculations that include around 30 reaction channels coupled directly to the entrance channel, with respective structural parameters, were performed to understand the measured cross sections. Results: Structure information available in the literature for some of the identified states did not reproduce the present data. Cross sections obtained from CRC calculations using a modified but single set of potential and coupling parameters were able to describe simultaneously the measured data for all the channels at both the measured energies as well as the existing data for elastic and inelastic cross sections at 44 MeV. Conclusions: Non-reproduction of some of the cross sections using the structure information available in the literature which are extracted from reactions involving different projectiles indicates that such measurements are probe dependent. New structural parameters were assigned for such states as well as for several new transfer states whose spectroscopic factors were not known.

  11. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems.

    PubMed

    Janero, David R; Makriyannis, Alexandros

    2014-11-19

    Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.

  12. Single-channel digital command-detection system

    NASA Technical Reports Server (NTRS)

    Carl, C. C.; Couvillon, L. A.; Goldstein, R. M.; Posner, E. C.; Green, R. R.

    1973-01-01

    System, fabricated of highly-reliable digital logic elements, operates on binary pulse-code-modulated signals and derives internal synchronization from data signal. All-digital implementation of detector develops synchronization from data signal by computer cross-correlation of command modulation signal with its expected forms in sequence and adjusts detector phases in accordance with correlation peaks.

  13. Channels: Runtime System Infrastructure for Security-typed Languages

    DTIC Science & Technology

    2008-10-01

    Department of the Air Force contract number FA8750-07-2- 0036. The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up...8] B. Hicks, S. Rueda , T. Jaeger, and P. McDaniel. From trusted to secure: Building and executing applications that enforce system security. In

  14. Simulating channel losses in an underwater optical communication system.

    PubMed

    Cox, William; Muth, John

    2014-05-01

    A Monte Carlo numerical simulation for computing the received power for an underwater optical communication system is discussed and validated. Power loss between receiver and transmitter is simulated for a variety of receiver aperture sizes and fields of view. Additionally, pointing-and-tracking losses are simulated.

  15. A 32-channel wireless system for recording gastric electrical activity.

    PubMed

    Springston, Christopher S; Rui Bao; Farajidavar, Aydin

    2016-08-01

    This paper presents a wireless system designed to collect, store and transmit gastric electrical activity, known as slow waves. The system is composed of a miniaturized front-end module that can record from up to 32 locations of the stomach, and a back-end module. The front-end could either store the recorded slow waves into a flash memory, or wirelessly transmit them to the back-end connected to a computer featuring a custom-made graphical user interface (GUI). The GUI displays signals in real time, and stores them for off-line analysis. The front-end with the dimensions of 12×48×4 mm3, allows for potential implantation through laparoscopic or endoscopic procedure. The system was successfully tested on rigorous bench-top experiments. The results of these tests showed that the system could run as designed and accurately map the signals collected by each sensor, as well as show that the flash memory could store data for almost 34 hours should wireless communication be lost.

  16. Development of a 64 channel ultrasonic high frequency linear array imaging system

    PubMed Central

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  17. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    PubMed

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  18. Characteristics of weakly confined submarine channel system and their application to gas hydrate trapping system, Eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Fujii, T.; Suzuki, K.

    2013-12-01

    The 1st offshore gas hydrate production test was conducted at gas hydrate concentrated zone (reservoir) of the Eastern Nankai Trough, which is considered stratigraphic accumulation. However, the accumulation mechanism for this concentrated zone is not yet well understood. In this study, in order to examine gas hydrate trapping system in the accumulation mechanism, we identify the depositional process and controlling factors based on facies analysis and sequence stratigraphy using the core and geophysical log data. Our study area is the minibasin in the front of the north slope of Daini-Atsumi Knoll in the Eastern Nankai Trough. The minibasin development is strongly influenced by uplift of the knoll associated with plate subduction. The minibasin fill deposits are interpreted as the Pleistocene trough fill small turbidite fan system. Seven depositional sequences are identified based on grain size, bed thickness, sedimentary structure, and stacking pattern in this study. The sequence boundaries are also identified by terminations of seismic reflection. These sequences are attributed to a fourth to fifth-order eustatic sea-level changes, because the stacking pattern cycle is in phase with global oxygen isotope curves, the cycle is also identified in the onshore formation during the same period. The reservoir was interpreted as Falling-Stage Systems Tract (FSST) and Lowstand Systems Tract (LST). In the reservoir, it was observed the channel complex set characterized by relatively strong reflections and paleocurrent flowing from northeast to southwest on 3-D seismic data. The channel complex set changes into muddy facies in the south direction. The channel complex set is characterized by hemipelagic setting or slope (F1), abandonment mud drape (F2), nonamalgamated channel element (F3), and semiamalgamated channel element (F4). The channel elements (F3, 4) are the fundamental unit and record a single phase of downcutting and filling. The building block of the channel

  19. A fast forward/backward semi-blind channel estimation for MIMO STC-OFDM systems

    NASA Astrophysics Data System (ADS)

    Chang, Lena; Cheng, Ching-Min; Tang, Zay-Shing

    2013-09-01

    In the study, we propose an efficient subspace-based semiblind channel estimation for multiple-input-multiple-output (MIMO) space-time code (STC) orthogonal frequency-division multiplexing (OFDM) systems. We first proposed a forward-backward estimation (FBE) method which can improve the channel estimation accuracy by using both the forward and backward receiving data. Then, based on the symmetric property of the forward and backward smoothed correlation matrix, we develop a fast forward-backward (FFB) estimation method which estimates the noise subspace by performing eigen-decomposition of two half dimensionality sub-matrices obtained from the forward and backward smoothed correlation matrix. FFB achieves the same performance as the FBE but only requires one-fourth computation complexity of FBE. Computer simulations demonstrate the effectiveness and accuracy in channel estimation of the proposed FFB for the MIMO STC-OFDM systems.

  20. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    SciTech Connect

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  1. A system-level view of optimizing high-channel-count wireless biosignal telemetry.

    PubMed

    Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W

    2009-01-01

    In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.

  2. Multi-channel data acquisition system with absolute time synchronization

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Przemysław; Pustelny, Szymon; Budker, Dmitry; Lipiński, Marcin

    2014-11-01

    We present a low-cost, stand-alone global-time-synchronized data acquisition system. Our prototype allows recording up to four analog signals with a 16-bit resolution in variable ranges and a maximum sampling rate of 1000 S/s. The system simultaneously acquires readouts of external sensors e.g. magnetometer or thermometer. A complete data set, including a header containing timestamp, is stored on a Secure Digital (SD) card or transmitted to a computer using Universal Serial Bus (USB). The estimated time accuracy of the data acquisition is better than ±200 ns. The device is intended for use in a global network of optical magnetometers (the Global Network of Optical Magnetometers for Exotic physics - GNOME), which aims to search for signals heralding physics beyond the Standard Model, that can be generated by ordinary spin coupling to exotic particles or anomalous spin interactions.

  3. Simulation of Adjacent Channel Interference in a UHF Satellite System

    DTIC Science & Technology

    1993-09-01

    INTRODUCTION A. DISCUSSION The main goal of the ultra high frequency (UHF) satellite system is to provide reliable data transmission between multiple ...assumed that the probability of bit error (Pb) [Ref. 1], can be made arbitrarily small. The UTHF satellite is a frequency-division multiple access...is caused by the intermodulation products generated within a satellite transponder as a result of the non-linear amplification of multiple carriers by

  4. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important

  5. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    PubMed Central

    Czegledi, Cristian B.; Karlsson, Magnus; Agrell, Erik; Johannisson, Pontus

    2016-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue. PMID:26905596

  6. Design of a robust underwater acoustic communication system over multipath fading channels

    NASA Astrophysics Data System (ADS)

    Kim, Jangeun; Shim, Taebo

    2012-11-01

    Due to the surface and bottom constraints of the underwater acoustic channel (UAC) in shallow waters, multipath fading occurs and causes degradation of the signal for the UAC system. To overcome these problems, a robust underwater acoustic communication system was designed over multipath fading channels by employing both decision feedback equalization with the RLS algorithm and convolutional coding with interleaving+shuffling block data sequence. The dual use of these two methods simultaneously can reduce the intersymbol interference (ISI) and the adjacent bit and burst errors. The system will retransmit the same signal if the system fails to estimate the channel due to severe multipath fading. To verify the performance of the system, the transmission of an image was tested using a 524,288bit gray-scaled image through the multipath fading channel. The test results showed that the number of bit errors was reduced from 86,824 to 5,106 when the reference SNR was 12 dB.

  7. Ultra-compact 32-channel system for time-correlated single-photon counting measurements

    NASA Astrophysics Data System (ADS)

    Antonioli, S.; Cuccato, A.; Miari, L.; Labanca, I.; Rech, I.; Ghioni, M.

    2013-05-01

    Modern Time-Correlated Single-Photon Counting applications require to detect spectral and temporal fluorescence data simultaneously and from different areas of the analyzed sample. These rising quests have led the development of multichannel systems able to perform high count rate and high performance analysis. In this work we describe a new 32-channel TCSPC system designed to be used in modern setups. The presented module consists of four independent 8-channel TCSPC boards, each of them including two 4-channel Time-Amplitude Converter arrays. These TAC arrays are built-in 0.35 μm Si-Ge BiCMOS technology and are characterized by low crosstalk, high resolution, high conversion rate and variable full-scale range. The 8-channel TCSPC board implements an 8-channel ADC to sample the TAC outputs, an FPGA to record and organize the measurement results and a USB 2.0 interface to enable real-time data transmission to and from an external PC. Experimental results demonstrate that the acquisition system ensures high performance TCSPC measurements, in particular: high conversion rate (5 MHz), good time resolution (down to 30 psFWHM with the full scale range set to 11 ns) and low differential non-linearity (rms value lower than 0.15% of the time bin width). We design the module to be very compact and, thanks to the reduced dimensions of the 8-channel TCSPC board (95×40 mm), the whole system can be enclosed in a small aluminum case (160×125×30 mm).

  8. Integrated source and channel encoded digital communication system design study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  9. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance.

    PubMed

    Kutchinsky, Jonatan; Friis, Søren; Asmild, Margit; Taboryski, Rafael; Pedersen, Simon; Vestergaard, Ras K; Jacobsen, Rasmus B; Krzywkowski, Karen; Schrøder, Rikke L; Ljungstrøm, Trine; Hélix, Nathalie; Sørensen, Claus B; Bech, Morten; Willumsen, Niels J

    2003-10-01

    Planar silicon chips with 1-2-microm etched holes (average resistance: 2.04 +/- 0.02 MOmega in physiological buffer, n = 274) have been developed for patch-clamp recordings of whole-cell currents from cells in suspension. An automated 16-channel parallel screening system, QPatch 16, has been developed using this technology. A single-channel prototype of the QPatch system was used for validation of the patch-clamp chip technology. We present here data on the quality of patch-clamp recordings and from actual drug screening studies of human potassium channels expressed in cultured cell lines. Using Chinese hamster ovary (CHO) and human embryonic kidney cells (HEK), gigaseals of 4.1 +/- 0.4 GOmega (n = 146) and high-quality whole-cell current recordings were obtained from hERG and KCNQ4 potassium channels. Success rates for gigaseal recordings varied from 40 to 95%, and 67% of the whole-cell configurations lasted for >20 min. Cells were maintained in suspension up to 4 h in a cell storage facility that is integrated in the QPatch 16. No decline in patchability was observed during this time course. A series of screens was conducted with known inhibitors of the hERG and KCNQ4 potassium channels. Dose-response relationship characterizations of verapamil and rBeKm-1 blockage of hERG currents provided IC(50) values similar to values reported in the literature.

  10. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.

    1977-01-01

    The analysis of the forward link signal structure for the shuttle orbiter Ku-band communication system was carried out, based on the assumptions of a 3.03 Mcps PN code. It is shown that acquisition requirements for the forward link can be met at the acquisition threshold C/N0 sub 0 value of about 60 dB-Hz, which corresponds to a bit error rate (BER) of about 0.001. It is also shown that the tracking threshold for the forward link is at about 57 dB-Hz. The analysis of the bent pipe concept for the orbiter was carried out, along with the comparative analysis of the empirical data. The complexity of the analytical approach warrants further investigation to reconcile the empirical and theoretical results. Techniques for incorporating a text and graphics capability into the forward link data stream are considered and a baseline configuration is described.

  11. Comment on "Athabasca Valles, Mars: a lava-draped channel system".

    PubMed

    Page, David P

    2008-06-20

    Jaeger et al. (Reports, 21 September 2007, p. 1709) presented images of the Athabasca Valles channel system on Mars and asserted that the observed deposits are composed of thin, fluid lavas. However, all the features they described are secondary and postdate the surface by many millions of years, as documented by structural relationships with small, young impact craters.

  12. Linear time-invariant controller design for two-channel decentralized control systems

    NASA Technical Reports Server (NTRS)

    Desoer, Charles A.; Gundes, A. Nazli

    1987-01-01

    This paper analyzes a linear time-invariant two-channel decentralized control system with a 2 x 2 strictly proper plant. It presents an algorithm for the algebraic design of a class of decentralized compensators which stabilize the given plant.

  13. Case Management Agency Systems of Administering Long-Term Care: Evidence from the Channeling Demonstration.

    ERIC Educational Resources Information Center

    Kemper, Peter

    1990-01-01

    Examines what was learned from channeling demonstration about potential of case management agency systems for administering home care benefits. Considers both advantages (substitution of lower cost for higher cost services, negotiation of lower prices for services, quality assurance) and disadvantages (difficulty controlling participation rates,…

  14. Low-Power, 8-Channel EEG Recorder and Seizure Detector ASIC for a Subdermal Implantable System.

    PubMed

    Do Valle, Bruno G; Cash, Sydney S; Sodini, Charles G

    2016-04-20

    EEG remains the mainstay test for the diagnosis and treatment of patients with epilepsy. Unfortunately, ambulatory EEG systems are far from ideal for patients who have infrequent seizures. These systems only last up to 3 days and if a seizure is not captured during the recordings, a definite diagnosis of the patient's condition cannot be given. This work aims to address this need by proposing a subdermal implantable, eight-channel EEG recorder and seizure detector that has two modes of operation: diagnosis and seizure counting. In the diagnosis mode, EEG is continuously recorded until a number of seizures are recorded. In the seizure counting mode, the system uses a low-power algorithm to track the number of seizures a patient has, providing doctors with a reliable count to help determine medication efficacy or other clinical endpoint. An ASIC that implements the EEG recording and seizure detection algorithm was designed and fabricated in a 0.18 μm CMOS process. The ASIC includes eight EEG channels and is designed to minimize the system's power and size. The result is a power-efficient analog front end that requires 2.75 μW per channel in diagnosis mode and 0.84 μW per channel in seizure counting mode. Both modes have an input referred noise of approximately 1.1 μVrms.

  15. Low-Power, 8-Channel EEG Recorder and Seizure Detector ASIC for a Subdermal Implantable System.

    PubMed

    Do Valle, Bruno G; Cash, Sydney S; Sodini, Charles G

    2016-12-01

    EEG remains the mainstay test for the diagnosis and treatment of patients with epilepsy. Unfortunately, ambulatory EEG systems are far from ideal for patients who have infrequent seizures. These systems only last up to 3 days and if a seizure is not captured during the recordings, a definite diagnosis of the patient's condition cannot be given. This work aims to address this need by proposing a subdermal implantable, eight-channel EEG recorder and seizure detector that has two modes of operation: diagnosis and seizure counting. In the diagnosis mode, EEG is continuously recorded until a number of seizures are recorded. In the seizure counting mode, the system uses a low-power algorithm to track the number of seizures a patient has, providing doctors with a reliable count to help determine medication efficacy or other clinical endpoint. An ASIC that implements the EEG recording and seizure detection algorithm was designed and fabricated in a 0.18 μm CMOS process. The ASIC includes eight EEG channels and is designed to minimize the system's power and size. The result is a power-efficient analog front end that requires 2.75 μW per channel in diagnosis mode and 0.84 μW per channel in seizure counting mode. Both modes have an input referred noise of approximately 1.1 μVrms.

  16. Mechanisms of hyperconcentrated flood propagation in a dynamic channel-floodplain system

    NASA Astrophysics Data System (ADS)

    Li, Wei; Su, Zhenghua; van Maren, D. S.; Wang, Zhengbing; de Vriend, Huib J.

    2017-09-01

    The downstream peak discharge increase during hyperconcentrated floods in the Yellow River has been attributed to bed erosion, roughness reduction and floodplain effects. While great improvements have been made on the understandings of the roles of bed erosion and roughness reduction, the effects of floodplain remain poorly understood. Here, as a first step to reveal the floodplain effects, we present a numerical experimental study on how the channel-floodplain system reacts to a hyperconcentrated flood process. For this purpose, schematized channel-floodplain systems are designed and the classical 1992 flood record data is prescribed at the upstream boundary. By applying a fully coupled morphodynamic model, numerical experiments are conducted for a comprehensive analysis on the effects of bed erodibility, floodplain width, bed roughness variation, symmetry and longitudinal variability of geomorphology. Our results show two distinct trends for the response of channel- floodplain system depending on bed erodibility. For a small bed erodibility, both channel and floodplain experience erosion. For a moderate/large bed erodibility, only the channel experiences erosion whereas deposition occurs on the floodplain. The variation of the floodplain width does not affect these erosion-deposition behaviors while changing the magnitude and patterns of floodplain deposition. The longitudinally discontinuous channel-floodplain divided by either water storage areas or housing/farming banks diminishes the floodplain deposition at the discontinuous locations. The present numerical experiments do not show an obvious peak discharge increase, nonetheless, the recognized erosion-deposition characteristics would help further study of the floodplain effects on the peak of hyperconcentrated floods.

  17. Identifying and Quantifying Ecological Changes in Channel Bank Systems in a Small California Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Nichols, A. L.; Ustin, S.; Lay, M.

    2011-12-01

    episodic floods, with likely responses dependent on complex interactions between the landscape-scale legacy of past landuse, such as channel incision, flood magnitude and duration, and current landuses that may include grazing or restoration. Floods may cause bank erosion, expose tree roots, undercut trees, modify bars, or incise the channel bed. In a resilient watershed, the spatial heterogeneity in these processes creates and maintains dynamic bank and aquatic ecosystems and biodiversity. In contrast, in watersheds where channels are incised and human activities have denuded riparian vegetation, the system may have crossed a threshold such that a flood causes a regime shift between resiliency and degradation of channel bank habitat.

  18. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    SciTech Connect

    Yu, Deyang Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  19. An eight channel co-boresighted mm-wave receiver system

    NASA Astrophysics Data System (ADS)

    Moore, E. L.; Audette, D. J.

    1992-10-01

    A mm-wave sensor design with eight coboresighted beams spanning two octaves of continuous frequencies is described. The sensor system consists of a high/low gain Cassegrain antenna, a quasi-optical multiplexer, and cooled receivers operating in a frequency range of 30 to 110 GHz in eight 10 GHz wide channels. The Cassegrain antenna switches between high and low gain as the subreflector translates in and out of the beam. Quasi-optical focusing highpass filters separate the wideband bean into eight channels. All bands are observed simultaneously and adjacent bands are detected in orthogonal linear polarization.

  20. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system

    SciTech Connect

    Majorovits, B.; Henry, S.; Kraus, H.

    2007-07-15

    The CRESST experiment is designed to search for weakly interacting massive particle dark matter with cryogenic detectors. CRESST II will use up to 33 CaWO{sub 4} crystals with a total mass of {approx}10 kg. These many detectors require a readout system based on 66-channel superconducting quantum interference devices (SQUIDs). In this article we report on the development of a modular superconducting connector for the 66-channel SQUID readout circuit. We show that the technique developed reliably produces superconducting contacts.

  1. An upper bound on the channel throughput for the unslotted ALOHA system with partial ACK

    NASA Astrophysics Data System (ADS)

    Wozniak, Jozef

    A modification of the pure ALOHA protocol is described which can significantly increase the maximum channel throughput in the ALOHA system. This modification is based on the introduction of total positive acknowledgments (ACK) and partial positive acknowledgments (PACK) of packets. PACKs are sent to users whose packets have been partially correctly received by the central receiver under the condition that the part of a packet received without interference consists of the header and at least one information segment. The results obtained are valid in both terrestrial and satellite packet-switching radio networks. An upper bound is found for the channel throughput for unslotted ALOHA protocols with PACK of packets.

  2. A chaotic system of two-phase flow in a small, horizontal, rectangular channel

    SciTech Connect

    Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.

    1995-07-01

    Various measurement tools that are used in chaos theory were applied to analyze two-phase pressure signals with the objective of identifying and interpreting flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identifying certain two-phase flow patterns and transitions.

  3. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  4. Quantum interference of stored dual-channel spin-wave excitations in a single tripod system

    SciTech Connect

    Wang Hai; Li Shujing; Xu Zhongxiao; Zhao Xingbo; Zhang Lijun; Li Jiahua; Wu Yuelong; Xie Changde; Peng Kunchi; Xiao Min

    2011-04-15

    We present an experimental demonstration of dual-channel memory in a single tripod atomic system. The total readout signal exhibits either constructive or destructive interference when the dual-channel spin-wave excitations (SWEs) are retrieved by two reading beams with a controllable relative phase. When the two reading beams have opposite phases, the SWEs will remain in the medium, which can be retrieved later with two in-phase reading beams. Such a phase-sensitive storage and retrieval scheme can be used to measure and control the relative phase between the two SWEs in the memory medium, which may find applications in quantum-information processing.

  5. Channel Patterns as the Result of Self-Organization Within the Flow-Sediment-Vegetation System

    NASA Astrophysics Data System (ADS)

    Tal, M.; Paola, C.

    2003-12-01

    The familiar patterns of braided and meandering rivers can be thought of as the result of self-organization within a "three-phase" system comprising fluid, sediment, and vegetation. Interactions between these three components are also largely responsible for the organization of river systems into separate and distinguishable channels and floodplains. Key elements of the self organization include the space and time characteristics of seed dispersal and plant growth as well as the statistics of occupation, abandonment, and reworking of the bed by the flow. Seeds are transported and dispersed readily by wind and water and opportunistically colonize areas of the channel that are abandoned or exposed at low flows. Vegetation increases bank stability through root reinforcement of the sediment and increases the threshold shear stress needed for erosion. In addition, vegetation offers resistance to the flow by increasing the drag and reducing the velocity, thus decreasing the stream power available for erosion and transport. Vegetation that is not removed while young will become stronger and increasingly resistant to erosion and removal by the flow. Thus a key organizing parameter in the flow-sediment-vegetation system is the time scale for establishment of the vegetation relative to a characteristic channel or bed mobility time. Experiments at the St. Anthony Falls Laboratory demonstrate how repeated cycling of vegetation seeding and water discharge changes an unvegetated braided channel morphology: the flow is gradually corralled into a single sinuous channel that largely tracks the thread of maximum velocity in the original braided network. The experiments are carried out in a large unconsolidated sand bed flume in which alfalfa sprouts are used to simulate riparian vegetation and offer the only form of cohesion in the system. An initial braided pattern is allowed to evolve freely in conjunction with alternating high and low discharges and repeated seedings. As the

  6. Chip-Level Channel Estimation for the Downlink of a WCDMA System in Very High Mobility Environment

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Yin; Chang, Jin-Fu

    This article proposes a channel estimation method for the downlink channels of a WCDMA system in a high-speed railroad setting. High mobility may cause conventional symbol-level channel estimation to yield severe errors because in conventional methods channel state has to maintain constant within one to several symbol durations. However, in high mobility environment, this assumption may not hold. Errors are particularly more dangerous when using very high spreading factors. In order to counteract the adverse effect of high mobility on channel estimation, we shorten the observation window to that of an N-chip block so that channel conditions or characteristics remain approximately unchanged. We consider channel estimation prior to dispreading the received signal. In other words, channel estimation is done at the chip level rather than the conventional symbol level. The least squares (LS) criterion is employed to acquire channel characteristics for each block of N pilot chips, and the linear interpolation method is used to determine the channel characteristics for each data chip. The LS-based estimator is selected due to its simplicity since it does not need to know channel or noise statistics. An LS-based estimator at the chip level has the further advantage that it is robust against interpath interference (IPI). The uncoded bit error rate (BER) performance of a RAKE receiver using different channel estimation schemes is evaluated and compared through simulations. The proposed scheme is found to be suitable for a high-speed railroad setting.

  7. SFO compensation by pilot-aided channel estimation for real-time DDO-OFDM system

    NASA Astrophysics Data System (ADS)

    Deng, Rui; He, Jing; Chen, Ming; Chen, Lin

    2015-11-01

    In this paper, we experimentally demonstrated a pilot-aided and linear interpolated channel estimation technique in the real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system using a cost-effective directly modulated laser (DML). It has been verified that the pilot-aided and linear interpolated channel estimation technique can help to compensate the sampling frequency offset (SFO) effect. The experimental results show that, based on the pilot-aided and linear interpolated channel estimation technique, even at a SFO of 170 ppm, a 16-QAM-OFDM signal can be successfully transmitted over 100-km SSMF under the hard-decision forward-error-correction (HD-FEC) threshold with a bit error rate of 3.8×10-3. And the effect of up to ~25 ppm SFO can be negligible.

  8. Immunoadsorption in patients with autoimmune ion channel disorders of the peripheral nervous system.

    PubMed

    Antozzi, Carlo

    2013-01-01

    Autoimmune ion channel disorders of the peripheral nervous system include myasthenia gravis, the Lambert-Eaton myasthenic syndrome, acquired neuromyotonia and autoimmune autonomic ganglionopathies. These disorders are characterized by the common feature of being mediated by IgG autoantibodies against identified target antigens, i.e. the acetylcholine receptor, the voltage-gated calcium and potassium channels, and the neuronal acetylcholine receptor. Moreover, experimental animal models have been identified for these diseases that respond to immunotherapy and are improved by plasmapheresis. On this basis, autoimmune ion channel disorders represent the ideal candidate for therapeutic apheresis. Immunoadsorption can be the treatment of choice when intensive apheretic protocols or long-term treatments must be performed, in patients needing frequent apheresis to keep a stable clinical condition, in case of unresponsiveness to corticosteroids and immunosuppressive treatments, or failure with TPE or intravenous immunoglobulins, and in patients with severe contraindications to long-term corticosteroids.

  9. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems.

    PubMed

    Deval, Emmanuel; Lingueglia, Eric

    2015-07-01

    Since their molecular cloning in the late 90's, Acid-Sensing Ion Channels (ASICs) have been shown to be involved in many aspects of nociception, both in peripheral and central neurons. In rodents, the combination of specific or non-specific pharmacological modulators of ASICs, together with in vivo knockdown and/or knockout animals has revealed their contribution to the detection, the modulation and the sensitization of the pain message by primary and secondary sensory neurons. Functional ASICs are homo or heterotrimers of different homologous subunits (ASIC1-3). Channels containing ASIC3 or ASIC1 subunits, appear to be important in peripheral nociceptors, where they are subject to intense regulation, while ASIC1a-containing channels also have a prominent role in central neurons, including spinal cord neurons that modulate and transmit the pain signal to the brain. In humans, experiments performed in healthy volunteers using drugs already used in the clinic and acting as poorly-selective inhibitors of ASICs, together with recent in vitro data obtained from stem cell-derived sensory neurons both support a role for these channels in nociception. These data thus suggest a real translational potential in the development of inhibitory strategies of ASICs for the treatment of pain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  10. Majorana bound states in two-channel time-reversal-symmetric nanowire systems.

    PubMed

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-03-28

    We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a nontrivial topological phase and find that the necessary conditions are (1) the determinant of the pairing matrix in channel space must be negative, (2) inversion symmetry must be broken, and (3) the two channels must have different spin-orbit couplings. The first condition can be implemented in semiconducting nanowire systems where interactions suppress intra-channel pairing, while the inversion symmetry can be broken by tuning the chemical potentials of the channels. For the case of collinear spin-orbit directions, we find a general expression for the topological invariant by block diagonalization into two blocks with chiral symmetry only. By projection to the low-energy sector, we solve for the zero modes explicitly and study the details of the gap closing, which in the general case happens at finite momenta.

  11. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  12. Channel estimation in DFT-based offset-QAM OFDM systems.

    PubMed

    Zhao, Jian

    2014-10-20

    Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.

  13. Coogoon Valles, western Arabia Terra: Hydrological evolution of a complex Martian channel system

    NASA Astrophysics Data System (ADS)

    Molina, Antonio; López, Iván; Prieto-Ballesteros, Olga; Fernández-Remolar, David; de Pablo, Miguel Ángel; Gómez, Felipe

    2017-09-01

    Coogoon Valles is an intricate fluvial system, and its main channel was formed during the Noachian period through the erosion of the clay-bearing basement of the Western Arabia Terra. This region is characterized by a thinner crust compared to the rest of the highlands and by the occurrence of massive phyllosilicate-bearing materials. The origin of this region is still under discussion. Its surface has been exposed to a large-scale volcanism, and several episodes of extensive denudation were primarily controlled by fluvial activity. In this regard, the study of the oldest channels in Arabia Terra is crucial for understanding the global geological evolution of early Mars. The reactivation of the hydrological system by sapping followed by aeolian erosion had reshaped the channel, as well as exposed ancient materials and landforms. The examination of the bed deposits suggests an old episode of detrital sedimentation covering the Noachian basement followed by an erosive event that formed the current Coogoon Valles configuration. A complex system of deltas and alluvial fans is situated at the termination of this channel, which has been proposed as a landing site for the upcoming ExoMars and Mars 2020 missions.

  14. Stability assessment of QKD procedures in commercial quantum cryptography systems versus quality of dark channel

    NASA Astrophysics Data System (ADS)

    Jacak, Monika; Melniczuk, Damian; Jacak, Janusz; Jóźwiak, Ireneusz; Gruber, Jacek; Jóźwiak, Piotr

    2015-02-01

    In order to assess the susceptibility of the quantum key distribution (QKD) systems to the hacking attack including simultaneous and frequent system self-decalibrations, we analyze the stability of the QKD transmission organized in two commercially available systems. The first one employs non-entangled photons as flying qubits in the dark quantum channel for communication whereas the second one utilizes the entangled photon pairs to secretly share the cryptographic key. Applying standard methods of the statistical data analysis to the characteristic indicators of the quality of the QKD communication (the raw key exchange rate [RKER] and the quantum bit error rate [QBER]), we have estimated the pace of the self-decalibration of both systems and the repeatability rate in the case of controlled worsening of the dark channel quality.

  15. Stability of linear dynamic systems over the packet erasure channel: a co-design approach

    NASA Astrophysics Data System (ADS)

    Farhadi, Alireza

    2015-12-01

    This paper is concerned with the stability of linear time-invariant dynamic systems over the packet erasure channel subject to minimum bit rate constraint when an encoder and a decoder are unaware of the control signal. This assumption results in co-designing the encoder, decoder and controller. The encoder, decoder, controller and conditions relating transmission rate to packet erasure probability and eigenvalues of the system matrix A are presented for almost sure asymptotic stability of linear time-invariant dynamic systems over the packet erasure channel with feedback acknowledgment. When the eigenvalues of the system matrix A are real valued, it is shown that the obtained condition for stability is tight. Simulation result illustrates the satisfactory performance of the proposed encoder, decoder and controller for almost sure asymptotic stability.

  16. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    PubMed Central

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  17. Waterhole form and process in the anastomosing channel system of Cooper Creek, Australia

    NASA Astrophysics Data System (ADS)

    Knighton, A. David; Nanson, Gerald C.

    2000-10-01

    One of the most distinctive features of Cooper Creek's anastomosing channel system is the preponderance of waterholes, enlarged segments of channel ranging in length from 100 m to over 20 km. Enlargement occurs in both the width and depth dimensions to give bankfull cross-sectional areas four to eight times the average size of individual anastomosing channels. The anastomosing system is cut into a floodplain of subtle relief but depths of incision can be highly variable, giving rise to changes in the degree of anastomosis as different sets of channels are activated during the filling stage of a flood. Also, cross-sectional form and bed topography can vary markedly over short channel distances, which has implications for local flow conditions and erosive potential. Hydraulic geometry analyses suggest that cross-sectional area adjusts much more readily than velocity to increasing discharge in waterholes, particularly if there is limited lateral confinement. Consequently, velocities tend to be rather modest across a wide spectrum of flows, with average values rarely reaching 1 m s -1. Nevertheless, observations made during a 1:20-year flood reveal a deeply penetrative band of relatively high velocity in one waterhole, suggesting that localized values of bed shear could be quite large even when sectional averages are moderate. Waterholes appear to be a product of the present regime, since they concentrate flow from both feeder channels and the floodplain during flood discharges. In several respects they resemble chains-of-ponds morphology [Eyles, R.J., 1977. Birchams Creek: the transition from a chain of ponds to a gully. Aust. Geogr. Stud. 15, 146-157.], and could represent the discontinuous sections of a present-day channel, which cannot be maintained in that form over its entire length. That the one waterhole to accommodate the entire cross-valley flow at bankfull stage (Meringhina Waterhole) has cross-sectional dimensions similar to those predicted by appropriate

  18. A Low Cost Compact 512 Channel Therapeutic Ultrasound System For Transcutaneous Ultrasound Surgery

    NASA Astrophysics Data System (ADS)

    Hall, Tim; Cain, Charles

    2006-05-01

    A low cost 512 channel therapeutic ultrasound system was designed and tested with a 2D array transducer. The system was optimized for high energy, low duty cycle pulsing applications (cavitation mediated therapy), but is also folly compatible with continuous wave applications. The effective steering range was measured to be 40 mm FWHM over a 3D volume. Well defined volumes of liver tissue were disrupted with high energy cavitation generating ultrasound pulses in ex-vivo liver experiments.

  19. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression are reported which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft. In addition to presenting new and potentially significant system considerations, this report attempts to fill a need for a comprehensive tutorial which makes much of this very subject accessible to readers whose disciplines lie outside of communication theory.

  20. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.

    PubMed

    Kim, Jihye; You, Jae Bem; Nam, Sung Min; Seo, Sumin; Im, Sung Gap; Lee, Wonhee

    2017-03-29

    Flexible microfluidic system is an essential component of wearable biosensors to handle body fluids. A parylene-based, thin-film microfluidic system is developed to achieve flexible microfluidics with microscale bending radius. A new molding and bonding technique is developed for parylene microchannel fabrication. Bonding with nanoadhesive layers deposited by initiated chemical vapor deposition (iCVD) enables the construction of microfluidic channels with short fabrication time and high bonding strength. The high mechanical strength of parylene allows less channel deformation from the internal pressure for the thin-film parylene channel than bulk PDMS channel. At the same time, negligible channel sagging or collapse is observed during channel bending down to a few hundreds of micrometers due to stress relaxation by prestretch structure. The flexible parylene channels are also developed into a rollable microfluidic system. In a rollable microfluidics format, 2D parylene channels can be rolled around a capillary tubing working as inlets to minimize the device footprint. In addition, we show that creating reconfigurable 3D channel geometry with microscale bending radius can lead to tunable device function: tunable Dean-flow mixer is demonstrated using reconfigurable microscale 3D curved channel. Flexible parylene microfluidics with microscale bending radius is expected to provide an important breakthrough for many fields including wearable biosensors and tunable 3D microfluidics.

  1. The Martain drainage system and the origin of valley networks and fretted channels

    NASA Astrophysics Data System (ADS)

    Carr, Michael H.

    1995-04-01

    Outflow channels provide strong evidence for abundant water near the Martian surface and an extensive groundwater system. Collapse of the surface into some channels suggests massive subsurface erosion and/or solution in addition to erosion by flow across the surface. Flat floors, steep walls, longitudinal striae and ridges, downstream deflection of striae from channel walls, and lack of river channels suggest that fretted channels form dominantly by mass wasting. A two-stage process is proposed. In the first stage, extension of valleys heads is favored by seepage of groundwater into debris shed from slopes. The debris moves downstream, aided by interstitial groundwater at the base of the debris, possibly with high pore pressures. In the second stage, because of climate change or a lower heat flow, groundwater can no longer seep into the debris flows in the valleys, their movement almost stops, and more viscous ice-lubricated debris aprons form. Almost all uplands at elevations greater than +1 km are dissected by valley networks, although the drainage densities are orders of magnitude less than is typical for the Earth. The valley networks resemble terrestrial river systems in planimetric shape, but U-shaped and rectangular-shaped cross sections, levee- like peripheral ridges, median ridges, patterns of branching and rejoining, and flat floors without river channels suggest that the networks may not be true analogs to terrestrial river valleys. It is proposed that they, like the fretted channels, formed mainly by mass wasting, aided by groundwater seepage into the mass-wasted debris. Movements of only millimeters to centimeters per year are needed to explain the channel lengths. Most valley formation ceased early at low latitudes because of progressive dehydration of the near surface, the result of sublimation of water and/or drainage of groundwater to regions of lower elevations. Valley formation persisted to later dates where aided by steep slopes, as on crater

  2. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin.

    PubMed

    Saul, Stephanie; Stanisz, Hedwig; Backes, Christian S; Schwarz, Eva C; Hoth, Markus

    2014-09-15

    Four types of Ca(2+) selective ion channels are known, ten voltage gated Ca(2+) (CaV) channels, four CatSper channels, three store operated CRAC channels (ORAI channels) and at least two members of the TRPV subfamily (TRPV5, TRPV6). Some of the other TRP channels also show some Ca(2+) selectivity like certain splice variants of TRPM3. In addition to Ca(2+) selective channels, various cation channels play an important role for Ca(2+) entry and furthermore, they may also regulate Ca(2+) entry through other channels by modulating the membrane potential or other means as outlined in this review. Of the different types of cation channels, TRP channels form one of the most prominent families of non-selective cation channels with functional relevance in electrically non-excitable and electrically excitable cell types. Among these, the seven channels of the TRPC subfamily are rather non-selective with very modest Ca(2+) selectivity, whereas in the other subfamilies, cation selectivity ranges from monovalent selectivity (i.e. TRPM4, TRPM5) to divalent selectivity (i.e. TRPM6, TRPM7) or Ca(2+) selectivity (i.e. TRPV5, TRPV6). Rather than discussing the heavily reviewed individual functions of ORAI or TRP channels, we summarize data and present models how TRP and ORAI may functionally interact to guide cellular functions. We focus on T lymphocytes representing a more ORAI-dominated tissue and skin as model system in which both ORAI and TRP channel have been reported to control relevant functions. We present several interaction models how ORAI and TRP may interfere with each other's function.

  3. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  4. Compressed sensing theory-based channel estimation for optical orthogonal frequency division multiplexing communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Li, Minghui; Wang, Ruyan; Liu, Yuanni; Song, Daiping

    2014-09-01

    Due to the spare multipath property of the channel, a channel estimation method, which is based on partial superimposed training sequence and compressed sensing theory, is proposed for line of sight optical orthogonal frequency division multiplexing communication systems. First, a continuous training sequence is added at variable power ratio to the cyclic prefix of orthogonal frequency division multiplexing symbols at the transmitter prior to transmission. Then the observation matrix of compressed sensing theory is structured by the use of the training symbols at receiver. Finally, channel state information is estimated using sparse signal reconstruction algorithm. Compared to traditional training sequences, the proposed partial superimposed training sequence not only improves the spectral efficiency, but also reduces the influence to information symbols. In addition, compared with classical least squares and linear minimum mean square error methods, the proposed compressed sensing theory based channel estimation method can improve both the estimation accuracy and the system performance. Simulation results are given to demonstrate the performance of the proposed method.

  5. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems

    PubMed Central

    Lv, Chao; Xia, Hong; Guan, Wei; Sun, Yun-Lu; Tian, Zhen-Nan; Jiang, Tong; Wang, Ying-Shuai; Zhang, Yong-Lai; Chen, Qi-Dai; Ariga, Katsuhiko; Yu, Yu-De; Sun, Hong-Bo

    2016-01-01

    Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems. PMID:26823292

  6. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Xia, Hong; Guan, Wei; Sun, Yun-Lu; Tian, Zhen-Nan; Jiang, Tong; Wang, Ying-Shuai; Zhang, Yong-Lai; Chen, Qi-Dai; Ariga, Katsuhiko; Yu, Yu-De; Sun, Hong-Bo

    2016-01-01

    Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems.

  7. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.

    PubMed

    Lv, Chao; Xia, Hong; Guan, Wei; Sun, Yun-Lu; Tian, Zhen-Nan; Jiang, Tong; Wang, Ying-Shuai; Zhang, Yong-Lai; Chen, Qi-Dai; Ariga, Katsuhiko; Yu, Yu-De; Sun, Hong-Bo

    2016-01-29

    Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems.

  8. Development of a fast sampling system for estimation of impulse responses of mobile radio channels

    NASA Astrophysics Data System (ADS)

    Melancon, Pierre

    1994-07-01

    This paper describes the features of measurement equipment developed to measure impulse response estimates of mobile radio channels in less than a ms per measurement. The development of such equipment was required to measure mobile radio channels in realistic operating scenarios, in a normal sized vehicle moving at typical speeds in different environments. Up to speeds of 70 km/hr, the measurement period is short enough to assume the equipment is measuring the same channel during the whole sampling interval. AT the transmitter end of the measurement system, a wideband signal (10 MHz) is produced by modulating a carrier frequency with a 511 bit pseudo random sequence at 5 Mb/s and transmitted through the radio channel. The received signal is down-converted to 70 MHz and demodulated by a complex demodulator. The quadrature baseband signals at the demodulator outputs are then filtered and sampled at high speed by two fast digitizers. During this process, the data are stored in large memory banks to allow a fast sampling rate during a long period of time. Data are transferred to laser disks for further processing in the laboratory. Impulse response of radio channels are estimated by performing a software correlation between a measurement system back to back reference and real time measurements. A minivan was modified to hold the receiver, digitizers, memory banks and the computer. A shaft encoder was attached to its rear left wheel to trigger measurements while moving. Features of the system are discussed along with the effects of data block length, signal to noise ratio, sampling rate, memory size and phase stability on the design of the measurement equipment. Finally, some measurement results are presented and discussed.

  9. Systemic and regional haemodynamic interactions between K+ channel openers and the sympathetic nervous system in the pithed SHR.

    PubMed

    Richer, C; Mulder, P; Doussau, M P; Gautier, P; Giudicelli, J F

    1990-07-01

    1. The interactions between two K+ channel openers, cromakalim and SR 44866 (infused i.v. at equihypotensive doses), and the sympathetic nervous system at the systemic and regional (mesentery, kidney, hindlimb) vascular levels were investigated in the pithed spontaneously hypertensive rat (SHR) by use of the pulsed Doppler technique. 2. The two K+ channel openers did not affect postsynaptic alpha 1- but slightly reduced postsynaptic alpha 2-adrenoceptor mediated systemic pressor and regional vasoconstrictor responses. 3. Both drugs significantly decreased the systemic pressor and regional vasoconstrictor responses elicited by spinal cord stimulation. These sympathoinhibitory effects were not homogeneously distributed among the different vascular beds, the decreasing rank order being: mesentery greater than kidney greater than hindlimb. Simultaneously, the spinal cord stimulation-induced tachycardia remained unaffected. 4. After treatment with K+ channel openers, restoration of initial blood pressure and vascular tone values by infusion of prostaglandin F2 alpha (PGF2 alpha) and vasopressin respectively did not affect and abolished the sympathoinhibitory effects of cromakalim and SR 44866. 5. We conclude that in SHRs the two K+ channel openers that we investigated exert similar sympathohibitory effects which affect some vascular beds more than others. These effects are not dependent upon the arterial blood pressure level and are most likely prejunctionally located.

  10. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.

    PubMed

    Ortega-Guerrero, Andres; Espinosa-Duran, John M; Velasco-Medina, Jaime

    2016-07-01

    Carbon nanotubes are being considered for the design of drug delivery systems (DDSs) due to their capacity to internalize molecules and control their release. However, for cellular uptake of drugs, this approach requires an active translocation pathway or a channel to transport the drug into the cell. To address this issue, it is suggested to use TRPV1 ion channels as a potential target for drug release by nano-DDSs since these channels are overexpressed in cancer cells and allow the permeation of large cationic molecules. Considering these facts, this work presents three studies using molecular dynamics simulations of a human TRPV1 (hTRPV1) channel built here. The purpose of these simulations is to study the interaction between a single-wall carbon nanotube (SWCNT) and hTRPV1, and the diffusion of doxorubicin (DOX) across hTRPV1 and across a POPC lipid membrane. The first study shows an attractive potential between the SWCNT surface and hTRPV1, tilting the adsorbed SWCNT. The second study shows low diffusion probability of DOX across the open hTRPV1 due to a high free energy barrier. Although, the potential energy between DOX and hTRPV1 reveals an attractive interaction while DOX is inside hTRPV1. These results suggest that if the channel is dilated, then DOX diffusion could occur. The third study shows a lower free energy barrier for DOX across the lipid membrane than for DOX across hTRPV1. Taking into account the results obtained, it is feasible to design novel nano-DDSs based on SWCNTs to accomplish controlled drug release into cells using as translocation pathway, the hTRPV1 ion channel.

  11. Electronic communication channel within the patient data management system improves internal communication in the ICU.

    PubMed

    Väisänen, Paula; Holopainen, Jaana

    2006-01-01

    The aim of this study was to improve the internal communication within the intensive care unit of the Kuopio University Hospital. We developed an intranet based internal communication channel within the patient data management system and studied the effectiveness of this system in improving communication in the ICU. The hypothesis was that the communication difficulties caused by the structure of the unit, large personnel and work schedule (three separate shifts) could be reduced by supplementing oral communication by this intranet based system. The results clearly indicate that this type of system can significantly improve communication within our unit.

  12. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  13. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    SciTech Connect

    Rowland, Joel C; Dietrich, William E; Day, Geoff; Parker, Gary

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  14. Time-Frequency Based Channel Estimation for High-Mobility OFDM Systems-Part I: MIMO Case

    NASA Astrophysics Data System (ADS)

    Önen, Erol; Akan, Aydın; Chaparro, LuisF

    2010-12-01

    Multiple-input multiple-output (MIMO) systems hold the potential to drastically improve the spectral efficiency and link reliability in future wireless communications systems. A particularly promising candidate for next-generation fixed and mobile wireless systems is the combination of MIMO technology with Orthogonal Frequency Division Multiplexing (OFDM). OFDM has become the standard method because of its advantages over single carrier modulation schemes on multipath, frequency selective fading channels. Doppler frequency shifts are expected in fast-moving environments, causing the channel to vary in time, that degrades the performance of OFDM systems. In this paper, we present a time-varying channel modeling and estimation method based on the Discrete Evolutionary Transform to obtain a complete characterization of MIMO-OFDM channels. Performance of the proposed method is evaluated and compared on different levels of channel noise and Doppler frequency shifts.

  15. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  16. Three-dimensional model of hydro acoustic channel for research MIMO systems

    NASA Astrophysics Data System (ADS)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2017-05-01

    Currently, wireless hydroacoustic modems are actively being developed, which are used to provide efficient data transmission in the hydroacoustic channel. Such kind of developments are relevant for today, as they are used in various fields of science and fields of activity. An example is the connection with underwater vehicles for scientific, research, search and rescue purposes. Development of this kind of communication systems (modems) is a difficult task, as signal propagation is affected by various factors. As a result, the transfer characteristic changes with time, thereby imposing restrictions on the acoustic communication channel. In this regard, the researchers began the task of further study sonar environment and get a detailed mathematical description of the underwater channel. For this, a huge number of field tests were conducted, aimed at studying the underwater acoustic environment. However, the results of the research are always limited by the conditions in which the test took place. Therefore, it is not always possible to apply these results to the required conditions. All of the above features do not allow you to create some kind of a commonly accepted model for the acoustic channel, as studies based on experiments, collected in localized environments without generalizations. This paper presents, the three-dimensional model of the sonar channel for MIMO systems in the coastal zone, based on the acoustic signal propagation characteristics in the presence of multiple paths, the influence of the Doppler effect (as a result of mobile and / or base station traffic), in terms of signal attenuation, receiver characteristics influence and Transmitting antenna, etc.

  17. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    NASA Astrophysics Data System (ADS)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  18. Optical design of a dual-channel two-focal-length system by utilizing azimuth property of PAL structure

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Cheng, Dewen; Wang, Yongtian

    2016-10-01

    An approach to design a dual-channel two-focal-length lens based on the panoramic annular lens (PAL) structure is presented in this paper. The method of establishing the second channel to eliminate the blind area has been explored in some documents, and mostly it is achieved by utilizing the front surface of the PAL block. But in this paper, we modified the PAL block and divided it into two channels according to their different azimuth direction. These two channels have different focal lengths. Thus, by rotating the system around its axis, optical step-zoom effect can be obtained. Finally, a dual-channel system with a radial zoom ratio of 3× is designed, of which the wide-angle channel has a field-of-view (FOV) of 60° (radial) ×60° (azimuthal) and the long focal length channel has a FOV of 20° (radial)×20° (azimuthal). These two channels share the same stop surface, relay lens, and the image sensor. And a thin glass plate with diffractive structure is placed before the image plane to further correct aberration and obtain a common back focal length for the two channels. This system may have applications in many fields, such as surveillance, robot vision, and foveal imaging.

  19. High-resolution pluronic-filled microchip CE-SSCP analysis system via channel width control.

    PubMed

    Shin, Giyoung; Kim, Dong-Kyun; Doh, Junsang; Lee, Daeyeon; Lee, Nam Ki; Jung, Gyoo Yeol

    2016-02-01

    Although the resolution of CE-SSCP has been significantly improved by using a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO; Pluronic(®)) triblock copolymer as a separation medium, CE-SSCP on a microchip format is not widely applicable because their resolution is limited by short channel length. Therefore, a strategy to improve the resolution in channels of limited lengths is highly required for enabling microchip-based CE-SSCP. In this study, we developed a high-resolution CE-SSCP microchip system by controlling the width of the pluronic-filled channel. We tested four different channel widths of 180, 240, 300, and 400 μm, and found that 300 μm showed the highest resolution in the separation of two pathogen specific markers. Potential applications of our method in various genetic analyses were also shown by using SNP markers for spinal muscular atrophy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of Unruh channel in the context of open quantum systems

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhashish; Kumar Alok, Ashutosh; Omkar, S.; Srikanth, R.

    2017-02-01

    In this work, we study an important facet of field theories in curved space-time, viz. the Unruh effect, by making use of ideas of statistical mechanics and quantum foundations. Aspects of decoherence and dissipation, natural artifacts of open quantum systems, along with foundational issues such as the trade-off between coherence and mixing as well as various aspects of quantum correlations are investigated in detail for the Unruh effect. We show how the Unruh effect can be quantified mathematically by the Choi matrix approach. We study how environmentally induced decoherence modifies the effect of the Unruh channel. The differing effects of a dissipative or non-dissipative environment are noted. Further, useful parameters characterizing channel performance such as gate and channel fidelity are applied here to the Unruh channel, both with and without external influences. Squeezing, which is known to play an important role in the context of particle creation, is shown to be a useful resource in a number of scenarios.

  1. Receptors, channels, and signalling in the urothelial sensory system in the bladder

    PubMed Central

    Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.

    2017-01-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  2. Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jin, Shi; Wong, Kai-Kit; Zhu, Hongbo; Matthaiou, Michail

    2014-10-01

    This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean $K$-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, $M$, grows large, while the transmit power of each user can be scaled down proportionally to $1/M$. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean $K$-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to $1/\\sqrt M$. In addition, we show that with an increasing Ricean $K$-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

  3. Oxidation of KCNB1 K(+) channels in central nervous system and beyond.

    PubMed

    Sesti, Federico; Wu, Xilong; Liu, Shuang

    2014-05-26

    KCNB1, a voltage-gated potassium (K(+)) channel that conducts a major delayed rectifier current in the brain, pancreas and cardiovascular system is a key player in apoptotic programs associated with oxidative stress. As a result, this protein represents a bona fide drug target for limiting the toxic effects of oxygen radicals. Until recently the consensus view was that reactive oxygen species trigger a pro-apoptotic surge in KCNB1 current via phosphorylation and SNARE-dependent incorporation of KCNB1 channels into the plasma membrane. However, new evidence shows that KCNB1 can be modified by oxidants and that oxidized KCNB1 channels can directly activate pro-apoptotic signaling pathways. Hence, a more articulated picture of the pro-apoptotic role of KCNB1 is emerging in which the protein induces cell's death through distinct molecular mechanisms and activation of multiple pathways. In this review article we discuss the diverse functional, toxic and protective roles that KCNB1 channels play in the major organs where they are expressed.

  4. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops.

    PubMed Central

    Tardy, F; Homblé, F; Neyt, C; Wattiez, R; Cornelis, G R; Ruysschaert, J M; Cabiaux, V

    1999-01-01

    'Type III secretion' allows extracellular adherent bacteria to inject bacterial effector proteins into the cytosol of their animal or plant host cells. In the archetypal Yersinia system the secreted proteins are called Yops. Some of them are intracellular effectors, while YopB and YopD have been shown by genetic analyses to be dedicated to the translocation of these effectors. Here, the secretion of Yops by Y.enterocolitica was induced in the presence of liposomes, and some Yops, including YopB and YopD, were found to be inserted into liposomes. The proteoliposomes were fused to a planar lipid membrane to characterize the putative pore-forming properties of the lipid-bound Yops. Electrophysiological experiments revealed the presence of channels with a 105 pS conductance and no ionic selectivity. Channels with those properties were generated by mutants devoid of the effectors and by lcrG mutants, as well as by wild-type bacteria. In contrast, mutants devoid of YopB did not generate channels and mutants devoid of YopD led to current fluctuations that were different from those observed with wild-type bacteria. The observed channel could be responsible for the translocation of Yop effectors. PMID:10581252

  5. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops.

    PubMed

    Tardy, F; Homblé, F; Neyt, C; Wattiez, R; Cornelis, G R; Ruysschaert, J M; Cabiaux, V

    1999-12-01

    'Type III secretion' allows extracellular adherent bacteria to inject bacterial effector proteins into the cytosol of their animal or plant host cells. In the archetypal Yersinia system the secreted proteins are called Yops. Some of them are intracellular effectors, while YopB and YopD have been shown by genetic analyses to be dedicated to the translocation of these effectors. Here, the secretion of Yops by Y.enterocolitica was induced in the presence of liposomes, and some Yops, including YopB and YopD, were found to be inserted into liposomes. The proteoliposomes were fused to a planar lipid membrane to characterize the putative pore-forming properties of the lipid-bound Yops. Electrophysiological experiments revealed the presence of channels with a 105 pS conductance and no ionic selectivity. Channels with those properties were generated by mutants devoid of the effectors and by lcrG mutants, as well as by wild-type bacteria. In contrast, mutants devoid of YopB did not generate channels and mutants devoid of YopD led to current fluctuations that were different from those observed with wild-type bacteria. The observed channel could be responsible for the translocation of Yop effectors.

  6. Turbulence characteristics of two-dimensional channel flow with system rotation

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Koichi; Kitoh, Osami

    2005-04-01

    Turbulence quantities have been measured for a low-Reynolds-number fully developed two-dimensional channel flow subjected to system rotation. Turbulence intensities, Reynolds shear stress, correlation coefficient, skewness and flatness factors, four-quadrant analysis, autocorrelation coefficient and power spectra are investigated. According to the dimensional analysis, the relevant parameters of this flow are the Reynolds number Re* = u*D/ν and the Coriolis parameter Rc = Ω ν/u*2 for the wall region, and Re* and Ω D/u* for the turbulent core-region. The existence of a Coriolis region where turbulence intensities are defined by a new variable y*c = y/δc has been clarified on the pressure side in the rotating channel flow. The amount of turbulent kinetic energy transported by the Coriolis term is extremely small compared to the production term in the transport equation of Reynolds normal stress. However, the Coriolis term makes a large contribution to Reynolds shear stress transport on the pressure side of the channel. It is caused by the strong ejection which occurs periodically on the pressure side even though the ejection frequency is low. The strong ejection is conjectured to be caused by a large-scale longitudinal structure like a roll cell on the pressure side of the channel.

  7. Episodic Channels: Effects of Regulation on Non-Equilibrium River Systems in California (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Minear, J. T.

    2010-12-01

    Mediterranean-climate rivers are characterized by episodic channels, whose geomorphic work is concentrated in short, infrequent events (large floods), separated by long periods of quiescence in which the channel narrows and riparian vegetation can establish and mature, only to be disrupted by the next large disturbance. While not ‘pretty’ in conventional terms, such rivers support diverse assemblages of native species, adapted to the episodic regime. Because of the importance of irrigated agriculture in Mediterranean-climate regions, large reservoir storage projects are common, resulting in dam-induced reductions flood peaks, which have reduced dynamism in downstream channels. The result has been loss of habitat diversity and native species. A systems-level analysis of the Sacramento-San Joaquin and other rivers reveals that Q2 has commonly been reduced by 80%, sediment loads reduced, and vegetation encroached in formerly active channels. More profound have been hardening of banks and isolation of floodplains by levees. Restoration of ecological values in such rivers will require room for the river to move and flood, as well as floods sufficient to drive these processes. We identify a set of rivers with highest potential for re-activation or preservation of dynamic process in California.

  8. Method for Evaluation of Outage Probability on Random Access Channel in Mobile Communication Systems

    NASA Astrophysics Data System (ADS)

    Kollár, Martin

    2012-05-01

    In order to access the cell in all mobile communication technologies a so called random-access procedure is used. For example in GSM this is represented by sending the CHANNEL REQUEST message from Mobile Station (MS) to Base Transceiver Station (BTS) which is consequently forwarded as an CHANNEL REQUIRED message to the Base Station Controller (BSC). If the BTS decodes some noise on the Random Access Channel (RACH) as random access by mistake (so- called ‘phantom RACH') then it is a question of pure coincidence which èstablishment cause’ the BTS thinks to have recognized. A typical invalid channel access request or phantom RACH is characterized by an IMMEDIATE ASSIGNMENT procedure (assignment of an SDCCH or TCH) which is not followed by sending an ESTABLISH INDICATION from MS to BTS. In this paper a mathematical model for evaluation of the Power RACH Busy Threshold (RACHBT) in order to guaranty in advance determined outage probability on RACH is described and discussed as well. It focuses on Global System for Mobile Communications (GSM) however the obtained results can be generalized on remaining mobile technologies (ie WCDMA and LTE).

  9. Oxidation of KCNB1 K+ channels in central nervous system and beyond

    PubMed Central

    Sesti, Federico; Wu, Xilong; Liu, Shuang

    2014-01-01

    KCNB1, a voltage-gated potassium (K+) channel that conducts a major delayed rectifier current in the brain, pancreas and cardiovascular system is a key player in apoptotic programs associated with oxidative stress. As a result, this protein represents a bona fide drug target for limiting the toxic effects of oxygen radicals. Until recently the consensus view was that reactive oxygen species trigger a pro-apoptotic surge in KCNB1 current via phosphorylation and SNARE-dependent incorporation of KCNB1 channels into the plasma membrane. However, new evidence shows that KCNB1 can be modified by oxidants and that oxidized KCNB1 channels can directly activate pro-apoptotic signaling pathways. Hence, a more articulated picture of the pro-apoptotic role of KCNB1 is emerging in which the protein induces cell’s death through distinct molecular mechanisms and activation of multiple pathways. In this review article we discuss the diverse functional, toxic and protective roles that KCNB1 channels play in the major organs where they are expressed. PMID:24921000

  10. On the delay effects of different channels in Internet-based networked control systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-Bo; Kim, Jongrae; Sun, Xi-Ming; Liu, Guo-Ping

    2013-11-01

    The sensor-to-controller and the controller-to-actuator delays in networked control systems (NCSs) are investigated for the first time with respect to their different effects on the system performance. This study starts with identifying the delay-independent and delay-dependent control laws in NCSs, and confirms that only two delay-dependent control laws can cause different delay effects in different channels. The conditions under which the different delays in different channels can cause different effects are then given for both delay-dependent control laws. The results are verified by numerical examples. Potentially, these results can be regarded as important design principles in the practical implementation of NCSs.

  11. Beam transport channels and beam injection and extraction systems of the NICA accelerator complex

    NASA Astrophysics Data System (ADS)

    Butenko, A. V.; Volkov, V. I.; Kolesnikov, S. Yu.; Meshkov, I. N.; Mikhaylov, V. A.; Rabtsun, S. V.; Sidorin, A. O.; Sidorov, A. I.; Topilin, N. D.; Trubnikov, G. V.; Tuzikov, A. V.; Fateev, A. A.; Shvetsov, V. S.

    2016-12-01

    A new accelerator complex is being constructed at the Joint Institute for Nuclear Research as a part of the Nuclotron-based Ion Collider fAcility (NICA) project. The goal is to conduct experiments with colliding ion beams (at the first stage of the project) and colliding polarized proton/deuteron beams (at the second stage). Transport beam channels and the systems of beam injection and extraction for synchrotrons and collider rings are an important connecting link for the whole accelerator facility. The design of the primary beam-transport channels and injection/extraction systems are presented. Special attention is paid to various aspects of dynamics of beams in their transfer between the NICA accelerators.

  12. Barrier distribution functions for the system 6Li+64Ni and the effect of channel coupling

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastava, A.

    2015-03-01

    Background: The barrier distribution function is an important observable in low-energy nucleus-nucleus collisions because it carries the distinct signature of the channel-coupling effect that is dominant at low energies. It can be derived from the fusion excitation function as well as from the back-angle quasi-elastic excitation function. The barrier distribution functions derived from the two complimentary measurements, in general, appear to peak at an energy close to the Coulomb barrier for strongly bound systems. But for weakly bound projectiles, like 6Li, a relative shift is observed between the distributions. Purpose: The present work investigates the barrier distribution functions from fusion as well as from the back-angle quasi-elastic excitation function for the 6Li+64Ni system. The purpose is to look for the existence of a shift, if any, between the two measured distribution functions, as reported for 6Li collision with heavy targets. A detailed coupled-channel calculation to probe the behavior of the distribution functions and their relative shift has been attempted. Measurement: A simultaneous measurement of fusion and back-angle quasi-elastic excitation functions for the system 6Li+64Ni was performed. The fusion excitation function was measured for the energy range of 11 to 28 MeV while the quasi-elastic excitation function measurement extended from 11 to 20 MeV. The barrier distribution functions were subsequently extracted from both the excitation functions and compared. Results: A small shift of around 450 keV peak to peak is observed between the barrier distribution functions derived from the complementary measurements. Detailed coupled channel and coupled reaction channel calculations reproduced both the excitation functions and barrier distributions. The shift of about 550 keV resulted from the model predictions corroborate the experimentally observed value for 6Li+64Ni system. Conclusions: The coupling to inelastic channels are found to be

  13. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  14. Performance evaluation and channel modeling of MIMO free space optical communication system

    NASA Astrophysics Data System (ADS)

    Deng, Tianping; Lu, Yimin; Lu, Gang; Peng, Kai

    2005-11-01

    Free space optical communication systems represent one of the most promising approaches for addressing the emerging broadband access market, it can provide high bandwidth with no physical contact, but are hampered by signal fading effects due to particulate scattering caused by atmospheric turbulence. In this paper, we propose a new channel model of MIMO free space optical communication system. The physics meaning of this model is very clear, and its format is very simple. Mathematic results show that MIMO is a very effective way for intensity fluctuation reduction induced by turbulence, thus reduce the bit-error-rate of the system.

  15. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak.

    PubMed

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S K

    2014-05-01

    An 8-channel E-band heterodyne radiometer system (74-86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10(9) V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  16. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  17. Dual-channel filter photometer system for biocomponent content determination in diesel oil

    NASA Astrophysics Data System (ADS)

    Gołębiowski, Jacek; Prohuń, Tomasz

    2008-07-01

    Currently, infrared spectrometry is the most often used method of determination of the biocomponent content in diesel oil, but this is also an expensive and time-consuming process. In this study, a portable, low-cost dual-channel filter photometer system is presented which meets the requirements of the European standard for biocomponent concentration measurements in diesel fuel. The results obtained using this novel system are reported and compared to the measurements made using a standard infrared spectrometer for biodiesel concentration between 0% and 20% by weight. The advantages of the new system, such as its adaptability to the different environmental conditions of analysis, are also discussed.

  18. Outage Capacity Analysis of TAS/MRC Systems over Arbitrary Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Chun; Chiang, Ching-Tai; Lin, Shyh-Neng; Wu, Rong-Ching

    A simple closed-form approximation for the outage capacity of Transmit Antenna Selection/Maximal-Ratio Combining (TAS/MRC) systems over independent and identically distributed (i.i.d) Nakagami-m fading channels is derived while the fading index is a positive integer. When the Nakagami-m fading index is not an integer, the approximate outage capacity is derived as a single infinite series of Gamma function. Computer simulations verify the accuracy of the approximate results.

  19. High-speed indoor optical wireless communication system with single channel imaging receiver.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-04-09

    In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER<10⁻⁹) beam footprint is even larger than 1 m. Compared with our previous experimental results with a single wide field-of-view non-imaging receiver, an improvement in error-free beam footprint of >20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

  20. A Parallel Double Front System along the Main Channel of a Barotropic Tidal Inlet

    NASA Astrophysics Data System (ADS)

    Li, C.

    2003-12-01

    In an estuary with a significant longitudinal density gradient, fronts can occur during flood stage if a cross channel shear of flow exists. In a wide estuary, models have suggested convergence on the right hand side when facing the downstream direction, because of Coriolis effect, favoring a single front line changing its position with tidal phase. If a front system occurs during different tidal stages including ebb and appears in pairs on both sides of a channel, then neither of the above mechanisms can explain it. Here I report such a front system observed in a barotropic tidal inlet - Sand Shoal Inlet, VA. The front system is observed during different tidal stages within a 13-hour observation period. A 25-ft boat is used to tow an acoustic Doppler current profiler (ADCP) to measure velocity profiles along an hour-glass shaped ship track. A harmonic-statistic analysis is used to analyze the tide, tidal velocity, and mean velocity. The transverse convergence and divergence of velocity are calculated. The rms errors of the harmonic-statistic analysis of the elevation and velocity are about 0.28 m and 0.13 m/s (with a maximum velocity of over 2 m/s), respectively. On average, about 83%, 95%, and 70% of the variabilities of the elevation, longitudinal and transverse velocities respectively can be explained by the M2 tidal and subtidal constituents. Strong transverse velocity convergences are identified by the analysis and are generally consistent with the observed front positions. The analysis shows that the front system is apparently generated by a combination of several mechanisms including (1) differential rotation of the tidal ellipses and spatial variations of the major axes of the tidal ellipses, owing to the strong bottom friction, and (2) a strong geometric convergence at the inlet. Density effect is found to be negligible and the planetary vorticity tilt effect is also unimportant because of a much higher relative vorticity. The observed front system is

  1. A real-time multi-channel monitoring system for stem cell culture process.

    PubMed

    Xicai Yue; Drakakis, E M; Lim, M; Radomska, A; Hua Ye; Mantalaris, A; Panoskaltsis, N; Cass, A

    2008-06-01

    A novel, up to 128 channels, multi-parametric physiological measurement system suitable for monitoring hematopoietic stem cell culture processes and cell cultures in general is presented in this paper. The system aims to measure in real-time the most important physical and chemical culture parameters of hematopoietic stem cells, including physicochemical parameters, nutrients, and metabolites, in a long-term culture process. The overarching scope of this research effort is to control and optimize the whole bioprocess by means of the acquisition of real-time quantitative physiological information from the culture. The system is designed in a modular manner. Each hardware module can operate as an independent gain programmable, level shift adjustable, 16 channel data acquisition system specific to a sensor type. Up to eight such data acquisition modules can be combined and connected to the host PC to realize the whole system hardware. The control of data acquisition and the subsequent management of data is performed by the system's software which is coded in LabVIEW. Preliminary experimental results presented here show that the system not only has the ability to interface to various types of sensors allowing the monitoring of different types of culture parameters. Moreover, it can capture dynamic variations of culture parameters by means of real-time multi-channel measurements thus providing additional information on both temporal and spatial profiles of these parameters within a bioreactor. The system is by no means constrained in the hematopoietic stem cell culture field only. It is suitable for cell growth monitoring applications in general.

  2. Performance analysis of a finite radon transform in OFDM system under different channel models

    SciTech Connect

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.; Malek, F.; Abdullah, Farrah Salwani

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  3. Environmental testing of a prototypic digital safety channel, Phase I: System design and test methodology

    SciTech Connect

    Korsah, K.; Turner, G.W.; Mullens, J.A.

    1995-04-01

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I&C) Qualification Program sponsored by the US Nuclear Regulatory Commission. The goal of this program is to establish the technical basis and acceptance criteria for the qualification of advanced I&C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALWRs) such as the Simplified Boiling Water Reactor (SBWR). It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALWRs. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines.

  4. Extended horizon lifting for periodic gain adjustment in control systems, and for equalization of communication channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1994-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  5. Regional expression of the anesthetic-activated potassium channel TRESK in the rat nervous system

    PubMed Central

    Yoo, SieHyeon; Liu, Jia; Sabbadini, Marta; Au, Paul; Xie, Guo-xi; Yost, C. Spencer

    2009-01-01

    The two-pore-domain potassium (K2P) channels contribute to background (leak) potassium currents maintaining the resting membrane potential to play an important role in regulating neuronal excitability. As such they may contribute to nociception and the mechanism of action of volatile anesthetics. In the present study, we examined the protein expression pattern of the K2P channel TRESK in the rat central nervous system (CNS) and peripheral nervous system (PNS) by immunohistochemistry. The regional distribution expression pattern of TRESK has both similarities and significant differences from that of other K2P channels expressed in the CNS. TRESK expression is broadly found in the brain, spinal cord and dorsal root ganglia (DRG). TRESK expression is highest in important CNS structures, such as specific cortical layers, periaqueductal gray (PAG), granule cell layer of the cerebellum, and dorsal horn of the spinal cord. TRESK expression is also high in small and medium sized DRG neurons. These results provide an anatomic basis for identifying functional roles of TRESK in the rat nervous system. PMID:19716403

  6. A sophisticated, multi-channel data acquisition and processing system for high frequency noise research

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Bridges, James

    1992-01-01

    A sophisticated, multi-channel computerized data acquisition and processing system was developed at the NASA LeRC for use in noise experiments. This technology, which is available for transfer to industry, provides a convenient, cost-effective alternative to analog tape recording for high frequency acoustic measurements. This system provides 32-channel acquisition of microphone signals with an analysis bandwidth up to 100 kHz per channel. Cost was minimized through the use of off-the-shelf components. Requirements to allow for future expansion were met by choosing equipment which adheres to established industry standards for hardware and software. Data processing capabilities include narrow band and 1/3 octave spectral analysis, compensation for microphone frequency response/directivity, and correction of acoustic data to standard day conditions. The system was used successfully in a major wind tunnel test program at NASA LeRC to acquire and analyze jet noise data in support of the High Speed Civil Transport (HSCT) program.

  7. Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Hart, Roger; Hunt, Chris; Burns, Rich D.

    2003-01-01

    Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.

  8. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  9. Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Rodriguez, Carl; Pankow, Chris; Kalogera, Vicky; Rasio, Fred

    2017-01-01

    The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how heavy binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in galactic fields and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and the mass distributions and merger rates from simulations of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the projected spin distributions produced by population synthesis simulations. Using this framework we will link the estimated black hole spin to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.

  10. Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Rodriguez, Carl L.; Pankow, Chris; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in the galactic field and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and simulations find that the mass distributions and merger rates of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the spin distributions produced by population synthesis simulations of the galactic field and star clusters. Using this framework, we will link black hole spin measurements to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.

  11. A quasioptical system of the dual channel SIS receiver for TRAO telescope.

    NASA Astrophysics Data System (ADS)

    Park, J. A.; Han, S. T.; Kim, T. S.; Kim, K. D.; Kim, H. R.; Chung, H. S.; Cho, S. H.; Lee, C. H.; Yang, J.

    1999-10-01

    A quasioptical system of 100/150 GHz band for a dual channel receiver is developed for the simultaneous observation for both bands. The frequency independent Gaussian beam matching is applied to design the quasioptical system for wide band operation. A beam measurement system is constructed to measure the quasioptical system and to align its components. The beam from Cassegrain focus is divided into two polarizations by the beam splitter and then fed to corrugated feed horns of their bands through their quasioptical system. The intensity distributions near the Cassegrain focus and the variations of the beam widths along the propagation are measured in the laboratory. The performances of the developed quasioptical system are evaluated by comparing the measured results with theoretical calculations. The dual channel receiver with this quasioptical system is installed in the 14 m telescope. The relative pointing offset between two bands is 3n. The authors have successfully observed the various sources with both bands using this receiver since October 1998.

  12. Eight channel - 16 bit, bidirectional analog to digital monitoring and control system

    SciTech Connect

    Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.; Nerem, A.

    1991-11-01

    The DIII-D tokamak facility is currently upgrading its electron cyclotron resonance heating (ECH) system. The new system is based on 110 GHz gyrotrons developed by Varian. As part of this upgrade, the superconducting magnet power supplies were required to be remotely controlled and monitored accurately. The 110 GHz gyrotron superconducting magnet has eight coils, that are energized by current regulating power supplies. An analog to digital (A/D) system was designed to allow remote coil current monitoring and power supply programming. The A/D system is an eight channel multiplexed, 16 bit, bidirectional, fiber optically linked, analog to digital telemetry system. Design concerns and trade-offs will be discussed as will the results of in system use.

  13. Performance Evaluation of Multi-Channel Wireless Mesh Networks with Embedded Systems

    PubMed Central

    Lam, Jun Huy; Lee, Sang-Gon; Tan, Whye Kit

    2012-01-01

    Many commercial wireless mesh network (WMN) products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN). PMID:22368482

  14. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    PubMed

    Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring.

  15. Performance evaluation of multi-channel wireless mesh networks with embedded systems.

    PubMed

    Lam, Jun Huy; Lee, Sang-Gon; Tan, Whye Kit

    2012-01-01

    Many commercial wireless mesh network (WMN) products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN).

  16. Under-sampling in a Multiple-Channel Laser Vibrometry System

    SciTech Connect

    Corey, Jordan

    2007-03-01

    Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersampling allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).

  17. Investigation of creating possibilities of multi-channel optical system with discrete angular field

    NASA Astrophysics Data System (ADS)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.

    2016-04-01

    Often, in practice, there is a problem of large areas of space viewing in order to fix certain parameters of moving objects. A multichannel optical-electronic monitoring system with a discrete angular field (or, as they say, artificial compound eye system) is an interesting variant to solve this problem. Such systems can be used for the analysis of various parameters of the objects, as an example for positioning of the object in wide annular zone. Using these systems we can get a wide angular field up to the full sphere due to a combination of a large number of elementary light detecting channels (like compound eyes of insects) and have a gain in the useful signal due to overlapping angular fields of channels. Currently, multichannel optoelectronic systems with discrete angular field are described and studied less than other up-to-date monitoring devices. But existing analogues are presented by experimental samples, which demonstrate the relevance of the research and design of such devices. This work presents a brief review of monitoring system with discrete angular field and theoretical description of proposed prototype. Results of experimental studies of mentioned prototype are presented as well.

  18. Cat-eye target imaging system research and dual-channel DSP implementation

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Zhang, Haiyang; Shi, Guang; Han, Lei; Zhao, Changming

    2013-09-01

    In modern warfare, well-equipped and trained snipers have become a mortal malady for the combat troops. How to accurately, timely and quickly find and destroy snipers becomes a research focus of national military experts. In order to effectively detect faint echo signal of cat-eye target and get the snipers' position information in the detection area, a small size of dual-channel active laser detection system with monochrome and color Charge-couple Devices(CCD) is designed, which is based on the laser imaging principle of cat-eye effect, associated tests are also conducted. The dual-channel video capture can obtain more information of target area, while taking advantage of the high sensitivity of monochrome CCD will also provide more accurate grayscale information for the video image processing. In order to achieve the miniaturization of system, we choose a video processing board whose size is only 54mm*90mm as hardware platform to complete the algorithm. For verifying the feasibility and accuracy of algorithm, we ultimately build a full set of experimental detection system. The test results show that the system can accurately detect and mark typical cat-eye target from background under different distances, which verifies the rationality and validity of the proposed system and has certain practicality and promotion in the active laser detection system research areas.

  19. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  20. Modeling of systems wireless data transmission based on antenna arrays in underwater acoustic channels

    NASA Astrophysics Data System (ADS)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2016-05-01

    In this paper the system of wireless transmission of data based on the use an adaptive algorithm for processing spatial-time signals using antenna arrays is presented. In the transmission of data in a multipath propagation of signals have been used such technologies as a MIMO (Multiple input-Multiple output) and OFDM (Orthogonal frequency division multiplexing) to solve the problem of increasing the maximum speed of data transfer and the low probability of errors. The adaptation process is based on the formation of the directional pattern equivalent to the amplitude antenna array in the signal arrival direction with the highest capacity on one of propagation paths in the channel. The simulation results showed that the use of an adaptive algorithm on the reception side can significantly reduce the probability of bit errors, thus to increase throughput in an underwater acoustic data channel.

  1. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems

    NASA Astrophysics Data System (ADS)

    Dideban, Ali; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2017-03-01

    This paper presents a novel configuration of channel drop filters based on two-dimensional photonic crystal slabs in silicon-on-insulator platforms. The structure is composed of two photonic crystal line-defect waveguides as input and output ports, along with an L3 cavity with ring-shaped border holes. The effects of structural parameters and fabrication errors on resonance frequency and drop efficiency are investigated. Band structure and propagation of electromagnetic field through device are calculated by plane wave expansion and finite-difference time-domain methods. The results show that the quality factor and line-width of output signal are 5690 and 0.27 nm, respectively, indicating that the proposed filter can be properly used in dense wavelength division multiplexing systems with 0.8 nm channel spacing.

  2. Laboratory flume experiments for characterising Martian channels formed by distinct groundwater systems

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Kleinhans, Maarten G.; McLelland, Stuart J.; Murphy, Brendan J.; Parsons, Daniel R.; Conway, Susan J.; Hauber, Ernst

    2013-04-01

    Channels on Mars have been found in many locations and across all possible scales, suggesting the presence of flowing water in the past. Several hypotheses for the formation of these channels have been proposed, including a role for groundwater. In this study we explored the development of channel morphology for three types of groundwater systems: 1) seepage from a regional groundwater system, 2) seepage from local precipitation and 3) groundwater release from a pressurised aquifer. We performed a series of scale experiments to study the morphological development of different scenarios. Smaller scale experiments were conducted in a setup of 1x3x0.25 m (at UU) using lightweight plastic sediment. Larger scale experiments were conducted in a setup of 4x6x1 m (at UoH) using sand. To simulate the three aforementioned hydrological conditions, 1) a constant sub-surface hydraulic head was applied using a header tank connected to the sediment, 2) a series of rainfall simulator nozzles were used (UoH setup only) and 3) a super-surface hydraulic pressure was applied to a perforated pipe beneath the sediment. The two scales of experiments allow us to assess the scalability to real-world conditions. We collected detailed DEMs and time-lapse imagery of the morphological development of the sediment surface. In the regional groundwater experiments, elongated valleys with circular, steep head walls developed, with depths down to the groundwater table. The valley heads and sides developed as a result of mass wasting processes; within the valley material was transported by fluvial processes. Multiple parallel valleys formed initially, but one or two eventually capture most of the outflow and became larger than the pirated valleys. In the precipitation-fed seepage experiments, groundwater flowed from all directions into valleys rather than just from upstream. Again, multiple parallel valleys with semi-circular heads formed but the valleys were shallower and wider. Channel formation by

  3. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  4. Performance of MIMO E-SDM Systems Using Channel Prediction in Actual Time-Varying Indoor Fading Environments

    NASA Astrophysics Data System (ADS)

    Bui, Huu Phu; Nishimoto, Hiroshi; Nishimura, Toshihiko; Ohgane, Takeo; Ogawa, Yasutaka

    In time-varying fading environments, the performance of multiple-input multiple-output (MIMO) systems applying an eigenbeam-space division multiplexing (E-SDM) technique may be degraded due to a channel change during the time interval between the transmit weight matrix determination and the actual data transmission. To compensate for the channel change, we have proposed some channel prediction methods. Simulation results based on computer-generated channel data showed that better performance can be obtained when using the prediction methods in Rayleigh fading environments assuming the Jakes model with rich scatterers. However, actual MIMO systems may be used in line-of-sight (LOS) environments, and even in a non-LOS case, scatterers may not be uniformly distributed around a receiver and/or a transmitter. In addition, mutual coupling between antennas at both the transmitter and the receiver cannot be ignored as it affects the system performance in actual implementation. We conducted MIMO channel measurement campaigns at a 5.2GHz frequency band to evaluate the channel prediction techniques. In this paper, we present the experiment and simulation results using the measured channel data. The results show that robust bit-error rate performance is obtained when using the channel prediction methods and that the methods can be used in both Rayleigh and Rician fading environments, and do not need to know the maximum Doppler frequency.

  5. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  6. Generation of large-scale structures and vortex systems in numerical experiments for rotating annular channels

    NASA Astrophysics Data System (ADS)

    Gledzer, A. E.

    2016-12-01

    Methods for solving shallow-water equations that describe flows in rotating annular channels are considered and the results of numerical calculations are analyzed for the possible generation of global large-scale flows, narrow jets, and numerous small-scale vortices in laboratory experiments. External effects in fluids are induced using a mass source-sink and the MHD-method of interaction of radial electric current with the magnetic field generated by the field of permanent magnets. A central-upwind scheme modified to suit the specific aspects of geophysical hydrodynamics. Initially, this method was used to solve shallow-water equations only in hydraulic problems, such as for flows in dam breaks, channels, rivers, and lakes. Geophysical hydrodynamics (in addition to free surface and topography) requires a rotation of the system as a whole, which is accompanied by the appearance of a complex system of vortices, jets, and turbulence (these should be taken into account in the formulation of the problem). Accordingly, the basic features of the central-upwind method should be changed. The modifications should ensure that the scheme is well-balanced and choose interpolation methods for desired variables. The main result of this modification is the control over numerical viscosity affecting the fluid motion variety. The active dynamics of a large number of vortices transformed into jets or generating large-scale streams is the general result of modifications suitable for geophysical hydrodynamics. Because there are technical difficulties in the creation of an appropriate laboratory setup for modeling of geophysical flows with the help of numerous source-sinks, it will be appropriate to use numerical experiments for studying the motions generated by this method. Unlike this method, the MHD-method can be rather easily used in laboratory conditions to generate a large variety of flows and vortex currents in the channel by a relatively small number of permanent magnets

  7. CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.

    2011-01-01

    To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.

  8. A novel self-quenching system based on bis-naphthalimide: a dual two-photon-channel GSH fluorescent probe.

    PubMed

    Wei, Shen; Ge, Jingyan; He, Siyang; Zhang, Ruoyu; Zhao, Chengyan; Fan, Yong; Yu, Shian; Liu, Bin; Zhu, Qing

    2017-04-01

    The single fluorescent signal output often does not satisfy the requirement of detection accuracy for bioactive compounds in biological system. It is of great interest to develop a dual-channel turn-on fluorescence sensing system for self-validated detection. Herein, we report a novel self-quenching nanoparticle composed of dual two-photon dyes of naphthalimides, displaying almost no fluorescence at both channels due to aggregation-caused quenching (ACQ). A dual two-photon-channel fluorescent probe for GSH was further developed by inserting a disulfide bond between two naphthalimides. Upon the treatment of GSH, the disulfide bond was cleaved and two napthalimide fluorophores were separated, leading to turn-on fluorescence at both channels. This dual-two-photon-channel design strategy can be easily extended to other analytes, simply by changing the linker molecules, which opens new opportunities to accurately monitor various biological processes in living cells.

  9. Experimental evidence for multi-element stochastic resonance in the system of membrane ion channels

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Igor

    1996-03-01

    The principles of biological amplification are far from understood; it is only clear that biological amplifiers are unique in their ability to detect small signals in a noisy environment. As was shown recently, many nonlinear systems can use noise to enhance their performance, and this phenomenon, called stochastic resonance, may underline the extraordinary ability of some biological systems to detect and amplify small signals. Previous work has demonstrated stochastic resonance in complex systems of biological transducers and neural signal pathways, but the possibility that it could occur at the sub-cellular level has remained open. Here we report the observation of noise-enhanced electrical signal transfer in a simple system of voltage-dependent ion channels formed by the peptide alamethicin in a lipid bilayer footnote S.M.Bezrukov and I.Vodyanoy, Nature (London), November 1995 (in press). Channels are expressed in a stochastic manner as "current bursts" rising from the background, and their formation is highly voltage-sensitive. An average alamethicin- induced conductance increases e-fold every 4 or 5 mV, depending on bilayer lipid composition. Alamethicin channel transitions between nonconducting and conducting aggregates can be described by a quasi-bistable energy diagram, where the probability distribution along the reaction coordinate is sensitive to the transmembrane voltage mostly at the level of the transition between two main energy wells. To study the interaction between external noise and signal transfer, we measure amplitude of output signal and the signal-to-noise ratio at the system output as a function of external noise intensity. We show that a hundred-fold increase in signal transduction induced by external noise is accompanied by a growth in the output signal-to-noise ratio. Recent theory and numerical simulation dealing with a parallel combination of noniteracting stochastic resonant elements may provide an explanation of the present results

  10. Multi-Channel High-Tc SQUID Detection System for Metallic Contaminants

    NASA Astrophysics Data System (ADS)

    Kitamura, Yoshihiro; Hatsukade, Yoshimi; Tanaka, Saburo; Ohtani, Takeyoshi; Suzuki, Shuichi

    Finding ultra-small metallic contaminants is a big issue for manufacturers of lithium-ion batteries nowadays. Therefore, we have developed high-Tc SQUID systems for detection of such fine magnetic metallic contaminants. In this paper, we constructed an eight channel high-Tc SQUID gradiometer system for inspection of a sheet electrode of a lithium ion battery with width of about 70 mm. By this system, a small iron ball of about 30 μm in diameter was successfully detected. It is shown that this system has a detectable range of 70 mm in width. These results suggest that the system is a promising tool for the detection of the contaminants in lithium ion batteries.

  11. Design and implementation of the parallel processing system of multi-channel polarization images

    NASA Astrophysics Data System (ADS)

    Li, Zhi-yong; Huang, Qin-chao

    2013-08-01

    Compared with traditional optical intensity image processing, polarization images processing has two main problems. One is that the amount of data is larger. The other is that processing tasks is more complex. To resolve these problems, the parallel processing system of multi-channel polarization images is designed by the multi-DSP technique. It contains a communication control unit (CCU) and a data processing array (DPA). CCU controls communications inside and outside the system. Its logics are designed by a FPGA chip. DPA is made up of four Digital Signal Processor (DSP) chips, which are interlinked by the loose coupling method. DPA implements processing tasks including images registration and images synthesis by parallel processing methods. The polarization images parallel processing model is designed on multi levels including the system task, the algorithm and the operation. Its program is designed by the assemble language. While the polarization image resolution is 782x582 pixels, the pixel data length is 12 bits in the experiment. After it received 3 channels of polarization image simultaneously, this system implements parallel task to acquire the target polarization characteristics. Experimental results show that this system has good real-time and reliability. The processing time of images registration is 293.343ms while the registration accuracy achieves 0.5 pixel. The processing time of images synthesis is 3.199ms.

  12. Real-Time Flood Forecasting System Using Channel Flow Routing Model with Updating by Particle Filter

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Chikamori, H.; Nagai, A.

    2008-12-01

    A real-time flood forecasting system using channel flow routing model was developed for runoff forecasting at water gauged and ungaged points along river channels. The system is based on a flood runoff model composed of upstream part models, tributary part models and downstream part models. The upstream part models and tributary part models are lumped rainfall-runoff models, and the downstream part models consist of a lumped rainfall-runoff model for hillslopes adjacent to a river channel and a kinematic flow routing model for a river channel. The flow forecast of this model is updated by Particle filtering of the downstream part model as well as by the extended Kalman filtering of the upstream part model and the tributary part models. The Particle filtering is a simple and powerful updating algorithm for non-linear and non-gaussian system, so that it can be easily applied to the downstream part model without complicated linearization. The presented flood runoff model has an advantage in simlecity of updating procedure to the grid-based distributed models, which is because of less number of state variables. This system was applied to the Gono-kawa River Basin in Japan, and flood forecasting accuracy of the system with both Particle filtering and extended Kalman filtering and that of the system with only extended Kalman filtering were compared. In this study, water gauging stations in the objective basin were divided into two types of stations, that is, reference stations and verification stations. Reference stations ware regarded as ordinary water gauging stations and observed data at these stations are used for calibration and updating of the model. Verification stations ware considered as ungaged or arbitrary points and observed data at these stations are used not for calibration nor updating but for only evaluation of forecasting accuracy. The result confirms that Particle filtering of the downstream part model improves forecasting accuracy of runoff at

  13. Spectral Dynamics Inc., ships hybrid, 316-channel data acquisition system to Sandia Labs.

    SciTech Connect

    Schwartz, Douglas

    2003-09-01

    Spectral Dynamics announced the shipment of a 316-channel data acquisition system. The system was custom designed for the Light Initiated High Explosive (LIHE) facility at Sandia Labs in Albuquerque, New Mexico by Spectral Dynamics Advanced Research Products Group. This Spectral Dynamics data acquisition system was tailored to meet the unique LIHE environmental and testing requirements utilizing Spectral Dynamics commercial off the shelf (COTS) Jaguar and VIDAS products supplemented by SD Alliance partner's (COTS) products. 'This system is just the beginning of our cutting edge merged technology solutions,' stated Mark Remelman, Manager for the Spectral Dynamics Advanced Research Products Group. 'This Hybrid system has 316-channels of data acquisition capability, comprised of 102.4kHz direct to disk acquisition and 2.5MHz, 200Mhz & 500Mhz RAM based capabilities. In addition it incorporates the advanced bridge conditioning and dynamic configuration capabilities offered by Spectral Dynamics new Smart Interface Panel System (SIPS{trademark}).' After acceptance testing, Tony King, the Instrumentation Engineer facilitating the project for the Sandia LIHE group commented; 'The LIHE staff was very impressed with the design, construction, attention to detail and overall performance of the instrumentation system'. This system combines VIDAS, a leading edge fourth generation SD-VXI hardware and field-proven software system from SD's Advanced Research Products Group with SD's Jaguar, a multiple Acquisition Control Peripheral (ACP) system that allows expansion to hundreds of channels without sacrificing signal processing performance. Jaguar incorporates dedicated throughput disks for each ACP providing time streaming to disk at up to the maximum sample rate. Spectral Dynamics, Inc. is a leading worldwide supplier of systems and software for advanced computer-automated data acquisition, vibration testing, structural dynamics, explosive shock, high-speed transient capture

  14. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  15. High-throughput hyperpolarized (13)C metabolic investigations using a multi-channel acquisition system.

    PubMed

    Lee, Jaehyuk; Ramirez, Marc S; Walker, Christopher M; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C; Lai, Stephen Y; Bankson, James A

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-(13)C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-(13)C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Developing an Inositol-Phosphate-Actuated Nanochannel System by Mimicking Biological Calcium Ion Channels.

    PubMed

    Lu, Qi; Tang, Qiuhan; Chen, Zhonghui; Zhao, Shilong; Qing, Guangyan; Sun, Taolei

    2017-09-13

    In eukaryotic cells, ion channels, which ubiquitously present as polypeptides or proteins, usually regulate the ion transport across biological membranes by conformational switching of the channel proteins in response to the binding of diverse signaling molecules (e.g., inositol phosphate, abbreviated to InsP). To mimic the gating behaviors of natural Ca(2+) channels manipulated by InsPs, a smart poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido) benzoic acid)0.2] (denoted as PNI-co-ATBA0.2) was integrated onto a porous anodic alumina (PAA) membrane, building an InsP-actuated nanochannel system. Driven by the intensive hydrogen bonding complexation of ATBA monomer with InsP, the copolymer chains displayed a remarkable and reversible conformational transition from a contracted state to a swollen one, accompanied with significant changes in surface morphology, wettability, and viscoelasticity. Benefiting from these features, dynamic gating behaviors of the nanochannels located on the copolymer-modified PAA membrane could be precisely manipulated by InsPs, reflected as a satisfactory linear relationship between real-time variation in transmembrane ionic current and the InsP concentration over a wide range from 1 nmol L(-1) to 10 μmol L(-1), as well as a clear discrimination among InsP2, InsP3, and InsP6. This study indicates the great potential of biomolecule-responsive polymers in the fabrication of biomimetic ion nanochannels and other nanoscale biodevices.

  17. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

    PubMed

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-12-01

    Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.

  18. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  19. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel

    PubMed Central

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A.; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-01-01

    While feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons, express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously, which are known to trigger migraine or cluster headache attacks, as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel, and renders peptidergic, TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide. PMID:23933184

  20. Effect of stack channel radius on the cooling performance of a thermoacoustic cooling system with diameter-expanded prime movers

    NASA Astrophysics Data System (ADS)

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro

    2017-07-01

    We study a thermoacoustic cooling system with diameter-expanded two-stage prime movers to improve the cooling performance of the system. The heat flow, which depends on the amplitude of the progressive wave, is expected to increase when the heat-pump stack channel radius is decreased. In this study, we investigate the effect of the heat-pump stack channel radius on the cooling performance. The experimental results show that the temperature difference formed at the heat-pump stack is large as the channel radius is decreased. To improve the cooling performance, it is suggested that the proportion of the heat flow that prevents cooling should be decreased.

  1. Heat transfer study in oil channels of a transformer ODAF cooling system based on numerical modeling

    NASA Astrophysics Data System (ADS)

    Salari, Sina; Noasrolahzadeh, M. Reza; Parsimoghadam, Azadeh; Khalilikhah, Mostafa

    2012-06-01

    As misperformance of cooling systems in the electrical transformers, could cause damages to the transformers and in the more serious situations devices that use transformer output, it is so important to design these systems reliable and robust, which is depends extremely on knowledge of heat transfer mechanism in the system. This study has been done to understand heat transfer coefficient relations to the bobbin geometry and flow rates in the ODAF cooling systems, which uses forced convection mechanism, and oil as cooling fluid. Considered bobbins have below 1000mm diameter and 2000mm height, which are used in the low voltage side in the power transformers (Voltage < 132Kv). Oil flow has been numerically simulated to model heat transfer in the fluid and the bobbin. Results have been validated by experimental tests, which show about 10 percent error, for 3D modeling. Temperature difference procedure between oil and solid along the bobbin height, and relation between heat transfer coefficient and flow rate have been obtained. Besides three different geometry, axial channels, axial and radial channels with and without baffles where evaluated from heat transfer viewpoint.

  2. An eight-channel Doppler backscattering system in the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hu, J. Q.; Zhou, C.; Liu, A. D.; Wang, M. Y.; Doyle, E. J.; Peebles, W. A.; Wang, G.; Zhang, X. H.; Zhang, J.; Feng, X.; Ji, J. X.; Li, H.; Lan, T.; Xie, J. L.; Ding, W. X.; Liu, W. D.; Yu, C. X.

    2017-07-01

    Doppler backscattering system can measure the perpendicular velocity and fluctuation amplitude of the density turbulence with intermediate wavenumber. An eight-channel Doppler backscattering system has been installed in the Experimental Advanced Superconducting Tokamak (EAST), which can probe eight different radial locations simultaneously by launching eight fixed frequencies (55, 57.5, 60, 62.5, 67.5, 70, 72.5, 75 GHz) into plasma. The quasi-optical system consists of circular corrugated waveguide transmission, a fixed parabolic mirror, and a rotatable parabolic mirror which are integrated with quasi-optics front-end of the profile reflectometer inside the vacuum vessel. The incidence angle can be chosen from 5° to 12°, and the wavenumber range is 2-15/cm with the wavenumber resolution Δ k /k ≤0.21 . Ray tracing simulations are used to calculate the scattering locations and the perpendicular wavenumber. The dynamic range of this new eight-channel Doppler backscattering system can be as large as 40 dB in the EAST. In this article, the hardware design, the ray tracing, and the preliminary experimental results in the EAST will be presented.

  3. Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system.

    PubMed

    Liu, Sumei; Qu, Mei-Hua; Ren, Wei; Hu, Hong-Zhen; Gao, Na; Wang, Guo-Du; Wang, Xi-Yu; Fei, Guijun; Zuo, Fei; Xia, Yun; Wood, Jackie D

    2008-12-20

    The canonical transient receptor potential (TRPC) family of ion channels is implicated in many neuronal processes including calcium homeostasis, membrane excitability, synaptic transmission, and axon guidance. TRPC channels are postulated to be important in the functional neurobiology of the enteric nervous system (ENS); nevertheless, details for expression in the ENS are lacking. Reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry were used to study the expression and localization of TRPC channels. We found mRNA transcripts, protein on Western blots, and immunoreactivity (IR) for TRPC1/3/4/6 expressed in the small intestinal ENS of adult guinea pigs. TRPC1/3/4/6-IR was localized to distinct subpopulations of enteric neurons and was differentially distributed between the myenteric and submucosal divisions of the ENS. TRPC1-IR was widely distributed and localized to neurons with cholinergic, calretinin, and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to both cholinergic and noncholinergic secretomotor neurons in the submucosal plexus. TRPC3-IR was found only in the submucosal plexus and was expressed exclusively by neuropeptide Y-IR neurons. TRPC4/6-IR was expressed in only a small population of myenteric neurons, but was abundantly expressed in the submucosal plexus. TRPC4/6-IR was coexpressed with both cholinergic and nitrergic neurochemical codes in the myenteric plexus. In the submucosal plexus, TRPC4/6-IR was expressed exclusively in noncholinergic secretomotor neurons. No TRPC1/3/4/6-IR was found in calbindin-IR neurons. TRPC3/4/6-IR was widely expressed along varicose nerve fibers and colocalized with synaptophysin-IR at putative neurotransmitter release sites. Our results suggest important roles for TRPC channels in ENS physiology and neuronal regulation of gut function.

  4. Dynamic Pilot Channel Transmission with Adaptive Receive Filter Configuration for Cognitive Radio System

    NASA Astrophysics Data System (ADS)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When a cognitive radio system dynamically utilizes a frequency band, channel control information must be communicated over the network in order for the currently available carrier frequencies to be shared. In order to keep efficient spectrum utilization, this control information should also be dynamically transmitted through channels such as cognitive pilot channels based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers must receive the control signal without knowledge of its carrier frequencies. A novel scheme called differential code parallel transmission (DCPT) enables receivers to receive low-rate information without any knowledge of the carrier frequency. The transmitter simultaneously transmits two signals whose carrier frequencies are separated by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver receives the DCPT signal, it multiplies the signal by a frequency-shifted version of itself; this yields a DC component that represents the data signal, which is then demodulated. However, the multiplication process results in the noise power being squared, necessitating high received signal power. In this paper, to realize a bandpass filter that passes only DCPT signals of unknown frequency and that suppresses noise and interference at other frequencies, a DCPT-adaptive bandpass filter (ABF) that employs an adaptive equalizer is proposed. In the training phase, the received signal is the filter input and the frequency-shifted signal is the training input. Then, the filter is trained to pass the higher-frequency signal of the two DCPT signals. The performance of DCPT-ABF is evaluated through computer simulations. We find that DCPT-ABF operates successfully even under strong interference.

  5. Water and Ion Channels: Crucial in the Initiation and Progression of Apoptosis in Central Nervous System?

    PubMed Central

    Jessica Chen, Minghui; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Shyan Choy, Meng; Manikandan, Jayapal; Melendez, Alirio J; Jeyaseelan, Kandiah; Sang Cheung, Nam

    2008-01-01

    Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death. PMID:19305791

  6. A Heuristic Approach to Determining Cargo Flow and Scheduling for Air Mobility Command’s Channel Cargo System

    DTIC Science & Technology

    1994-03-01

    COMMAND’S CHANNEL CARGO SYSTEM THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air...can take up to four days to complete. This two-phase process has also been used for other 4 applications , such as special studies of proposed...modifications to the channel system (Del Rosario, 1993:6). 1.3 Previoe AFiT Research The Air Force Institute of Technology (AFMIT has conducted several research

  7. Channel simulation and development of signal processing techniques for a scanner-based optical storage system

    NASA Astrophysics Data System (ADS)

    Pillai, Usha; Vijaya Kumar, Bhagavatula

    1998-10-01

    A scanner-based storage system employs a head mounted on a scanner which oscillates over the moving media. The head moves in an approximately sinusoidal path relative to the media at a high frequency, time-multiplexing the read/write signals of several tracks. The resulting multi-channel readback can yield higher data rates over a conventional system with a head that moves linearly relative to the media. Scanner-based storage systems are not commercially available at present. We are envisioning a system that uses an opto-electronic scanner, developed at CMU, in which the deflection of a laser beam is controlled by an input voltage. Since no mechanical motion is involved, this scanner has a high bandwidth which makes it well suited to our application.

  8. Image Transmission through OFDM System under the Influence of AWGN Channel

    NASA Astrophysics Data System (ADS)

    Krishna, Dharavathu; Anuradha, M. S., Dr.

    2017-08-01

    OFDM system is one among the modern techniques which is most abundantly used in next generation wireless communication networks for transmitting many forms of digital data in efficient manner than compared with other existing traditional techniques. In this paper, one such kind of a digital data corresponding to a two dimensional (2D) gray-scale image is used to evaluate the functionality and overall performance of an OFDM system under the influence of modeled AWGN channel in MATLAB simulation environment. Within the OFDM system, different configurations of notable modulation techniques such as M-PSK and M-QAM are considered for evaluation of the system and necessary valid conclusions are made from the comparison of several observed MATLAB simulation results.

  9. Single channel hybrid FES gait system using an energy storing orthosis: preliminary design.

    PubMed

    Kangude, Abhijit; Burgstahler, Brett; Kakastys, Jesse; Durfee, William

    2009-01-01

    A new system for paraplegic gait by electrical stimulation is presented. The system combines electrical stimulation of the paralyzed quadriceps muscle with a hip-knee orthosis. The orthosis is spring-loaded and contains pneumatic components that store and transfer the energy from knee extension caused by quadriceps stimulation to a pneumatic actuator that drives hip motion. In this manner, cyclic hip and knee motion with arbitrary timing can be achieved using a single channel of surface stimulation. Previous work developed a dynamic model and bench top prototype of the energy storing system. Simulation and design prototypes are presented with the eventual goal of developing a wearable version of the complete gait system.

  10. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation.

    PubMed

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C; Savory, Seb J; Killey, Robert I; Bayvel, Polina

    2015-09-14

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  11. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    PubMed Central

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-01-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems. PMID:26365422

  12. Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation

    NASA Astrophysics Data System (ADS)

    Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C.; Savory, Seb J.; Killey, Robert I.; Bayvel, Polina

    2015-09-01

    Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.

  13. Channel estimation scheme based on compressed sensing and parameter estimation for an orthogonal frequency division multiplexing visible light communications system

    NASA Astrophysics Data System (ADS)

    Du, Jie; Deng, Honggui; Qian, Xuewen; Zhang, Chaoyang

    2016-11-01

    In order to mitigate bandwidth attenuation of diffusion link visible light communication systems caused by multipath effects, we present an optical orthogonal frequency division multiplexing channel estimation scheme based on compressed sensing (CS) and estimation of signal parameters via rotational invariance techniques (ESPRIT). First, we derived a parametric channel model. Then, we used ESPRIT to obtain multipath channel parameters. After that, we built a dynamic over-complete dictionary that can be used in CS processing. Finally, we reconstructed the channel response by using a basis pursuit denoising algorithm to equalize the received signal in frequency domain. Compared with traditional schemes, the proposed scheme can improve channel estimation accuracy without increasing dictionary size. A set of computer simulations demonstrated the effectiveness of the proposed scheme.

  14. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  15. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  16. 71. VIEW OF STANDARD QUINTRON SYSTEMS, INC., 20CHANNEL COMMUNICATIONS PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. VIEW OF STANDARD QUINTRON SYSTEMS, INC., 20-CHANNEL COMMUNICATIONS PANEL (RIGHT BOTTOM); AMPLIFIER (RIGHT MIDDLE); AND SLAVE COMMUNICATIONS PANEL (LEFT BOTTOM). TOP OF RIGHT PANEL CONTAINS AN AM/FM RADIO RECIEVER THAT IS NOT RELATED TO THE SLC-3 COMMUNICATIONS NETWORK. THESE PANELS LOCATED IN THE CENTER OF THE LONG CONSOLE NEAR THE SOUTHEAST CORNER OF THE SLC-3E CONTROL ROOM. (See background of CA-133-1-A-56.) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Refocusing capabilities in a miniaturized multi-channel multi-resolution imaging system using a tunable lens

    NASA Astrophysics Data System (ADS)

    Smeesters, L.; Belay, Gebirie Y.; Ottevaere, H.; Meuret, Youri; Thienpont, H.

    2014-05-01

    Inspired by nature, many application domains might gain from combining the multi-channel design of the compound eyes of insects and the refocusing capability of the human eye in one compact configuration. Multi-channel refocusing imaging systems are nowadays only commercially available in bulky and expensive designs since classical refocusing mechanisms cannot be integrated in a miniaturized configuration. We designed a wafer-level multi-resolution two-channel imaging system with refocusing capabilities using a voltage tunable liquid lens. One channel is able to capture a wide field-of-view image (2x40°) of a surrounding with a low angular resolution (0.078°), whereas a detailed image of a small region of interest (2x7.57°) can be obtained with the high angular resolution channel (0.0098°). The latter high angular resolution channel contains the tunable lens and therefore also the refocusing capabilities. In this paper, we first discuss the working principle, tunability and optical quality of a voltage tunable liquid lens. Based on optical characterization measurements with a Mach-Zehnder interferometer, we designed a tunable lens model. The designed tunable lens model and its validation in an imaging setup show a diffraction-limited image quality. Following, we discuss the performance of the designed two-channel imaging system. Both the wide field-of-view and high angular resolution optical channels show a diffraction-limited performance, ensuring a good image quality. Moreover, we obtained an improved depth-of-field, from 0.254m until infinity, in comparison with the current state-of-the art published wafer-level multi-channel imaging systems, which show a depth-of-field from 9m until infinity.

  18. The interaction between deepwater channel systems and growing thrusts and folds, toe-thrust region of the deepwater Niger Delta

    NASA Astrophysics Data System (ADS)

    Jolly, B.; Lonergan, L.; Whittaker, A.

    2012-04-01

    Gravity-driven seaward-verging thrusts, landward-verging back-thrusts and associated folds often characterize the slope and deepwater settings of passive margins. These structures, found in the "toe-thrust" region of the system, exert a significant control on sediment gravity flows because they create and determine the location and configuration of sediment depocentres and transport systems. However, to fully understand the interaction between sediment gravity flows and seabed topography we need to evaluate and quantify the geomorphic response of sub-marine channels to faulting in an area where the degree of tectonic shortening can be well constrained. This study exploits 3D seismic data in the outer toe-thrust region of the deepwater Niger Delta to analyze the interaction between Plio-Pleistocene channel systems and actively growing folds and thrusts. We first mapped folds and thrusts from the seismic data and we used this data to reconstruct the history of fold growth. We then used the sea-bed seismic horizon to build a 50 m resolution Digital Elevation Model (DEM) of the sea floor in Arc-GIS. From the DEM, we extracted channel long profiles across growing structures for both the current channel thalwegs and for the associated channel cut-and-fill sequences identified from the seismic data. We measured channel geometry at regular intervals along the channel length to evaluate system response to tectonic perturbation, and we used this data to help us approximate the down-system distribution of bed shear stress, and hence incision capacity. Initial results show that changes in submarine channel longitudinal profiles are directly correlated to underlying seabed thrusts and folds. Channels gradients are typically linear to slightly concave, and have an average gradient of 0.90. Actively growing thrusts are associated with a local steepening in channel gradient (up to 200% change), which typically extends 0.5 to 2 km upstream of the fault. Within these "knickzones

  19. A hypothalamic channel-system in the inferior lobes of a trigger-fish (Rhinecanthus aculeatus, Balistidae).

    PubMed

    Wullimann, M; Finck, W; Senn, D G

    1984-07-15

    In the course of a general investigation of the optic system in some trigger-fishes, a hypothalamic, ventricular channel-system with pores, leading to the outside of the brain, has been discovered in the inferior lobes of Rhinecanthus aculeatus (Balistidae). A description of the morphological relations of the channel-system to the blood-vessel-supply and the cranium suggests that the organ-systems involved form a functional unit. The possibility of a hormone-producing system is discussed in the light of physiological and ecological aspects.

  20. Do voltage-dependent K+ channels require Ca2+? A critical test employing a heterologous expression system.

    PubMed Central

    Armstrong, C M; Miller, C

    1990-01-01

    Removal of Ca2+ from the solution bathing neurons is known in many cases to alter the gating properties of voltage-dependent K+ channels and to induce a large, nonselective "leak" conductance. We used a heterologous expression system to test whether the leak conductance observed in neurons is mediated by voltage-dependent K+ channels in an altered, debased conformation. Voltage-dependent K+ channels were expressed in an insect cell line infected with a recombinant baculovirus carrying the cDNA for Drosophila Shaker "A-type" K+ channels. These expressed channels respond to low Ca2+ identically to voltage-dependent K+ channels in native neuronal membranes; upon removal of external Ca2+, Shaker K+ currents disappear and are replaced by a steady, nonselective leak conductance. However, control cells devoid of Shaker channels were free of any voltage-dependent conductances and did not generate a leak when external Ca2+ was removed. These results show that Ca2+ is essential for proper function of voltage-dependent K+ channels and is required to stabilize the native conformations of these membrane proteins. PMID:2217187

  1. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes.

    PubMed

    Waters, Michael F; Minassian, Natali A; Stevanin, Giovanni; Figueroa, Karla P; Bannister, John P A; Nolte, Dagmar; Mock, Allan F; Evidente, Virgilio Gerald H; Fee, Dominic B; Müller, Ulrich; Dürr, Alexandra; Brice, Alexis; Papazian, Diane M; Pulst, Stefan M

    2006-04-01

    Potassium channel mutations have been described in episodic neurological diseases. We report that K+ channel mutations cause disease phenotypes with neurodevelopmental and neurodegenerative features. In a Filipino adult-onset ataxia pedigree, the causative gene maps to 19q13, overlapping the SCA13 disease locus described in a French pedigree with childhood-onset ataxia and cognitive delay. This region contains KCNC3 (also known as Kv3.3), encoding a voltage-gated Shaw channel with enriched cerebellar expression. Sequencing revealed two missense mutations, both of which alter KCNC3 function in Xenopus laevis expression systems. KCNC3(R420H), located in the voltage-sensing domain, had no channel activity when expressed alone and had a dominant-negative effect when co-expressed with the wild-type channel. KCNC3(F448L) shifted the activation curve in the negative direction and slowed channel closing. Thus, KCNC3(R420H) and KCNC3(F448L) are expected to change the output characteristics of fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-frequency firing. Our results establish a role for KCNC3 in phenotypes ranging from developmental disorders to adult-onset neurodegeneration and suggest voltage-gated K+ channels as candidates for additional neurodegenerative diseases.

  2. Alternative study of type and location of flood control infrastructure in the drainage system, Avfour Kelor channel, Tuban regency

    NASA Astrophysics Data System (ADS)

    Sabrang, Rangga Adi; Wardoyo, Wasis

    2017-06-01

    The topography of Tuban Regency which is close to the sea has both advantage and disadvantage. The advantage is the main channels of drainage can be directly discharged into the sea, while the disadvantage is the flow of the channels will be influenced by the sea tide. However, the absence of the channel capacity of drainage to load the runoff from the catchment area of Afvour Kelor channel led to inundations in the downstream and upstream. In addition, in the middle of the downstream and the upstream of Afvour Kelor channel, precisely in the Perbon Village, inundation frequently takes place particularly in the rainy season. It is allegedly caused by, the extreme runoff from the catchment area of Afvour Kelor channel, in addition to the influence of the sea tide. Due to the prevailing problem and the absence of the solution from the related institutions, the effort to manage drainage system in the area through the debit arrangement of runoff of Afvour Kelor cannel is urgently required. There were 3 (three) flood control scenarios that were simulated in this research. The scenarios in this research consisted of: to join the plan from the location of 7 (seven) ponds, 1 (one) pond at a predetermined location, and normalization of the channel. Subsequently, the most optimal scenario would be selected and reviewed based on the water surface profile in the cross section of the lowest Avfour Kelor channel.

  3. The possible role of Coriolis forces in structuring large-scale sinuous patterns of submarine channel-levee systems.

    PubMed

    Wells, Mathew; Cossu, Remo

    2013-01-01

    Submarine channel-levee systems are among the largest sedimentary structures on the ocean floor. These channels have a sinuous pattern and are the main conduits for turbidity currents to transport sediment to the deep ocean. Recent observations have shown that their sinuosity decreases strongly with latitude, with high-latitude channels being much straighter than similar channels near the Equator. One possible explanation is that Coriolis forces laterally deflect turbidity currents so that at high Northern latitudes both the density interface and the downstream velocity maximum are deflected to the right-hand side of the channel (looking downstream). The shift in the velocity field can change the locations of erosion and deposition and introduce an asymmetry between left- and right-turning bends. The importance of Coriolis forces is defined by two Rossby numbers, RoW=U/Wf and RoR=U/Rf, where U is the mean downstream velocity, W is the width of the channel, R is the radius of curvature and f is the Coriolis parameter. In a bending channel, the density interface is flat when RoR∼-1, and Coriolis forces start to shift the velocity maximum when |RoW|<5. We review recent experimental and field observations and describe how Coriolis forces could lead to straighter channels at high latitudes.

  4. The possible role of Coriolis forces in structuring large-scale sinuous patterns of submarine channel-levee systems.

    PubMed

    Wells, Mathew; Cossu, Remo

    2013-12-13

    Submarine channel-levee systems are among the largest sedimentary structures on the ocean floor. These channels have a sinuous pattern and are the main conduits for turbidity currents to transport sediment to the deep ocean. Recent observations have shown that their sinuosity decreases strongly with latitude, with high-latitude channels being much straighter than similar channels near the Equator. One possible explanation is that Coriolis forces laterally deflect turbidity currents so that at high Northern latitudes both the density interface and the downstream velocity maximum are deflected to the right-hand side of the channel (looking downstream). The shift in the velocity field can change the locations of erosion and deposition and introduce an asymmetry between left- and right-turning bends. The importance of Coriolis forces is defined by two Rossby numbers, Ro(W) = U/Wf and Ro(R) = U/Rf, where U is the mean downstream velocity, W is the width of the channel, R is the radius of curvature and f is the Coriolis parameter. In a bending channel, the density interface is flat when Ro(R) - -1, and Coriolis forces start to shift the velocity maximum when [Row] < 5. We review recent experimental and field observations and describe how Coriolis forces could lead to straighter channels at high latitudes.

  5. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-01

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  6. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  7. Multi-Channel Magnetocardiogardiography System Based on Low-Tc SQUIDs in an Unshielded Environment

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyan; Zhang, Shulin; Wang, Yongliang; Zeng, Jia; Xie, Xiaoming

    Magnetocardiography (MCG) using superconducting quantum interference devices (SQUIDs) is a new medical diagnostic tool measuring biomagnetic signals that are generated by the electrical activity of the human heart. This technique is completely passive, contactless, and it has an advantage in the early diagnosis of heart diseases. We developed the first unshielded four-channel MCG system based on low-Tc DC SQUIDs in China. Instead of using a costly magnetically shielded room, the environmental noise suppression was realized by using second-order gradiometers and three-axis reference magnetometer. The measured magnetic field resolution of the system is better than 1 pT, and multi-cycle human heart signals can be recorded directly. Also, with the infrared positioning system, 48 points data collection can be realized by moving the non-magnetic bed nine times.

  8. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    SciTech Connect

    Cooper, Robert J. Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-15

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  9. Waterholes and their significance in the anastomosing channel system of Cooper Creek, Australia

    NASA Astrophysics Data System (ADS)

    Knighton, A. David; Nanson, Gerald C.

    1994-06-01

    Cooper Creek has developed a very extensive system of anastomosing channels, a distinctive feature of which is the preponderance of waterholes, which are readily identified as deepened and widened reaches of channel with more or less permanent water. They are widely distributed over the floodplain but tend to decrease in number downstream, possibly as a result of transmission losses which reduce erosive potential, and to develop preferentially towards the west, which has implications for the long-term relocation of the system. Classification of waterholes according to degree of lateral restriction and flow status reveals only muted contrasts in waterhole form between the various types. The one clear distinction is the unexpectedly low width/length ratio of the most restricted (dune-flanked) type, its squat form being attributable to erodible banks and limited downstream confinement. That waterholes have developed in abundance along Cooper Creek appears to be related to the presence of a more easily eroded sand sheet at depths of only 2-9 m below cohesive surface sediments. Sediment splays at their downstream ends indicate that waterholes can be maintained by the present regime but whether they were formed by that or a prior regime is a matter of debate. Some degree of inheritance cannot be discounted but a contemporary origin is favoured in view of the fact that most waterholes are located at points of flow convergence. By focusing erosional energy when the floodplain is extremely broad, waterholes play a significant role not only in maintaining existing channel lines but also in promoting the development of new ones, as the invasion of a dune field testifies.

  10. Multiscale bloom dynamics from a high frequency autonomous measurement system in the Eastern English Channel

    NASA Astrophysics Data System (ADS)

    Derot, Jonathan; Schmitt, François; Gentilhomme, Valérie

    2014-05-01

    We consider here a dataset from an Eulerian automated system, located on the coastal area of the French side of the English Channel (Boulogne-sur-Mer), called MAREL Carnot, operated by IFREMER (France). This system records more than 15 physico-chemical parameters at 20 minutes intervals, and at the constant depth of -1,5m whatever the tidal range. Our study focuses on the period 2004 to 2011. The objective of this study is to have a better understanding of the bloom fluorescence multiscale dynamics, as regards the coastal area of English Channel and possible influence of temperature on this dynamics. Annual blooms are visible, superposed to multiscale fluctuations. The probability density function (PDF) of the fluorescence time series very nicely obeys a power law with slope -2. The PDF for annual portions obeys also power laws, with slopes which are related to the annual average. Empirical mode decomposition (EMD) is used to study the dynamics and display the power spectrum, which will be linked with these dynamics. EMD method is also used to extract a trend and isolate the blooms from the high frequency dynamics. We show that the high frequency part of the fluorescence dynamics has a very large variance during bloom events, compared to normal conditions. We also show that there is a link between the mean winter temperature and the strength of bloom next spring. These results contribute to statistically characterize the bloom dynamics and extract some possible universal relations. Keywords: English Channel; Autonomous monitoring; Power spectra; EMD method; Probability density functions; Power laws.

  11. Increasing cyanosis early after cavopulmonary connection caused by abnormal systemic venous channels.

    PubMed Central

    Gatzoulis, M. A.; Shinebourne, E. A.; Redington, A. N.; Rigby, M. L.; Ho, S. Y.; Shore, D. F.

    1995-01-01

    OBJECTIVE--To show that abnormal systemic venous channels in patients who undergo cavopulmonary anastomoses can become manifest and haemodynamically important only after surgery despite detailed preoperative investigation. DESIGN--Descriptive study of patients fulfilling the above criteria selected from hospital records over the past three years. SETTING--A tertiary referral centre. PATIENTS--Of the three cases identified, two were isomeric, one with left atrial isomerism and hemiazygos continuation of the inferior vena cava who underwent bilateral bidirectional Glenn anastomoses and one with right isomerism who underwent total cavopulmonary anastomosis. Case 3 had absent left atrioventricular connection with a hypoplastic left lung and underwent a classic right Glenn procedure. All three cases presented with progressive cyanosis in the early postoperative period. INTERVENTIONS AND RESULTS--Postoperative angiography in case 1 showed a remnant of a left inferior vena cava draining to the atrium to have become grossly dilated causing cyanosis, which resolved after redirection of this vessel and of the hepatic veins into the right pulmonary artery with an intra-atrial baffle. Cyanosis in case 2 was caused by intra-hepatic shunting to a hepatic vein draining to the left of the intra-atrial baffle. The diagnosis was made at necropsy, being overlooked on postoperative angiography. Repeat angiography in case 3 showed progressive dilatation of a small left superior vena cava to coronary sinus. Test occlusion with a view to embolisation revealed hitherto an undemonstrated hemiazygos continuation of inferior caval to brachiocephalic vein. The patient underwent surgical ligation of these two venous channels. CONCLUSIONS--Despite appropriate investigation some "abnormal" venous pathways manifest themselves, dilate, and become haemodynamically important only after surgical cavopulmonary anastomoses. In the presence of early postoperative cyanosis "new" systemic venous

  12. An efficient system for reliably transmitting image and video data over low bit rate noisy channels

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.

    1994-01-01

    This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.

  13. The interaction between deepwater channel systems and growing thrusts and folds, toe-thrust region of the deepwater Niger Delta

    NASA Astrophysics Data System (ADS)

    Jolly, Byami; Whittaker, Alex; Lonergan, Lidia

    2015-04-01

    Gravity-driven seaward-verging thrusts, landward-verging back-thrusts and associated folds often characterize the slope and deepwater settings of passive margins. These structures, found in the 'toe-thrust' region of the system, exert a significant control on sediment gravity flows because they create and determine the location and configuration of sediment depocentres and transport systems. Consequently, a quantitative understanding of the interaction between sediment gravity flows and seabed topography is required to understand these systems effectively. Here we make quantitative measurements of the geomorphic response of submarine channels to growing tectonic structures with the aim of providing new constraints on the long-term erosional dynamics of submarine channel systems. This study exploits 3D seismic data in the outer toe-thrust region of the deepwater Niger Delta to analyze the interaction between Plio-Pleistocene channel systems and actively growing folds and thrusts. We mapped folds and thrusts from the seismic data and we used this data to reconstruct the history of fold growth. We then used the sea-bed seismic horizon to build a 50 m resolution Digital Elevation Model (DEM) of the sea floor in Arc-GIS. We extracted channel long- profiles across growing structures from the DEM, and made measurements of channel geometries at regular intervals along the channel length. This information was used to infer morphodyanamic processes that sculpted the channel systems through time, and to estimate the bed shear stresses and fluid velocities of typical flow events. The bathymetric long profiles of these channels are relatively linear with concavity that range from -0.08 to -0.34, and an average gradient of ~1o. Actively growing thrusts are typically associated with a local steepening in channel gradient by a factor of up to 3, and this effect extends 0.5 - 2 km upstream of the thrust. Within these knickzones, channel incision increases by approximately by a

  14. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system.

    PubMed

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin

    2014-04-01

    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  15. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  16. ARA 290 relieves pathophysiological pain by targeting TRPV1 channel: Integration between immune system and nociception.

    PubMed

    Zhang, Wenjia; Yu, Guanling; Zhang, Mengyuan

    2016-02-01

    ARA 290 is an erythropoietin-derived polypeptide that possesses analgesic and tissue protective effect in many diseases such as diabetes and cancer. The analgesic effect of ARA 290 is mediated by its anti-inflammatory and immunomodulatory functions, or more specifically, by targeting the innate repair receptor (IRR) to down-regulate inflammation to alleviate neuropathic pain. However, whether other mechanisms or pathways are involved in ARA 290-mediated analgesic effect remains elusive. In this study, we are particularly interested in whether ARA 290 could directly target peripheral nociceptors by blocking or influencing receptors in pain sensation. Using calcium imaging, cell culture and behavioral tests, we demonstrated that ARA 290 was able to specifically inhibit TRPV1 channel activity, and relieve the mechanical hypersensitivity induced by capsaicin. Our study suggested that ARA 290 could potentially function as a novel antagonist for TRPV1 channel. This finding would not only contribute to the development of new pain treatment using ARA 290, but also help to improve our understanding of the integration between the immune system and the peripheral nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ultrafast STR Separations on Short-Channel Microfluidic Systems for Forensic Screening and Genotyping.

    PubMed

    Aboud, Maurice J; Gassmann, Marcus; McCord, Bruce

    2015-09-01

    There are situations in which it is important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. DNA typing methods provide the best biometric information yielding identity, kinship, and geographical origin, but they are not portable and rapid. This study details the development of a portable short-channel microfluidic device based on a modified Agilent 2100 bioanalyzer for applications in forensic genomics. The system utilizes a denaturing polymer matrix with dual-channel laser-induced fluorescence and is capable of producing a genotype in 80 sec. The device was tested for precision and resolution using an allelic ladder created from 6 short tandem repeat (STR) loci and a sex marker (amelogenin). The results demonstrated a precision of 0.09-0.21 bp over the entire size range and resolution values from 2.5 to 4.1 bp. Overall, the results demonstrate the chip provides a portable, rapid, and precise method for screening amplified short tandem repeats and human identification screening.

  18. Modelling the Effects of Disturbances on Shallow Landsliding Rates and Sediment Transfers to Channel Systems

    NASA Astrophysics Data System (ADS)

    Martin, Y. E.

    2001-12-01

    Logging disturbance has been found to significantly increase rates of rapid, episodic mass movements in mountainous drainage basins of coastal British Columbia. Increases in shallow landsliding will accelerate the delivery of sediment to channel systems, which may in turn affect stream morphology and habitat. The objective of the present study is to define transport relations for shallow landsliding in logged drainage basins in the Queen Charlotte Islands, British Columbia and implement these rules in profile and surface model runs. The most successful approach for assessing medium-term rates of mass wasting in the literature has been the collection of large data bases based on aerial photography analysis. In this study a large inventory of shallow landsliding events is employed to define nonlinear transport relations for logged basins. These rules are applied in numerical simulations to assess rates and patterns of hillslope change and sediment transfers to the channel system. The feasibility of using these transport rules to simulate natural disturbances, such as wildfire over Holocene time scales, is also explored. Results of this study are compared to earlier studies of hillslope change for undisturbed drainage basins in British Columbia.

  19. Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels

    NASA Astrophysics Data System (ADS)

    Fusco, Tilde; Petrella, Angelo; Tanda, Mario

    2009-12-01

    The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.

  20. Model of Turbulent Flow of Rheological Solutions of Foaming Agents in Channels of Automatic Fire-Extinguishing Systems

    NASA Astrophysics Data System (ADS)

    Polevoda, I. I.; Karpenchuk, I. V.; Striganova, M. Yu.; Shatilo, É. É.

    2015-01-01

    A model of turbulent flow of a rheological solution of a foaming agent in a cylindrical channel of an automatic fire-extinguishing system is proposed; this model allows for the viscous stresses produced in the region of hydraulic roughness of the channel. Integral equations are obtained for calculation of the flow velocity and rate of flow of the foaming agent in the indicated channel, and also of the hydraulic resistance and head loss in it. Recommendations on practical use of the proposed theoretical model have been developed.

  1. Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods.

    PubMed

    Cheung, Chris C P; Yu, Alfred C H; Salimi, Nazila; Yiu, Billy Y S; Tsang, Ivan K H; Kerby, Benjamin; Azar, Reza Zahiri; Dickie, Kris

    2012-02-01

    The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example).

  2. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Hawke, B. R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles.

  3. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  4. Application of a four-channel vibrometer system for detection of arterial stiffness

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Waz, Adam; Dudzik, Grzegorz; Dirckx, Joris; Abramski, Krzysztof

    2016-06-01

    Cardiovascular diseases (CD) are the most important cause of death in the world and their prevalence is only rising. A significant aspect in the etiology of CD is the stiffening of the large arteries (arteriosclerosis) and plaque formation (atherosclerosis) in the common carotid artery (CCA) in the neck. As shown by increasing evidence, both conditions can be detected by assessing pulse wave velocity (PWV) in the CCA, and several approaches allow local detection of PWV, including ultrasound (US) and magnetic resonance imaging (MRI). In previous studies, laser Doppler vibrometry (LDV) was introduced as an approach to assess arterial stiffness. In the present work, a new, compact four-channel LDV system is used for PWV detection in four phantom arteries mimicking real life CCA conditions. The high sensitivity of the LDV system allowed PWV to be assessed, and even local changes in phantom architecture could be detected. This method has potential for cardiovascular screening, as it allows arteriosclerosis assessment and plaque detection.

  5. SER performance analysis of MPPM FSO system with three decision thresholds over exponentiated Weibull fading channels

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Bensheng; Guo, Lixin; Shang, Tao

    2015-11-01

    In this work, the symbol error rate (SER) performance of the multiple pulse position modulation (MPPM) based free-space optical communication (FSO) system with three different decision thresholds, fixed decision threshold (FDT), optimized decision threshold (ODT) and dynamic decision threshold (DDT) over exponentiated Weibull (EW) fading channels has been investigated in detail. The effects of aperture averaging on each decision threshold under weak-to-strong turbulence conditions are further studied and compared. The closed-form SER expressions for three thresholds derived with the help of generalized Gauss-Laguerre quadrature rule are verified by the Monte Carlo simulations. This work is helpful for the design of receivers for FSO communication systems.

  6. Low-power high-resolution 32-channel neural recording system.

    PubMed

    Yun, Xiao; Kim, Donghwi; Stanaćević, Milutin; Mainen, Zachary

    2007-01-01

    A design of low-power 32-channel neural recording system with on-chip high-resolution A/D converters is presented. A neural front-end including low-noise fully differential pre-amplifier, gain stage, and buffer consumes only 56 mu W. Two 13-bits extended counting A/D converters running at 512KHz sampling rate are integrated with 32 neural front-ends on a chip. The experimental prototype was designed in 0.6 microm CMOS process. With a 3.3V power supply, total power consumption of a chip is 22mW and the whole system occupies an area of 3mm x 3mm.

  7. Cochannel and Adjacent-Channel Interference in Nonlinear Minimum-Shift-Keyed Satellite System

    NASA Technical Reports Server (NTRS)

    Yu, John

    1995-01-01

    The interference susceptibility of a serial-minimum-shift-keyed (SMSK) modulation system to an interfering signal transmitted through a satellite link with cascaded nonlinear elements was investigated through computer simulation. The satellite link evaluated in this study represented NASA's Advanced Communications Technology Satellite (ACTS) system. Specifically, nonlinear characteristics were used that had specified amplitude-modulation to amplitude-modulation and amplitude-modulation to phase-modulation transfer characteristics obtained from the actual ACTS hardware. Two measurement scenarios were analyzed: degradation of an MSK satellite link from cochannel interference and from adjacent-channel interference. Interference was evaluated in terms of the probability of bit error rate (BER) versus energy per bit over noise power density Eb/No.

  8. Seismic geomorphology of the Lobed-channel System of Upper Miocene Huangliu Formation, Yinggehai Basin, Northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2016-02-01

    Three-dimensional seismic data have been widely used in interpreting ancient river systems and their associated sediment deposits. Thin-bed reservoirs of lobed-channel system in lithostratigraphic units of Dongfang (DF) area are one of the major study areas for reservoir growth in the Yinggehai basin of northwestern South China Sea. Although it is understood that the transport mechanics of parent substrate and alluvium determine the morphology of channel for lobed-channel system, the transport mechanism and regional gradient are relatively poorly understood. This study is focused on the application of various techniques in seismic geomorphology to the Yinggehai Basin at paleo-water-depth of 120m to assess influences of regional gradient and relative sea level change on lobed-channel palaeogeomorphology in shallow-water environments. The Vietnam paleo-Blue River, which located at south of modern Red River, flowed through DF area and transported turbidity deposit to DF area in the coastal environment. In 3-D seismic survey area, four fifth-order sequences in first member of upper Miocene Huangliu formation were identified using well and seismic data. Seismic inversion and 90° phasing of seismic data were used to convert seismic traces to pseudolithologic logs. Stratal slicing made it possible to interpolate and extrapolate well-data-derived sequence and identify submarine fan, channel fill, lobes and overbank deposit. Strata slices suggested that sea-floor slopes exerted main influence on channel morphology. Specifically, DF13-1 block had high gradient, which mainly distributed mud-sand-rich lobes. However, DF13-2 block established low gradient, which mostly indicated sand-rich braided channels. The values of sinuosity, channel widths, meander-belt widths in DF13-2 block are all greater than these in DF13-1 block. In addition, results of carbon isotope measurements and foraminiferal research of two blocks suggest that paleo sea level in DF13-2 block (30m 150m) was

  9. Morphology of Red Creek, Wyoming, an arid-region anastomosing channel system

    USGS Publications Warehouse

    Schumann, R.R.

    1989-01-01

    The narrow, deep, and sinuous main channel is flanked by anastomosing flood channels, or anabranches. Most anabranches are initiated at meander bends. The primary mechanism of anabranch initiation is avulsion during overbank floods. -from Author

  10. A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB.

    PubMed

    Islam, S M Riazul; Kwak, Kyung Sup

    2012-06-01

    Wireless personal area network (WPAN) is an emerging in wireless technology for short range indoor and outdoor communication applications. A more specific category of WPAN is the wireless body area network (WBAN) used for health monitoring. On the other hand, multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications, for example, very high data rate. One big challenge in adoption of multiband UWB in WBAN is the fact that channel estimation becomes difficult under the constraint of extremely low transmission power. Moreover, the heterogeneous environment of WBAN causes a dense multipath wireless channel. Therefore, effective channel estimation is required in the receiver of WBAN-based healthcare system that uses multiband UWB. In this paper, we first outline the MB-OFDM UWB system. Then, we present an overview of channel estimation techniques proposed/investigated for multiband UWB communications with emphasis on their strengths and weaknesses. Useful suggestions are given to overcome the weaknesses so that these methods can be particularly useful for WBAN channels. Also, we analyze the comparative performances of the techniques using computer simulation in order to find the energy-efficient channel estimation methods for WBAN-based healthcare systems.

  11. A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats

    PubMed Central

    Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W.; Lopez, Alberto; Rossi, Mark A.; Barter, Joseph W.; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H.

    2011-01-01

    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems. PMID:21765934

  12. A wireless multi-channel recording system for freely behaving mice and rats.

    PubMed

    Fan, David; Rich, Dylan; Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W; Lopez, Alberto; Rossi, Mark A; Barter, Joseph W; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H

    2011-01-01

    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.

  13. Stratigraphic evolution of a long-lived submarine channel system in the Late Cretaceous Nanaimo Group, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Bain, Heather A.; Hubbard, Stephen M.

    2016-05-01

    Submarine canyons and slope channel systems are important conveyers of sediment from uplifted catchments to oceanic sedimentary sinks. Long-lived conduits can be established through deep incision of submarine canyons, with bathymetric relief of hundreds of meters to greater than a kilometer in many instances. Alternatively, a combination of erosion of the continental slope and aggradation of levees can yield a broadly comparable stratigraphic product through evolution of channels with more subdued bathymetric relief. Despite differences in formative geomorphic elements on the paleo-seafloor, differentiating the stratigraphic architecture amongst these systems is challenging, particularly in outcrop datasets. Accurate stratigraphic interpretation has significant implications for understanding the frequency and magnitude of controlling processes such as mountain building and denudation or eustatic sea-level fluctuations. In this study, deep-water channel strata of the Late Cretaceous Nanaimo Group are examined at Hornby and Denman islands, British Columbia, Canada. Evidence for a long-lived submarine conduit records the history of sediment transfer at multiple temporal and spatial scales. The composite submarine channel system deposit is 19.5 km wide and 1500 m thick, which formed and filled over ~ 15 Ma. Facies scale analyses highlight conglomeratic channel fill juxtaposed against thin-bedded out-of-channel deposits. Erosional surfaces are commonly mantled by mass-transport deposits, which provide evidence for conduit wall reworking and maintenance. At a larger scale, a series of composite, conglomerate-prone channelform bodies are observed to stratigraphically stack in two distinct phases: (1) early persistence of laterally offset (migrated) channels; and (2) later vertically aligned and aggraded channels. This stratigraphic trend is comparable to composite, multi-phase degradational-aggradational submarine channel complexes observed globally. As such, we consider

  14. Constraining the erosional response of deep-water channel systems to growing folds and thrusts, Niger Delta.

    NASA Astrophysics Data System (ADS)

    Whittaker, A. C.; Lonergan, L.; Jolly, B. A.

    2015-12-01

    Gravity-driven folds and thrusts often characterize the slope and deep-water settings of passive margins. These structures exert a significant control on sediment gravity flows because they determine the location and configuration of sediment depo-centres and transport systems. Here we exploit 3D seismic data in the outer toe-thrust region of the deep-water Niger Delta to analyse the interaction between Plio-Pleistocene channel systems and actively-growing folds and thrusts. We first map folds and thrusts from the seismic data and we use this data to reconstruct the history of fold growth in detail. We then make quantitative measurements of the geomorphic response of submarine channels to growing tectonic structures in order to provide new constraints on their long-term erosional dynamics. This information is used to infer morphodyanamic processes that sculpted the channel systems through time, and to estimate the bed shear stresses and fluid velocities of typical flow events. The bathymetric long profiles of these channels have concavities that range from -0.08 to -0.34, and an average gradient of ~1o. Thrusts are associated with a local steepening in channel gradient of up to 3 times, and this effect extends 0.5 - 2 km upstream of the thrust. Within these knickzones, channel incision increases by approximately by a factor of 2, with a corresponding width decrease of approximately 25%. Channel incision across growing structures is achieved through enhanced bed-shear stress driven incision (up to 200 Pa) and flow velocity (up to 5 ms-1) assuming typical bulk sediment concentrations of 0.6%. Comparison of structural uplift since 1.7 Ma, and channel incision over an equivalent period, shows that many of these channels are able to keep pace with the time-integrated uplift since 1.7 Ma, and may have reached a bathymetric steady-state. Generally, bed-shear stresses of ~150 Pa are sufficient to keep pace with structural strain rates of 10-15 s-1. More widely, our data

  15. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels.

    PubMed

    Young, Jason C

    2014-03-01

    Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease--the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.

  16. Shannon information capacity of time reversal wideband multiple-input multiple-output system based on correlated statistical channels

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Bing-Zhong, Wang; Shuai, Ding

    2016-05-01

    Utilizing channel reciprocity, time reversal (TR) technique increases the signal-to-noise ratio (SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output (MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007, 61361166008, and 61401065) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120185130001).

  17. Design of a 32-Channel EEG System for Brain Control Interface Applications

    PubMed Central

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design. PMID:22778545

  18. Design of a 32-channel EEG system for brain control interface applications.

    PubMed

    Wang, Ching-Sung

    2012-01-01

    This study integrates the hardware circuit design and the development support of the software interface to achieve a 32-channel EEG system for BCI applications. Since the EEG signals of human bodies are generally very weak, in addition to preventing noise interference, it also requires avoiding the waveform distortion as well as waveform offset and so on; therefore, the design of a preamplifier with high common-mode rejection ratio and high signal-to-noise ratio is very important. Moreover, the friction between the electrode pads and the skin as well as the design of dual power supply will generate DC bias which affects the measurement signals. For this reason, this study specially designs an improved single-power AC-coupled circuit, which effectively reduces the DC bias and improves the error caused by the effects of part errors. At the same time, the digital way is applied to design the adjustable amplification and filter function, which can design for different EEG frequency bands. For the analog circuit, a frequency band will be taken out through the filtering circuit and then the digital filtering design will be used to adjust the extracted frequency band for the target frequency band, combining with MATLAB to design man-machine interface for displaying brain wave. Finally the measured signals are compared to the traditional 32-channel EEG signals. In addition to meeting the IFCN standards, the system design also conducted measurement verification in the standard EEG isolation room in order to demonstrate the accuracy and reliability of this system design.

  19. Metallic contaminant detection system using multi-channel high Tc SQUIDs

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Kitamura, Yoshihiro; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2012-10-01

    We have developed the magnetic metallic contaminant detectors using multiple high Tc SQUID gradiometers for industrial products. Finding ultra-small metallic contaminants is a big issue for manufacturers producing commercial products. The quality of industrial products such as lithium ion batteries can deteriorate by the inclusion of tiny metallic contaminants. When the contamination does occur, the manufacturer of the product suffers a great loss to recall the tainted products. Metallic particles with outer dimension less than 50 μm cannot be detected by a conventional X-ray imaging. Therefore a high sensitive detection system for small foreign matters is required. However, in most of the cases, the matrix of an active material coated sheet electrode is magnetized and the magnetic signal from the matrix is large enough to mask the signal from contaminants. Thus we have developed a detection system based on a SQUID gradiometer and a horizontal magnetization to date. For practical use, we should increase the detection width of the system by employing multiple sensors. We successfully realized an eight-channel high-Tc SQUID gradiometer system for inspection of sheet electrodes of a lithium ion battery with width of at least 60 to 70 mm. Eight planar SQUID gradiometers were mounted with a separation of 9.0 mm. As a result, small iron particles of less than 50 μm were successfully measured. This result suggests that the system is a promising tool for the detection of contaminants in a lithium ion battery.

  20. Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems

    NASA Astrophysics Data System (ADS)

    Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.

    2017-05-01

    The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.

  1. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells

    PubMed Central

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  2. 32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Acconcia, G.; Ruggeri, A.; Lavdas, A. A.; Hicks, A. A.; Pramstaller, P. P.; Ghioni, M.; Rech, I.

    2017-08-01

    Time-Correlated Single Photon Counting (TCSPC) is a very efficient technique for measuring weak and fast optical signals, but it is mainly limited by the relatively "long" measurement time. Multichannel systems have been developed in recent years aiming to overcome this limitation by managing several detectors or TCSPC devices in parallel. Nevertheless, if we look at state-of-the-art systems, there is still a strong trade-off between the parallelism level and performance: the higher the number of channels, the poorer the performance. In 2013, we presented a complete and compact 32 × 1 TCSPC system, composed of an array of 32 single-photon avalanche diodes connected to 32 time-to-amplitude converters, which showed that it was possible to overcome the existing trade-off. In this paper, we present an evolution of the previous work that is conceived for high-throughput fluorescence lifetime imaging microscopy. This application can be addressed by the new system thanks to a centralized logic, fast data management and an interface to a microscope. The new conceived hardware structure is presented, as well as the firmware developed to manage the operation of the module. Finally, preliminary results, obtained from the practical application of the technology, are shown to validate the developed system.

  3. Design and application of 8-channel SOI-based AWG demultiplexer for CWDM-system

    SciTech Connect

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-04-24

    Arrayed Waveguide Grating (AWG) serving as a demultiplexer (demux) has been designed on SOI platform and was utilized in a Coarse Wavelength Division Multiplexing (CWDM) system ranging from 1471 nm to 1611 nm. The investigation was carried out at device and system levels. At device level, 20 nm (∼ 2500 GHz) channel spacing was successfully simulated using beam propagation method (BPM) under TE mode polarization with a unique double S-shape pattern at arrays region. The performance of optical properties gave the low values of 0.96 dB dB for insertion loss and – 22.38 dB for optical crosstalk. AWG device was then successfully used as demultiplexer in CWDM system when 10 Gb/s data rate was applied in the system. Limitation of signal power due to attenuation and fiber dispersion detected by BER analyzer =10{sup −9} of the system was compared with theoretical value. Hence, the maximum distance of optical fiber can be achieved.

  4. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.

    PubMed

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-03-09

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level.

  5. Design and application of 8-channel SOI-based AWG demultiplexer for CWDM-system

    NASA Astrophysics Data System (ADS)

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-04-01

    Arrayed Waveguide Grating (AWG) serving as a demultiplexer (demux) has been designed on SOI platform and was utilized in a Coarse Wavelength Division Multiplexing (CWDM) system ranging from 1471 nm to 1611 nm. The investigation was carried out at device and system levels. At device level, 20 nm (˜ 2500 GHz) channel spacing was successfully simulated using beam propagation method (BPM) under TE mode polarization with a unique double S-shape pattern at arrays region. The performance of optical properties gave the low values of 0.96 dB dB for insertion loss and - 22.38 dB for optical crosstalk. AWG device was then successfully used as demultiplexer in CWDM system when 10 Gb/s data rate was applied in the system. Limitation of signal power due to attenuation and fiber dispersion detected by BER analyzer =10-9 of the system was compared with theoretical value. Hence, the maximum distance of optical fiber can be achieved.

  6. A 160 μW 8-Channel Active Electrode System for EEG Monitoring.

    PubMed

    Jiawei Xu; Yazicioglu, R F; Grundlehner, B; Harpe, P; Makinwa, K A A; Van Hoof, C

    2011-12-01

    This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assisted offset trimming. The former increases the input impedance of the active electrode to 2 GΩ at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV, respectively. Thanks to chopper stabilization, the active electrode achieves 0.8 μVrms (0.5-100 Hz) input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-end circuits are implemented in a 0.18 μm CMOS process and the total current consumption of an 8-channel readout system is 88 μA from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference.

  7. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  8. Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels

    NASA Astrophysics Data System (ADS)

    Du, Jianxin; Teng, Zhiyu; Shen, Ninghang

    2016-01-01

    Semi-analytic models are developed to deterministically calculate the variances of degenerate and non-degenerate four-wave-mixing (FWM) noises for dispersion-managed dense wavelength division multiplexing (DWDM) systems with pure and mixed differential quadrature-phase-shift keying (DQPSK)/differential phase-shift keying (DPSK)/on-off-keying (OOK) channels. The semi-analytic models include various important propagation effects for exact numerical results. The novel dispersion map used here for dispersion management is composed of effective-area-enlarged positive dispersion fiber (EE-PDF), dispersion slope and dispersion compensating fiber (SCDCF) and nonzero dispersion-shifted fiber (NZ-DSF). It is numerically validated with the new models that, under the condition that all channels have the same average launch powers and baud rates, the impact of FWM noise for mixed DQPSK/OOK channels are more severe than that for pure DQPSK and mixed DQPSK/DPSK channels. It is also shown that the FWM efficiency is strongly dependent on the peak power of launched optical pulse for a large number of channels, as can be mainly attributed to the quasi-linear evolution of pulse shapes in pump channels induced by cross-phase modulation (XPM). Compared with some commercial optical-fiber transmission simulators, massive time-consuming can be avoided by using the newly derived semi-analytic models when transmission performances of such DWDM systems are numerically optimized and evaluated.

  9. Double Space Time Transmit Diversity OFDM System with Antenna Shuffling in Spatial Correlated Frequency Selective MIMO Channels

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Shimizu, Masahiko

    In this paper, we study low complexity transceiver for double space time transmit diversity (DSTTD) and orthogonal frequency division multiplexing (OFDM) system with antenna shuffling. Firstly, we propose a novel antenna shuffling method based on the criterion of minimizing the condition number of channel correlation matrix. The condition number is an indicator about the quality of the channel. By selecting the minimum of condition number which has better channel quality, consequently, a linear detector with respect to this new channel may achieve better performance results. A low complexity variant of the condition number calculation is also proposed, and it is shown that this criterion can be reduced to the minimum mean square error (MMSE) based criterion. Furthermore, the weighted soft decision Viterbi decoding is applied to mitigate noise enhancement inherent to zero forcing (ZF) and MMSE linear receivers and improve error rate performance. Next, we propose an algorithm to reduce the amount of feedback by exploiting the fact that the channel frequency responses across OFDM subcarriers are correlated. In the proposed algorithm, subcarriers are clustered in blocks, which are allocated the same shuffling pattern with the largest number of the shuffling patterns in the cluster. This way, the signaling overhead can be reduced in comparison with each subcarrier based feedback. Extensive simulations show that the proposed techniques for DSTTD-OFDM system outperform other existing techniques under both uncorrelated and highly spatial correlated frequency selective MIMO fading channels.

  10. Analysis of the method of division of spatial channels with successive interference cancellation in modern MIMO-OFDM cellular systems

    NASA Astrophysics Data System (ADS)

    Davydov, A. V.; Mal'Tsev, A. A.

    2011-10-01

    We consider the problem of parallel data transmission via several spatial channels in modern high-throughput cellular systems employing the OFDM (Orthogonal Frequency Division Multiplexing) and antenna arrays at both ends of the communication system. Parallel data transmission in such MIMO (Multiple Input Multiple Output) systems is achieved by using the beamforming schemes in the transmitter and the special methods of the spatial-channel division in the receiver. Interference immunity of the scheme of the spatial-channel division by the maximum-likelihood criterion using the method of successive interference cancellation is analyzed. Probability of implementation of the stage of successive interference cancellation for the case of two spatial channels and various combinations of the coding schemes and modulations is obtained. We analyze the efficiency of a cellular communication system using horizontal coding and successive interference cancellation. Practical recommendations on choosing modulation and the code speed for each spatial channel, which ensure maximum interference immunity of a receiver with successive interference cancellation, are made.

  11. Measurement system for the characterization of the human body as a communication channel at low frequency.

    PubMed

    Wegmueller, Marc; Felber, Norbert; Fichtner, Wolfgang; Lehner, Adrian; Hess, Otto; Froehlich, Juerg; Kuster, Niels; Reutemann, Robert; Oberle, Michael

    2005-01-01

    Electronic data transfer by capacitive and galvanic coupling through the human body has been proposed by research and industry as a novel but highly promising technology for ultra low power wireless body LANs. Investigation on the most challenging questions considering data communication becomes enabled with a highly versatile measurement system for frequencies in the range of 10 kHz to 1 MHz. The human body is characterized as a transmission medium for electrical current by means of measurements and is investigated as communication channel for biomedical parameter monitoring by using different modulation schemes at low frequency. Excellent transmission was achieved on the thorax while the attenuation increases along the extremities. The injected current is 10 times below the maximum allowed contact current and more than 25 times below nerve stimulation. The new technology has shown its feasibility in clinical trials.

  12. Diacetin, a reliable cue and private communication channel in a specialized pollination system.

    PubMed

    Schäffler, Irmgard; Steiner, Kim E; Haid, Mark; van Berkel, Sander S; Gerlach, Günter; Johnson, Steven D; Wessjohann, Ludger; Dötterl, Stefan

    2015-08-06

    The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can't be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system.

  13. Diacetin, a reliable cue and private communication channel in a specialized pollination system

    PubMed Central

    Schäffler, Irmgard; Steiner, Kim E.; Haid, Mark; van Berkel, Sander S.; Gerlach, Günter; Johnson, Steven D.; Wessjohann, Ludger; Dötterl, Stefan

    2015-01-01

    The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can’t be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system. PMID:26245141

  14. Study of the harmonic oscillation on EAST by an eight-channel Doppler Backscattering (DBS) system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Liu, A. D.; Wang, M. Y.; Hu, J. Q.; Zhang, J.; Li, H.; Lan, T.; Xie, J. L.; Liu, W. D.; Yu, C. X.; Doyle, E. J.; University of California, Los Angeles Collaboration; University of Science; Technology of China Team

    2016-10-01

    The eight-channel DBS system has been installed for turbulence measurements in such plasmas. The frequency range is 55 to 75 GHz, covering the entire H-mode pedestal, with a turbulence wavenumber range of 4-12/cm. A harmonic oscillation has been observed by DBS on EAST during ELMy-free H mode. The fundamental frequency of the coherent oscillation is 12-20 kHz and 2nd-8th harmonic are observed, and the radial coverage is from the edge to rho 0.85. Work supported by the Natural Science Foundation of China (NSFC) under 11475173, 11505184, National Magnetic Confinement Fusion Energy Development Program of China under 2013GB106002 and 2014GB109002, and DOE Grants DE- SC0010424 and DE-SC0010469.

  15. TTS-3, multi-channel, multi-system GPS/GLONAS/WAAS/EGNOS receiver

    NASA Astrophysics Data System (ADS)

    Nawrocki, J.; Nogas, P.; Diak, R.; Foks, A.; Lemanski, D.

    2006-10-01

    The Astrogeodynamic Observatory (AOS) of the Space Research Centre, following a popular TTS-2, has developed a new high-performance Time Transfer System - 3 (TTS-3). The TTS-3 allows observations of GPS, GLONASS, EGNOS andWAAS satellites simultaneously in multi-channel, multi-frequency mode. The following codes are used: C/A-code for GPS, WAAS, EGNOS and GLONASS, P-code for GLONASS, and reconstructed P-code for GPS. In future the receiver will be a base for a new generation TTS-4, observing also GALILEO satellites. The receiver hardware, the treatment of the observations, and the output data fulfill the recommendations of the CCTF Group on GNSS Time Transfer Standards (CGGTTS). Data in RINEX format are also provided.

  16. A Wearable Multi-Channel fNIRS System for Brain Imaging in Freely Moving Subjects

    PubMed Central

    Piper, Sophie K.; Krueger, Arne; Koch, Stefan P.; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H.

    2013-01-01

    Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. PMID:23810973

  17. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects.

    PubMed

    Piper, Sophie K; Krueger, Arne; Koch, Stefan P; Mehnert, Jan; Habermehl, Christina; Steinbrink, Jens; Obrig, Hellmuth; Schmitz, Christoph H

    2014-01-15

    Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.

  18. Bothriurus bonariensis scorpion venom activates voltage-dependent sodium channels in insect and mammalian nervous systems.

    PubMed

    Dos Santos, Douglas Silva; Carvalho, Evelise Leis; de Lima, Jeferson Camargo; Breda, Ricardo Vaz; Oliveira, Raquel Soares; de Freitas, Thiago Carrazoni; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; Boldo, Juliano Tomazzoni; de Assis, Dênis Reis; da Costa, Jaderson Costa; Dal Belo, Cháriston André; Pinto, Paulo Marcos

    2016-10-25

    Animal venoms have been widely recognized as a major source of biologically active molecules. Bothriurus bonariensis, popularly known as black scorpion, is the arthropod responsible for the highest number of accidents involving scorpion sting in Southern Brazil. Here we reported the first attempt to investigate the neurobiology of B. bonariensis venom (BBV) in the insect and mammalian nervous system. BBV (32 μg/g) induced a slow neuromuscular blockade in the in vivo cockroach nerve-muscle preparations (70 ± 4%, n = 6, p < 0.001), provoking repetitive twitches and significantly decreasing the frequency of spontaneous leg action potentials (SNCAPs) from 82 ± 3 min(-1) to 36 ± 1.3 min(-1) (n = 6, p < 0.05), without affecting the amplitude. When tested in primary cultures of rat hippocampal cells, BBV induced a massive increase of Ca(2+) influx (250 ± 1% peak increase, n = 3, p < 0.0001). The disturbance of calcium homeostasis induced by BBV on the mammalian central nervous system was not accompanied by cellular death and was prevented by the co-treatment of the hippocampal cells with tetrodotoxin, a selective sodium channel blocker. The results suggest that the biological activity of BBV is mostly related to a modulation of sodium channels function. Our biological activity survey suggests that BBV may have a promising insecticidal and therapeutic potential.

  19. Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems.

    PubMed

    Mateo, Eduardo F; Zhou, Xiang; Li, Guifang

    2011-01-17

    An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.

  20. Functional imaging of muscle oxygenation using a 200-channel cw NIRS system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Kohata, Daisuke; Kudo, Nobuki; Hamaoka, Takatumi; Kime, Ryotaro; Katsumura, Toshihito

    2001-06-01

    Functional imaging of muscle oxygenation using NIRS is a promising technique for evaluation of the heterogeneity of muscle function and diagnosis of peripheral vascular disease or muscle injury. We have developed a 200-channel imaging system that can measure the changes in oxygenation and blood volume of muscles and that covers wider area than previously reported systems. Our system consisted of 40 probes, a multiplexer for switching signals to and from the probes, and a personal computer for obtaining images. In each probe, one two-wavelength LED (770 and 830 nm) and five photodiodes were mounted on a flexible substrate. In order to eliminate the influence of a subcutaneous fat layer, a correction method, which we previously developed, was also used in imaging. Thus, quantitative changes in concentrations of oxy- and deoxy-hemoglobin were obtained. Temporal resolution was 1.5 s and spatial resolution was about 20 mm, depending on probe separations. Exercise tests (isometric contraction of 50% MVC) on the thigh with and without arterial occlusion were conducted, and changes in muscle oxygenation were imaged using the developed system. Results showed that the heterogeneity of deoxygenation and reoxygenation during exercise and recovery periods, respectively, were clearly observed. These results suggest that optical imaging of dynamic change in muscle oxygenation using NIRS would be useful not only for basic physiological studies but also for clinical applications with respect to muscle functions.

  1. Design and realization of the control system for the three-channel birefringent filter

    NASA Astrophysics Data System (ADS)

    Zhu, Dan

    2008-07-01

    Space Solar Telescope is one of the large-scale scientific programs under development in China. In it, an important part is the filter, a birefringent filter with three-channels. It consists of 17 rotatable wave plates. In coordination with other mechanical and optical components, complicated and precise adjustments of their attitudes are necessary, which requests a high-accuracy control system to ensure their concertedness. The paper describes the design and realization of the control system. It mainly has a hardware plate and a software one. The former uses an industrial controller, a control card and step motors, while the latter uses the technique construction of the object oriented. That is modularization design with lengthwise dividing as per functions and breadthwise dividing as per element layers. Shift arithmetic for whole spectrum in programs is for intelligent spectral scanning. At the same time, the control information is roundly recorded in the data base of the system. Tests show that the system is characterized by high precision, good stabilization, high data safety and user-friendly interface, totally meeting the design requirements. Also discussed in this paper is some new conceivability to realize the handiness and miniaturization of the filter to fit the use in space flight in the future.

  2. A 280GHz single-channel millimeter-wave interferometer system for KSTARa)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Lee, K. D.

    2008-10-01

    A 280GHz single-channel horizontal millimeter-wave interferometer system has been fabricated and installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR). A retractable cassette system has been adopted for deep positioning of the interferometer system on large cryostat. The cassette system contains a pneumatic vacuum window shutter and a beam focusing module. The focusing module consists of antennas and aluminum concave mirrors, where an incident beam is reflected on a specially designed carbon inner-wall tile. The module enhances receiving beam power and reduces phase errors due to unexpected beam reflections on a vacuum vessel. Microwave components such as oscillators and mixers are located 2m away from cryostat with a shielding box. Intermediate frequency signals generated by mixers are transmitted to a diagnostics room, and the phase difference between these signals is measured using a multifringe counting phase comparator. A beam path analysis has been performed for a triangular beam path geometry. An effective line-integrated density can be deduced from measured line-integrated density with these results. A beam path length error due to plasma refraction effect has been determined with various plasma conditions.

  3. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng

    2016-07-01

    Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.

  4. Study on performance of coherent orthogonal frequency division multiplexing system in exponential atmospheric turbulent channel

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Yuan; Ma, Jing; Guo, Qiang

    2016-11-01

    We analyze the performance of a coherent orthogonal frequency division multiplexing (OFDM) system and a serial decode and forward relay transmission multihop coherent free-space optical OFDM system using an exponential distribution atmospheric turbulence model under the circumstance of strong atmospheric turbulence. The attenuation of the atmospheric channel fading model mainly considers the light intensity scintillation caused by atmospheric turbulence and interaction between the path consumption, the transmitter and the receiver. The OFDM signal mapping method uses quadrature amplitude modulation. We also derive the formulas of the outage probability and symbol error rate of the coherent OFDM and multihop system, respectively, under the conditions described above. In addition, a simulation is performed, which is essential to evaluate the influence of key factors including coherent detection in a number of relay nodes, the mapping orders, and the number of subcarriers, which have a significant effect on the outage performance and the bit error performance of the OFDM-FSO system under the strong atmospheric turbulence.

  5. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health

    PubMed Central

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih

    2017-01-01

    Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient’s cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system. PMID:28353681

  6. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health.

    PubMed

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih

    2017-03-29

    Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient's cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system.

  7. Optical design for off-axis three-mirror two-channel imaging system with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Lei, Chenglong; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2016-10-01

    This paper presents an optical design for the all-reflective dual-channel imaging system based on freeform surfaces. This system may be useful in remote sensing where coarse searching and fine observation are both needed. For this system, an off-axis three-mirror system with a middle image is chosen to design and the uniform stop is placed before the first optical surface. Meanwhile, beam splitter can be placed between secondary mirror and the location of the middle image to obtain multiple paths and the different curvatures of the tertiary mirrors can be used to differentiate the focal lengths of two channels and then get a zoom ratio of this system. One channel with a wide FOV of 3×1.5° but a small focal length of 700 mm can be used for searching, while the other one with a long focal length of 1480 mm but a narrow FOV of 0.5×0.5° can be used for fine reconnaissance. Furthermore, An XY polynomial, established as an even function of x, was employed to improve imaging quality, so we obtained a system of the symmetry about the YOZ plane, which can bring considerable convenience to alignment and testing for the system. The modulation transfer function curves of both channels are above 0.3 at 50 line pairs per millimeter, which indicates a good imaging quality.

  8. Low-dispersion electrokinetic flows for expanded separation channels in microfluidic systems: multiple faceted interfaces.

    PubMed

    Fiechtner, Gregory J; Cummings, Eric B

    2004-02-20

    A novel methodology to design on-chip conduction channels is presented for expansion of low-dispersion separation channels. Designs are examined using two-dimensional numerical solutions of the Laplace equation with a Monte Carlo technique to model diffusion. The design technique relies on trigonometric relations that apply for ideal electrokinetic flows. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeability. Multiple interfaces can be placed in series along a channel. The resulting channels can be expanded to extreme widths while minimizing dispersion of injected analyte bands. These channels can provide a long path length for line-of-sight optical absorption measurements. Expanded sections can be reduced to enable point detection at the exit section of the channel. Designed to be shallow, these channels have extreme aspect ratios in the wide section, greatly increasing the surface-to-volume ratio to increase heat removal and decrease unwanted pressure-driven flow. The use of multiple interfaces is demonstrated by considering several three-interface designs. Faceted flow splitters can be constructed to divide channels into any number of exit channels while minimizing dispersion. The resulting manifolds can be used to construct medians for structural support in wide, shallow channels.

  9. Enhanced Handoff Scheme for Downlink-Uplink Asymmetric Channels in Cellular Systems

    PubMed Central

    2013-01-01

    In the latest cellular networks, data services like SNS and UCC can create asymmetric packet generation rates over the downlink and uplink channels. This asymmetry can lead to a downlink-uplink asymmetric channel condition being experienced by cell edge users. This paper proposes a handoff scheme to cope effectively with downlink-uplink asymmetric channels. The proposed handoff scheme exploits the uplink channel quality as well as the downlink channel quality to determine the appropriate timing and direction of handoff. We first introduce downlink and uplink channel models that consider the intercell interference, to verify the downlink-uplink channel asymmetry. Based on these results, we propose an enhanced handoff scheme that exploits both the uplink and downlink channel qualities to reduce the handoff-call dropping probability and the service interruption time. The simulation results show that the proposed handoff scheme reduces the handoff-call dropping probability about 30% and increases the satisfaction of the service interruption time requirement about 7% under high-offered load, compared to conventional mobile-assisted handoff. Especially, the proposed handoff scheme is more efficient when the uplink QoS requirement is much stricter than the downlink QoS requirement or uplink channel quality is worse than downlink channel quality. PMID:24501576

  10. A dynamic multi-channel speech enhancement system for distributed microphones in a car environment

    NASA Astrophysics Data System (ADS)

    Matheja, Timo; Buck, Markus; Fingscheidt, Tim

    2013-12-01

    Supporting multiple active speakers in automotive hands-free or speech dialog applications is an interesting issue not least due to comfort reasons. Therefore, a multi-channel system for enhancement of speech signals captured by distributed distant microphones in a car environment is presented. Each of the potential speakers in the car has a dedicated directional microphone close to his position that captures the corresponding speech signal. The aim of the resulting overall system is twofold: On the one hand, a combination of an arbitrary pre-defined subset of speakers' signals can be performed, e.g., to create an output signal in a hands-free telephone conference call for a far-end communication partner. On the other hand, annoying cross-talk components from interfering sound sources occurring in multiple different mixed output signals are to be eliminated, motivated by the possibility of other hands-free applications being active in parallel. The system includes several signal processing stages. A dedicated signal processing block for interfering speaker cancellation attenuates the cross-talk components of undesired speech. Further signal enhancement comprises the reduction of residual cross-talk and background noise. Subsequently, a dynamic signal combination stage merges the processed single-microphone signals to obtain appropriate mixed signals at the system output that may be passed to applications such as telephony or a speech dialog system. Based on signal power ratios between the particular microphone signals, an appropriate speaker activity detection and therewith a robust control mechanism of the whole system is presented. The proposed system may be dynamically configured and has been evaluated for a car setup with four speakers sitting in the car cabin disturbed in various noise conditions.

  11. The two-way time synchronization system via a satellite voice channel

    NASA Technical Reports Server (NTRS)

    Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU

    1994-01-01

    A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.

  12. Precise SER Analysis and Performance Results of OSTBC MIMO-OFDM Systems over Uncorrelated Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Ahmad Ansari, Ejaz; Rajatheva, Nandana

    Although the topic of multiple-input multiple-output (MIMO) based orthogonal frequency division multiplexing (OFDM) over different fading channels is well investigated, its closed form symbol error rate (SER) expressions and performance results employing orthogonal space time block codes (OSTBCs) over uncorrelated frequency-selective Nakagami-m fading channels are still not available. The closed form expressions are extremely useful for evaluating system's performance without carrying out time consuming simulations. Similarly, the performance results are also quite beneficial for determining the system's performance in the sense that many practical wireless standards extensively employ MIMO-OFDM systems in conjunction with M-ary quadrature amplitude modulation (M-QAM) constellation. This paper thus, derives exact closed form expressions for the SER of M-ary Gray-coded one and two dimensional constellations when an OSTBC is employed and Nt transmit antennas are selected for transmission over frequency-selective Nakagami-m fading channels. For this purpose, first an exact closed-form of average SER expression of OSTBC based MIMO-OFDM system for M-ary phase shift keying (M-PSK) using traditional probability density function (PDF) approach is derived. We then compute exact closed form average SER expressions for M-ary pulse amplitude modulation (M-PAM) and M-QAM schemes by utilizing this generalized result. These expressions are valid over both frequency-flat and frequency-selective Nakagami-m fading MIMO channels and can easily be evaluated without using any numerical integration methods. We also show that average SER of MIMO-OFDM system using OSTBC in case of frequency-selective Rayleigh fading channels remains independent to the number of taps, L of that fading channel and the performance of the same system for two-tap un-correlated Rayleigh and Nakagami-m fading channels is better than that of the correlated one. Moreover, Monte Carlo simulation of MIMO-OFDM system

  13. Evolution of abandoned channels: Insights on controlling factors in a multi-pressure river system

    NASA Astrophysics Data System (ADS)

    Dépret, Thomas; Riquier, Jérémie; Piégay, Hervé

    2017-10-01

    In the second half of the 19th century, channelization of large multi-thread rivers such as the Rhine, the Danube, and the Rhône rivers induced artificial disconnection of most of their secondary channels. Compared to naturally abandoned channels, terrestrialization (i.e., the passage from the aquatic to the terrestrial stage, controlled by sediment deposits and/or lowering of the water level) patterns and rates of such artificially prematurely abandoned channels remain largely unknown. Moreover, factors controlling their evolutionary trajectories are complex owing to a set of pressures occurring throughout the 20th century within specific space-time windows. Through a case study of the Rhône River, this paper aims to assess and distinguish the effects of a set of potential controlling factors on abandoned channel terrestrialization dynamics and lifespan. We tested the influence of: (i) submersible embankments closing the entrance of abandoned channels, (ii) main channel degradation following its channelization or the water level lowering due to channel bypassing in the middle of the 20th century involving drastic water abstraction in these reaches, (iii) transverse dykes within the abandoned channels, (iv) the flooding regime of abandoned channels (i.e., frequency and magnitude of upstream connections producing lotic functioning), and (v) longitudinal variation in the suspended sediment concentration along the main channel. To this end, we studied 24 abandoned channels (16 artificially disconnected at their upstream end by submersible embankments and eight naturally disconnected by bar plug establishment) from the mid-19th to the beginning of the 20th century. Their terrestrialization rates were characterized through the reconstruction of their planimetric trajectories using historical maps and aerial photos. The results reveal a much longer lifespan of artificial abandoned channels compared to natural ones because of the truncation of the initial bedload

  14. Complementary use of tracer and pumping tests to characterize a heterogeneous channelized aquifer system in New Zealand

    NASA Astrophysics Data System (ADS)

    Dann, R. L.; Close, M. E.; Pang, L.; Flintoft, M. J.; Hector, R. P.

    2008-09-01

    The combined use of pumping and tracer test data enabled the derivation of equivalent average hydraulic conductivities ( K avg) for each test in a heterogeneous channelized alluvial aquifer, whereas K values of the preferential flow paths were two orders of magnitude higher. Greater and earlier drawdown was generally observed along preferential flow lines in a pumping test, within an array of 21 wells. The study aim was to characterize hydraulic properties of a channelized aquifer system in New Zealand by combining tracer and pumping test data. Estimates were able to be made of the percentage of highly permeable channels within the profile (˜1.2%), effective porosity that reflected the maximum fraction of highly permeable channels within the aquifer ( ϕ eff -pc ˜0.0038), and flows through highly permeable channels (˜98%) and the sandy gravel matrix material (˜2%). Using ϕ eff -pc, a tracer test K avg value (˜93 m/day) was estimated that was equivalent to pumping test values (˜100 m/day), but two orders of magnitude smaller than K calculated solely from transport through permeable channels ( K pc ˜8,400 m/day). Derived K values of permeable and matrix material were similar to values derived from grain size distribution using the Kozeny-Carman equation.

  15. Optimal coding-decoding for systems controlled via a communication channel

    NASA Astrophysics Data System (ADS)

    Yi-wei, Feng; Guo, Ge

    2013-12-01

    In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.

  16. On the capacity of MISO FSO systems over gamma-gamma and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2015-08-24

    In this work, the ergodic capacity performance for multiple-input/single-output (MISO) free-space optical (FSO) communications system with equal gain combining (EGC) reception is analyzed over gamma-gamma and misalignment fading channels, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.). Novel and analytical closed-form ergodic capacity expression is obtained in terms of H-Fox function by using the well-known inequality between arithmetic and geometric mean of positive random variables (RV) in order to obtain an approximate closed-form expression of the distribution of the sum of M gamma-gamma with pointing errors variates. In addition, we present an asymptotic ergodic capacity expression at high signal-to-noise ratio (SNR) for the ergodic capacity of MISO FSO systems. It can be concluded that the use of MISO technique can significantly reduce the effect of the atmospheric turbulence as well as pointing errors and, hence, provide significant capacity gain over the direct path link (DL). The impact of pointing errors on the MISO FSO system is also analyzed, which only depends on the number of laser sources and pointing error parameters. Moreover, it can be also concluded that the ergodic capacity performance is dramatically reduced as a consequence of the severity of pointing error effects. Simulation results are further demonstrated to confirm the analytical results.

  17. Generating 3D depletion distribution in an achromatic single-channel monolithic system

    NASA Astrophysics Data System (ADS)

    Fallet, Clement; Lindberg, Arvid; Sirat, Gabriel Y.

    2016-02-01

    Recent developments have shown that conical diffraction by a biaxial crystal can create a vortex beam for use in 2D STED microscopy. It has been shown that this concept can be extended and also generate the depletion distributions used for 3D STED microscopy. A single beam passes through a biaxial crystal that creates two co-propagating, co-localized beams; the first one is used for lateral depletion, and the other one for axial depletion. The two beams are crossed-polarized and thus do not interfere. We will show that the 3D distribution can be made achromatic, i.e. several depletion wavelengths can travel through a common path and still be shaped into the appropriate pattern by optimizing the geometry of the system. This system enables true one-channel 3D depletion at multiple wavelengths ranging from 580nm to 770nm, thus covering most of the conventional depletion wavelengths currently used. Preliminary results of depletion PSFs will be presented and the advantages and limitations of this system will be discussed as well as the experimental considerations required to successfully obtain the desired PSFs.

  18. In vivo 783-channel diffuse reflectance imaging system and its application

    NASA Astrophysics Data System (ADS)

    Yang, Joon-Mo; Han, Yong-Hui; Yoon, Gilwon; Ahn, Byung Soo; Lee, Byung-Cheon; Soh, Kwang-Sup

    2007-08-01

    A fiber-based reflectance imaging system was constructed to produce in vivo absorption spectroscopic images of biological tissues with diffuse light in the cw domain. The principal part of this system is the 783-channel fiber probe, composed of 253 illumination fibers and 530 detection fibers distributed in a 20×20 mm square region. During illumination with the 253 illumination fibers, diffuse reflected lights are collected by the 530 detection fibers and recorded simultaneously as an image with an electron multiplying CCD camera for fast data acquisition. After signal acquisition, a diffuse reflectance image was reconstructed by applying the spectral normalization method we devised. To test the applicability of the spectral normalization, we conducted two phantom experiments with chicken breast tissue and white Delrin resin by using animal blood as an optical inhomogeneity. In the Delrin phantom experiment, we present images produced by two methods, spectral normalization and reference signal normalization, along with a comparison of the two. To show the feasibility of our system for biomedical applications, we took images of a human vein in vivo with the spectral normalization method.

  19. Signal acquisition module design for multi-channel surface magnetic resonance sounding system

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.

  20. Response Time Analysis and Test of Protection System Instrument Channels for APR1400 and OPR1000

    SciTech Connect

    Lee, Chang Jae; Han, Seung; Yun, Jae Hee; Baek, Seung Min; Lee, Sang Jeong

    2015-07-01

    , the establishment of the systematic response time evaluation methodology is needed to justify the conformance to the response time requirement used in the safety analysis. This paper proposes the response time evaluation methodology for APR1400 and OPR1000 using the combined analysis and test technique to confirm that the plant protection system can meet the analytical response time assumed in the safety analysis. In addition, the results of the quantitative evaluation performed for APR1400 and OPR1000 are presented in this paper. The proposed response time analysis technique consists of defining the response time requirement, determining the critical signal path for the trip parameter, allocating individual response time to each component on the signal path, and analyzing the total response time for the trip parameter, and demonstrates that the total analyzed response time does not exceed the response time requirement. The proposed response time test technique is composed of defining the response time requirement, determining the critical signal path for the trip parameter, determining the test method for each component on the signal path, performing the response time test, and demonstrates that the total test result does not exceed the response time requirement. The total response time should be tested in a single test that covers from the sensor to the final actuation device on the instrument channel. When the total channel is not tested in a single test, separate tests on groups of components or single components including the total instrument channel shall be combined to verify the total channel response. For APR1400 and OPR1000, the ramp test technique is used for the pressure and differential pressure transmitters and the step function testing technique is applied to the signal processing equipment and final actuation device. As a result, it can be demonstrated that the response time requirement is satisfied by the combined analysis and test technique

  1. EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system

    NASA Astrophysics Data System (ADS)

    Zhang, YuJing; Cui, Yinghua

    2017-05-01

    In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.

  2. Quasi-Anonymous Channels

    DTIC Science & Technology

    2003-01-01

    QUASI- ANONYMOUS CHANNELS Ira S. Moskowitz Center for High Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC...Assurance Computer Systems - Code 5540 Naval Research Laboratory, Washington, DC 20375, USA Abstract Although both anonymity and covert...channels are part of the larger topic of information hiding, there also exists an intrinsic linkage between anonymity and covert channels. This linkage

  3. Channelization Considerations for PSK Modulation Techniques in Follow-on UHF MILSATCOM Systems.

    DTIC Science & Technology

    1986-04-30

    4-3 4.1.3 QPSK - 25-kHz Channels . . . . o . .o. 4-3 4.1.4 OQPSK - 25-kHz Channels . . . . . o . . 4-6 4.2 Required Eb/No for Given Pe vs. BT with...kHz Channels 4-5 *4-4 Performance of OQPSK for Selected 8-Pole Filters. Channel Characteristics: Rs=I/T=16000 sps; Equal Power Interferers at +50 kHz...SBPSK and OQPSK provided better Eb/No performance than BPSK and QPSK. Performance sensitivity due to filter type were . found to be, at most

  4. Experimental quantum channel simulation

    NASA Astrophysics Data System (ADS)

    Lu, He; Liu, Chang; Wang, Dong-Sheng; Chen, Luo-Kan; Li, Zheng-Da; Yao, Xing-Can; Li, Li; Liu, Nai-Le; Peng, Cheng-Zhi; Sanders, Barry C.; Chen, Yu-Ao; Pan, Jian-Wei

    2017-04-01

    Quantum simulation is of great importance in quantum information science. Here, we report an experimental quantum channel simulator imbued with an algorithm for imitating the behavior of a general class of quantum systems. The reported quantum channel simulator consists of four single-qubit gates and one controlled-not gate. All types of quantum channels can be decomposed by the algorithm and implemented on this device. We deploy our system to simulate various quantum channels, such as quantum-noise channels and weak quantum measurement. Our results advance experimental quantum channel simulation, which is integral to the goal of quantum information processing.

  5. Performance analysis of MIMO-STBC systems with higher coding rate using adaptive semiblind channel estimation scheme.

    PubMed

    Kumar, Ravi; Saxena, Rajiv

    2014-01-01

    Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel.

  6. Performance Analysis of MIMO-STBC Systems with Higher Coding Rate Using Adaptive Semiblind Channel Estimation Scheme

    PubMed Central

    Kumar, Ravi

    2014-01-01

    Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel. PMID:24688379

  7. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  8. Drainage beneath ice sheets: groundwater-channel coupling, and the origin of esker systems from former ice sheets

    NASA Astrophysics Data System (ADS)

    Boulton, G. S.; Hagdorn, M.; Maillot, P. B.; Zatsepin, S.

    2009-04-01

    The nature of the drainage system beneath ice sheets is crucial to their dynamic behaviour but remains problematic. An experimentally based theory of coupling between groundwater and major channel systems is applied to the esker systems in the area occupied the last ice sheet in Europe, which we regard as a fossil imprint of major longitudinal drainage channels. We conclude that the large-scale distribution and spacing of major eskers is consistent with the theory of groundwater control, in which esker spacing is partly controlled by the transmissivity of the bed. It is concluded that esker patterns reflect the large-scale organisation of the subglacial drainage pattern in which channel development is coupled to groundwater flow and to the ice sheet's dynamic regime. The theory is then used to deduce: basal meltwater recharge rates and their spatial variability from esker spacing in an area in which the ice sheet was actively streaming during its final retreat; patterns of palaeo-groundwater flow and head distribution; and the seasonally varying magnitude of discharge from stream tunnels at the retreating ice sheet margin. Major channel/esker systems appear to have been stable at least over several hundred of years during the retreat of the ice sheet, although major dynamic events are demonstrably associated with major shifts in the hydraulic regime. Modelling suggests: that glaciation can stimulate deep groundwater circulation cells that are spatially linked to channel locations, with groundwater flow predominantly transverse to ice flow; that the circulation pattern has the potential to create large-scale anomalies in groundwater chemistry; and that the spacing of channels will change through the glacial cycle, influencing water pressures in stream tunnels, subglacial hydraulic gradients and effective pressure. If the latter is reduced sufficiently, it could trigger enhanced bed deformation, thus coupling drainage to ice sheet movement. It suggests the

  9. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration.

    PubMed

    Wang, Yizhou; Papanatsiou, Maria; Eisenach, Cornelia; Karnik, Rucha; Williams, Mary; Hills, Adrian; Lew, Virgilio L; Blatt, Michael R

    2012-12-01

    Stomata account for much of the 70% of global water usage associated with agriculture and have a profound impact on the water and carbon cycles of the world. Stomata have long been modeled mathematically, but until now, no systems analysis of a plant cell has yielded detail sufficient to guide phenotypic and mutational analysis. Here, we demonstrate the predictive power of a systems dynamic model in Arabidopsis (Arabidopsis thaliana) to explain the paradoxical suppression of channels that facilitate K(+) uptake, slowing stomatal opening, by mutation of the SLAC1 anion channel, which mediates solute loss for closure. The model showed how anion accumulation in the mutant suppressed the H(+) load on the cytosol and promoted Ca(2+) influx to elevate cytosolic pH (pH(i)) and free cytosolic Ca(2+) concentration ([Ca(2+)](i)), in turn regulating the K(+) channels. We have confirmed these predictions, measuring pH(i) and [Ca(2+)](i) in vivo, and report that experimental manipulation of pH(i) and [Ca(2+)](i) is sufficient to recover K(+) channel activities and accelerate stomatal opening in the slac1 mutant. Thus, we uncover a previously unrecognized signaling network that ameliorates the effects of the slac1 mutant on transpiration by regulating the K(+) channels. Additionally, these findings underscore the importance of H(+)-coupled anion transport for pH(i) homeostasis.

  10. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  11. Nonlinear channelizer

    NASA Astrophysics Data System (ADS)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  12. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks

  13. Twenty-channel grating polychromator diagnostic system for electron cyclotron emission measurement in JT-60

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Nagashima, A.; Sato, M.; Isei, N.; Matoba, T.

    1990-10-01

    A twenty-channel grating polychromator diagnostic system has been built to measure the temporal evolution of local electron temperatures in JT-60. A cross Czerny-Turner diffraction grating spectrometer is utilized for the measurement of second-harmonic electron cyclotron emission with extraordinary modes in the range 85-300 GHz, in which a grating plate grooved on both faces with different grating periods is applied effectively to yield a wide coverage for the toroidal fields. The grating angle is automatically set up by control of a stepping motor according to the relation of the grating equation. The diffracted light is detected by 20 indium-antimonide hot-electron bolometers cooled at 4.3 K in a modified Solvay cycle cryogenic refrigerator. A typical resolving power of the instrument was measured to be λ/Δλ˜130, providing a spatial resolution of 2.3 cm at the plasma center. The transmission line over ˜38 m long is composed of oversized S-band waveguides. The total transmissivity of this system is estimated to be ˜0.01.

  14. Double-channel on-line automatic fruit grading system based on computer vision

    NASA Astrophysics Data System (ADS)

    Zhang, Junxiong; Xun, Yi; Li, Wei; Zhang, Cong

    2007-01-01

    The technology of fruit grading based on computer vision was studied and a double-channel on-line automatic grading system was built. The process of grading included fruit image acquiring, image processing and fruit tracking and separating. In the first section, a new approach of image grabbing by employing an asynchronous reset camera was presented. Three images of the different surfaces of each fruit would be collected by rolling the fruits when they passed through the image-capturing area. To acquire clear images, high-frequency fluorescent lamps supplied by three-phase alternating current were used to illuminate. In the image processing section, the diameter and a color model were used to identify the grade of the fruits. Fruits were graded into four grades by size, and two by color. Each fruit identified was tracked and separated by a novel algorithm which was realized with a PLC (Program Logic Controller). The whole grading system was tested with 1000 citrus. It could work stably when the grading capability was twelve citrus per second and the grading level was nine. The on-line grading results indicated that the accuracy of tracking and separating was higher than 99%, and the ultimate grading error was less than 3%.

  15. A multi-channel magnetic induction tomography measurement system for human brain model imaging.

    PubMed

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-06-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for cancelling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204 degrees /S m(-1) with the excitation frequency of 120 kHz and the phase noise is in the range of -0.03 degrees to +0.05 degrees . Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased.

  16. On the performance analysis of SSC diversity system over η-μ fading channels

    NASA Astrophysics Data System (ADS)

    Khatalin, Sari

    2016-06-01

    In this paper, we study key performance measures of dual-branch switch-and-stay combining (SSC) system operating in ? fading environment. Specifically, analytical expressions for the kth order moment, average signal-to-noise ratio, amount of fading and outage probability are obtained for an SSC system operating over ? fading channels. Expressions of the average bit error rate (BER) for coherent detection and non-coherent detection were also derived with SSC for various modulation schemes. The BER expressions for the coherent detection case were derived using the moment generating function-based approach. Some of the final expressions are presented in the form of infinite series. Therefore, those series are truncated and upper bounds are derived for truncation errors. Expressions to determine the optimum adaptive switching thresholds are also presented. Corresponding results for Nakagami-q and Nakagami-m fading are derived in this paper as special cases. Numerical results are provided to demonstrate the applications of the new results.

  17. Real-time portable dual channel image fusion and data processing system

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Yang, Yong-ying; Wang, Dao-dang; Liu, Dong

    2009-05-01

    Presently electricity utilities make use of a number of inspection tools to survey their transmission lines and electrical distribution equipment. Visible and ultraviolet cameras are the latest visual diagnostic tools available to utilities to identify potential failures on electrical equipment. Based on the DSP and FPGA hardware platform, a system is designed to collect images from both visible and ultraviolet channels. Moreover, it performs image fusion, characteristic enhancement and image analysis as well. For detecting the corona, a ultra-violet quantum detector is used in the form of an image intensifier tube with a Cesium-Telluride photocathode, which is competent for single photon counting. For acquiring visible images, a high-speed industrial CCD is implemented to assure definition of images in terms of 1394 protocol. The real-time images is displayed on a LCD, compressed and saved for further analysis. Finally, several methods of program debugging are introduced. The experimental results in the field show that the designed system has good performance in the detection of corona radiation.

  18. Low-order dynamical system model of a fully developed turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  19. Unusual systemic venous Collateral channels to left atrium causing desaturation after Fontan operation closed percutaneously.

    PubMed

    Marwah, Ashutosh; Khatri, Sanjay; Shrivastava, Savitri; Iyer, Krishna S

    2013-07-01

    We present an unusual cause of progressive cyanosis in a child appearing 2 years after successful Fontan surgery for tetralogy of Fallot with hypoplastic right ventricle. The cause of cyanosis was identified as one large venous channel draining into the left atrium. The channel was closed by Amplatzer vascular plug resulting in improvement of oxygen saturation.

  20. Test-retest reliability of a single-channel, wireless EEG system.

    PubMed

    Rogers, Jeffrey M; Johnstone, Stuart J; Aminov, Anna; Donnelly, James; Wilson, Peter H

    2016-08-01

    Recording systems to acquire electroencephalogram (EEG) data are traditionally lab-based. However, there are shortcomings to this method, and the ease of use and portability of emerging wireless EEG technologies offer a promising alternative. A previous validity study demonstrated data derived from a single-channel, wireless system (NeuroSky ThinkGear, San Jose, California) is comparable to EEG recorded from conventional lab-based equipment. The current study evaluated the reliability of this portable system using test-retest and reliable change analyses. Relative power (RP) of delta, theta, alpha, and beta frequency bands was derived from EEG data obtained from a single electrode over FP1 in 19 healthy youth (10-17years old), 21 healthy adults (18-28years old), and 19 healthy older adults (55-79years old), during eyes-open, eyes-closed, auditory oddball, and visual n-back conditions. Intra-class correlations (ICCs) and Coefficients of Repeatability (CRs) were calculated from RP data re-collected one-day, one-week, and one-month later. Participants' levels of mood and attention were consistent across sessions. Eyes-closed resting EEG measurements using the portable device were reproducible (ICCs 0.76-0.85) at short and longer retest intervals in all three participant age groups. While still of at least fair reliability (ICCs 0.57-0.85), EEG obtained during eyes-open paradigms was less stable, and any change observed over time during these testing conditions can be interpreted utilizing the CR values provided. Combined with existing validity data, these findings encourage application of the portable EEG system for the study of brain function.

  1. Dynamic State Transitions in the Nervous System: From Ion Channels to Neurons to Networks

    NASA Astrophysics Data System (ADS)

    Århem, Peter; Braun, Hans A.; Huber, Martin T.; Liljenström, Hans

    The following sections are included: * Introduction * Ion channels: The microscopic scale * The variety of ion channels * Channel kinetics * Neurons: The mesoscopic scale * The feedback loops between membrane potential and ion currents * Neuron models: Concepts and examples * Impulse pattern modulation by ion channel densities * Oscillatory patterns * Irregular patterns * Impulse pattern modulation by subthreshold oscillations * The cold receptor model * Deterministic patterns and noise induced state-transitions on temperature scaling * Neuronal networks: The oscopic scale * Random channel events cause network state transitions * A hippocampal neural network model * Simulating noise-induced state transitions * Functional significance of oscopic neurodynamics * Conclusions * Appendix A: Computation of the neuron models * Hippocampal neuron model * The cold receptor model * Appendix B: Neural network model * References

  2. Interaction of salt tectonics, slumping and channeling: Mid-Pliocene reservoir system, Pompano Field, Gulf of Mexico

    SciTech Connect

    Blankenship, C.L.; Stauber, D.A.; Epps, D.S. )

    1996-01-01

    Newly reprocessed 3-D seismic, converted to Acoustic Impedance, shows the detailed stratigraphy of the mid-Pliocene, upper slope reservoir system of the Pompano Field. This improved data allows us to view the internal slumping and channeling in an interval which was previously poorly imaged. Pompano is located in the Gulf of Mexico at the boundary of Mississippi Canyon and Viosca Knoll.

  3. Interaction of salt tectonics, slumping and channeling: Mid-Pliocene reservoir system, Pompano Field, Gulf of Mexico

    SciTech Connect

    Blankenship, C.L.; Stauber, D.A.; Epps, D.S.

    1996-12-31

    Newly reprocessed 3-D seismic, converted to Acoustic Impedance, shows the detailed stratigraphy of the mid-Pliocene, upper slope reservoir system of the Pompano Field. This improved data allows us to view the internal slumping and channeling in an interval which was previously poorly imaged. Pompano is located in the Gulf of Mexico at the boundary of Mississippi Canyon and Viosca Knoll.

  4. Current understanding of iberiotoxin-resistant BK channels in the nervous system

    PubMed Central

    Wang, Bin; Jaffe, David B.; Brenner, Robert

    2014-01-01

    While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these

  5. Channel-wing System for Thrust Deflection and Force/Moment Generation

    NASA Technical Reports Server (NTRS)

    Englar, Robert J. (Inventor); Bushnell, Dennis M. (Inventor)

    2006-01-01

    An aircraft comprising a Channel Wing having blown c h - ne1 circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a rounded or near-round trailing edge. The channel further has a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded trailing edge. The aircraft further has a propeller that is located in the channel and ahead of the rounded trailing edge of the channel. The propeller provides a propeller thrust exhaust stream across the channel wing to propel the aircraft through the air and to provide high lift. The pressurized air being discharged over the rounded trailing edge provides a high lift that is obtained independent of an aircraft angle of attack, thus preventing the asymmetry. separated flow, and stall experienced by the CC wing at the high angle of attack it required for high lift generation. The aircraft can further include blown outboard circulation control wings (CCW) that are synergistically connected to the blown channel CCWs. The blown outboard CCWs provide additional high lift, control thrust/drag interchange, and can provide all three aerodynamic moments when differential blowing is applied front-to-rear or left-to-right. Both the blown channel CCW and the outboard CCW also have leading-edge blowing slots to prevent flow separation or to provide aerodynamic moments for control.

  6. Current understanding of iberiotoxin-resistant BK channels in the nervous system.

    PubMed

    Wang, Bin; Jaffe, David B; Brenner, Robert

    2014-01-01

    While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called "type II" subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these

  7. L-type Ca2+ channels in the enteric nervous system mediate oscillatory Cl- secretion in guinea pig colon.

    PubMed

    Nishikitani, Mariko; Yasuoka, Yukiko; Kawada, Hideaki; Kawahara, Katsumasa

    2007-02-01

    The enteric nervous system regulates epithelial ion and fluid secretion. Our previous study has shown that the low (0.2-1 mM) concentrations of Ba2+, a K+ channel inhibitor, evoke Ca2+-dependent oscillatory Cl- secretion via activation of submucosal cholinergic neurons in guinea pig distal colon. However, it is still unclear which types of Ca2+ channels are involved in the oscillation at the neuroepithelial junction. We investigated the inhibitory effects of organic and inorganic Ca2+ channel antagonists on the short circuit current (I(sc)) of colonic epithelia (mucosa-submucosa sheets) mounted in Ussing chambers. The amplitude (412 +/- 37 microA cm(-2)) and frequency (2.6 +/- 0.1 cycles min(-1)) of the Ba2+-induced I(sc) in normal (1.8 mM) Ca2+ solution (n = 26) significantly decreased by 37.6% and 38.5%, respectively, in the low (0.1 mM) Ca2+ solution (n = 14). The I(sc) amplitude was reversibly inhibited by either verapamil (an L-type Ca2+ channel antagonist) or divalent cations (Cd2+, Mn2+, Ni2+) in a concentration-dependent manner. The concentration of verapamil for half-maximum inhibition (IC50) was 4 and 2 microM in normal and low Ca2+ solution, respectively. The relative blocking potencies of metal ions were Cd2+ > Mn2+, Ni2+ in normal Ca2+ solution. In contrast, the frequency of I(sc) was unchanged over the range of concentrations of the Ca2+ channel antagonists used. Our results show that the oscillatory I(sc) evoked by Ba2+ involves L-type voltage-gated Ca2+ channels. We conclude that L-type Ca2+ channels play a key role in the oscillation at the neuroepithelial junctions of guinea pig colon.

  8. Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines

    NASA Astrophysics Data System (ADS)

    Gran, K. B.; Michal, T.

    2014-12-01

    Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011

  9. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  10. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    NASA Astrophysics Data System (ADS)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  11. Estimation of Symmetric Channels for Discrete Cosine Transform Type-I Multicarrier Systems: A Compressed Sensing Approach

    PubMed Central

    Domínguez-Jiménez, María Elena; Luengo, David; Sansigre-Vidal, Gabriela

    2015-01-01

    The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm. PMID:26568981

  12. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system

    PubMed Central

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (KATP) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated KATP channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. PMID:24102106

  13. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  14. Decay of the excited compound system *56Ni formed through various channels using deformed Coulomb and deformed nuclear proximity potentials

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Subha, P. V.

    2017-06-01

    The total cross section, the intermediate mass fragment (IMF) production cross section, and the cross section for the formation of light particles (LPs) for the decay of compound system *56Ni formed through the entrance channel 32S+24Mg have been evaluated by taking the scattering potential as the sum of deformed Coulomb and deformed nuclear proximity potentials, for various Ec .m . values. The computed results have been compared with the available experimental data of total cross section corresponding to Ec .m .=60.5 and 51.6 MeV for the entrance channel 32S+24Mg , which were found to be in good agreement. The experimental values for the LP production cross section and IMF cross section for the channel 32S+24Mg were also found to agree with our calculations. Hence we have extended our studies and have thus computed the total cross section, IMF cross section, and LP cross section for the decay of *56Ni formed through the other three entrance channels 36Ar+20Ne,40Ca+16O , and 28Si+28Si with different Ec .m . values. Hence, we hope that our predictions on the evaluations of the IMF cross sections and the LP cross sections for the decay of *56Ni formed through these three channels can be used for further experimental studies.

  15. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system.

    PubMed

    Akita, T; Okada, Y

    2014-09-05

    Cell volume regulation (CVR) is essential for all types of cells in the central nervous system (CNS) to counteract cell volume changes that may be associated with neuronal activities or diseases and with osmosensing in the hypothalamus, to facilitate morphological changes during cell proliferation, differentiation and migration, and to execute apoptosis of cells. The regulation is attained by regulating the net influx or efflux of solutes and water across the plasma membrane. The volume-sensitive outwardly rectifying (VSOR) anion channel plays a major role in providing a pathway for anion flux during the regulation. The VSOR anion channel is permeable not only to Cl(-) ions but also to amino acids like glutamate and taurine. This property confers a means of intercellular communications through the opening of the channel in the CNS. Thus exploring the roles of VSOR anion channels is crucial to understand the basic principles of cellular functions in the CNS. Here we review biophysical and pharmacological characteristics of the VSOR anion channel in the CNS, discuss its activation mechanisms and roles in the CNS reported so far, and give some perspectives on the next issues to be examined in the near future. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria.

    PubMed

    Andersen, C

    2003-01-01

    For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 A into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system.

  17. Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems.

    PubMed

    Johannessen, Molly; Ramachandran, Subramaniam; Riemer, Logan; Ramos-Serrano, Andrea; Ruoho, Arnold E; Jackson, Meyer B

    2009-05-01

    The sigma-receptor, a broadly distributed integral membrane protein with a novel structure, is known to modulate various voltage-gated K(+) and Ca(2+) channels through a mechanism that involves neither G proteins nor phosphorylation. The present study investigated the modulation of the heart voltage-gated Na(+) channel (Na(v)1.5) by sigma-receptors. The sigma(1)-receptor ligands [SKF-10047 and (+)-pentazocine] and sigma(1)/sigma(2)-receptor ligands (haloperidol and ditolylguanidine) all reversibly inhibited Na(v)1.5 channels to varying degrees in human embryonic kidney 293 (HEK-293) cells and COS-7 cells, but the sigma(1)-receptor ligands were less effective in COS-7 cells. The same four ligands also inhibited Na(+) current in neonatal mouse cardiac myocytes. In sigma(1)-receptor knockout myocytes, the sigma(1)-receptor-specific ligands were far less effective in modulating Na(+) current, but the sigma(1)/sigma(2)-receptor ligands modulated Na(+) channels as well as in wild type. Photolabeling with the sigma(1)-receptor photoprobe [(125)I]-iodoazidococaine demonstrated that sigma(1)-receptors were abundant in heart and HEK-293 cells, but scarce in COS-7 cells. This difference was consistent with the greater efficacy of sigma(1)-receptor-specific ligands in HEK-293 cells than in COS-7 cells. sigma-Receptors modulated Na(+) channels despite the omission of GTP and ATP from the patch pipette solution. sigma-Receptor-mediated inhibition of Na(+) current had little if any voltage dependence and produced no change in channel kinetics. Na(+) channels represent a new addition to the large number of voltage-gated ion channels modulated by sigma-receptors. The modulation of Na(v)1.5 channels by sigma-receptors in the heart suggests an important pathway by which drugs can alter cardiac excitability and rhythmicity.

  18. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  19. Exploring the Membrane Potential of Simple Dual-Membrane Systems as Models for Gap-Junction Channels.

    PubMed

    Escalona, Yerko; Garate, Jose A; Araya-Secchi, Raul; Huynh, Tien; Zhou, Ruhong; Perez-Acle, Tomas

    2016-06-21

    The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs.

  20. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.