Science.gov

Sample records for channel array electrophoresis

  1. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.

    PubMed

    Craig, Douglas B; Reinfelds, Gundars; Henderson, Anna

    2014-08-01

    Capillary electrophoresis has been used to demonstrate that individual molecules of a given enzyme support different catalytic rates. In order to determine how rate varies with temperature, and determine activation energies for individual β-galactosidase molecules, a 12-channel Peltier array temperature control device was constructed where the temperature of each cell was separately controlled. This array was used to control the temperature of the central 30 cm of a 50 cm long capillary, producing a temperature gradient along its length. Continuous flow single β-galactosidase molecule assays were performed allowing measurement of the catalytic rates at different temperatures. Arrhenius plots were produced and the distribution of activation energies for individual β-galactosidase molecules was found to be 56 ± 10 kJ/mol with a range of 34-72 kJ/mol.

  2. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  3. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  4. Inkjet injection of DNA droplets for microchannel array electrophoresis.

    PubMed

    Yasui, Takao; Inoue, Yosuke; Naito, Toyohiro; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2012-11-06

    We demonstrated DNA droplets could be injected with an inkjet injector for microchannel array electrophoresis and attained high throughput analysis of biomolecules. This injection method greatly reduced both analysis time and sample amount, compared with a conventional microchip electrophoresis method, and allowed high parallelization of a microchannel array on a small substrate. Since we do not need to use complicated electric programs or microchannel design, our injection method should facilitate omics analyses and contribute to high performance clinical assays.

  5. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device.

  6. Capillary array electrophoresis with confocal fluorescence rotary scanner.

    PubMed

    Wang, Jun; Sun, Guangming; Bai, Jiling; Wang, Li

    2003-12-01

    A capillary array electrophoresis system with a rotary confocal fluorescence scanner is reported. A high speed direct current rotary motor, combined with a rotary encoder and a reflection mirror, has been designed to direct the excitation laser beam precisely to a round array of capillaries which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orientate the position of each capillary and its output signal triggers the data acquisition system to record the fluorescence signal corresponding to each capillary. Separation of enantiomers of glutamic acid, methionine and tryptophan with different additives are demonstrated by this system. The experimental results indicate that this setup can be used to optimize separation methods for capillary electrophoresis as quickly as possible.

  7. A microsystem of low-voltage-driven electrophoresis on microchip with array electrode pairs for the separation of amino acids.

    PubMed

    Xu, Yi; Hu, Xiaoguo; Liang, Jing; Sun, Jianxin; Gu, Wenwen; Zhao, Tianming; Wen, Zhiyu

    2009-08-01

    In this paper, a new approach for the separation of amino acids on the electrophoresis chip-based low-voltage-driven electrophoresis was reported in detail. This low-voltage-driven electrophoresis process could be realized by powering directly the arrayed electrode pairs with low direct current (DC) voltage to generate a moving electric field along the separation microchannel, which could maintain enough electric field strength for electrophoresis. The proposed microfluidic electrophoresis chip was bonded directly with silicon-on-insulator (SOI) substrate and polydimethylsiloxane (PDMS) cover plate at room temperature. The microfluidic channels and the arrayed electrodes were etched on SOI wafer by silicon microelectromechanical system technology. A specially integrated circuit was proposed to power a 30-60-V DC voltage to particular sets of these electrode pairs in a controlled sequence such that the moving electric field could be formed, and the low-voltage-driven electrophoresis could be realized in the microchannel. In the experiments, with 10(-4) mol/L phenylalanine and lysine as analytes, the separation of amino acids on the low-voltage-driven electrophoresis microchip was conducted by homemade integrated control circuit; a method for separating amino acids was well established. It was also shown that the phenylalanine and lysine mixture was effectively separated in less than 7 min and with a resolution of 2.0. To the best of our knowledge, the low-voltage-driven microchip electrophoresis device could be of potential prospective in the fields of integrated and miniaturized biochemical analysis system.

  8. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    PubMed

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  9. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    SciTech Connect

    Huang, X.C.; Quesada, M.A.; Mathies, R.A.

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  10. Multi-Channel Capacitive Sensor Arrays.

    PubMed

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-25

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  11. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  12. A prototypic system of parallel electrophoresis in multiple capillaries coupled with microwell arrays.

    PubMed

    Su, Jing; Ren, Kangning; Dai, Wen; Zhao, Yihua; Zhou, Jianhua; Wu, Hongkai

    2011-11-01

    We present a microfluidic system that can be directly coupled with microwell array and perform parallel electrophoresis in multiple capillaries simultaneously. The system is based on an array of glass capillaries, fixed in a polydimethylsiloxane (PDMS) microfluidic scaffold, with one end open for interfacing with microwells. In this capillary array, every two adjacent capillaries act as a pair to be coupled with one microwell; samples in the microwells are introduced and separated by simply applying voltage between two electrodes that are placed at the other ends of capillaries; thus no complicated circuit design is required. We evaluate the performance of this system and perform multiple CE with direct sample introduction from microwell array. Also with this system, we demonstrate the analysis of cellular contents of cells lysed in a microwell array. Our results show that this prototypic system is a promising platform for high-throughput analysis of samples in microwell arrays.

  13. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  14. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  15. Channel capacity of an array system for Gaussian channels with applications to combining and noise cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  16. Large Array Channel Capacity in the Presence of Interference

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2006-01-01

    We develop a model for a large array ground receiver system for use in deep-space communications, and analyze the resulting array channel capacity. The model includes effects of array geometry, time-dependent spacecraft orbital trajectory, point and extended interference sources, and elevation-dependent noise and tropospheric channel variations. Channel capacity is expressed as the ratio of determinants of covariance matrices characterizing source, interference, and additive noise, and then reduced to a simpler quadratic form more amenable to analysis and numerical computation. This formulation facilitates inclusion of array and channel characteristics into the model, as well as comparison of optimal, suboptimal, and equivalent single antenna configurations on achievable throughput. Realistic examples of ground array channel capacity calculations are presented, demonstrating the impact of array geometry, planetary interference sources, and array combining algorithm design upon the achievable data throughput.

  17. Optimization of capillary array electrophoresis single-strand conformation polymorphism analysis for routine molecular diagnostics.

    PubMed

    Jespersgaard, Cathrine; Larsen, Lars Allan; Baba, Shingo; Kukita, Yoji; Tahira, Tomoko; Christiansen, Michael; Vuust, Jens; Hayashi, Kenshi; Andersen, Paal Skytt

    2006-10-01

    Mutation screening is widely used for molecular diagnostics of inherited disorders. Furthermore, it is anticipated that the present and future identification of genetic risk factors for complex disorders will increase the need for high-throughput mutation screening technologies. Capillary array electrophoresis (CAE) SSCP analysis is a low-cost, automated method with a high throughput and high reproducibility. Thus, the method fulfills many of the demands to be met for application in routine molecular diagnostics. However, the need for performing the electrophoresis at three temperatures between 18 degrees C and 35 degrees C for achievement of high sensitivity is a disadvantage of the method. Using a panel of 185 mutant samples, we have analyzed the effect of sample purification, sample medium and separation matrix on the sensitivity of CAE-SSCP analysis to optimize the method for molecular diagnostic use. We observed different effects from sample purification and sample medium at different electrophoresis temperatures, probably reflecting the complex interplay between sequence composition, electrophoresis conditions and sensitivity in SSCP analysis. The effect on assay sensitivity from three different polymers was tested using a single electrophoresis temperature of 27 degrees C. The data suggest that a sensitivity of 98-99% can be obtained using a 10% long chain poly-N,N-dimethylacrylamide polymer.

  18. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat

    PubMed Central

    Gunasekara, Dulan B.; Hulvey, Matthew K.; Lunte, Susan M.

    2012-01-01

    The combination of microchip electrophoresis (ME) with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection (ME-EC) with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (TTAB, as a buffer modifier) for the separation of nitrite (NO2-), glutathione (GSH), ascorbic acid (AA), and tyrosine (Tyr). A half-wave potential (E½) shift of approximately negative 500 mV was observed for NO2- and H2O2 standards in the in-channel configuration compared to end channel. Higher separation efficiencies were observed for both NO2- and H2O2 with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described. PMID:21437918

  19. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat.

    PubMed

    Gunasekara, Dulan B; Hulvey, Matthew K; Lunte, Susan M

    2011-04-01

    The combination of microchip electrophoresis with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (as a buffer modifier) for the separation of nitrite (NO₂⁻), glutathione, ascorbic acid, and tyrosine. A half-wave potential shift of approximately negative 500 mV was observed for NO₂⁻ and H₂O₂ standards in the in-channel configuration compared to end-channel. Higher separation efficiencies were observed for both NO₂⁻ and H₂O₂ with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described.

  20. Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection.

    PubMed

    Larsen, Lars Allan; Jespersgaard, Cathrine; Andersen, Paal Skytt

    2007-01-01

    This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.

  1. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.

    PubMed

    Greenspoon, Susan A; Yeung, Stephanie H I; Johnson, Kelly R; Chu, Wai K; Rhee, Han N; McGuckian, Amy B; Crouse, Cecelia A; Chiesl, Thomas N; Barron, Annelise E; Scherer, James R; Ban, Jeffrey D; Mathies, Richard A

    2008-07-01

    Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.

  2. Integrated sample cleanup and microchip capillary array electrophoresis for high-performance forensic STR profiling.

    PubMed

    Liu, Peng; Greenspoon, Susan A; Yeung, Stephanie Hi; Scherer, James R; Mathies, Richard A

    2012-01-01

    Microfluidics has the potential to significantly improve the speed, throughput, and cost performance of electrophoretic short tandem repeat (STR) analysis by translating the process into a miniaturized and integrated format. Current STR analysis bypasses the post-PCR sample cleanup step in order to save time and cost, resulting in poor injection efficiency, bias against larger loci, and delicate injection timing controls. Here we describe the operation of an integrated high-throughput sample cleanup and capillary array electrophoresis microsystem that employs a streptavidin capture gel chemistry coupled to a simple direct-injection geometry for simultaneously analyzing 12 STR samples in less than 30 min with >10-fold improved sensitivity.

  3. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    SciTech Connect

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  4. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  5. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    PubMed Central

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-01-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved. PMID:27230468

  6. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-05-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved.

  7. Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis.

    PubMed

    Scherer, J R; Kheterpal, I; Radhakrishnan, A; Ja, W W; Mathies, R A

    1999-06-01

    We have constructed a rotary confocal fluorescence scanner and capillary array electrophoresis system that is designed to analyze over 1000 DNA sequencing or fragment sizing separations in parallel. Capillaries are arranged around the surface of a cylinder and a rotating objective in the middle of the cylinder excites and collects fluorescence from labeled DNA fragments as they pass the capillary detection window. The capillaries are pressure-filled with a replaceable matrix and the samples are electrokinetically injected in parallel from a stainless steel microtiter plate at the cathode end. We demonstrate that the instrument is capable of producing four-color data from all capillaries at a scan rate of 4 Hz (corresponding to a linear scan velocity of 121 cm/s). M13 sequencing data were obtained using a 128 capillary array mounted in half of the first quadrant of the scanner. In this initial run, read lengths greater than 500 bases were obtained in over 60% of the capillaries.

  8. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  9. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  10. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays.

    PubMed

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-06

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  11. Microplate array diagonal gel electrophoresis for cohort studies of microsatellite loci.

    PubMed

    Chen, Xiao-he; O'Dell, Sandra D; Day, Ian N M

    2002-05-01

    After PCR amplification, we have achieved precise sizing of trinucleotide and tetranucleotide microsatellite alleles on 96-well open-faced polyacrylamide microplate array diagonal gel electrophoresis (MADGE) gels: two tetranucleotide repeats, HUMTHOI (five alleles 248-263 bp) and DYS390 (eight alleles 200-228 bp), and DYS392, a trinucleotide repeat (eight alleles 210-231 bp). A gel matrix of Duracryl, a high mechanical strength polyacrylamide derivative, and appropriate ionic conditions provide the 1.3%-1.5% band resolution required. No end-labeling of primers is needed, as the sensitive Vistra Green intercalating dye is used for the visualization of bands. Co-run markers bracketing the PCR fragments ensure accurate sizing without inter-lane variability. Electrophoresis of multiple gels in a thermostatically controlled tank allows up to 1000 samples to be run in 90 min. Gel images were analyzed using a Fluorlmager 595 fluorescent scanning system, and alleles were identified using Phoretix software for band migration measurement and Microsoft Excel to compute fragment sizes. Estimated sizes were interpolated precisely to achieve accurate binning. Microsatellite-MADGE represents a utilitarian methodfor high-throughput genotyping in cohort studies, using standard laboratory equipment.

  12. Single strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the reliability of capillary array electrophoresis-SSCP to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160 bp, 245 pb and 437 bp) that differed by one or more nucleotides in sequen...

  13. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  14. Curved-channel microchannel array plates. [photoelectric detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The microchannel array plate (MCP) is a photoelectric detector with an imaging capability comparable to that of a photographic plate. Recently MCPs in which the channels are curved to inhibit ion feedback have become available. These devices represent a major advance in MCP technology, since a single curved-channel MCP can be operated stably at high gain in the pulse-counting mode without any of the problems of stability of response or short lifetime reported for 'chevron' MCP detectors. Attention is given to the mode of operation of channel electron multipliers (CEM) and MCP, curved-channel MCP, test procedures, and performance characteristics. The accumulated test data show that the fundamental operating characteristics of the curved-channel MCP are directly related to those for the CEM.

  15. Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection.

    PubMed

    Bowen, Amanda L; Martin, R Scott

    2009-10-01

    Although it has been shown that microchip electrophoresis (MCE) with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in the MCE has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for MCE and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both the resolution and the number of theoretical plates for these analytes. The use of a bilayer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multianalyte separation and an average of 28 700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neurotransmitters from a confluent layer of PC 12 cells.

  16. Stacked, Filtered Multi-Channel X-Ray Diode Array

    SciTech Connect

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark; Compton, Steven; Jacoby, Barry

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  17. 64-Channel, 5 GSPS ADC Module with Switched Capacitor Arrays

    NASA Astrophysics Data System (ADS)

    Bogdan, M.; Huan, H.; Wakely, S.

    2013-08-01

    We present a 5 GSPS ADC/Data processing module with up to 64 channels and 2048 cells per channel, designed for fast-sampling, front-end applications. This is a 6U VME board that incorporates 16 pieces DRS4 (http://drs.web.psi.ch, [1]) Switched Capacitor Array chips developed at Paul Scherrer Institut, Switzerland. The 16 DRS4 chips are grouped in four independent input blocks. A block, with a geometric size of 43×120 mm, has four pieces DRS4 chips, four pieces AD9222 converters, and one Altera Stratix III FPGA. Each DRS4 chip has eight channels and each channel has 1024 sampling cells, which can be daisy-chained for larger sampling depth. This feature allows for a great level of flexibility in choosing the number of channels relative to capacitor array size, for a particular application. The first prototype Printed Circuit Board (PCB) was designed for a sampling depth of 2048 cells and 16 channels in a 42 mm wide block, i.e. 64 channels for the 6U VME board. This compact form factor allows for these input blocks to be used as front-end electronics for the Cherenkov Telescope Array (CTA) cameras. In this VME board, the four blocks are fully independent and can run each in different modes without any conflict. A global FPGA, also a Stratix III device, provides control and interfacing. The module can run with a local oscillator or with input system clocks in the range of 20-550 MHz. The front panel is fitted with a 2.5 Gbps serial link transceiver.

  18. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips

    SciTech Connect

    Woolley, A.T.; Sensabaugh, G.F.; Mathies, R.A.

    1997-06-01

    Capillary array electrophoresis (CAE) chips have been designed and fabricated with the capacity to rapidly (<160 s) analyze 12 different samples in parallel. Detection of all lanes with 0.3 s temporal resolution was achieved using a laser-excited confocal-fluorescence scanner. The operation and capabilities of these CAE microdevices were first determined by performing electrophoretic separations of pBR322 MspI DNA samples. Genotyping of HLA-H, a candidate gene for the diagnosis of hereditary hemochromatosis, was then performed to demonstrate the rapid analysis of biologically relevant samples. Two-color multiplex fluorescence detection of HLA-H genotypes was accomplished by prelabeling the standard pBR322 MspI DNA ladder with a red emitting bisintercalation dye (butyl TOTIN) and on-column labeling of the HLA-H DNA with thiazole orange. This work establishes the feasibility of using CAE chips for high-speed, high-throughput genotyping. 44 refs., 7 figs.

  19. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.

    PubMed

    Liang, Ruping; Hu, Pengfei; Gan, Guihua; Qiu, Jianding

    2009-03-15

    In this paper, deoxyribonucleic acid (DNA) was employed to construct a functional film on the PDMS microfluidic channel surface and apply to perform electrophoresis coupled with electrochemical detection. The functional film was formed by sequentially immobilizing chitosan and DNA to the PDMS microfluidic channel surface using the layer-by-layer assembly. The polysaccharide backbone of chitosan can be strongly adsorbed onto the hydrophobic PDMS surface through electrostatic interaction in the acidic media, meanwhile, chitosan contains one protonatable functional moiety resulting in a strong electrostatic interactions between the surface amine group of chitosan and the charged phosphate backbone of DNA at low pH, which generates a hydrophilic microchannel surface and reveals perfect resistance to nonspecific adsorption of analytes. Aminophenol isomers (p-, o-, and m-aminophenol) served as a separation model to evaluate the effect of the functional PDMS microfluidic chips. The results clearly showed that these analytes were efficiently separated within 60s in a 3.7 cm long separation channel and successfully detected on the modified microchip coupled with in-channel amperometric detection mode at a single carbon fiber electrode. The theoretical plate numbers were 74,021, 92,658 and 60,552 Nm(-1) at the separation voltage of 900 V with the detection limits of 1.6, 4.7 and 2.5 microM (S/N=3) for p-, o-, and m-aminophenol, respectively. In addition, this report offered an effective means for preparing hydrophilic and biocompatible PDMS microchannel surface, which would facilitate the use of microfluidic devices for more widespread applications.

  20. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-08-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  1. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions.

    PubMed

    Opekar, František; Tůma, Petr

    2016-05-13

    An original electrophoresis apparatus for simultaneous rapid determination of cations and anions has been designed and tested. The separation part of the apparatus consists of two identical fused-silica capillaries, each with a length of 10.5cm and inner diameter of 25μm. The injection space is formed by the crossing of four channels in a plexiglass cross-piece. The capillaries pass through two opposing channels and their injection ends are located opposite one another at a distance of approx. 0.5mm in the centre of the crossing point. The exit ends of the capillaries are placed in vessels containing the background electrolyte in which are immersed the electrodes of a high-voltage source. Contactless conductivity detectors with semi-cylindrical electrodes are located 2cm from the exit ends of the capillaries. The injection part of the apparatus consists of two piezoelectric micro-pumps bringing the solution through another channel in the cross-piece to the injection ends of the capillary. During the injection, the sample is brought through one of them and is injected electrokinetically for a defined time. Then the sample zone is forced out of the injection space by a stream of background electrolyte from the second micro-pump. The timing of the injection process is computer-controlled. Thus the equipment can be considered to constitute electrophoresis in one capillary with injection into its centre. The use of short capillaries and miniature micro-pumps without other mechanical components enabled the construction of the apparatus on a board with dimensions of 20×25cm. The proposed equipment was used to test simultaneous separation of a mixture of cations and anions, NH4(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), Cl(-), NO3(-), SO4(2-), ClO3(-) and F(-), in BGE with composition 500mM HAc+20mM Tris+2mM 18-crown-6 (pH 3.3). Baseline separation of all the components was achieved in time less than 1min. Quantification of the content of nitrate nitrogen (determined as

  2. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  3. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    SciTech Connect

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

  4. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations

    PubMed Central

    Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.

    2015-01-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669

  5. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations.

    PubMed

    Meneses, Diogenes; Gunasekara, Dulan B; Pichetsurnthorn, Pann; da Silva, José A F; de Abreu, Fabiane C; Lunte, Susan M

    2015-02-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration.

  6. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species.

    PubMed

    Mai, Thanh Duc; Le, Minh Duc; Sáiz, Jorge; Duong, Hong Anh; Koenka, Israel Joel; Pham, Hung Viet; Hauser, Peter C

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices.

  7. A 64-channel 3T array coil for accelerated brain MRI

    PubMed Central

    Keil, Boris; Blau, James N.; Biber, Stephan; Hoecht, Philipp; Tountcheva, Veneta; Setsompop, Kawin; Triantafyllou, Christina; Wald, Lawrence L.

    2012-01-01

    A 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry in order to precisely isolate the benefit of the two-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shape curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use. Signal-to-noise ratio (SNR) and noise amplification (G-factor) for parallel imaging were quantitatively evaluated in human imaging and compared to a size and shape-matched 32-channel array coil. For unaccelerated imaging, the 64-channel array provided similar SNR in the brain center to the 32-channel array and 1.3-fold more SNR in the brain cortex. Reduced noise amplification during highly parallel imaging of the 64-channel array provided the ability to accelerate at approximately one unit higher at a given noise amplification compared to the sized-matched 32-channel array. For example, with a 4-fold acceleration rate, the central brain and cortical SNR of the 64-channel array was 1.2 and 1.4-fold higher, respectively, compared to the 32-channel array. The characteristics of the coil are demonstrated in accelerated brain imaging. PMID:22851312

  8. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  9. Stacked, filtered multi-channel X-ray diode array

    SciTech Connect

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  10. Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2014-01-01

    We used Brownian dynamics simulations to compare DNA separations in microfabricated post arrays containing either hexagonal or lamellar lattices. Contrary to intuition, dense hexagonal arrays with frequent DNA-post collisions do not yield the optimal separation. Rather, hexagonal arrays with pore sizes commensurate with the radius of gyration of the DNA lead to increased separation resolution due to a molecular-weight dependent collision probability that increases with molecular weight. However, when the hexagonal array is too sparse, this advantage is lost due to the low number of collisions. Lamellar lattices, such as the DNA nanofence, appear to be superior to a hexagonal array at the same post density, since the lamellar lattice combines regions for DNA relaxation with locally dense post regions for collisions. The relative advantages of different post array designs are explained in terms of the statistics for the number of collisions and the holdup time, providing guidelines for designing post arrays for separating long DNA. PMID:24132597

  11. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  12. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  13. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  14. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  15. Continuous-time random walk models of DNA electrophoresis in a post array: part I. Evaluation of existing models.

    PubMed

    Olson, Daniel W; Ou, Jia; Tian, Mingwei; Dorfman, Kevin D

    2011-02-01

    Several continuous-time random walk (CTRW) models exist to predict the dynamics of DNA in micropost arrays, but none of them quantitatively describes the separation seen in experiments or simulations. In Part I of this series, we examine the assumptions underlying these models by observing single molecules of λ DNA during electrophoresis in a regular, hexagonal array of oxidized silicon posts. Our analysis takes advantage of a combination of single-molecule videomicroscopy and previous Brownian dynamics simulations. Using a custom-tracking program, we automatically identify DNA-post collisions and thus study a large ensemble of events. Our results show that the hold-up time and the distance between collisions for consecutive collisions are uncorrelated. The distance between collisions is a random variable, but it can be smaller than the minimum value predicted by existing models of DNA transport in post arrays. The current CTRW models correctly predict the exponential decay in the probability density of the collision hold-up times, but they fail to account for the influence of finite-sized posts on short hold-up times. The shortcomings of the existing models identified here motivate the development of a new CTRW approach, which is presented in Part II of this series.

  16. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection.

    PubMed

    Wang, Yurong; Chen, Hengwu; He, Qiaohong; Soper, Steven A

    2008-05-01

    A fully integrated polycarbonate (PC) microchip for CE with end-channel electrochemical detection operated in an amperometric mode (CE-ED) has been developed. The on-chip integrated three-electrode system consisted of a gold working electrode, an Ag/AgCl reference electrode and a platinum counter electrode, which was fabricated by photo-directed electroless plating combined with electroplating. The working electrode was positioned against the separation channel exit to reduce post-channel band broadening. The electrophoresis high-voltage (HV) interference with the amperometric detection was assessed with respect to detection noise and potential shifts at various working-to-reference electrode spacing. It was observed that the electrophoresis HV interference caused by positioning the working electrode against the channel exit could be diminished by using an on-chip integrated reference electrode that was positioned in close proximity (100 microm) to the working electrode. The CE-ED microchip was demonstrated for the separation of model analytes, including dopamine (DA) and catechol (CA). Detection limits of 132 and 164 nM were achieved for DA and CA, respectively, and a theoretical plate number of 2.5x10(4)/m was obtained for DA. Relative standard deviations in peak heights observed for five runs of a standard solution containing the two analytes (0.1 mM for each) were 1.2 and 3.1% for DA and CA, respectively. The chip could be continuously used for more than 8 h without significant deterioration in analytical performance.

  17. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  18. Design and experimental verification of low-voltage two-dimensional CMOS electrophoresis platform with 32 × 32 sample/hold cell array

    NASA Astrophysics Data System (ADS)

    Yamaji, Yuuki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Electrophoresis is widely used in biomedical applications. However, conventional (centimeter-order) electrophoresis requires a high-voltage power supply, which is not suitable for point-of-care testing (POCT). Electrophoresis is driven by electric fields, and miniaturization (from the centimeter order to the micrometer order) is effective for low-voltage operation. A CMOS platform is a cost-competitive and promising candidate for miniaturization and enables the integration of biomolecule manipulation by electrophoresis and its electrochemical sensing. These features will contribute to the development of a biochemical analyzer called the micro-total analysis system (µ-TAS). To realize a truly portable electrophoresis system, we present the design and experimental verification of a low-voltage (<1 V), two-dimensional CMOS electrophoresis platform with 32 × 32 sample/hold cell array. Experimental results showed successful constant voltage outputs to each electrode. By miniaturizing the electrode structure to a 60 µm pitch, we achieved sufficient electric field strength even at low voltages.

  19. Receive Channel Architecture and Transmission System for Digital Array Radar

    DTIC Science & Technology

    2005-12-01

    to radar designers . The quadrature demodulation scheme and the basic transmit and receive architecture for a digital phased array antenna are also...Genetic algorithm design and testing of a random element 3- D 2.4 GHz phased array transmit antenna constructed of commercial RF microchips,” Master’s...December 2004. [5] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design , 2nd Edition, Wiley, New York, 1998. [6] R. C. Hansen, Phased Array

  20. Monolithically integrated 20-channel optical add/drop multiplexer subsystem with hybrid-integrated 40-channel photodetector array

    NASA Astrophysics Data System (ADS)

    Schumacher, Andreas B.; Krabe, Detlef; Dieckroeger, Jens; Spott, Thorsten; Kraeker, Tobias; Martins, Evely; Zavrsnik, Miha; Schneider, Hartmut W.; Baumann, Ingo

    2003-03-01

    We built a 20 channel, 200 GHz, fully reconfigurable optical add-/drop multiplexer with integrated variable optical attenuators and power monitor diodes. A single planar lightwave circuit chip contains demultiplexer, switch array, attenuators and multiplexers. It also serves as an "optical motherboard" for a hybrid, flip-chip assembly containing four 10-channel photo detector arrays. A thermal management concept which considers both microscopic and macroscopic aspects of the device was developed. The final device exhibits an insertion loss of 9 dB from "in"- to "through"-port, a 1 dB bandwidth of >50 GHz and switch extinction ratios in excess of 40 dB.

  1. A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography

    PubMed Central

    Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.

    2014-01-01

    Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699

  2. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  3. Spatiospectral and picosecond spatiotemporal properties of a broad area operating channeled-substrate-planar laser array

    NASA Technical Reports Server (NTRS)

    Yu, NU; Defreez, Richard K.; Bossert, David J.; Wilson, Geoffrey A.; Elliott, Richard A.

    1991-01-01

    Spatiospectral and spatiotemporal properties of an eight-element channeled-substrate-planar laser array are investigated in both CW and pulsed operating conditions. The closely spaced CSP array with strong optical coupling between array elements is characterized by a broad area laserlike operation determined by its spatial mode spectra. The spatiotemporal evolution of the near and far field exhibits complex dynamic behavior in the picosecond to nanosecond domain. Operating parameters for the laser device have been experimentally determined. These results provide important information for the evaluation of the dynamic behavior of coherent semiconductor laser arrays.

  4. Single-strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis.

    PubMed

    Kuhn, David N; Borrone, James; Meerow, Alan W; Motamayor, Juan C; Brown, J Steven; Schnell, Raymond J

    2005-01-01

    We investigated the reliability of capillary array electrophoresis-single strand conformation polymorphism (CAE-SSCP) to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160, 245 and 437 bp) that differed by one or more nucleotides in sequence were analyzed at four different temperatures (18 degrees C, 25 degrees C, 30 degrees C, and 35 degrees C). Mixtures of amplified fragments of either the intron interrupting the C-terminal WRKY domain of the Tc10 locus or the NBS domain of the TcRGH1 locus of Theobroma cacao were electroinjected into all 16 capillaries of an ABI 3100 Genetic Analyzer and analyzed three times at each temperature. Multiplexing of samples of different size range is possible, as intermediate and large fragments were analyzed simultaneously in these experiments. A statistical analysis of the means of the fragment mobilities demonstrated that single-stranded conformers of the fragments could be reliably identified by their mobility at all temperatures and size classes. The order of elution of fragments was not consistent over strands or temperatures for the intermediate and large fragments. If samples are only run once at a single temperature, small fragments could be identified from a single strand at a single temperature. A combination of data from both strands of a single run was needed to identify correctly all four of the intermediate fragments and no combination of data from strands or temperatures would allow the correct identification of two large fragments that differed by only a single single-nucleotide polymorphism (SNP) from a single run. Thus, to adequately assess alleles at a candidate gene locus using SSCP on a capillary array, fragments should be < or =250 bp, samples should be analyzed at two different temperatures between 18 degrees C and 30 degrees C to reduce the variability introduced by the capillaries, data should be combined

  5. A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging

    PubMed Central

    Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977

  6. A 22-channel receive array with Helmholtz transmit coil for anesthetized macaque MRI at 3 T.

    PubMed

    Janssens, Thomas; Keil, Boris; Serano, Peter; Mareyam, Azma; McNab, Jennifer A; Wald, Lawrence L; Vanduffel, Wim

    2013-11-01

    The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22-channel receive coil array was constructed specifically for rapid high-resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal-to-noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single- and four-channel receive coils routinely used for macaque MRI. The 22-channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single- or four-channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single- and four-channel coils. Finally, the performance of the array for functional, anatomical and diffusion-weighted imaging was evaluated. For all three modalities, the use of the 22-channel array allowed for high-resolution and accelerated image acquisition.

  7. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  8. Intermediate color interpolation for color filter array containing the white channel

    NASA Astrophysics Data System (ADS)

    Kim, Jonghyun; Park, Sang Wook; Kang, Moon Gi

    2015-03-01

    Recently, a color filter array sensor with the white channel has been developed. This color filter array differs from the Bayer CFA, which is composed of red, green and blue channels. Since the white channel shows high sensitivity through broad spectral bands and a high light sensitivity, it presents many advantages. However, various color interpolation method for the Bayer CFA cannot be utilized for CFA pattern that contains the white channel directly. In this paper, a method for generating a quincuncial pattern is proposed for the CFA pattern. By generating an intermediate quincuncial pattern, various color interpolation algorithms can be applied to it. Experimental results are shown in comparison with the conventional method in terms of PSNR measurements.

  9. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  10. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  11. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  12. Analysis of Analog Photonic Links Employing Multiple-Channel (Arrayed) Receivers

    DTIC Science & Technology

    2008-11-07

    with an optical amplifier to boost the received optical signal level. While analog links utilizing single-channel and balanced receivers have been...utilizing single-channel and balanced receivers have been thoroughly analyzed, arrayed receiver architec- tures have received far less attention. In...output optical modulators and balanced -detection [8, 9] are frequently employed. This technique has been utilized alone to achieve the first multi

  13. Addressing a vascular endothelium array with blood components using underlying microfluidic channels.

    PubMed

    Genes, Luiza I; V Tolan, Nicole; Hulvey, Matthew K; Martin, R Scott; Spence, Dana M

    2007-10-01

    Here, we show that an array of endothelial cells, addressable by an underlying microfluidic network of channels containing red blood cells, can be employed as an in vitro model of in vivo circulation to monitor cellular communication between different cell types in the drug discovery process.

  14. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  15. Arrays of flow channels with heat transfer embedded in conducting walls

    SciTech Connect

    Bejan, A.; Almerbati, A.; Lorente, S.; Sabau, A. S.; Klett, J. W.

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements, on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.

  16. Arrays of flow channels with heat transfer embedded in conducting walls

    DOE PAGES

    Bejan, A.; Almerbati, A.; Lorente, S.; ...

    2016-04-20

    Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less

  17. An implanted 8-channel array coil for high-resolution macaque MRI at 3T

    PubMed Central

    Janssens, T.; Keil, B.; Farivar, R.; McNab, J.A.; Polimeni, J. R.; Gerits, A.; Arsenault, J.T.; Wald, L. L.; Vanduffel, W.

    2012-01-01

    An 8-channel receive coil array was constructed and implanted adjacent to the skull in a male rhesus monkey in order to improve the sensitivity of (functional) brain imaging. The permanent implant was part of an acrylic headpost assembly and only the coil element loop wires were implanted. The tuning, matching, and preamplifier circuitry was connected via a removable external assembly. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging were compared to a single-, 4-, and 8-channel external receive-only coil routinely used for macaque fMRI. In vivo measurements showed significantly improved SNR within the brain for the implanted versus the external coils. Within a region-of-interest covering the cerebral cortex, we observed a 5.4-, 3.6-fold, and 3.4-fold increase in SNR compared to the external single-, 4-, and 8-channel coil, respectively. In the center of the brain, the implanted array maintained a 2.4×, 2.5×, and 2.1× higher SNR, respectively compared to the external coils. The array performance was evaluated for anatomical, diffusion tensor and functional brain imaging. This study suggests that a stable implanted phased-array coil can be used in macaque MRI to substantially increase the spatial resolution for anatomical, diffusion tensor, and functional imaging. PMID:22609793

  18. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    PubMed Central

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-01-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics. PMID:27378163

  19. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-07-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics.

  20. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    NASA Technical Reports Server (NTRS)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.

    2013-01-01

    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  1. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    SciTech Connect

    Xue, Gang

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  2. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    PubMed

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  3. Development of a 64 channel ultrasonic high frequency linear array imaging system

    PubMed Central

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  4. Modeling of systems wireless data transmission based on antenna arrays in underwater acoustic channels

    NASA Astrophysics Data System (ADS)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2016-05-01

    In this paper the system of wireless transmission of data based on the use an adaptive algorithm for processing spatial-time signals using antenna arrays is presented. In the transmission of data in a multipath propagation of signals have been used such technologies as a MIMO (Multiple input-Multiple output) and OFDM (Orthogonal frequency division multiplexing) to solve the problem of increasing the maximum speed of data transfer and the low probability of errors. The adaptation process is based on the formation of the directional pattern equivalent to the amplitude antenna array in the signal arrival direction with the highest capacity on one of propagation paths in the channel. The simulation results showed that the use of an adaptive algorithm on the reception side can significantly reduce the probability of bit errors, thus to increase throughput in an underwater acoustic data channel.

  5. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    PubMed

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  6. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  7. Eight channel transmit array volume coil using on-coil radiofrequency current sources

    PubMed Central

    Kurpad, Krishna N.; Boskamp, Eddy B.

    2014-01-01

    Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418

  8. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.

    PubMed

    Divett, T; Vennell, R; Stevens, C

    2013-02-28

    At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.

  9. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  10. 3D probe array integrated with a front-end 100-channel neural recording ASIC

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Yuan; Yao, Lei; Tan, Kwan Ling; Lim, Ruiqi; Li, Peng; Chen, Weiguo

    2014-12-01

    Brain-machine interface technology can improve the lives of spinal cord injury victims and amputees. A neural interface system, consisting of a 3D probe array and a custom low-power (1 mW) 100-channel (100-ch) neural recording application-specific integrated circuit (ASIC), was designed and implemented to monitor neural activity. In this study, a microassembly 3D probe array method using a novel lead transfer technique was proposed to overcome the bonding plane mismatch encountered during orthogonal assembly. The proposed lead transfer technique can be completed using standard micromachining and packaging processes. The ASIC can be stacking-integrated with the probe array, minimizing the form factor of the assembled module. To minimize trauma to brain cells, the profile of the integrated probe array was controlled within 730 μm. The average impedance of the assembled probe was approximately 0.55 MΩ at 1 kHz. To verify the functionality of the integrated neural probe array, bench-top signal acquisitions were performed and discussed.

  11. Dual-Channel Extraordinary Ultraviolet Transmission through an Aluminum Nanohole Array.

    PubMed

    Hu, Jinlian; Shen, Maozhen; Li, Zhigang; Li, Xinhua; Liu, Guangqiang; Kan, Cai-Xia; Wang, Xiangdong; Li, Yue

    2017-03-30

    Ultraviolet (UV) surface plasmon has distinct applications in UV filter, high density optical storage, spectral enhancement, optical detector and nanolithography, which are closely related to the plasmon-induced extraordinary optical transmission (EOT). However, such EOT in the UV region has not been detailedly researched. We report the UV transmission of based on the theoretical research using finite-difference time-domain (FDTD) method, by modulating Al thickness, hole size, array periodicity, and SiO2 overlayer thickness. It is notable that we can obtain dual-channel UV transmission peaks with excellent qualities such as high transmissivity, zero cross-talk, narrow bandwidth and perfect symmetry, by optimizing parameters. The UV transmission peaks have been discovered to non-monotonously shift with increasing hole size. Though array periodicity has great influence on the transmission peak position, the peak energy in the UV region is much less than that value predicted by the well known periodicity-related surface plasmon polariton (SPP) wavelength equation; the energy discrepancy in UV region can reach above 20%, which is much larger than that value (typically 4%) in the visible-infrared region. Further, SiO2 overlayer may significantly modify the transmission properties. The Al nanohole arrays have also been found to exhibit distinct multi-band UV electric field enhancement properties with special interface effect and size effect. Such extraordinary dual-channel UV transmission with zero cross-talk, based on a very simple Al nanohole array, has promising uses in dual-channel UV filter, high density optical storage, and plasmon-enhanced fluorescence/Raman spectroscopy, since which generally involve two wavebands (writing/reading storage or exciting/emission wavelengths). This study would be expected to expand our fundamental understanding of the UV EOT phenomenon, and provide references for experimental research and application of deep-UV and near-UV involved

  12. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis

    PubMed Central

    Yu, Ming; Wang, Qingsong; Patterson, James E.; Woolley, Adam T.

    2011-01-01

    It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to 8 samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to 8 samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid and high-throughput analysis. PMID:21449615

  13. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis.

    PubMed

    Yu, Ming; Wang, Qingsong; Patterson, James E; Woolley, Adam T

    2011-05-01

    It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to eight samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to eight samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid, and high-throughput analysis.

  14. Application of multi-channel photoelastic imaging technology in array type ultrasonic nondestructive testing

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-zhong; Bi, Chao

    2015-08-01

    With the rapid development of modern nondestructive testing technologies, ultrasonic phased array and Ultrasonic array testing technology has been used widely, at the same time the propagation process of ultrasonic in the material becomes more and more complex. In order to make the ultrasonic propagation path become visible and researchers can observe the acoustic field directly, considering the properties of the ultrasonic as a stress wave, according to the theory of polarized light interference, a multi-channel dynamic photoelastic imaging system is developed successfully. The system can generate many kinds of focusing ultrasonic fields in optical specimen by controlling the ultrasonic transmission delay time of each equipment channel, and the system has the ability to simulate the acoustic field's focusing process of the ultrasonic phased array. The image shot by CCD camera reflects the propagation process of the acoustic field in the specimen, and the dynamic video is formed under control of the timing circuit, and the system has the ability to save the captured image in the computer.

  15. MUSIC: An 8 channel readout ASIC for SiPM arrays

    NASA Astrophysics Data System (ADS)

    Gómez, Sergio; Gascón, David; Fernández, Gerard; Sanuy, Andreu; Mauricio, Joan; Graciani, Ricardo; Sanchez, David

    2016-04-01

    This paper presents an 8 channel ASIC for SiPM anode readout based on a novel low input impedance current conveyor (under patent1). This Multiple Use SiPM Integrated Circuit (MUSIC) has been designed to serve several purposes, including, for instance, the readout of SiPM arrays for some of the Cherenkov Telescope Array (CTA) cameras. The current division scheme at the very front end part of the circuit splits the input current into differently scaled copies which are connected to independent current mirrors. The circuit contains a tunable pole zero cancellation of the SiPM recovery time constant to deal with sensors from different manufacturers. Decay times up to 100 ns are supported covering most of the available SiPM devices in the market. MUSIC offers three main features: (1) differential output of the sum of the individual input channels; (2) 8 individual single ended analog outputs and; (3) 8 individual binary outputs. The digital outputs encode the amount of collected charge in the duration of the digital signal using a time over threshold technique. For each individual channel, the user must select the analog or digital output. Each functionality, the signal sum and the 8 A/D outputs, include a selectable dual-gain configuration. Moreover, the signal sum implements dual-gain output providing a 15 bit dynamic range. Full die simulation results of the MUSIC designed using AMS 0.35 µm SiGe technology are presented: total die size of 9 mm2, 500 MHz bandwidth for channel sum and 150 MHz bandwidth for A/D channels, low input impedance (≍32 Ω), single photon output pulse width at half maximum (FWHM) between 5 and 10 ns and with a power consumption of ≍ 30 mW/ch plus ≍ 200 mW for the 8 ch sum. Encapsulated prototype samples of the MUSIC are expected by March 2016.

  16. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  17. An economical multi-channel cortical electrode array for extended periods of recording during behavior.

    PubMed

    Rennaker, R L; Ruyle, A M; Street, S E; Sloan, A M

    2005-03-15

    We report the development of a low-cost chronic multi-channel microwire electrode array for recording multi-unit cortical responses in behaving rodents. The design was motivated by three issues. First, standard connector systems tended to disconnect from the head-stage during extended periods of behavior. Disconnections resulted in a loss of data and an interruption of the animals' behavior. Second, the use of low insertion force connectors with locking mechanisms was cost prohibitive. Finally, connecting the head-stage to a skull-mounted connector on an unrestrained animal was highly stressful for both the researcher and animal. The design developed uses a high insertion force DIP socket separated from the skullcap that prevents inadvertent disconnects, is inexpensive, and simplifies connecting unrestrained rodents. Electrodes were implanted in layer IV of primary auditory cortex in 11 Sprague-Dawley rats. Performance of the electrodes was monitored for 6 weeks. None of the behaving animals became disconnected from the recording system during recording sessions lasting 6 h. The mean signal-to-noise ratio on all channels (154) following surgery was 3.9+/-0.2. Of the 154 channels implanted, 130 exhibited driven activity following surgery. Forty percent of the arrays continued to exhibit driven neural activity at 6 weeks.

  18. Second-order capillary electrophoresis diode array detector data modeled with the Tucker3 algorithm: A novel strategy for Argentinean white wine discrimination respect to grape variety.

    PubMed

    Azcarate, Silvana M; de Araújo Gomes, Adriano; Vera-Candioti, Luciana; Cesar Ugulino de Araújo, Mário; Camiña, José M; Goicoechea, Héctor C

    2016-07-01

    Data obtained by capillary electrophoresis with diode array detection (CE-DAD) were modeled with the purpose to discriminate Argentinean white wines samples produced from three grape varieties (Torrontés, Chardonnay, and Sauvignon blanc). Thirty-eight samples of commercial white wine from four wine-producing provinces of Argentina (Mendoza, San Juan, Salta, and Rio Negro) were analyzed. CE-DAD matrices with dimensions of 421 elution times (from 1.17 to 7.39 minutes) × 71 wavelengths (from 227 to 367 nm) were joined in a three way data array and decomposed by Tucker3 method under non-negativity constraint, employing 18, 18 and six factors in the modes 1, 2 and 3, respectively. Using the scores of Tucker model, it was possible to discriminate samples of Argentinean white wine by linear discriminant analysis and Kernel linear discriminant analysis. Core element analysis of the Tucker3 model allows identifying the loading profiles in spectral mode related to Argentinean white wine samples.

  19. Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis.

    PubMed

    Yang, W C; Yu, A M; Chen, H Y

    2001-01-05

    A copper microparticle-modified carbon fiber microdisk array electrode was fabricated and employed in capillary electrophoresis for the simultaneous determination of the five aminoglycoside antibiotics (AGs) including netilmicin, tobramycin, lincomycin, kanamycin and amikacin. The array electrode exhibited high catalytic activity for AGs, good reproducibility and stability. Under the optimum separation conditions (separation voltage of 6.2 kV, electrophoretic medium of 125 mM NaOH), the five AGs above were baseline separated within 20 min. At a working electrode potential of 0.7 V (versus saturated calomel electrode), the calibration curves were linear over two orders of magnitude of concentration, and the detection limits (SIN=3) were below 2 microM except for lincomycin (6.7 microM). The developed method was successfully employed for the simultaneous determination of the five AGs studied in pharmaceutical injections. The feasibility of this method for the simultaneous determination of lincomycin, kanamycin and amikacin in urine sample was also demonstrated.

  20. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2015-01-01

    In this study, we designed and developed an interdigitated capacitor (IDC)-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP) and tetrahydrofuran (THF) to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE) via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl), saltiness (NaCl), sweetness (glucose) and bitterness (quinine-HCl), were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA) was applied to

  1. Electrophoresis '88

    SciTech Connect

    Schafer-Nielsen, C.

    1988-01-01

    This book contains the proceedings of the Sixth Meeting of the International Electrophoresis Society, held in July 1988 in Copenhagen. Papers are grouped into seven sections: Theoretical Developments, Isoelectric Focusing, Free-Flow Electrophoresis, Gel and Staining Techniques, Automated Densitometry, and Electrotransfer/Electrophoresis of DNA. The references date from the 1960s to the present. An author index is included.

  2. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    SciTech Connect

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W.; Na, J.; Kim, G. T.; Lee, B. J.; Kim, J. J.; Jeong, G. H.; Lee, I.; Kim, K. S.

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  3. A 64-channel readout ASIC for nanowire biosensor array with electrical calibration scheme.

    PubMed

    Chai, Kevin T C; Choe, Kunil; Bernal, Olivier D; Gopalakrishnan, Pradeep K; Zhang, Guo-Jun; Kang, Tae Goo; Je, Minkyu

    2010-01-01

    A 1.8-mW, 18.5-mm(2) 64-channel current readout ASIC was implemented in 0.18-µm CMOS together with a new calibration scheme for silicon nanowire biosensor arrays. The ASIC consists of 64 channels of dedicated readout and conditioning circuits which incorporate correlated double sampling scheme to reduce the effect of 1/f noise and offset from the analog front-end. The ASIC provides a 10-bit digital output with a sampling rate of 300 S/s whilst achieving a minimum resolution of 7 pA(rms). A new electrical calibration method was introduced to mitigate the issue of large variations in the nano-scale sensor device parameters and optimize the sensor sensitivity. The experimental results show that the proposed calibration technique improved the sensitivity by 2 to 10 times and reduced the variation between dataset by 9 times.

  4. A charge coupled device array detector for single-wavelength and multiwavelength ultraviolet absorbance in capillary electrophoresis.

    PubMed

    Bergström, E T; Goodall, D M; Pokrić, B; Allinson, N M

    1999-10-01

    A fundamental limitation to the use of single-point absorbance detection for capillary electrophoresis is irradiance, since it is not possible to create an image at the detection point on capillary that is brighter than the light source. This limitation may be overcome by illuminating a length of the capillary using a fiber-optic bundle and using a charge coupled device (CCD) camera that can image the full length of the illuminated zone. The present paper describes design and development of a CCD detector for UV absorbance that can be used in both multiwavelength and single-wavelength modes. The CCD camera images analyte peaks in the capillary dimension, together with wavelength-resolved absorbance in the dimension perpendicular to the capillary. Successive snapshots of the peaks are added together, after appropriate correction for time-dependent peak displacement, without sacrificing spatial resolution. Measured baseline rms noise values at 200 nm are 34 μAU using a holographic grating in multiwavelength mode and 8 μAU with the addition of a band-pass filter. Both values are in excellent agreement with calculations of limiting shot noise. Performance in multiwavelength mode is constrained by the 470-ms readout time of the CCD used, which sets a maximum duty cycle of 2.3%. Noise contributions from source intensity fluctuations are reduced by using a portion of the CCD image to provide a baseline reference signal. With 4-hydroxybenzoate as test analyte, the linear dynamic range in multiwavelength mode is shown to be between 3 and 4 orders of magnitude. High-quality spectra of 2-, 3-, and 4-methylbenzoates are obtained on capillary and used in deconvolution of closely migrating peaks of the 2- and 3-isomers.

  5. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels.

    PubMed

    Lee, Lap Man; Liu, Allen P

    2015-01-07

    Micropipette aspiration measures the mechanical properties of single cells. A traditional micropipette aspiration system requires a bulky infrastructure and has a low throughput and limited potential for automation. We have developed a simple microfluidic device which is able to trap and apply pressure to single cells in designated aspiration arrays. By changing the volume flow rate using a syringe pump, we can accurately exert a pressure difference across the trapped cells for pipette aspiration. By examining cell deformation and protrusion length into the pipette under an optical microscope, several important cell mechanical properties, such as the cortical tension and the Young's modulus, can be measured quantitatively using automated image analysis. Using the microfluidic pipette array, the stiffness of breast cancer cells and healthy breast epithelial cells was measured and compared. Finally, we applied our device to examine the gating threshold of the mechanosensitive channel MscL expressed in mammalian cells. Together, the development of a microfluidic pipette array could enable rapid mechanophenotyping of individual cells and for mechanotransduction studies.

  6. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels

    PubMed Central

    Lee, Lap Man; Liu, Allen P.

    2014-01-01

    Micropipette aspiration measures the mechanical properties of single cells. A traditional micropipette aspiration system requires a bulky infrastructure, and has a low throughput and limited potential for automation. We have developed a simple micro fluidic device, which is able to trap and apply pressure to single cells in designated aspiration arrays. By changing the volume flow rate using a syringe pump, we can accurately exert pressure difference across the trapped cells for pipette aspiration. By examining cell deformation and protrusion length into the pipette under an optical microscope, several important cell mechanical properties such as the cortical tension and the Young’s modulus, can be measured quantitatively using automated image analysis. Using the micro fluidic pipette array, the stiffness of breast cancer cells and healthy breast epithelial cells were measured and compared. Finally, we applied our device to examine the gating threshold of the mechanosensitive channel MscL expressed in mammalian cells. Together, the development of a micro fluidic pipette array could enable rapid mechanophenotyping of individual cells and for mechanotransduction studies. PMID:25361042

  7. Investigation of Depth of Interaction Encoding for a Pixelated LSO Array with a Single Multi-Channel PMT

    PubMed Central

    Yang, Yongfeng; Wu, Yibao; Cherry, Simon R.

    2009-01-01

    A new approach to depth of interaction (DOI) encoding for a pixelated LSO array using a single multi-channel PMT was investigated. In this method the DOI information was estimated by taking advantage of optical crosstalk between LSO elements and examining the standard deviation (spread) of signals on all channels of the PMT. Unpolished and polished 6×6 LSO arrays with a crystal size of 1.3×1.3×20 mm3 were evaluated on a Hamamatsu H7546 64-channel PMT. The arrays were placed on the center of the PMT and the central 16 channels of the PMT were individually read out and digitized. For the unpolished array, all crystals were resolved in the flood histogram. An average DOI resolution of 8 mm was obtained. The energy resolution was ∼25% after the signal amplitude was corrected using the measured DOI information. For the polished array, the flood histogram was superior to the unpolished array, however no DOI information could be measured. Using unpolished crystals, this method could be a practical way to achieve limited DOI information in PET detectors. The standard deviation of all PMT channels can be readily obtained using a resistor network. Only five signals (four signals to determine the x-y position and one signal measuring the standard deviation) need to be digitized, and this method only requires a single photon detector to read out the array. Unlike phoswich detectors, the method does not require segmenting the scintillator array into layers. The measured DOI resolution was much worse than that obtained with the dual-ended readout method, however, it was similar to that obtained with a two-layer phoswich detector. PMID:20046796

  8. Investigation of Depth of Interaction Encoding for a Pixelated LSO Array with a Single Multi-Channel PMT.

    PubMed

    Yang, Yongfeng; Wu, Yibao; Cherry, Simon R

    2009-10-07

    A new approach to depth of interaction (DOI) encoding for a pixelated LSO array using a single multi-channel PMT was investigated. In this method the DOI information was estimated by taking advantage of optical crosstalk between LSO elements and examining the standard deviation (spread) of signals on all channels of the PMT. Unpolished and polished 6×6 LSO arrays with a crystal size of 1.3×1.3×20 mm(3) were evaluated on a Hamamatsu H7546 64-channel PMT. The arrays were placed on the center of the PMT and the central 16 channels of the PMT were individually read out and digitized. For the unpolished array, all crystals were resolved in the flood histogram. An average DOI resolution of 8 mm was obtained. The energy resolution was ∼25% after the signal amplitude was corrected using the measured DOI information. For the polished array, the flood histogram was superior to the unpolished array, however no DOI information could be measured. Using unpolished crystals, this method could be a practical way to achieve limited DOI information in PET detectors. The standard deviation of all PMT channels can be readily obtained using a resistor network. Only five signals (four signals to determine the x-y position and one signal measuring the standard deviation) need to be digitized, and this method only requires a single photon detector to read out the array. Unlike phoswich detectors, the method does not require segmenting the scintillator array into layers. The measured DOI resolution was much worse than that obtained with the dual-ended readout method, however, it was similar to that obtained with a two-layer phoswich detector.

  9. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  10. Development of a method for the analysis of drugs of abuse in vitreous humor by capillary electrophoresis with diode array detection (CE-DAD).

    PubMed

    Costa, Jose Luiz; Morrone, Andre Ribeiro; Resende, Rodrigo Ribeiro; Chasin, Alice Aparecida da Matta; Tavares, Marina Franco Maggi

    2014-01-15

    This work presents the development of an analytical method based on capillary electrophoresis with diode array detection for the analysis of drugs of abuse and biotransformation products in vitreous humor. Composition of the background electrolyte, implementation of an online pre-concentration strategy and sample preparation procedures were objects of study. The complete electrophoretic separation of 12 analytes (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), ketamine, cocaine, cocaethylene, lidocaine, morphine, 6-monoacetylmorphine and heroin) and the internal standard N-methyl-1-(3,4-methylenedioxyphenyl)-2-butamine (MBDB) was obtained within 13min of run. The method was validated presenting good linearity (r(2)>0.99), recovery ≥90%, precision better than 12% RSD and acceptable accuracy in the range of 86-118% at three concentration levels (50, 100 and 500ng/mL). LODs and LOQs in the order of 1-5ng/mL and 5-10ng/mL, respectively, were obtained. After validation, the method was applied to eighty-seven vitreous humor samples and the results were compared to those obtained by a liquid chromatography tandem mass spectrometry (LC-MS/MS) screening method, routinely used by the forensic toxicology laboratory of the Sao Paulo State Police, Brazil. Cocaine was detected in 7.1%, cocaethylene in 3.6%, lidocaine in 2.4% and ketamine in 1.2% of the total number of analyzed samples.

  11. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    PubMed

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites.

  12. Calcium isotope enrichment by means of multi-channel counter-current electrophoresis for the study of particle and nuclear physics

    NASA Astrophysics Data System (ADS)

    Kishimoto, T.; Matsuoka, K.; Fukumoto, T.; Umehara, S.

    2015-03-01

    We have developed a new method for enrichment of large amounts of calcium isotopes for the future study of ^{48}Ca double beta decay. The method is called multi-channel counter-current electrophoresis (MCCCE). We present the concept of MCCCE, in which the power density in the migration path is the key to efficient enrichment of a large amount of materials. In MCCCE, ions migrate in multi-channels on a boron nitride (BN) plate, allowing a substantial increase in the power density to be achieved. We made a tiny prototype instrument and obtained an enrichment factor of 3 for the ratio of the abundance of ^{48}Ca to ^{43}Ca over that of natural abundance. This corresponds to an enrichment factor of 6 for ^{48}Ca to ^{40}Ca. This remarkably large enrichment factor demonstrates that MCCCE is a realistic and promising method for the enrichment of large amounts of ions. It can be applied to many other elements and compounds.

  13. A learning-enabled neuron array IC based upon transistor channel models of biological phenomena.

    PubMed

    Brink, S; Nease, S; Hasler, P; Ramakrishnan, S; Wunderlich, R; Basu, A; Degnan, B

    2013-02-01

    We present a single-chip array of 100 biologically-based electronic neuron models interconnected to each other and the outside environment through 30,000 synapses. The chip was fabricated in a standard 350 nm CMOS IC process. Our approach used dense circuit models of synaptic behavior, including biological computation and learning, as well as transistor channel models. We use Address-Event Representation (AER) spike communication for inputs and outputs to this IC. We present the IC architecture and infrastructure, including IC chip, configuration tools, and testing platform. We present measurement of small network of neurons, measurement of STDP neuron dynamics, and measurement from a compiled spiking neuron WTA topology, all compiled into this IC.

  14. Diagnosis of schistosomiasis japonica with interfacial co-assembly-based multi-channel electrochemical immunosensor arrays.

    PubMed

    Deng, Wangping; Xu, Bin; Hu, Haiyan; Li, Jianyong; Hu, Wei; Song, Shiping; Feng, Zheng; Fan, Chunhai

    2013-01-01

    Schistosomiasis control remains to be an important and challenging task in the world. However, lack of quick, simple, sensitive and specific sero-diagnostic test is still a hurdle in the control practice. The commonly employed enzyme-linked immuno-sorbent assay (ELISA) relies on the native soluble egg antigen (SEA) that is limited in supply. Here we developed an electrochemical immunosensor array (ECISA) assay with an interfacial co-assembly strategy. A recombinant Schistosoma japonicum (Sj) calcium-binding protein (SjE16) was used as a principal antigen, while the SEA as a minor, co-assembling agent, with a ratio of 8:1 (SjE16: SEA, Sj16EA), which was co-immobilized on a disposable 16-channel screen-printed carbon electrode array. A portable electrochemical detector was employed to detect antibodies in serum samples. The sensitivity of ECISA reached 100% with minimal cross-reactions. Therefore, we have demonstrated that this rapid, sensitive and specific ECISA technique has the potential to perform large-scale on-site screening of Sj infection.

  15. Diagnosis of schistosomiasis japonica with interfacial co-assembly-based multi-channel electrochemical immunosensor arrays

    NASA Astrophysics Data System (ADS)

    Deng, Wangping; Xu, Bin; Hu, Haiyan; Li, Jianyong; Hu, Wei; Song, Shiping; Feng, Zheng; Fan, Chunhai

    2013-05-01

    Schistosomiasis control remains to be an important and challenging task in the world. However, lack of quick, simple, sensitive and specific sero-diagnostic test is still a hurdle in the control practice. The commonly employed enzyme-linked immuno-sorbent assay (ELISA) relies on the native soluble egg antigen (SEA) that is limited in supply. Here we developed an electrochemical immunosensor array (ECISA) assay with an interfacial co-assembly strategy. A recombinant Schistosoma japonicum (Sj) calcium-binding protein (SjE16) was used as a principal antigen, while the SEA as a minor, co-assembling agent, with a ratio of 8:1 (SjE16: SEA, Sj16EA), which was co-immobilized on a disposable 16-channel screen-printed carbon electrode array. A portable electrochemical detector was employed to detect antibodies in serum samples. The sensitivity of ECISA reached 100% with minimal cross-reactions. Therefore, we have demonstrated that this rapid, sensitive and specific ECISA technique has the potential to perform large-scale on-site screening of Sj infection.

  16. Synchronization and array-enhanced resonances in delayed coupled neuronal network with channel noise

    NASA Astrophysics Data System (ADS)

    Chen, Jianchun; Ding, Shaojie; Li, Hui; He, Guolong; Zhang, Xuejuan

    2014-09-01

    This paper studies the combined effect of transmission delay and channel fluctuations on population behaviors of an excitatory Erdös-Rényi neuronal network. First, it is found that the network reaches a perfect spatial temporal coherence at a suitable membrane size. Such a coherence resonance is stimulus-free and is array-enhanced. Second, the presence of transmission delay can induce intermittent changes of the population dynamics. Besides, two resonant peaks of the population firing rate are observed as delay changes: one is at τd≈7ms for all membrane areas, which reflects the resonance between the delayed interaction and the intrinsic period of channel kinetics; the other occurs when the transmission delay equals to the mean inter-spike intervals of the population firings in the absence of delay, which reflects the resonance between the delayed interaction and the firing period of the non-delayed system. Third, concerning the impact of network topology and population size, it is found that decreasing the connection probability does not change the range of transmission delay but broadens the range of synaptic coupling that supports population neurons to generate action potentials synchronously and temporally coherently. Furthermore, there exists a critical connection probability that distinguishes the population dynamics into an asynchronous and synchronous state. All the results we obtained are based on networks of size N = 500, which are shown to be robust to further increasing the population size.

  17. NEUSORT2.0: a multiple-channel neural signal processor with systolic array buffer and channel-interleaving processing schedule.

    PubMed

    Chen, Tung-Chien; Yang, Zhi; Liu, Wentai; Chen, Liang-Gee

    2008-01-01

    An emerging class of neuroprosthetic devices aims to provide aggressive performance by integrating more complicated signal processing hardware into the neural recording system with a large amount of electrodes. However, the traditional parallel structure duplicating one neural signal processor (NSP) multiple times for multiple channels takes a heavy burden on chip area. The serial structure sequentially switching the processing task between channels requires a bulky memory to store neural data and may has a long processing delay. In this paper, a memory hierarchy of systolic array buffer is proposed to support signal processing interleavingly channel by channel in cycle basis to match up with the data flow of the optimized multiple-channel frontend interface circuitry. The NSP can thus be tightly coupled to the analog frontend interface circuitry and perform signal processing for multiple channels in real time without any bulky memory. Based on our previous one-channel NSP of NEUSORT1.0 [1], the proposed memory hierarchy is realized on NEUSORT2.0 for a 16-channel neural recording system. Compared to 16 of NEUSORT1.0, NEUSORT2.0 demonstrates a 81.50% saving in terms of areaxpower factor.

  18. Tailor-made rylene arrays for high performance n-channel semiconductors.

    PubMed

    Jiang, Wei; Li, Yan; Wang, Zhaohui

    2014-10-21

    Rylene dyes, made up of naphthalene units linked in peri-positions, are emerging as promising key building blocks to create π-functional materials. Chemists have found uses for these ribbonlike structures in a wide range of applications of optoelectronic devices. Because their structure combines two sets of six-membered electron-withdrawing dicarboxylic imide rings, rylene diimides exhibit enhanced solubility, excellent chemical and thermal stabilities, high electron affinities, and remarkable electron-transporting properties. Among them, perylene diimide (PDI) and naphthalene diimide (NDI) derivatives are important representatives improving the performance of electron-transporting technologies, relative to their p-channel counterparts. Pioneering works by Müllen and Langhals have inspired chemists to extend the π-conjugation along the peri-positions of rylene diimides, which generally results in impressive bathochromic shifts and a nearly linear increase in the extinction coefficient. In addition, in the past years, researchers have focused on π-expansion of NDI or PDI systems through bay-functionalization with carbocyclic and heterocyclic rings annulated onto the skeleton. However, chemists have rarely investigated lateral expansion via both bay- and nonbay-functionalization to construct homologous series of rylene arrays with different electronic delocalization and fine-tuned flexible linkage. This is probably due to the lack of effective procedures for the (multi) carbon-carbon formation and annulation of electron-deficient rylene imide units. In this Account, we discuss our recent progress in the design and synthesis of laterally expanded rylene dyes based on homocoupling and cross-coupling reactions of core-functionalized PDIs and NDIs to achieve novel high performance n-channel organic semiconducting materials. These new achievements offer us opportunities to learn fundamental issues about how chemical and physical properties alter with incremental

  19. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  20. A flexible 32-channel time-to-digital converter implemented in a Xilinx Zynq-7000 field programmable gate array

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Kuang, Jie; Liu, Chong; Cao, Qiang; Li, Deng

    2017-03-01

    A high performance multi-channel time-to-digital converter (TDC) is implemented in a Xilinx Zynq-7000 field programmable gate array (FPGA). It can be flexibly configured as either 32 TDC channels with 9.9 ps time-interval RMS precision, 16 TDC channels with 6.9 ps RMS precision, or 8 TDC channels with 5.8 ps RMS precision. All TDCs have a 380 M Samples/second measurement throughput and a 2.63 ns measurement dead time. The performance consistency and temperature dependence of TDC channels are also evaluated. Because Zynq-7000 FPGA family integrates a feature-rich dual-core ARM based processing system and 28 nm Xilinx programmable logic in a single device, the realization of high performance TDCs on it will make the platform more widely used in time-measuring related applications.

  1. Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon.

    PubMed

    Seno, Kazunori; Suzuki, Kenya; Ooba, Naoki; Watanabe, Kei; Ishii, Motohaya; Ono, Hirotaka; Mino, Shinji

    2010-08-30

    We propose and demonstrate a multi-channel tunable optical dispersion compensator (TODC) that consists of an arrayed-waveguide grating (AWG) and liquid crystal on silicon (LCOS). By utilizing the AWG with a large angular dispersion and the LCOS with a flexible phase setting, we can construct a compact and flexible TODC that has a wide tuning range of chromatic dispersion. We confirmed experimentally that the TODC could realize channel-by-channel CD compensation for six WDM channels with a ± 800 ps/nm range and a 3 dB bandwidth of 24 GHz. We believe that the multi-channel operation of this TODC will help to reduce the cost and power consumption of high-speed optical transmission systems.

  2. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species

    PubMed Central

    Hoyos, Mauricio; Moore, Lee; Williams, P. Stephen; Zborowski, Maciej

    2011-01-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest. PMID:21399709

  3. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species.

    PubMed

    Hoyos, Mauricio; Moore, Lee; Williams, P Stephen; Zborowski, Maciej

    2011-05-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest.

  4. Constraining lightning channel growth dynamics by comparison of time domain electromagnetic simulations to Huntsville Alabama Marx Meter Array observations

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Bitzer, P. M.; Burchfield, J.

    2015-12-01

    Major unknowns in lightning research include the mechanism and dynamics of lightning channel extension. Such processes are most simple during the initial growth of the channel, when the channel is relatively short and has not yet branched extensively throughout the cloud. During this initial growth phase, impulsive electromagnetic emissions (preliminary breakdown pulses) can be well-described as produced by current pulses generated as the channel extends, but the overall growth rate, channel geometry, and degree of branching are not known. We approach such issues by examining electric field change measurements made with the Huntsville Alabama Marx Meter Array (HAMMA) during the first few milliseconds of growth of a lightning discharge. We compare HAMMA observations of electromagnetic emissions and overall field change to models of lightning channel growth and development and attempt to constrain channel growth rate, degree of branching, channel physical properties, and uniformity of thunderstorm electric field. Preliminary comparisons suggest that the lightning channel branches relatively early in the discharge, though more complete and detailed analysis will be presented.

  5. On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis.

    PubMed

    Kim, Dae-Kwang; Kang, Seong Ho

    2005-01-28

    We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.

  6. Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array.

    PubMed

    Long, Zerong; Lu, Yi; Zhang, Mingliang; Qiu, Hongdeng

    2014-10-01

    A seven-channel molecularly imprinted polymer sensor array was prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and nitrogen physisorption studies. The results revealed that the imprinted polymers have distinct-binding affinities from those of structurally similar azo dyes. Analysis of the UV-Vis spectral response patterns of the seven dye analytes against the imprinted polymer array suggested that the different selectivity patterns of the array were closely connected to the imprinting process. To evaluate the effectiveness of the array format, the binding of a series of analytes was individually measured for each of the seven polymers, made with different templates (including one control polymer synthesized without the use of a template). The response patterns of the array to the selected azo dyes were processed by canonical discriminant analysis. The results showed that the molecularly imprinted array was able to discriminate each analyte with 100% accuracy. Moreover, the azo dyes in two real samples, spiked chrysoidin in smoked bean curd extract and Fanta lime soda (containing tartrazine), were successfully classified by the array.

  7. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA)

    NASA Technical Reports Server (NTRS)

    Koshak, William; Arnold, James E. (Technical Monitor)

    2002-01-01

    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic

  8. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.

    PubMed

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-09-30

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  9. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  10. Capillary electrophoresis.

    PubMed

    Compton, S W; Brownlee, R G

    1988-05-01

    While capillary electrophoresis, or historically related techniques, have been used for over a century, and recognition of the value of this separation methodology has certainly grown rapidly in the past few years, the technique has generally been used by analytical chemists, particularly in Europe and Japan, and small groups of researchers in the United States. Many of the basic instrumentation problems have been solved only relatively recently, and researchers using capillary electrophoresis are now turning their attention to studying specific applications which demonstrate the potential versatility of this electrophoretic technique. The appearance of standardized commercial instrumentation is imminent. With the availability of such technology, capillary electrophoresis will no longer be an academic curiosity, but rather a tool with the potential for routine separations of diverse samples of interest to analyst, researcher, and clinician.

  11. Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  12. Portable e-Tongue based on Multi-channel LAPS Array with PVC Membrane for Rapid Environment Detection

    NASA Astrophysics Data System (ADS)

    Ha, D.; Yu, H.; Hu, N.; Wu, C. X.; Zhou, J.; Kirsanov, Dmitry; Legin, Andrey; Wang, P.

    2011-09-01

    A new kind of portable e-Tongue based on multi-channel LAPS array with PVC membrane has been designed for the rapid detection of environment situation, especially the seawater. It has the great advantages of depositing membranes which are offered by Chemistry Department, Saint-Petersburg State University on the sensors artificially with convenience and efficiency. To detect various heavy metal ions (Pb2+, Cd2+, Zn2+) simultaneously, respective Polyvinyl Chloride (PVC) membrane could be prepared on the surface of the silicon-based sensor in different channel.

  13. Design Study of a Multi-channel Array Particle Spectrometer for Space Missions

    NASA Astrophysics Data System (ADS)

    Trindade, Andreia; Assis, P.; Brogueira, P.; Gonçalves, P.; Keating, A.; Pimenta, M.; Rodrigues, P.; Trindade, A.

    In this work, a novel particle spectrometer is proposed to fulfil the need to map the space radiation environment for future space missions and to provide more accurate scientific data. The concept of the instrument brings together new radiation-hard technologies, for the photo-sensors and scintillating materials that will improve the quality of the data, while taking into account the limited resources such as mass, power and accommodation, allocated for space radiation monitors. The Multi-channel Array Particle Spectrometer (MAPS), can measure fluxes and energy dis-tributions of protons, ions, electrons and gammas in a wide energy range based on the 3D reconstruction of the particle track through the detector and its deposited energy in the active volume. It consists on a 8 x 8 segmented scintillator block built from 3.2 x 3.2 x 20 mm3 indi-vidual LYSO:Ce rods that are readout at both ends by two 64 pixel Silicon Photo-Multipliers (SiPMs) matrices, a new generation of high gain (105-106) avalanche photodiodes working in controlled Geiger mode, that collect the scintillating light produced by the interactions of the charged particles in the crystals. Each SiPM matrix is readout by a 64 channel mixed sig-nal analog-digital ASIC, offering both particle identification and particle counting capabilities. Power cycling design of the ASIC allows to activate the particle identification block only during a pre-determined time slice, keeping the total power budget of less than 1 mW/channel. An on-board FPGA sorts the serialized data from the two ASICs and computes the trigger primitives in real-time and in an event-by-event basis. Whenever a charged particle crosses the segmented volume of the detector, the XY coordinates, given by the pixelized crystal positions, and the deposited energy in each crystal is recorded. The double readout scheme allows to compute the light collection asymmetry between both ends of the crystal and to use that information to record the

  14. Simulating Electrophoresis.

    ERIC Educational Resources Information Center

    Moertel, Cheryl; Frutiger, Bruce

    1996-01-01

    Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)

  15. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    PubMed

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU.

  16. Investigation of asymmetry of wire-array Z pinches at stagnation using a 4-channel laser diagnostic

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Anderson, A. A.

    2016-09-01

    Asymmetry of wire-array Z-pinches at stagnation was investigated using four synchronized laser beams at the wavelength of 266 nm. These beams were spaced at 45° with respect to each other, allowing a full view of the pinch from four directions. The laser pulse duration was 0.2 ns, with a <0.1 ns temporal accuracy between the four channels. Strong asymmetry was found in Z pinches produced by implosion of asymmetrical wire array loads. Anisotropy of the wire-array Z pinch arises due to the asymmetric implosion and development of plasma instabilities. Understanding the three-dimensional structure of Z-pinches is important for interpretation of data from x-ray and laser diagnostics.

  17. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  18. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  19. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  20. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  1. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    SciTech Connect

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  2. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  3. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  4. Properties of the Channel Electron Multiplier Arrays (CEMAs) for the SOLEX solar X-ray Spectrometer/Spectroheliograph

    NASA Astrophysics Data System (ADS)

    Eng, W., Jr.; Landecker, P. B.

    1981-06-01

    A Channel Electron Multiplier Array (CEMA) detector was launched on 24 February 1979 as part of the SOLEX Solar X-Ray Spectrometer/Spectroheliograph experiment aboard the U.S. Air Force Space Test Program P78-1 satellite. Since launch, this detector has successfully recorded X-rays in the 3-25 A wavelength range. This report describes the comprehensive laboratory testing program of the flight and flight spare CEMA detectors. Quantum efficiencies, energy resolution and gain are given as a function of different incident photon wavelengths, voltage configurations, incident angles and lifetime exposures. Our results are compared to other published values.

  5. 16-channel arrayed waveguide grating (AWG) demultiplexer design on SOI wafer for application in CWDM-PON

    NASA Astrophysics Data System (ADS)

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-01-01

    Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).

  6. Analysis of process parameter effect on DIBL in n-channel MOSFET device using L27 orthogonal array

    NASA Astrophysics Data System (ADS)

    Salehuddin, F.; Kaharudin, K. E.; Zain, A. S. M.; Yamin, A. K. Mat; Ahmad, I.

    2014-10-01

    In this research, the effect of the process parameters variation on drain induced barrier lowering (DIBL) was investigated. The fabrication of the transistor device was performed using TCAD simulator, consisting of ATHENA and ATLAS modules. These two modules were combined with Taguchi method to optimize the process parameters. The setting of process parameters was determined by using the orthogonal array of L27 in Taguchi Method. In NMOS device, the most dominant or significant factors for S/N Ratio are halo implant energy, S/D implant dose and S/D implant energy. Meanwhile, the S/N Ratio values of DIBL after the optimization approaches for array L27 is 29.42 dB. In L27 experiments, DIBL value for n-channel MOSFET device after optimizations approaches is +37.8 mV. The results obtained were satisfied to be small as expected. As conclusions, by setting up design of experiment with the Taguchi Method and TCAD simulator, the optimal solutions on DIBL for the robust design recipe of 32nm n-channel MOSFET device was successfully achieved.

  7. A 3D High Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro-vascular Imaging

    PubMed Central

    Zemp, Roger; Yen, Jesse; Wang, L.V.; Shung, K. Kirk

    2009-01-01

    This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new sixteen channel analog and digital high frequency array based photoacoustic microscopy system (PAM) was developed using an Nd:YLF pumped tunable dye laser, a 30MHz piezo composite linear array transducer and a custom multi-channel receiver electronics system. Using offline delay and sum beamforming and beamsteering, phantom images were obtained from a 6µm carbon fiber in water at a depth of 8mm. The measured -6dB lateral and axial spatial resolution of the system was 100±5µm and 45±5µm, respectively. The dynamic focusing capability of the system was demonstrated by imaging a composite carbon fiber matrix through a 12.5mm imaging depth. Next, 2-D in vivo images were formed of vessels around 100µm in diameter in the human hand. 3-D in vivo images were also formed of micro-vessels 3mm below the surface of the skin in two Sprague Dawley rats. PMID:19131292

  8. 32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon-129 lung imaging.

    PubMed

    Dregely, Isabel; Ruset, Iulian C; Wiggins, Graham; Mareyam, Azma; Mugler, John P; Altes, Talissa A; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L; Hersman, F William

    2013-08-01

    Hyperpolarized xenon-129 has the potential to become a noninvasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio, excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the hyperpolarized xenon-129 resonance at 3 T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high-resolution ventilation images with high signal-to-noise ratio. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, signal-to-noise ratio, and acquisition speed.

  9. Development of a Digital Tracking Array with Single- Channel RSNS and Monopulse Digital Beamforming

    DTIC Science & Technology

    2010-12-01

    Phased Array Radar Tracking .........................................................26 B. ANGLE TRACKING TECHNIQUES...School NTSC National Television Standards Committee PGF Path Gain Factor PLL Phased Locked Loop Q Quadrature RCS Radar Cross...Third, it is easier to control beam shapes and half-power beamwidth (HPBW) in digital processing. Fourth, with a proper design, a lower radar

  10. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  11. Shutter array technique for real-time non-invasive extraction of individual channel responses in multi-channel CPV modules

    NASA Astrophysics Data System (ADS)

    Cook, John P. D.; Yandt, Mark D.; Kelly, Michael; Wheeldon, Jeffrey F.; Hinzer, Karin; Schriemer, Henry

    2013-10-01

    Concentrator photovoltaic (CPV) solar energy systems use optics to concentrate direct normal incidence (DNI) sunlight onto multi-junction photovoltaic (MJPV) cells fabricated from III-V compound semiconductors on germanium substrates. The MJPV receiver, which integrates cell and bypass diode, is then mated with its concentrating optic to form a channel, and several such channels form a CPV module, in which the receivers are connected electrically in series. The two ends of the module receiver string are brought out to a single pair of electrical connections, at which point the lightcurrent- voltage (L-I-V) response of the entire module can be tested. With commercial CPV modules commonly sealed against outdoor exposure, there are no other accessible test points, and field installation on trackers further complicates access to performance data. There are many physical phenomena influencing module performance, and in early development and commercialization some of these may not yet be completely under control. Unambiguous diagnosis of such phenomena from one full-module L-I-V curve is problematic. Simple, fast test methods are needed to develop more detailed information from full-module on-tracker testing, without opening up modules in the field. We describe a test protocol, using a simple optical shutter array constructed to fit mechanically over the module. When module L-I-V curves are recorded for each of various combinations of open and closed shutters, the information can be used to identify one or more anomalous channels, and to further identify the kind of anomaly present, such as optical misalignment, conductor failure, series or shunt resistance, and so on. Simulated results from anomaly models can be compared with the measured results to identify the anomalous behaviour. Results herein are compared with direct single-channel measurements to verify the technique. The L-I-V response curves were obtained in continuous real time, an approach found to be more

  12. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings

    PubMed Central

    Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.

    2016-01-01

    Objective Single carbon fiber electrodes (d=8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ~150 μm pitch. Approach Two approaches were tested for the insertion of carbon fiber arrays. The first method used a PEG coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm – 1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in 5 rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in 3 acute rat surgeries. In one of those surgeries a stacked device with 3 layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance From these studies we have found that carbon fibers spaced at ~150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response. PMID:26035638

  13. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings

    NASA Astrophysics Data System (ADS)

    Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.

    2015-08-01

    Objective. Single carbon fiber electrodes (d = 8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ˜150 μm pitch. Approach. Two approaches were tested for the insertion of carbon fiber arrays. The first method used a poly(ethylene glycol) (PEG) coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm-1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results. Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in five rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in three acute rat surgeries. In one of those surgeries a stacked device with three layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance. From these studies we have found that carbon fibers spaced at ˜150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response.

  14. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel.

    PubMed

    Daly, T; Myers, L E; Bahaj, A S

    2013-02-28

    The modelling of tidal turbines and the hydrodynamic effects of tidal power extraction represents a relatively new challenge in the field of computational fluid dynamics. Many different methods of defining flow and boundary conditions have been postulated and examined to determine how accurately they replicate the many parameters associated with tidal power extraction. This paper outlines the results of numerical modelling analysis carried out to investigate different methods of defining the inflow velocity boundary condition. This work is part of a wider research programme investigating flow effects in tidal turbine arrays. Results of this numerical analysis were benchmarked against previous experimental work conducted at the University of Southampton Chilworth hydraulics laboratory. Results show significant differences between certain methods of defining inflow velocities. However, certain methods do show good correlation with experimental results. This correlation would appear to justify the use of these velocity inflow definition methods in future numerical modelling of the far-field flow effects of tidal turbine arrays.

  15. Forced Convection Heat Transfer from a Finned Array with an Adjustable Outer Channel Boundary.

    DTIC Science & Technology

    1986-06-01

    NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If aplicable ) Naval Postgraduate School Code 69...finned array, and (3) not become unreasonably long. 32 - .w’~’’.r,...r’~w.r’r’’-’, vr .-v-.-,r.r’v-,r.r ~ r~- ’r.r.~- ..- - - - - I * I z*fl - ~fl - z

  16. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype.

    PubMed

    Alleman, J J; Reynaud, F; Connes, P

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  17. Investigation of 18-channel CWDM arrayed waveguide grating with silica-based waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chun; Kim, Young-Sic; Kim, Su-Yong; Noh, Yoo-Chul; Song, Yang-Ki; Kang, Sung-Hyun; Pyo, Jin-Gu; Kim, Jin-Bong

    2016-08-01

    Arrayed waveguide gratings (AWGs) are commonly used as multiplexers/demultiplexers in wavelength division multiplexing systems. We design and fabricate a coarse wavelength division multiplexing AWG with a wide free-spectral range. A gull-wing-shaped AWG layout and S-shaped AWG layout are used to understand a wide band range. The spectral difference between each layout is experimentally demonstrated. Our results indicate that the fabricated AWG is suitable for applications such as portable power meters.

  18. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    PubMed Central

    Keith, Graeme A; Rodgers, Christopher T; Hess, Aaron T; Snyder, Carl J; Vaughan, J Thomas; Robson, Matthew D

    2015-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. Results The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Conclusion Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. Magn Reson Med 73:2390–2397, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:24986525

  19. Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation.

    PubMed Central

    Fogelson, A L; Zucker, R S

    1985-01-01

    A one-dimensional model of presynaptic calcium diffusion away from the membrane, with cytoplasmic binding, extrusion by a surface pump, and influx during action potentials, can account for the rapid decay of phasic transmitter release and the slower decay of synaptic facilitation following one spike, as well as the very slow decline in total free calcium observed experimentally. However, simulations using this model, and alternative versions in which calcium uptake into organelles and saturable binding are included, fail to preserve phasic transmitter release to spikes in a long tetanus. A three-dimensional diffusion model was developed, in which calcium enters through discrete membrane channels and acts to release transmitter within 50 nm of entry points. Analytic solutions of the equations of this model, in which calcium channels were distributed in active zone patches based on ultrastructural observations, were successful in predicting synaptic facilitation, phasic release to tetanic spikes, and the accumulation of total free calcium. The effects of varying calcium buffering, pump rate, and channel number and distribution were explored. Versions appropriate to squid giant synapses and frog neuromuscular junctions were simulated. Limitations of key assumptions, particularly rapid nonsaturable binding, are discussed. PMID:2418887

  20. Teaching real-time ultrasonic imaging with a 4-channel sonar array, TI C6711 DSK and MATLAB.

    PubMed

    York, George W P; Welch, Thad B; Wright, Cameron H G

    2005-01-01

    Ultrasonic medical imaging courses often stop at the theory or MATLAB simulation level, since professors find it challenging to give the students the experience of designing a real-time ultrasonic system. Some of the practical problems of working with real-time data from the ultrasonic transducers can be avoided by working at lower frequencies (sonar to low ultrasound) range. To facilitate this, we have created a platform using the ease of MATLAB programming with the real-time processing capability of the low-cost Texas Instruments C6711 DSP starter kit and a 4-channel sonar array. With this platform students can design a B-mode or Color-Mode sonar system in the MATLAB environment. This paper will demonstrate how the platform can be used in the classroom to demonstrate the real-time signal processing stages including beamforming, multi-rate sampling, demodulation, filtering, image processing, echo imaging, and Doppler frequency estimation.

  1. Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles.

    PubMed

    Grilli, Muzio; Vázquez-Quesada, Adolfo; Ellero, Marco

    2013-04-26

    Using Lagrangian simulations of a viscoelastic fluid modeled with an Oldroyd-B constitutive equation, we demonstrate that the flow through a closely spaced linear array of cylinders confined in a channel undergoes a transition to a purely elastic turbulent regime above a critical Weissenberg number (We). The high-We regime is characterized by an unsteady motion and a sudden increase in the flow resistance in qualitative agreement with experimental observations. Furthermore, a power-law scaling behavior of the integral quantities as well as enhanced mixing of mass is observed. A stability analysis based on the dynamic mode decomposition method allows us to identify the most energetic modes responsible for the unsteady behavior, which correspond to filamental structures of polymer over- or underextension advected by the main flow preserving their shape. These time-dependent flow features strictly resemble the elastic waves reported in recent numerical simulations.

  2. Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer.

    PubMed

    Akca, B I; Doerr, C R; Sengo, G; Wörhoff, K; Pollnau, M; de Ridder, R M

    2012-07-30

    We present a new synchronized design for flattening the passband of an arrayed-waveguide grating (AWG) over a broad wavelength range of 90 nm. A wavelength-insensitive 3-dB balanced coupler is designed to be used in duplicate in a Mach-Zehnder interferometer (MZI); the phase deviation created by one of the balanced couplers is cancelled by flipping the other coupler around. This MZI is arranged in tandem with the AWG such that the output signal of the MZI is the input signal of the AWG. We demonstrate a 5-channel, 18-nm-spacing AWG with a 0.5-dB bandwidth of 12 nm over a 90-nm spectral range. A low-loss cascaded AWG system is demonstrated by using the MZI-synchronized flat-top AWG as a primary filter.

  3. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  4. Thirty-two channel LED array spectrometer module with compact optomechanical construction

    NASA Astrophysics Data System (ADS)

    Malinen, J.; Keranen, H.; Hannula, T.; Hyvarinen, T.

    1991-12-01

    A compact and versatile 32-wavelength spectrometer module has been developed based on a linear LED array and a fixed grating monochromator. The design includes all the optical, mechanical, and optoelectronic parts in a size of approximately 4 x 4 x 7 cu cm. The wavelength bands are scanned electronically without any moving parts. All the optical parts have been assembled to form a cemented solid glass construction, which is mechanically and thermally stable and well protected against water condensation or dust. The developed source module can be easily modified and has obvious advantages for spectroscopic analyzers, especially in process and portable applications.

  5. Non-aqueous capillary electrophoresis with diode array and electrospray mass spectrometric detection for the analysis of selected steroidal alkaloids in plant extracts.

    PubMed

    Cherkaoui, S; Bekkouche, K; Christen, P; Veuthey, J L

    2001-07-13

    Nonaqueous capillary electrophoresis coupled to UV detection is described for the separation and determination of steroidal alkaloids. After optimization of electrophoretic parameters, including the electrolyte nature and the organic solvent composition, a reliable separation of solasodine and solanidine was achieved in a methanol-acetonitrile (20:80, v/v) mixture containing 25 mM ammonium acetate and 1 M acetic acid. For quantitative purposes, a fused-silica capillary with a bubble cell was used and detection was performed at low wavelength (195 nm). Method performances, including migration time and peak area reproducibility, linearity, sensitivity and accuracy, were also evaluated. The method was applied to determine solasodine in Solanum elaeagnifolium berries and Solanum sodomaeum leaves and seeds. To further improve sensitivity in the analysis of solasodine-related compounds, solanidine, demissidine and tomatidine, the developed method was interfaced with electrospray ionization mass spectrometry. In the case of solasodine, the detection limit was estimated at 3 microg/ml for NACE-UV and at 0.05 microg/ml for NACE-MS, in the selected ion-monitoring mode.

  6. Combination of 768-well microplate array diagonal gel electrophoresis with duplex PCR of X and Y chromosome markers for quality control of epidemiological DNA banks.

    PubMed

    Huang, Shuwen; Chen, Xiao-he; Day, Ian N M

    2006-08-01

    Large DNA banks for human epidemiological studies have become an increasingly important research tool. The power of genotype-phenotype studies is dependent both on the quality of phenotyping and of genotyping and of correct linking of phenotypes to genotypes. Samples must be tracked through numerous steps between subject or patient and post-genotypic data. Only one phenotype, sex, has a perfect and binary correlation with genotype. In mixed sex studies, it may be advantageous for purposes of quality control to keep sexes mixed during the steps from acquisition to DNA bank, in order to be able to check later for sample swaps. We have designed a duplex PCR combining an amplicon from MAOA marking the X chromosome and an amplicon from DDX3Y marking the Y chromosome. We combined this with a simple economical palmtop sized 768-well microplate compatible electrophoresis system developed in-house for examination of duplex PCR products. We applied this quality control test in the validation of two DNA banks.

  7. Quantum efficiency of opaque CsI photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1982-01-01

    The arrays are overcoated with a CsI photocathode in the VUV. The measurements are part of the development program for the Extreme Ultraviolet Explorer. Monochromatic light from a hollow cathode discharge source passing through a McPherson grazing incidence monochromator is used to illuminate the CsI photocathode. The beam diameter is kept small (approximately 2 mm) to confine it within the individual thickness strips. A bias grid is used to produce a 50-V/mm electric field to guarantee collection of all photoelectrons emitted by the CEMA (channel electron multiplier array) webbing. The CEMAs are operated with a gain of 2-3 x 10 to the 6th and are moderately saturated. A channeltron secondary transfer standard is used to determine the absolute QE in the EUV, whereas an NBS calibrated windowed photodiode is used to measure the FUV absolute QE. It is noted that the CsI gives a factor of 3 increase in the QE in the EUV and a factor of 50-5000 in the FUV.

  8. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  9. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  10. Electrophoresis. [in microgravity environment

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Ground-based techniques for electrophoresis take account of the need either to circumvent the effects of gravity to prevent convection, or to use gravity for fluid stabilization through artificial density gradients. The microgravity environments of orbiting spacecraft provides a new alternative for electrophoresis by avoiding the need for either of these two approaches. The paper presents some theoretical considerations concerning electrophoresis, examines certain experimental techniques (zone and high density gel electrophoresis, isoelectric focusing and isotachophoresis), and examines the electrophoresis of living cells.

  11. Electooptic Fresnel lens-scanner with an array of channel waveguides.

    PubMed

    Takizawa, K

    1983-08-15

    A new type of beam scanner is discussed based on a 1-D Fresnel zone plate consisting of titanium-diffused channel waveguides on LiNbO3. By electrooptically controlling the guided-wave phase, both beam scanning and 1-D focusing are achieved without a condensing lens. It was experimentally confirmed using the scanner with twenty-one Fresnel zones that the beam spot with a diameter of approximately 50 microm at half-power level of diffraction pattern is scanned over a distance of +/-70 microm in the focal plane with an applied voltage of +/-40 V at 633 nm.

  12. Inertial focusing in a straight channel with asymmetrical expansion-contraction cavity arrays using two secondary flows

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, M.; Li, W. H.; Alici, G.

    2013-08-01

    The focusing of particles has a variety of applications in industry and biomedicine, including wastewater purification, fermentation filtration, and pathogen detection in flow cytometry, etc. In this paper a novel inertial microfluidic device using two secondary flows to focus particles is presented. The geometry of the proposed microfluidic channel is a simple straight channel with asymmetrically patterned triangular expansion-contraction cavity arrays. Three different focusing patterns were observed under different flow conditions: (1) a single focusing streak on the cavity side; (2) double focusing streaks on both sides; (3) half of the particles were focused on the opposite side of the cavity, while the other particles were trapped by a horizontal vortex in the cavity. The focusing performance was studied comprehensively up to flow rates of 700 µl min-1. The focusing mechanism was investigated by analysing the balance of forces between the inertial lift forces and secondary flow drag in the cross section. The influence of particle size and cavity geometry on the focusing performance was also studied. The experimental results showed that more precise focusing could be obtained with large particles, some of which even showed a single-particle focusing streak in the horizontal plane. Meanwhile, the focusing patterns and their working conditions could be adjusted by the geometry of the cavity. This novel inertial microfluidic device could offer a continuous, sheathless, and high-throughput performance, which can be potentially applied to high-speed flow cytometry or the extraction of blood cells.

  13. Fully automated analysis of multi-resolution four-channel micro-array genotyping data

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.

    2006-03-01

    We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.

  14. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Heung Yun, Yeo; Dong, Zhongyun; Shanov, Vesselin N.; Schulz, Mark J.

    2007-11-01

    Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

  15. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  16. A twenty-eight channel coil array for improved optic nerve imaging

    NASA Astrophysics Data System (ADS)

    Merrill, Robb Phillip

    The purpose of this work was to design and construct a radio-frequency coil optimized for imaging the Optic Nerve (ON) on a Siemens 3T magnetic resonance imaging (MRI) scanner. The specific goals were to optimize signal sensitivity from the orbit to the optic chiasm and improve SNR over designs currently in use. The constructed coil features two fiberglass formers that can slide over each other to accommodate any arbitrary head size, while maintaining close coupling near the eyes and around the head in general. This design eliminates the air void regions that occur between the coil elements and the forehead when smaller heads are imaged in one-piece, nonadjustable coil formers. The 28 coil elements were placed using a soccer-ball pattern layout to maximize head coverage. rSNR profiles from phantom imaging studies show that the ON coil provides approximately 55% greater rSNR at the region of the optic chiasm and approximately 400% near the orbits compared to the 12-channel commercial coil. The improved rSNR in the optic nerve region allows performance of high resolution DTI, which provides a qualitative measurement for evaluating optic neuritis. Images from volunteer and patient studies with the ON coil reveal plaques that correspond well with the patient disease history of chronic bilateral optic neuritis. Correspondence of image findings with patient disease histories demonstrates that optic neuritis can be visualized and detected in patients using 3T MRI with advanced imaging coils, providing improved patient care.

  17. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  18. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  19. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.

  20. Discriminative detection of low-abundance point mutations using a PCR/ligase detection reaction/capillary gel electrophoresis method and fluorescence dual-channel monitoring.

    PubMed

    Hamada, Mariko; Shimase, Koji; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2014-04-01

    We applied a facile LIF dual-channel monitoring system recently developed and reported by our group to the polymerase chain reaction/ligase detection reaction/CGE method for detecting low-abundance point mutations present in a wild-type sequence-dominated population. Mutation discrimination limits and signaling fidelity of the analytical system were evaluated using three mutant variations in codon 12 of the K-ras oncogene that have high diagnostic value for colorectal cancer. We demonstrated the high sensitivity of the present method by detecting rare mutations present among an excess of wild-type alleles (one mutation among ~100 normal sequences). This method also simultaneously interrogated the allelic compositions of the test samples with high specificity through spectral discrimination of the dye-tagged ligase detection reaction products using the dual-channel monitoring system.

  1. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  2. Diffusion layer formation drives zone migration in travelling wave electrophoresis.

    PubMed

    Booth, William Albert; Edwards, Boyd; Jo, Kyoo; Timperman, Aaron; Schiffbauer, Jarrod

    2017-04-04

    COMSOL finite element modeling software is used to simulate 2D traveling-wave electrophoresis for microfluidic separations and sample concentration. A four-phase AC potential is applied to a periodic interdigitated four-electrode array to produce a longitudinal electric wave that travels through the channel. Charged particles are carried along with the electric wave or left behind, depending on their mobilities. A simplified model of asymmetric electrode reactions resolves the issue of electric double layer shielding at the electrodes. Selective reactions allow for the formation of diffusion layers of charged particles which follow the traveling electric wave. These diffusion layers determine the transport of charged species through the system. Our model reproduces experimental separations of charged species based on mobility. With easy control over the frequency and direction, one may employ this method for concentrating and/or separating charged particles.

  3. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  4. A microchannel electrophoresis DNA sequencing system

    SciTech Connect

    Madabhushi, R S; Warth, T; Balch, J W; Bass, M; Brewer, L R; Copeland, A C; Davidson, J C; Fitch, J P; Kegelmeyer, L M; Kimbrough, J R; McCready, P; Nelson, D; Pastrone, R L; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-01

    In order to increase the DNA sequencing throughput of the Joint Genome Institute, we have developed a microchannel electrophoresis system. The critical new and unique elements of this system include 1) a process for the production of arrays of 96 and 384 microchannels on bonded glass substrates up to 14 x 58 cm and 2) new sieving media for high resolution and high speed separations. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 micrometers deep x 180 micrometers wide by 46 cm long. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved in roughly half the time of conventional sequencers. In February 1999, we begin a pre-production evaluation protocol for the microchannel and for three glass capillary electrophoresis systems (two from industry and one developed by Lawrence Berkeley National Laboratory for the Joint Genome Institute). In order to utilize these instruments for DNA production sequencing, we have been evaluating and implementing software to convert raw electropherograms into called DNA bases with an associated probability of error. Our original intent was to utilize the DNA base calling software known as Plan and Phred developed by the University of Washington. This software has been outstanding for our slab gel electrophoresis systems currently in the production facility. In our tests and evaluations of this software applied to microchannel data, we observed that the electropherograms are of a different statistical and underlying signal structure compared to slab gels. Even with substantial modifications to the software, base calling performance was not satisfactory for the microchannel data. In this paper, we will present o The

  5. Ratcheted electrophoresis of Brownian particles

    NASA Astrophysics Data System (ADS)

    Kowalik, Mikołaj; Bishop, Kyle J. M.

    2016-05-01

    The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operating condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.

  6. 700 Mb/s monolithically integrated four-channel receiver array OEIC using ion-implanted InGaAs JFET technology

    NASA Astrophysics Data System (ADS)

    Roemer, D.; Lauterbach, Ch.; Hoffmann, L.; Walter, J. W.; Huber, H.; Ebbinghaus, G.

    1995-05-01

    A four-channel receiver array suitable for wavelength division multiplexing and parallel optical interconnects has been fabricated. This is achieved by planar monolithic integration of ion implanted junction field-effect transistors, pin photo diodes and level shift diodes in the InGaAs-InP material system. At a data rate of 700 Mb/s the receiver sensitivity is - 32 dBm with a high homogeneity over all channels. The crosstalk attenuation is better than 36 dB.

  7. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology.

    PubMed

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-08-15

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.

  8. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  9. Rapid, Single-Molecule Assays in Nano/Micro-Fluidic Chips with Arrays of Closely Spaced Parallel Channels Fabricated by Femtosecond Laser Machining

    PubMed Central

    Canfield, Brian K.; King, Jason K.; Robinson, William N.; Hofmeister, William H.; Davis, Lloyd M.

    2014-01-01

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values. PMID:25140634

  10. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  11. Combining field-amplified sample stacking with moving reaction boundary electrophoresis on a paper chip for the preconcentration and separation of metal ions.

    PubMed

    Ouyang, Liangfei; Liu, Qian; Liang, Heng

    2017-02-01

    A common drawback of paper-based separation devices is their poor detection limit. In this study, we combined field-amplified sample stacking with moving reaction boundary electrophoresis on a paper chip with six array channels for the parallel separation and concentration of multiple samples. With a new hyphenated technique, the brown I2 from the Fe(3+) /I(-) oxidation-reduction reaction emerged near the boundary between the dilute ethylene diamine tetraacetic acid and potassium iodide and highly concentrated KCl solutions. For the separation and concentration of three components, Cr(3+) , Cu(2+) , and Fe(3+) , the Fe(3+) detection limit was improved at least 266-fold by comparing the hyphenated technique with moving reaction boundary electrophoresis. The detection limit of Fe(3+) was found to be as low as 0.34 ng (20 μM) on the paper chip. We also demonstrated the analysis of a real sample of four metal ions, with detection limits as follows: 0.16 μg Cr(3+) , 1.5 μg Ni(2+) , 0.64 μg Cu(2+) , and 1.5 μg Co(2+) . The synergy of field-amplified sample stacking and moving reaction boundary electrophoresis in the micron paper-based array channels dramatically improved the detection limit and throughput of paper-based electrophoresis.

  12. Protein electrophoresis - serum

    MedlinePlus

    ... Hemolysis Hyperimmunization Immunoelectrophoresis - blood Immunofixation blood test Liver disease Malignancy Malnutrition Nephrotic syndrome Rheumatoid arthritis Serum globulin electrophoresis Serum iron test Systemic lupus erythematosus ...

  13. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  14. Electrophoresis of biological materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of biological products was studied for electrophoresis in space. Free flow electrophoresis, isoelectric focusing, and isotachophoresis are described. The candidates discussed include: immunoglobulins and gamma globulins; isolated islet of langerhans from pancreas; bone marrow; tumor cells; kidney cells, cryoprecipitate; and column separated cultures.

  15. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  16. Improved Electrophoresis Cell

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

  17. Electrophoresis for biological production

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1977-01-01

    Preparative electrophoresis may provide a unique method for meeting ever more stringent purity requirements. Prolonged near zero gravity in space may permit the operation of preparative electrophoresis equipment with 100 times greater throughput than is currently available. Some experiments with influenza Virus Antigen, Erythropoietin and Antihemophaliac Factor, along with process and economic projections, are briefly reviewed.

  18. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes.

    PubMed

    Law, J K Y; Yeung, C K; Hofmann, B; Ingebrandt, S; Rudd, J A; Offenhäusser, A; Chan, M

    2009-02-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K(ATP)) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN(3)) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K(ATP) channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K(ATP) channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN(3) and 2-DG reduced the rate of the sodium (Na(+)) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na(+) influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN(3)- or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K(ATP) channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future.

  19. Electrophoresis experiments for space

    NASA Astrophysics Data System (ADS)

    Snyder, Robert S.; Rhodes, Percy H.

    2000-01-01

    It has long been hoped that space could alleviate the problems of large-scale, high-capacity electrophoresis. Support media and reduced chamber dimensions of capillary electrophoresis have established the physical boundaries for Earth-based systems. Ideally, electrophoresis conducted in a virtual weightless environment in an unrestricted ``free'' fluid should have great potential. The electrophoresis and isoelectric focusing experiments done in the reduced gravity over the past twenty-five years have demonstrated the absence of thermal convection and sedimentation as well as the presence of electrohydrodynamics that requires careful control. One commercial venture produced gram amounts of an electrophoretically purified protein during seven Space Shuttle flights but the market disappeared in the six years between experiment conception and performance on the Space Shuttle. Our accumulated experience in microgravity plus theoretical models predict improvements that should be possible with electrophoresis if past problems are considered and both invention of new technologies and innovation of procedures on the Space Station are encouraged. .

  20. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    SciTech Connect

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  1. An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets.

    PubMed

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B; Merkle, Hellmut; Silva, Afonso C

    2013-11-01

    fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low-input-impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets.

  2. The effect of channel height and electrode aspect ratio on redox cycling at carbon interdigitated array nanoelectrodes confined in a microchannel.

    PubMed

    Heo, Jeong-Il; Lim, Yeongjin; Shin, Heungjoo

    2013-11-07

    Redox cycling is a commonly used electrochemical sensing scheme for enhancing faradaic current signals. This effect can be improved by either optimizing electrode geometries or restricting electrochemical reactions within a limited volume. Here, we demonstrate a simple batch fabrication of 1 : 1 aspect ratio carbon interdigitated array nanoelectrodes integrated in a polydimethylsiloxane microchannel that enables current amplification by up to 1116 times. We also examine the factors that influence the effect of redox cycling, including the electrode aspect ratio and channel height, by using experiments and simulations.

  3. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen

    2017-01-01

    A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.

  4. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  5. Preparative electrophoresis experiment design

    NASA Technical Reports Server (NTRS)

    Thiehler, A.

    1972-01-01

    A multifaceted study supporting the NASA programs to develop a space electrophoresis capability has been conducted. The study involved principally the technique of continuous free electrophoresis. It comprised a critical review of the art, study of new techniques for enhancing resolution and stability, and construction and initial testing of a high resolution cell. The effort resulted in a significant advance in free electrophoresis technique. It has provided also a much improved base for developments exploiting the added advantages of a zero-gravity environment.

  6. Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection.

    PubMed

    Fernández-la-Villa, Ana; Sánchez-Barragán, Dámaso; Pozo-Ayuso, Diego F; Castaño-Álvarez, Mario

    2012-09-01

    A second generation of a battery-powered portable electrophoresis instrument for the use of ME with electrochemical detection was developed. As the first-generation, the main unit of the instrument (150 mm × 165 mm × 95 mm) consists of four-outputs high-voltage power supply (HVPS) with maximum voltage of 3 KV and acquisition system (bipotentiostat) containing 2-channels for dual electrochemical detection. A new reusable microfluidic platform was designed in order to incorporate the microchips with the portable instrument. In this case, the platform is integrated to the main unit of the instrument so that it is not necessary to have any external cable for the interconnection of both parts, making the use of the complete system easier. The new platform contains all the electrical connections for the HVPS and bipotentiostat, as well as fluidic ports for driving the solutions. The microfluidic electrophoresis instrument is controlled by means of a user-friendly interface from a computer. The possibility of wireless connection (Bluetooth®) allows the use of the instrument without any external cable improving the portability. Therefore, the second generation brings a more compact and integrated electrophoresis instrument for "in situ" applications using microfluidic chips in an easy way. The performance of the electrophoresis system was initially evaluated using single- and dual-channel SU-8/Pyrex microchips with different models of integrated electrodes including microelectrodes and interdigitated arrays. The method was tested in different analytical applications such as separation of neurotransmitters, chlorophenols, purine derivatives, vitamins, polyphenolic acids, and flavones.

  7. Shaping Crystals using Electrophoresis

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie; Mackiewicz, Kristian

    2016-11-01

    Electrophoresis is size and shape independent as stressed by Morrison in his seminal paper. Here we present an original approach to reshape colloidal crystals using an electric field as a carving tool.

  8. Electrophoresis operations in space

    NASA Technical Reports Server (NTRS)

    Richman, D. W.

    1982-01-01

    Application of electrophoresis in space processing is described. Spaceborne experiments in areas such as biological products and FDA approved drugs are discussed. These experiments will be carried on shuttle payloads.

  9. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  10. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  11. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  12. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  13. Experimental investigation on axial-flow turbine arrays in erodible and non-erodible channels: Performance, flow-field, and bathymetric interactions

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Sotiropoulos, Fotis; Guala, Michele

    2014-11-01

    Natural channels ideal for hydrokinetic turbine installations present complex environments containing asymmetric flow, regions of high shear and turbulent eddies that impact turbine performance. To understand the impacts caused by variable topography, baseline conditions in a laboratory flume are compared to turbine performance, flow characteristics, and channel topography measurements from two additional experiments with small-scale and large-scale bathymetric features. Both aligned and staggered multi-turbine configurations were investigated. Small-scale axial-flow rotors attached to miniature DC motors provided measurements of turbine performance and response to i) complex topographic features and ii) flow features induced by upstream turbines. Discussion will focus on optimal streamwise and lateral spacing for axial-flow devices, turbine-topography interactions within arrays and inter-array flow-field measurements. Primary focus will center on results from turbines separated by a streamwise distance of 7dT. Additionally, results indicate possible control strategies for turbines installed in complex natural environments. This work was supported by NSF PFI Grant IIP-1318201, CAREER: Geophysical Flow Control (NSF).

  14. Recent advances in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Egen, Ned B.; Couasnon, Pascal; Sammons, David W.

    1987-01-01

    Various approaches for preparative electrophoresis, and three new instruments for preparative electrophoresis are discussed. Consideration is given to isoelectric focusing, isotachophoresis, and zone electrophoresis, three gel-based electrophoresis methods. The design, functions, and performance of the Elphor VaP 21 device of Hannig (1982), the shear-stabilized BIOSTREAM separator of Thompson (1983), and the recycling isoelectric focusing device are described.

  15. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery.

    PubMed

    Liu, Hao-Li; Jan, Chen-Kai; Chu, Po-Chun; Hong, Jhong-Cing; Lee, Pei-Yun; Hsu, Jyh-Duen; Lin, Chung-Chih; Huang, Chiung-Ying; Chen, Pin-Yuan; Wei, Kuo-Chen

    2014-04-01

    Focused ultrasound (FUS) in the presence of microbubbles can bring about transcranial and local opening of the blood-brain barrier (BBB) for potential noninvasive delivery of drugs to the brain. A phased-array ultrasound system is essential for FUS-BBB opening to enable electronic steering and correction of the focal beam which is distorted by cranial bone. Here, we demonstrate our prototype design of a 256-channel ultrasound phased-array system for large-region transcranial BBB opening in the brains of large animals. One of the unique features of this system is the capability of generating concurrent dual-frequency ultrasound signals from the driving system for potential enhancement of BBB opening. A wide range of signal frequencies can be generated (frequency = 0.2-1.2 MHz) with controllable driving burst patterns. Precise output power can be controlled for individual channels via 8-bit duty-cycle control of transistor-transistor logic signals and the 8-bit microcontroller-controlled buck converter power supply output voltage. The prototype system was found to be in compliance with the electromagnetic compatibility standard. Moreover, large animal experiments confirmed the phase switching effectiveness of this system, and induction of either a precise spot or large region of BBB opening through fast focal-beam switching. We also demonstrated the capability of dual-frequency exposure to potentially enhance the BBB-opening effect. This study contributes to the design of ultrasound phased arrays for future clinical applications, and provides a new direction toward optimizing FUS brain drug delivery.

  16. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  17. Electrophoresis in space.

    PubMed

    Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G

    1999-01-01

    Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to

  18. Towards Quantitative Whole Organ Thermoacoustics with a Clinical Array plus One Very Low Frequency Channel Applied to Prostate Cancer Imaging

    PubMed Central

    Patch, Sarah K.; Hull, David; See, William A.; Hanson, George W.

    2016-01-01

    Thermoacoustics has the potential to provide quantitative images of intrinsic tissue properties, most notably electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Although thermoacoustic imaging with optical excitation has been commercialized for small animals, it has not yet made the transition to clinic for whole organ imaging in humans. The purpose of this work was to develop and validate specifications for a clinical ultrasound array for quantitative whole organ thermoacoustic imaging. Imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system as well as a focused single element transducer sensitive to lower frequencies was developed. Very high frequency (VHF) irradiation generated thermoacoustic pulses throughout a 6 × 6 × 5 cm3 volume. In the VHF regime, electrical conductivity drives thermoacoustic signal production. Simultaneous acquisition of thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were quantified at isocenter. The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy in axial images. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 k

  19. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  20. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  1. Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization.

    SciTech Connect

    Brozik, Susan Marie; Frink, Laura J. Douglas; Bachand, George David; Keller, David J.; Patrick, Elizabeth L.; Marshall, Jason A.; Ortiz, Theodore P.; Meyer, Lauren A.; Davis, Ryan W.; Brozik, James A.; Flemming, Jeb Hunter

    2004-12-01

    The challenge of modeling the organization and function of biological membranes on a solid support has received considerable attention in recent years, primarily driven by potential applications in biosensor design. Affinity-based biosensors show great promise for extremely sensitive detection of BW agents and toxins. Receptor molecules have been successfully incorporated into phospholipid bilayers supported on sensing platforms. However, a collective body of data detailing a mechanistic understanding of membrane processes involved in receptor-substrate interactions and the competition between localized perturbations and delocalized responses resulting in reorganization of transmembrane protein structure, has yet to be produced. This report describes a systematic procedure to develop detailed correlation between (recognition-induced) protein restructuring and function of a ligand gated ion channel by combining single molecule fluorescence spectroscopy and single channel current recordings. This document is divided into three sections: (1) reported are the thermodynamics and diffusion properties of gramicidin using single molecule fluorescence imaging and (2) preliminary work on the 5HT{sub 3} serotonin receptor. Thirdly, we describe the design and fabrication of a miniaturized platform using the concepts of these two technologies (spectroscopic and single channel electrochemical techniques) for single molecule analysis, with a longer term goal of using the physical and electronic changes caused by a specific molecular recognition event as a transduction pathway in affinity based biosensors for biotoxin detection.

  2. Linear and Nonlinear Resonant Effects in Metallic Arrays of Sub-Wavelength Channels Filled With GaAs

    DTIC Science & Technology

    2011-01-01

    b. ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 The improvement of the...A. V. and de Fornel , F., “Near-field distributionof optical transmission through sub-wavelength hole arrays, ” Phys. Rev. Lett. 86, 1110 (2001). [3...B., Ahn, Y. H. , Rotermund, F. , Sohn, I. B., Kang, C ., Jeong, M. S. and Kim, D. S. [5] Nahata, A., , “Terahertz near-field enhancement in narrow

  3. Fraction collector for electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Rotating-tube electrophoresis apparatus employs rotating jet of eluting buffer to reduce effects of convection during separation. Designed for separation of microorganisms and biological species, system combines gravity/gradient compensating of lumen with buffer flush at fraction outlet to increase separation efficiency.

  4. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  5. Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil.

    PubMed

    Otazo, Ricardo; Tsai, Shang-Yueh; Lin, Fa-Hsuan; Posse, Stefan

    2007-12-01

    MR spectroscopic imaging (MRSI) with whole brain coverage in clinically feasible acquisition times still remains a major challenge. A combination of MRSI with parallel imaging has shown promise to reduce the long encoding times and 2D acceleration with a large array coil is expected to provide high acceleration capability. In this work a very high-speed method for 3D-MRSI based on the combination of proton echo planar spectroscopic imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed by constraining the singular value decomposition of the encoding matrix to reduce the effect of low-value and overlapped coil sensitivities. The effects of spectral heterogeneity and discontinuities in coil sensitivity across the spectroscopic voxels were minimized by unaliasing the point spread function. As a result the contamination from extracranial lipids was reduced 1.6-fold on average compared to standard SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 x 32 x 8 spatial matrix using a 32-channel array coil can be accelerated 8-fold (R = 4 x 2) along y-z to achieve a minimum acquisition time of 1 min. Maps of the concentrations of N-acetyl-aspartate, creatine, choline, and glutamate were obtained with moderate reduction in spatial-spectral quality. The short acquisition time makes the method suitable for volumetric metabolite mapping in clinical studies.

  6. A small-area low-power current readout circuit using two-stage conversion method for 64-channel CNT sensor arrays.

    PubMed

    Shin, Young-San; Lee, Seongsoo; Wee, Jae-Kyung; Song, Inchae

    2013-06-01

    In this paper, a small-area and low-power current readout circuit with a novel two-stage conversion method is presented for 64-channel CNT (carbon nanotube) sensor arrays. In the first stage, current of each CNT sensor is amplified by 64 active input current mirrors (AICMs). In the second stage, the amplified current is converted to a voltage level through the shared variable gain amplifier (S-VGA). Then the S-VGA output is digitalized by successive approximation register analog-to-digital converter (SAR-ADC). The proposed readout circuit significantly reduces chip area and power consumption, since VGA is shared over 64 channels and passive elements are used only in S-VGA. Fabricated chip area is 0.173 mm(2) in 0.13 μm CMOS technology. Measured power consumption and linearity error are 73.06 μW and 5.3%, respectively, at the input current range of 10 nA-10 μA and conversion rate of 640 samples/s. A prototype real-time CNT sensor system was implemented using the fabricated readout circuit, and successfully detected alcohol reaction.

  7. Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA): Implications for long term functionality

    PubMed Central

    Sharma, A.; Rieth, L.; Tathireddy, P.; Harrison, R.; Oppermann, H.; Klein, M.; Töpper, M.; Jung, E.; Normann, R.; Clark, G.; Solzbacher, F.

    2011-01-01

    The encapsulation and packaging reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA)/integrated neural interface-recording version 5 (INI-R5) has been evaluated by monitoring the extended long term in-vitro functional stability and recording longevity. The INI encapsulated with 6-μm Parylene-C was immersed in phosphate buffer saline (PBS) at room temperature for a period of over 12 months. The USEA/INI-R5, while being soaked was powered and configured wirelessly through 2.765 MHz inductive link and the transmitted frequency shift keying (FSK) modulated radio-frequency (RF) (900 MHz Industrial, scientific, medical-ISM band) signal was also recorded wirelessly as a function of soak time. In order to test the long term recording ability, in-vitro wireless recording was performed in agarose for few channels. The full functionality and the ability of the electrodes to record artificial neural signals even after 12 months of PBS soak provides a measure of encapsulation reliability, the functional and recording stability in fully integrated wireless neural interface and potential usefulness for future chronic implants. PMID:23288983

  8. Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA): Implications for long term functionality.

    PubMed

    Sharma, A; Rieth, L; Tathireddy, P; Harrison, R; Oppermann, H; Klein, M; Töpper, M; Jung, E; Normann, R; Clark, G; Solzbacher, F

    2012-12-01

    The encapsulation and packaging reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA)/integrated neural interface-recording version 5 (INI-R5) has been evaluated by monitoring the extended long term in-vitro functional stability and recording longevity. The INI encapsulated with 6-μm Parylene-C was immersed in phosphate buffer saline (PBS) at room temperature for a period of over 12 months. The USEA/INI-R5, while being soaked was powered and configured wirelessly through 2.765 MHz inductive link and the transmitted frequency shift keying (FSK) modulated radio-frequency (RF) (900 MHz Industrial, scientific, medical-ISM band) signal was also recorded wirelessly as a function of soak time. In order to test the long term recording ability, in-vitro wireless recording was performed in agarose for few channels. The full functionality and the ability of the electrodes to record artificial neural signals even after 12 months of PBS soak provides a measure of encapsulation reliability, the functional and recording stability in fully integrated wireless neural interface and potential usefulness for future chronic implants.

  9. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  10. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    PubMed Central

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors. PMID:26806213

  11. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Spina, Massimo; Bonvin, Eric; Sienkiewicz, Andrzej; Forró, László; Horváth, Endre

    2016-01-01

    Spatial positioning of nanocrystal building blocks on a solid surface is a prerequisite for assembling individual nanoparticles into functional devices. Here, we report on the graphoepitaxial liquid-solid growth of nanowires of the photovoltaic compound CH3NH3PbI3 in open nanofluidic channels. The guided growth, visualized in real-time with a simple optical microscope, undergoes through a metastable solvatomorph formation in polar aprotic solvents. The presently discovered crystallization leads to the fabrication of mm2-sized surfaces composed of perovskite nanowires having controlled sizes, cross-sectional shapes, aspect ratios and orientation which have not been achieved thus far by other deposition methods. The automation of this general strategy paves the way towards fabrication of wafer-scale perovskite nanowire thin films well-suited for various optoelectronic devices, e.g. solar cells, lasers, light-emitting diodes and photodetectors.

  12. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  13. Happy bicentennial, electrophoresis!

    PubMed

    Righetti, Pier Giorgio

    2009-12-01

    A short survey of electrophoresis and a celebration of its bicentennial, with some remarkable mementos and a list of books that shaped the field. Where one also learns of a secret production plant with a huge-scale electrophoretic apparatus for skimming of latex from Hevea brasiliensis and keeping the wheels of the Ally Army running during World War II. And of cyber (mammoth) 2D gels of 1.5 x 1 m in size accommodating >12,000 spots.

  14. Theory of electrophoresis: fate of one equation.

    PubMed

    Gas, Bohuslav

    2009-06-01

    Electrophoresis utilizes a difference in movement of charged species in a separation channel or space for their spatial separation. A basic partial differential equation that results from the balance laws of continuous processes in separation sciences is the nonlinear conservation law or the continuity equation. Attempts at its analytical solution in electrophoresis go back to Kohlrausch's days. The present paper (i) reviews derivation of conservation functions from the conservation law as appeared chronologically, (ii) deals with theory of moving boundary equations and, mainly, (iii) presents the linear theory of eigenmobilities. It shows that a basic solution of the linearized continuity equations is a set of traveling waves. In particular cases the continuity equation can have a resonance solution that leads in practice to schizophrenic dispersion of peaks or a chaotic solution, which causes oscillation of electrolyte solutions.

  15. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  16. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  17. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  18. IDENTIFICATION OF REACTIVE DYES IN SPENT DYEBATHS AND WASTEWATER BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Re...

  19. Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-01-01

    Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915

  20. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator.

    PubMed

    Malzacher, Matthias; Kalayciyan, Raffi; Konstandin, Simon; Haneder, Stefan; Schad, Lothar R

    2016-03-01

    Sodium magnetic resonance imaging ((23)Na MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for (23)Na MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The (23)Na MRI technique can also be integrated as a potential monitoring instrument after radiotherapy or chemotherapy. The main contribution in this work was the adaptation of (23)Na MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using (23)Na MRI and increase the receive sensitivity. The resonator system consisted of an already presented (23)Na whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (∼7cm) over the whole-body resonator was achieved using the spine array. (23)Na MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10minutes. A density adapted 3D radial sequence was chosen with 6mm isotropic resolution, 49ms repetition time and a short echo time of 540μs. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120ms repetition time) using this setup.

  1. Calibration of the R/V Marcus G. Langseth Seismic Array in shallow Cascadia waters using the Multi-Channel Streamer

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Tolstoy, M.; Carton, H. D.

    2013-12-01

    In the summer of 2012, two multi-channel seismic (MCS) experiments, Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench, were conducted in the offshore Cascadia region. An area of growing environmental concern with active source seismic experiments is the potential impact of the received sound on marine mammals, but data relating to this issue is limited. For these surveys sound level 'mitigation radii' are established for the protection of marine mammals, based on direct arrival modeling and previous calibration experiments. Propagation of sound from seismic arrays can be accurately modeled in deep-water environments, but in shallow and sloped environments the complexity of local geology and bathymetry can make it difficult to predict sound levels as a function of distance from the source array. One potential solution to this problem is to measure the received levels in real-time using the ship's streamer (Diebold et al., 2010), which would allow the dynamic determination of suitable mitigation radii. We analyzed R/V Langseth streamer data collected on the shelf and slope off the Washington coast during the COAST experiment to measure received levels in situ up to 8 km away from the ship. Our analysis shows that water depth and bathymetric features can affect received levels in shallow water environments. The establishment of dynamic mitigation radii based on local conditions may help maximize the safety of marine mammals while also maximizing the ability of scientists to conduct seismic research. With increasing scientific and societal focus on subduction zone environments, a better understanding of shallow water sound propagation is essential for allowing seismic exploration of these hazardous environments to continue. Diebold, J. M., M. Tolstoy, L. Doermann, S. Nooner, S. Webb, and T. J. Crone (2010) R/V Marcus G. Langseth Seismic Source: Modeling and Calibration. Geochemistry, Geophysics, Geosystems, 11, Q12012, doi:10.1029/2010GC003216.

  2. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-07

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications.

  3. Micro free-flow electrophoresis: theory and applications

    PubMed Central

    Turgeon, Ryan T.

    2009-01-01

    Free-flow electrophoresis (FFE) is a technique that performs an electrophoretic separation on a continuous stream of analyte as it flows through a planar flow channel. The electric field is applied perpendicularly to the flow to deflect analytes laterally according to their mobility as they flow through the separation channel. Miniaturization of FFE (μFFE) over the past 15 years has allowed analytical and preparative separation of small volume samples. Advances in chip design have improved separations by reducing interference from bubbles generated by electrolysis. Mechanisms of band broadening have been examined theoretically and experimentally to improve resolution in μFFE. Separations using various modes such as zone electrophoresis, isoelectric focusing, isotachophoresis, and field-step electrophoresis have been demonstrated. PMID:19290514

  4. Phenomenology of colloidal crystal electrophoresis

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Palberg, Thomas

    2003-08-01

    We studied the motion of polycrystalline solids comprising of charged sub-micron latex spheres suspended in deionized water. These were subjected to a low frequency alternating square wave electric field in an optical cell of rectangular cross section. Velocity profiles in X and Y direction were determined by Laser Doppler Velocimetry. The observed complex flow profiles are time dependent due to the combined effects of electro-osmosis, electrophoresis, crystal elasticity, and friction of the crystals at the cell wall. On small time scales elastic deformation occurs. On long time scales channel formation is observed. At intermediate times steady state profiles are dominated by a solid plug of polycrystalline material moving in the cell center. At large field strengths the plug shear melts. Mobilities in the shear molten state are on the order of (6.5±0.5) 10-8 m2 V-1 s-1 and connect continuously with those of the equilibrium fluid. The apparent mobility of the plug is much larger than of the fluid and like the mobility of the fluid decreases with increasing particle number density. We qualitatively attribute the accelerated motion of the plug to an incomplete exposure to the electro-osmotic flow profile.

  5. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  6. Label-free voltammetric detection of MicroRNAs at multi-channel screen printed array of electrodes comparison to graphite sensors.

    PubMed

    Erdem, Arzum; Congur, Gulsah

    2014-01-01

    The multi-channel screen-printed array of electrodes (MUX-SPE16) was used in our study for the first time for electrochemical monitoring of nucleic acid hybridization related to different miRNA sequences (miRNA-16, miRNA-15a and miRNA-660, i.e, the biomarkers for Alzheimer disease). The MUX-SPE16 was also used for the first time herein for the label-free electrochemical detection of nucleic acid hybridization combined magnetic beads (MB) assay in comparison to the disposable pencil graphite electrode (PGE). Under the principle of the magnetic beads assay, the biotinylated inosine substituted DNA probe was firstly immobilized onto streptavidin coated MB, and then, the hybridization process between probe and its complementary miRNA sequence was performed at MB surface. The voltammetric transduction was performed using differential pulse voltammetry (DPV) technique in combination with the single-use graphite sensor technologies; PGE and MUX-SPE16 for miRNA detection by measuring the guanine oxidation signal without using any external indicator. The features of single-use sensor technologies, PGE and MUX-SPE16, were discussed concerning to their reproducibility, detection limit, and selectivity compared to the results in the earlier studies presenting the electrochemical miRNA detection related to different miRNA sequences.

  7. The EarthScope Array Network Facility: application-driven low-latency web-based tools for accessing high-resolution multi-channel waveform data

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Lindquist, K. G.; Clemesha, A.; Vernon, F. L.

    2008-12-01

    Since April 2004 the EarthScope USArray seismic network has grown to over 400 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that interface between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide audiences ranging from network operators and geoscience researchers, to funding agencies and the general public, with comprehensive information about the experiment. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a stations two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards.

  8. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  9. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  10. Fluorescence Detection In Electrophoresis

    NASA Astrophysics Data System (ADS)

    Swarner, Susan

    1988-04-01

    Fluorescence detection is in common usage in forensic science laboratories for the visualization of three enzyme markers. The fluorogenic substrates, 4-methylumbelliferyl phosphate, 4-methylutbel-liveryl acetate, and fluorecein diacetate, are acted upon by the enzymes Erythrocyte Acid Phospha, tase, Esterase-D, and Carbonic Anhydrase-III, respectively, to produce compounds visible to the analyst when viewed with transmitted UV light at 365 nm. Additionally, the choice of fluorogenic corn, pounds may help detect a specific enzyme from a related enzyme. One of the responsibilities of a forensic science laboratory may be the analysis of blood for genetically controlled polymorphic enzymes and protein markers. The genetic markers are said to be polymorphic because each exhibits types which can be differentiated and allows for the inclusion or exclusion of possible-donors of the blood. Each genetic marker can be separated into these recognizable types by electrophoresis, a technique which separates compounds based on electrical charges. Electrophoresis is conducted by placing a portion or extract of each bloodstain into a support medium which will conduct electricity. This is known as a plate or membrane. By controlling the pH of the buffer and the potential that is applied to the plate, the analyst can achieve separation of the types within an enzyme marker. The types appear as differing patterns of bands. Once the bloodstain has been subjected to electrophoresis, the enzymes must be visualized. This is generally best accomplished by using the specific activity of the enzyme. For the enzymes described in the present work, the visualization is performed by over-layering the plate with a piece of filter paper that 'has been saturated with the appropriate non-fluorescent substrate and buffer. The bands of enzyme, which is now in discrete patterns, will act upon the non-fluorescent substrate to create a fluorescent compound. The plate is then viewed with transmitted UV

  11. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  12. Derivatization in Capillary Electrophoresis.

    PubMed

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  13. Electrophoresis of Positioned Nucleosomes

    PubMed Central

    Castelnovo, Martin; Grauwin, Sébastian

    2007-01-01

    We present in this article an original approach to compute the electrophoretic mobility of rigid nucleo-protein complexes like nucleosomes. This model allows us to address theoretically the influence of complex position along DNA, as well as wrapped length of DNA on the electrophoretic mobility of the complex. The predictions of the model are in qualitative agreement with experimental results on mononucleosomes assembled on short DNA fragments (<400 bp). Influences of additional experimental parameters like gel concentration, ionic strength, and effective charges are also discussed in the framework of the model, and are found to be qualitatively consistent with experiments when available. Based on the present model, we propose a simple semi-empirical formula describing positioning of nucleosomes as seen through electrophoresis. PMID:17277181

  14. Static continuous electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H. (Inventor)

    1982-01-01

    An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.

  15. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  16. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  17. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  18. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.

    PubMed

    Kang, Yang Jun; Ha, Young-Ran; Lee, Sang-Joon

    2016-01-07

    Red blood cell (RBC) deformability has been considered a potential biomarker for monitoring pathological disorders. High throughput and detection of subpopulations in RBCs are essential in the measurement of RBC deformability. In this paper, we propose a new method to measure RBC deformability by evaluating temporal variations in the average velocity of blood flow and image intensity of successively clogged RBCs in the microfluidic channel array for specific time durations. In addition, to effectively detect differences in subpopulations of RBCs, an air compliance effect is employed by adding an air cavity into a disposable syringe. The syringe was equally filled with a blood sample (V(blood) = 0.3 mL, hematocrit = 50%) and air (V(air) = 0.3 mL). Owing to the air compliance effect, blood flow in the microfluidic device behaved transiently depending on the fluidic resistance in the microfluidic device. Based on the transient behaviors of blood flows, the deformability of RBCs is quantified by evaluating three representative parameters, namely, minimum value of the average velocity of blood flow, clogging index, and delivered blood volume. The proposed method was applied to measure the deformability of blood samples consisting of homogeneous RBCs fixed with four different concentrations of glutaraldehyde solution (0%-0.23%). The proposed method was also employed to evaluate the deformability of blood samples partially mixed with normal RBCs and hardened RBCs. Thereafter, the deformability of RBCs infected by human malaria parasite Plasmodium falciparum was measured. As a result, the three parameters significantly varied, depending on the degree of deformability. In addition, the deformability measurement of blood samples was successfully completed in a short time (∼10 min). Therefore, the proposed method has significant potential in deformability measurement of blood samples containing hematological diseases with high throughput and precise detection of

  19. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  20. Measurement of electroosmotic flow in capillary and microchip electrophoresis.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2007-11-02

    Microfluidics is the science and technology of systems that process or manipulate small amounts of fluids, using channels with dimensions of tens of micrometers. Electroosmotic flow (EOF) is an important characteristic of fluids in microchannels. In this paper, EOF generation, effects on separation and definition of EOF are introduced. And EOF measurement methods on capillary electrophoresis (CE) and microchip CE are systematically reviewed based on detection principle, hallmarks of EOF measurement methods are presented, the devices and signals are also schematically described. This paper offers researchers a guidance to obtain an estimate of EOF mobility in capillary and microchip electrophoresis.

  1. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J.; Roussel, Jr., Thomas J.; Crain, Mark M.; Baldwin, Richard P.; Keynton, Robert S.; Naber, John F.; Walsh, Kevin M.; Edelen, John. G.

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  2. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  3. Large microchannel array fabrication and results for DNA sequencing

    SciTech Connect

    Pastrone, R L; Balch, J W; Brewer, L R; Copeland, A C; Davidson , J C; Fitch, J P; Kimbrough, J R; Madabhushi, R S; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-07

    We have developed a process for the production of microchannel arrays on bonded glass substrates up to I4 x 58 cm, for DNA sequencing. Arrays of 96 and 384 microchannels, each 46 cm long have been built. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 x 180 micrometers by 46 cm Iong; the etch is approximately isotropic, leaving a key undercut, for forming a rounded channel. The surface roughness at the bottom of the 40 micrometer deep channel has been profilometer measured to be as low as 20 nm; the roughness at the top surface was 2 nm. Etch uniformity of about 5% has been obtained using a 22% vol. HF / 78% Acetic acid solution. The simple lithography, etching, and bonding of these substrates enables efficient production of these arrays and extremely precise replication From master masks and precision machining with a mandrel. Keywords: microchannels, microchannel plates, DNA sequencing, electrophoresis, borosilicate glass

  4. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  5. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  6. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  7. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  8. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  9. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  10. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney.

    PubMed

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B; Tian, Jin-Bin; Zhu, Michael X; O'Neil, Roger G

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which

  11. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney

    PubMed Central

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B.; Tian, Jin-Bin; Zhu, Michael X.; O’Neil, Roger G.

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which

  12. Electrophoresis as a management tool

    USGS Publications Warehouse

    Morgan, R.P.; Chapman, J.A.; Noe, L.A.; Henny, C.J.

    1974-01-01

    The theme of this 1974 Northeast Fish and Wildlife Conference is 'A New Era'. Indeed, it is a new era for improved techniques to assist in management of our fish and wildlife resources for the maximum benefit of all. In some cases, the new techniques are primarily used in research.on fish and wildlife, and the results from the research are used to aid management and enforcement agencies in the decision-making process. One of the newer techniques that is being applied to problems in fisheries and wildlife is electrophoresis. In this paper, we review briefly the techniques of electrophoresis and illustrate research problems in wildlife and fisheries where the use of electrophoresis is now assisting or may potentially aid in management decisions.

  13. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  14. Surface modification in microchip electrophoresis.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-11-01

    Different approaches and techniques for surface modification of microfluidic devices applied for microchip electrophoresis are reviewed. The main focus is on the improved electrophoretic separation by reducing analyte-wall interactions and manipulation of electroosmosis. Approaches and methods for permanent and dynamic surface modification of microfluidic devices, manufactured from glass, quartz and also different polymeric substrates, are described.

  15. Microscopic Electrohydrodynamics of DNA electrophoresis

    NASA Astrophysics Data System (ADS)

    Aksimentiev, Aleksei; Luan, Binquan

    2008-03-01

    Gel electrophoresis is currently the most successful yet costly method to sequence DNA. Electrophoresis of DNA through solid-state nanopores holds promise for reducing the costs and making personal genomics a reality. The underlying physics of DNA electrophoresis, however, remains controversial. Theoretical models of this process often invoke the notion of the effective charge of a DNA molecule qeff to account for the reduced electric force on DNA in an external field E, i.e. F= qeffE. However, experimental estimates of qeff can differ from each other by as much as ten times. To clarify the physical origin of the reduction of an electric force on DNA in electrophoresis, we investigated this process through extensive all-atom molecular dynamics simulations. Our results demonstrate that the effective screening of the DNA charge arises from the hydrodynamic drag of the electroosmotic flow, not from the counterion condensation. We show that the effective driving force F of an applied electric field E in a nanopore obeys the same law as in a bulk electrolyte: F=ξμE. Here, ξ and μ are, respectively, the friction coefficient and electrophoretic mobility of DNA that depend on the surface properties of a nanopore, such as its roughness. Based on the above law, a method for determining the effective driving force is suggested that does not require a direct force measurement.

  16. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  17. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  18. Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution

    NASA Astrophysics Data System (ADS)

    Kandlikar, S. G.; Lu, Z.; Lin, T. Y.; Cooke, D.; Daino, M.

    Intrusion of the gas diffusion layer (GDL) into gas channels due to fuel cell compression has a major impact on the gas flow distribution, fuel cell performance and durability. In this work, the effect of compression resulting in GDL intrusion in individual parallel PEMFC channels is investigated. The intrusion is determined using two methods: an optical measurement in both the in-plane and through-plane directions of GDL, as well as an analytical fluid flow model based on individual channel flow rate measurements. The intrusion measurements and estimates obtained from these methods agree well with each other. An uneven distribution of GDL intrusion into individual parallel channels is observed. A non-uniform compression force distribution derived from the clamping bolts causes a higher intrusion in the end channels. The heterogeneous GDL structure and physical properties may also contribute to the uneven GDL intrusion. As a result of uneven intrusion distribution, severe flow maldistribution and increased pressure drop have been observed. The intrusion data can be further used to determine the mechanical properties of GDL materials. Using the finite element analysis software program ANSYS, the Young's modulus of the GDL from these measurements is estimated to be 30.9 MPa.

  19. Development of multitissue microfluidic dynamic array for assessing changes in gene expression associated with channel catfish appetite, growth, metabolism, and intestinal health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale, gene expression methods allow for high throughput analysis of physiological pathways at a fraction of the cost of individual gene expression analysis. Systems, such as the Fluidigm quantitative PCR array described here, can provide powerful assessments of the effects of diet, environme...

  20. Microelectronic Stimulator Array

    DTIC Science & Technology

    2000-08-09

    number of researchers and is an active area of medical research. In a normal eye, in a basic concept 10, 20 Figures la and lb shows a ray trace of two...containing an embedded array of microwires . The glass has a curved surface that conforms to the inner radius of the retina 21. The microelectronic imaging...very small channels perpendicular to the plane of the wafer. The channels are filled with a good electrical conductor forming microwires with one

  1. Electrophoresis for genotyping: temporal thermal gradient gel electrophoresis for profiling of oligonucleotide dissociation.

    PubMed Central

    Day, I N; O'Dell, S D; Cash, I D; Humphries, S E; Weavind, G P

    1995-01-01

    Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia. Images PMID:7630718

  2. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  3. Electrokinetic Sample Preconcentration and Hydrodynamic Sample Injection for Microchip Electrophoresis Using a Pneumatic Microvalve

    SciTech Connect

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A.; Tang, Keqi; Kelly, Ryan T.

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.

  4. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    PubMed

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  5. A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Cheng; Ho, Hsiao-Ching; Tseng, Chien-Kai; Hou, Shao-Qin

    2001-05-01

    A microstructure on poly-methylmethacrylate (PMMA) for sample concentration and electrophoresis was fabricated. This microfabricated structure was able to increase the detection signal and lower the amount of sample used in electrophoretic analysis. The thin-film electrode located at the T-intersection of the sample injection and separation channels provides the current path for the injection channel, but restrains the DNA molecules from passing through. This can accumulate DNA molecules and increase the concentration before performing the electrophoretic analysis. This microstructure was fabricated using krypton fluoride (KrF) excimer laser photo-ablation and fusion bonding techniques. The excimer laser photo-ablation performs rapid prototyping with great flexibility in design changes. The PMMA material is much cheaper than other materials, for example glass and silicon, used in capillary electrophoresis and concentration. The applied electrical field was 300 V cm-1 for the DNA concentration in this microstructure. Experiments show that the DNA concentration was saturated within 200 s after the DNA molecules first reached the injection tee. The DNA fragments can be concentrated up to five times greater than samples without a concentrator at the injection tee. The separation results also demonstrated that the detected signal intensities of the separated DNA fragments in the tee-type chip with a sample preconcentrator were five times greater than that obtained in a conventional cross-type capillary electrophoresis chip with an identical initial sample concentration.

  6. Electrophoresis technology experiment MA-011

    NASA Technical Reports Server (NTRS)

    Allen, R. E.; Barlow, G. H.; Bier, M.; Bigazzi, P. E.; Knox, R. J.; Micale, F. J.; Seaman, G. V. F.; Vanderhoff, J. W.; Vanoss, C. J.; Patterson, W. J.

    1976-01-01

    Experiment MA-011, electrophoresis technology, was designed to test electrophoresis hardware that would continue the development of technology for electrophoretic separation of materials in the near zero g environment of space. The experimental hardware generally functioned as planned. Frozen live cells were successfully transported into space, electrophoretic processing was performed, and viable cells were returned to earth. A separation of the three types of fixed red blood cells (rabbit, human, and horse) was demonstrated. The human lymphocytes, however, showed no apparent migration. The separation of human kidney cells produced the most exciting data. Analysis shows electrophoretic separation throughout the entire column with at least four bands of viable cells. The isotachophoresis experiment definitely demonstrated the isotachophoretic separation of biological cells in a near zero g environment.

  7. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  8. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  9. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  10. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.

    PubMed

    Patch, Sarah K; Hull, David; See, William A; Hanson, George W

    2016-02-01

    Thermoacoustics has the potential to provide quantitative images of intrinsic tissue properties, most notably electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kilopascal. Although thermoacoustic imaging with optical excitation has been commercialized for small animals, it has not yet made the transition to clinic for whole organ imaging in humans. The purpose of this work was to develop and validate specifications for a clinical ultrasound array for quantitative whole organ thermoacoustic imaging. Imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a [Formula: see text] inclusion inside a 7.5-cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz to 10 kHz, respectively. A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system as well as a focused single-element transducer sensitive to lower frequencies was developed. Very high-frequency (VHF) irradiation generated thermoacoustic pulses throughout a [Formula: see text] volume. In the VHF regime, electrical conductivity drives thermoacoustic signal production. Simultaneous acquisition of thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96 images with a separation of 0.3 mm, whereas the single-element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were quantified at isocenter. The array provided volumetric imaging capability with superior resolution whereas the single-element transducer provided superior quantitative accuracy in axial images. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies

  11. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  12. A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis.

    PubMed

    Na, Na; Liu, Tingting; Yang, Xiaojun; Sun, Binjie; Ouyang, Jenny; Ouyang, Jin

    2012-08-01

    Combining electrophoresis with a cellulose acetate membrane-based technique, we developed a simple and low-cost method, named cellulose acetate membrane-based small lanes (CASL), for protein electrophoresis. A home-made capillary plotter controlled by a 3D moving stage was used to create milli-to-micro channels by printing poly(dimethylsiloxane) on to a hydrophilic cellulose acetate membrane. In the hydrophilic channels, 5 nL protein mixture was separated on the basis of electro-migration under an electric field. Compared with polyacrylamide gel electrophoresis (PAGE), CASL resulted in higher protein signal intensity for separation of mixtures containing the same mass of protein. The platform was easily fabricated at low cost (approx. $0.005 for each 1-mm-wide channel), and separation of three protein mixtures was completed in 15 min. Both electrophoresis time and potential affected the separation. Rather than chromatographic separation, this method accomplished application of microchannel techniques for cellulose acetate membrane-based protein electrophoresis. It has potential in proteomic analysis, especially for rapid, low-cost, and low-volume sample analysis in clinical diagnosis.

  13. Magnetic arrays

    SciTech Connect

    Trumper, David L.; Kim, Won-jong; Williams, Mark E.

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  14. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  15. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  16. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  17. Microfab-less Microfluidic Capillary Electrophoresis Devices

    PubMed Central

    Segato, Thiago P.; Bhakta, Samir A.; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A.; Jiao, Hong; Garcia, Carlos D.

    2013-01-01

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert. PMID:23585815

  18. Contactless conductivity detector for microchip capillary electrophoresis.

    PubMed

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelínek, Ivan; Feldman, Jason; Löwe, Holger; Hardt, Steffen

    2002-05-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  19. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  20. Microchip electrophoresis for chiral separations.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-08-01

    Microchip electrophoresis (MCE) is a promising new technique for the separation of enantiomers. This recently introduced technique enables chiral separations to be performed in seconds on tiny micromachined devices. This review is intended to give a brief introduction into the principles of chiral separations with MCE with regard to methodology and instrumentation. Different approaches to realize chiral separations in microfluidic devices are described and discussed. This review gives an overview of original work done in this field with emphasis on approaches to improve detection and resolution in chiral MCE.

  1. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  2. Characterization of the Twelve Channel 100/140 Micron Optical Fiber, Ribbon Cable and MTP Array Connector Assembly for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Macmurphy, Shawn; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2002-01-01

    Presented here is the second set of testing conducted by the Technology Validation Laboratory for Photonics at NASA Goddard Space Flight Center on the 12 optical fiber ribbon cable with MTP array connector for space flight environments. In the first set of testing the commercial 62.5/125 cable assembly was characterized using space flight parameters. The testing showed that the cable assembly would survive a typical space flight mission with the exception of a vacuum environment. Two enhancements were conducted to the existing technology to better suit the vacuum environment as well as the existing optoelectronics and increase the reliability of the assembly during vibration. The MTP assembly characterized here has a 100/140 optical commercial fiber and non outgassing connector and cable components. The characterization for this enhanced fiber optic cable assembly involved vibration, thermal and radiation testing. The data and results of this characterization study are presented which include optical in-situ testing.

  3. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    SciTech Connect

    Zhang, Yonghua

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  4. Conducting polymer electrodes for gel electrophoresis.

    PubMed

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  5. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  6. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  7. Array of aligned and dispersed carbon nanotubes and method of producing the array

    DOEpatents

    Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, TN; Hendricks, Troy R [Knoxville, TN

    2012-06-19

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  8. Array of aligned and dispersed carbon nanotubes and method of producing the array

    SciTech Connect

    Ivanov, Ilia N; Simpson, John T; Hendricks, Troy R

    2013-06-11

    An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.

  9. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOEpatents

    Davidson, J. Courtney; Balch, Joseph W.

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  10. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  11. Kokkos Array

    SciTech Connect

    Edwards Daniel Sunderland, Harold Carter

    2012-09-12

    The Kokkos Array library implements shared-memory array data structures and parallel task dispatch interfaces for data-parallel computational kernels that are performance-portable to multicore-CPU and manycore-accelerator (e.g., GPGPU) devices.

  12. Microfluidic hydrogel arrays for direct genotyping of clinical samples.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2016-05-15

    A microfluidic hydrogel DNA microarray is developed to overcome the limitations of conventional planar microarrays such as low sensitivity, long overnight hybridization time, lack of a melting verification of proper hybrid, and complicated sample preparation process for genotyping of clinical samples. Unlike our previous prototype hydrogel array which can analyze only single-stranded DNA (ssDNA) targets, the device is the first of its type to allow direct multiplexed single nucleotide polymorphism (SNP) detection of human clinical samples comprising double-stranded DNA (dsDNA). This advance is made possible by incorporating a streptavidin (SA) hydrogel capture/purification element in a double T-junction at the start of the linear hydrogel array structure and fabricating ten different probe DNAs-entrapped hydrogels in microfluidic channels. The purified or unpurified polymerase chain reaction (PCR) products labeled with a fluorophore and a biotin are electrophoresed through the SA hydrogel for binding and purification. After electrophoretic washing, the fluorophore-labeled DNA strand is then thermally released for hybridization capture by its complementary probe gel element. We demonstrate the precise and rapid discrimination of the genotypes of five different clinical targets by melting curve analysis based on temperature-gradient electrophoresis within 3h, which is at least 3-fold decrease in incubation time compared to conventional microarrays. In addition, a 1.7 pg (0.024 femtomoles) limit of detection for clinical samples is achieved which is ~100-fold better sensitivity than planar microarrays.

  13. Multi-channel Linear Array Seismic Interferometry: Insights on Passive Seismic Imaging of the Upper 1 km in an Urban Area

    NASA Astrophysics Data System (ADS)

    Pettinger, E. M.; Stephenson, W. J.; Odum, J. K.

    2015-12-01

    High-resolution active-source seismic imaging in heavily urbanized regions is problematic because equipment deployment is often constrained to linear roadways, where access for active seismic sources may be limited and seismic energy from ambient urban noise can overpower active sources. To investigate the application of linear-array seismic interferometry for obtaining subsurface images in the upper 1 km beneath an urban area, we acquired passive seismic data along two roadways that cross a northern segment of the Seattle fault zone, Washington State. Both of the profiles were collocated with previously acquired active-source reflection lines, which we used as control for interpretations. The interferometry profiles were roughly 1 km in length and were acquired using 8-Hz resonant frequency, vertical-component geophones that were deployed at 5 m spacing (nominally 216 sensors). Approximately 24 hours of data were acquired on each profile over four days (because of permitting and security issues, the equipment could not be deployed overnight). The basic processing sequence used to create virtual source gathers (VSG's) included pre-correlation gain correction, resampling, bandpass filtering, correlation by cross coherence, and VSG editing. After editing, around 18% of the individual virtual sources were retained for further analysis. VSG's were then dip filtered prior to stacking to further mitigate coherent noise. Our VSG's resolve 4-30 Hz Rayleigh waves, propagating at 300-600 m/s, and at least one diving P-wave propagating at roughly 1800 m/s. These apparent velocities are similar to those of comparable wave phases observed in the active-source data. Overall, these newly acquired high-resolution seismic imaging data provide insights into seismic velocity of the upper 1 km across the Seattle fault zone.

  14. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  15. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  16. Non-Aqueous Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  17. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  18. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  19. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  20. Getting the Most out of Electrophoresis Units

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    2007-01-01

    At Oklahoma City Community College, they have developed gel electrophoresis activities that support active learning of many scientific concepts, including: pH, electrolysis, oxidation reduction, electrical currents, potentials, conductivity, molarity, gel electrophoresis, DNA and protein separation, and DNA fingerprinting. This article presents…

  1. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  2. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  3. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  4. Electrophoresis in space at zero gravity

    NASA Technical Reports Server (NTRS)

    Bier, M.; Snyder, R. S.

    1974-01-01

    Early planning for manufacturing operations in space include the use of electrophoresis for purification and separation of biological materials. Greatly simplified electrophoresis apparatus have been flown in the Apollo 14 and 16 missions to test the possibility of stable liquid systems in orbit. Additionally, isoelectric focusing and isotachophoresis are of particular interest as they offer very high resolution and have self-sharpening boundaries. The value of possible space electrophoresis is substantial. For example, present technology permits large fractionation of only a few of blood proteins many fractions, and separated cell populations are needed for research.

  5. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  6. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  7. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  8. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  9. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  10. Determination of phytohormones of environmental impact by capillary zone electrophoresis.

    PubMed

    Segura Carretero, A; Cruces-Blanco, C; Soriano Peña, M; Cortacero Ramírez, S; Fernández Gutiérrez, A

    2004-03-24

    A test mixture of five phytohormones [naphthaleneacetic acid (NAA), naphthoxyacetic acid (NOA), indoleacetic acid (IAA), indolebutyric acid (IBA), and indolepropionic acid (IPA)] was investigated. These compounds were cleanly separated with good resolution by capillary zone electrophoresis with a UV diode array detector using 20 mM sodium phosphate buffer (pH 7.25). The lowest detection limit was obtained for IPA (0.45 mg L(-)(1) or 0.005 mg kg(-)(1)) and the highest for NAA (1.04 mg L(-)(1) or 0.014 mg kg(-)(1)). The method has been applied for tomato samples fortified with the five phytohormones using a liquid-liquid extraction procedure, obtaining recovery percentages ranging from 91 to 109.0%.

  11. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  12. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  13. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    PubMed

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE.

  14. Ultrasonic stair case array for NDE

    NASA Astrophysics Data System (ADS)

    Oliver, K.; Tittmann, B. R.; Kropf, M.

    2006-03-01

    In this paper we present the results on the design of a unique two-dimensional phased array with low channel applications for imaging defects on a metal surface. First, basic transducer calculations will be shown. Followed by the results of important phased array variables, such as focusing, and angle beam sweeping ability, The final design will be given. Next the computer simulation results will be discussed. These results will indicate the performance of the actual array. The second half of the paper will be devoted to a discussion on the phased array testing results with a demonstration phased array.

  15. Hot embossing of electrophoresis microchannels in PMMA substrates using electric heating wires.

    PubMed

    Gan, Zhibing; Yu, Zhengyin; Chen, Zhi; Chen, Gang

    2010-04-01

    A simple method based on electric heating wires has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) electrophoresis microchips in ordinary laboratories without the need for microfabrication facilities. A piece of stretched electric heating wire placed across the length of a PMMA plate along its midline was sandwiched between two microscope slides under pressure. Subsequently, alternating current was allowed to pass through the wire to generate heat to emboss a separation microchannel on the PMMA separation channel plate at room temperature. The injection channel was fabricated using the same procedure on a PMMA sheet that was perpendicular to the separation channel. The complete microchip was obtained by bonding the separation channel plate to the injection channel sheet, sealing the channels inside. The electric heating wires used in this work not only generated heat; they also served as templates for embossing the microchannels. The prepared microfluidic microchips have been successfully employed in the electrophoresis separation and detection of ions in connection with contactless conductivity detection.

  16. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    PubMed

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-07

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  17. Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system

    NASA Technical Reports Server (NTRS)

    White, W. J.; Wasa, S.

    1977-01-01

    The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined.

  18. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes.

    PubMed

    Fu, Xiaotong; Mavrogiannis, Nicholas; Ibo, Markela; Crivellari, Francesca; Gagnon, Zachary R

    2017-01-01

    We present a new type of free-flow electrophoresis (FFE) device for performing on-chip microfluidic isotachophoresis and zone electrophoresis. FFE is performed using metal gallium electrodes, which are isolated from a main microfluidic flow channel using thin micron-scale polydimethylsiloxane/carbon black (PDMS/CB) composite membranes integrated directly into the sidewalls of the microfluidic channel. The thin membrane allows for field penetration and effective electrophoresis, but serves to prevent bubble generation at the electrodes from electrolysis. We experimentally demonstrate the ability to use this platform to perform on-chip free-flow electrophoretic separation and isotachophoretic concentration. Due to the small size and simple fabrication procedure, this PDMS/CB platform could be used as a part of an on-chip upstream sample preparation toolkit for portable microfluidic diagnostic applications.

  19. Microdialysis Sampling Coupled to Microchip Electrophoresis with Integrated Amperometric Detection on an All Glass Substrate

    PubMed Central

    Scott, David E.; Grigsby, Ryan; Lunte, Susan M.

    2013-01-01

    The development of an all-glass separation-based sensor using microdialysis coupled to microchip electrophoresis with amperometric detection is described. The system includes a flow-gated interface to inject discrete sample plugs from the microdialysis perfusate into the microchip electrophoresis system. Electrochemical detection was accomplished with a platinum electrode in an in-channel configuration using a wireless electrically isolated potentiostat. To facilitate bonding around the in-channel electrode, a fabrication process was employed that produced a working and a reference electrode flush with the glass surface. Both normal and reversed polarity separations were performed with this sensor. The system was evaluated in vitro for the continuous monitoring of the production of hydrogen peroxide from the reaction of glucose oxidase with glucose. Microdialysis experiments were performed using a BASi loop probe with an overall lag time of approximately five minutes and a rise time of less than 60 seconds. PMID:23794474

  20. SNP Arrays

    PubMed Central

    Louhelainen, Jari

    2016-01-01

    The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays) focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays. PMID:27792140

  1. Improvement of heat dissipation for polydimethylsiloxane microchip electrophoresis.

    PubMed

    Zhang, Yuan; Bao, Ning; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2004-11-19

    Effective removing of Joule heat in polymer-based microchip system is an important factor for high efficient separation because of lower heat conductivity of polymers than silica or glass. In this paper, a new kind of polydimethylsiloxane (PDMS) microchip electrophoresis system integrated with a laser-induced fluorescence detector has been successfully constructed on the basis of a commercial heat sink for computer CPU (central processor unit). Experimental results on separation current using high concentration running buffers demonstrated that heat dissipation of PDMS/PDMS microchip system was significantly improved. Furthermore, with this integrated system, theoretical plate number of fluorescein using 100 mM phosphate-buffered saline + 1 mM sodium dodecyl sulfate as running buffer was determined to be 2750 (for 2.5-cm separation channel, corresponding to 110,000/m). This high separation efficiency demonstrated that such heat sink-based polymer microchip system could be effectively applied for high-concentration buffers.

  2. On-column electrochemical detection for microchip capillary electrophoresis.

    PubMed

    Osbourn, Damon M; Lunte, Craig E

    2003-06-01

    The development of a cellulose acetate decoupler for on-column electrochemical detection in microchip capillary electrophoresis is presented. The capillary based laser-etched decoupler is translated to the planar format to isolate the detector circuit from the separation circuit. The decoupler is constructed by aligning a series of 20 30-microm holes through the coverplate of the microchip with the separation channel and casting a thin film of cellulose acetate within the holes. The decoupler shows excellent isolation of the detection circuit for separation currents up to 60 microA, with noise levels at or below 1 pA at a carbon fiber electrode. Detection limits of 25 nM were achieved for dopamine. This decoupler design combines excellent mechanical stability, effective shunting of high separation currents, and ease of manufacture.

  3. Enthalpy arrays

    PubMed Central

    Torres, Francisco E.; Kuhn, Peter; De Bruyker, Dirk; Bell, Alan G.; Wolkin, Michal V.; Peeters, Eric; Williamson, James R.; Anderson, Gregory B.; Schmitz, Gregory P.; Recht, Michael I.; Schweizer, Sandra; Scott, Lincoln G.; Ho, Jackson H.; Elrod, Scott A.; Schultz, Peter G.; Lerner, Richard A.; Bruce, Richard H.

    2004-01-01

    We report the fabrication of enthalpy arrays and their use to detect molecular interactions, including protein–ligand binding, enzymatic turnover, and mitochondrial respiration. Enthalpy arrays provide a universal assay methodology with no need for specific assay development such as fluorescent labeling or immobilization of reagents, which can adversely affect the interaction. Microscale technology enables the fabrication of 96-detector enthalpy arrays on large substrates. The reduction in scale results in large decreases in both the sample quantity and the measurement time compared with conventional microcalorimetry. We demonstrate the utility of the enthalpy arrays by showing measurements for two protein–ligand binding interactions (RNase A + cytidine 2′-monophosphate and streptavidin + biotin), phosphorylation of glucose by hexokinase, and respiration of mitochondria in the presence of 2,4-dinitrophenol uncoupler. PMID:15210951

  4. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated.

  5. Array tomography: production of arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy.

  6. Infrared Arrays

    NASA Astrophysics Data System (ADS)

    McLean, I.; Murdin, P.

    2000-11-01

    Infrared arrays are small electronic imaging devices subdivided into a grid or `array' of picture elements, or pixels, each of which is made of a material sensitive to photons (ELECTROMAGNETIC RADIATION) with wavelengths much longer than normal visible light. Typical dimensions of currently available devices are about 27-36 mm square, and formats now range from 2048×2048 pixels for the near-infra...

  7. Holographic telescope arrays.

    PubMed

    Lohmann, A W; Sauer, F

    1988-07-15

    A typical job in optical computing is to illuminate an array of small nonlinear optical components, separated by wide gaps to avoid crosstalk. We do this by letting a wide uniform beam fall onto a densely packed array of minifying telescopes. Each telescope produces a narrow bundle of parallel rays which illuminates one of the nonlinear optical components. The holographic telescopes can do more than change the width of the bundles of parallel rays. Their image forming capability allows the transmission of many pixels per channel in parallel. The pair of lenslets of a single holographic telescope (Kepler or Galilean) is produced in rigid coupling. The monolithic production avoids adjusting the two lenslets later on.

  8. Array imaging system for lithography

    NASA Astrophysics Data System (ADS)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  9. A new injection method for soil nutrient analysis in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  10. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  11. System and method for chromatography and electrophoresis using circular optical scanning

    DOEpatents

    Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.

    2001-01-01

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  12. On-line Sample Preconcentration Using Field-amplified Stacking Injection in Microchip Capillary Electrophoresis

    PubMed Central

    Gong, Maojun; Wehmeyer, Kenneth R.; Limbach, Patrick A.; Arias, Francisco; Heineman, William R.

    2008-01-01

    Previous reports describing sample stacking on microchip capillary electrophoresis (μCE) have regarded the microchip channels as a closed system and treated the bulk flow as in traditional capillary electrophoresis. This work demonstrates that the flows arising from the cross region should be investigated as an open system. It is shown that the pressure-driven flows into or from the branch channels due to bulk velocity mismatch in the main channel should not be neglected but can be used for liquid transportation in the channels. Based on these concepts, a sample preconcentration scheme was developed in a commercially available glass, single-cross chip for μCE. Similar to field-amplified stacking injection in traditional CE, a low conductivity sample buffer plug was introduced into the separation channel immediately before the negatively charged analyte molecules were injected. The detection sensitivity was improved by 94-, 108- and 160-fold for fluorescein-5-isothiocyanate, fluorescein disodium and 5-carboxyfluorescein, respectively, relative to a traditional pinched injection. The calibration curves for fluorescein and 5-carboxyfluorescein demonstrated good linearity in the concentration range (1 to 60 nM) investigated with acceptable reproducibility of migration time and peak height and area ratios (4 to 5% RSD). This preconcentration scheme will be of particular significance to the practical use of μCE in the emerging miniaturized analytical instrumentation. PMID:16737230

  13. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  14. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  15. Microlens arrays

    NASA Astrophysics Data System (ADS)

    Hutley, Michael C.; Stevens, Richard F.; Daly, Daniel J.

    1992-04-01

    Microlenses have been with us for a long time as indeed the very word lens reminds us. Many early lenses,including those made by Hooke and Leeuwenhoek in the 17th century were small and resembled lentils. Many languages use the same word for both (French tilentillelt and German "Linse") and the connection is only obscure in English because we use the French word for the vegetable and the German for the optic. Many of the applications for arrays of inicrolenses are also well established. Lippmann's work on integral photography at the turn of the century required lens arrays and stimulated an interest that is very much alive today. At one stage, lens arrays played an important part in high speed photography and various schemes have been put forward to take advantage of the compact imaging properties of combinations of lens arrays. The fact that many of these ingenious schemes have not been developed to their full potential has to a large degree been due to the absence of lens arrays of a suitable quality and cost.

  16. SDS-Polyacrylamide Gel Electrophoresis of Proteins.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes the separation of proteins by SDS-polyacrylamide gel electrophoresis. SDS is used with a reducing agent and heat to dissociate the proteins. SDS-polypeptide complexes form and migrate through the gels according to the size of the polypeptide. By using markers of known molecular weight, the molecular weight of the polypeptide chain(s) can be estimated.

  17. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  18. Fractionation of liver proteins by preparative electrophoresis.

    PubMed

    Fountoulakis, M; Juranville, J-F; Tsangaris, G; Suter, L

    2004-02-01

    Proteomics offers unique possibilities to investigate changes in the levels and modifications of proteins involved in the pathomechanisms of diseases and toxic events. However, search for potential drug targets and disease or toxicity markers is limited by the fact that mainly the high-abundance, hydrophilic proteins are visualized in two-dimensional gels. Here we studied the enrichment of rat liver cytosolic proteins by preparative electrophoresis. Preparative electrophoresis was performed with the PrepCell apparatus in the presence of 0.1% lithium dodecyl sulfate. Lithium dodecyl sulfate was exchanged against agents compatible with isoelectric focusing prior to the two-dimensional gel electrophoresis. Proteins were identified from two-dimensional gels by matrix-assisted laser desorption ionization time-of-flight mass specrometry. Low- and middle-size proteins and low-abundance proteins, which had not been found before, were enriched by preparative electrophoresis. The present study represents a contribution of proteomics in the quantification of differences in the levels of low-abundance liver proteins in toxicity studies.

  19. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  20. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  1. Role of gravity in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1975-01-01

    The fundamental formulas of electrophoresis are derived microscopically and applied to the problem of isotachophoresis. A simple physical model of the isotachophoresis front is proposed. The front motion and structure are studied in the simplified case without convection, diffusion and non-electric external forces.

  2. Nonlinear gel electrophoresis: an analogy with ideal fluid flow.

    PubMed

    Dennison, C; Phillips, A M; Nevin, J M

    1983-12-01

    The behavior of electrolytes undergoing electrophoresis in various shaped gels was investigated using bromphenol blue as a model electrolyte. The results suggest that during gel electrophoresis, small electrolytes behave in a manner analogous to the flow of ideal, irrotational fluids.

  3. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  4. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  5. Biomolecule derived nanostructured arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen

    During the last decade, intensive research have been reported on biomimetic approaches towards achieving mono-dispersed nanoparticles, and building self-assembled system out of those (organizing nanoparticles). However the development of this research avenue is being hindered by the limited knowledge and very few practical, efficient, cost-effective approaches for implementation of the bio-derived arrays into engineering practice. The objective of this work is to biomimeticaly form nanocomposite materials using a simple, rapid, inexpensive, scalable approach, which is general enough and not limited to colloidal particle self-assembly. Throughout the studies, we have developed a universally applicable process, which is to fabricate macro-biomolecular arrays on solid substrates based on the convective self-assembly of colloidal particles. We have demonstrated that protein (ferritin) and virus (phage) arrays were directly deposited onto solid substrates such as glass, silicon wafer, and gold substrate in closed or near closed-packed order. The arrays were further incorporated into a more robust silica matrix, in such that strengthens the thermal stability and provides porous accessibility. After treatment in controlled pyrolysis, the organic protein shell was removed, left mono-dispersed iron-oxide nanoparticles intact on the substrate or in the silica matrix. Both iron-oxide nanoparticles arrays with or without silica matrix have been further characterized to possess superferromagnetic properties at low temperature (15 K), same as that in bulk material. Initial work on protein patterning, through combining either lithography based top-down or bottom-up techniques with our novel deposition approach, was presented as well. Thin film deposition of mesoporous materials using convective self-assembly is another main part in this work. Both silica and carbon mesoporous thin films were successfully formed using the convective self-assembly horizontal-coating approach. We

  6. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  7. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  8. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  9. Fabrication of Nanopipette Arrays for Biosensing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2015-01-01

    Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal ("AN-metal," such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200.degree. C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 .mu.m, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(.gtoreq.1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.

  10. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel-electrophoresis

  11. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  12. The Preparation of Microzonation Map of the Gulf of Buyukcekmece using results obtain by Vertical Electrical Sounding Measurements with Multi-Channel Analysis of Surface Wave and Microtremor Array Method

    NASA Astrophysics Data System (ADS)

    Tezel, Okan; Karabulut, Savas; Imre, Nazire; Caglak, Faruk; Yeziz, Hatice; Ozcep, Ferhat

    2013-04-01

    Istanbul is a megacity with 17 million inhabitants. After the 17 August 1999 earthquake, many researchers have focused on the mitigation of earthquake hazards in the Sea of Marmara and its vicinity. If we want to lessen the effects of such an earthquake, we have to learn about three different types of problems which are properties of the earthquake's source, whether of site effect or properties of engineering structures. When İstanbul Metropolitian Municipilaty obtained a World Bank Credit 5 years ago, they had a microzonation report for only a limited area which finished at Har amidere in the western site of Istanbul. Because they will not have any new project, the western side of Haramidere hasn't been studied by any scientist. For this reason, we focused on the Gulf of Buyukcekmece which is located on the western part of Haramidere and suffered in the 1999 earthquake. There are five geological units in the study area such as Bakirkoy formation, Gurpinar formation, Çukurçeşme formation, Güngören formation and Alluvial deposit. We conducted some measurements which are multi-channel analysis of surface wave (MASW), microtremor array method (MAM) and vertical electrical sounding(VES). The aim of using VES data is to determine bedrock depth, learn whether there is a new fault and learn the electrical properties of each layer of bedrock. The MASW method is so attactive, cheap and fast. According to seismic refraction, it has some advantages that are determining the deeper part of sub-surface, lower velocity layers and velocity contrast. Especially, we use natural sources; MAM methods are more useful method in the city. For all of these purposes, we collected MASW and MAM measurements at 80 sites and VES measurements at 20 sites. As primary results for VES measurements, we determined the bedrock depth by evaluating the VES measurements for the central, eastern and western part of Buyukcekmece Gulf. Bedrock depth is 308 meters in the central and eastern part of

  13. Comparative proteomics and difference gel electrophoresis.

    PubMed

    Minden, Jonathan

    2007-12-01

    The goal of comparative proteomics is to analyze proteome changes in response to development, disease, or environment. This is a two-step process in which proteins within cellular extracts are first fractionated to reduce sample complexity, and then the proteins are identified by mass spectrometry. Two-dimensional electrophoresis (2DE) is the long-time standard for protein separation, but it has suffered from poor reproducibility and limited sensitivity. Difference gel electrophoresis (DIGE), in which two protein samples are separately labeled with different fluorescent dyes and then co-electrophoresed on the same 2DE gel, was developed to overcome the reproducibility and sensitivity limitations. In this essay, I discuss the principles of comparative proteomics and the development of DIGE.

  14. Static free-fluid electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Allen, R. E.

    1977-01-01

    The weightless environment onboard spacecraft in drifting flight has provided a unique opportunity to do experiments that cannot be done on the ground. High resolution free-fluid electrophoresis of particles proposed in the late 1960s to take advantage of reduced gravity began with brief experiments done during two Apollo flights. The recent Apollo Soyuz Test Project mission had two major experiments that accomplished the separation of viable biological cells. Experiments now are being planned for the Space Shuttle which will attempt to achieve high resolution of the separated species by using zone electrophoresis. These experiments will return a quantity sufficient for laboratory testing and establish the potential of fractionation and purification of biological materials in space.

  15. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  16. Fish Muscle Proteins: Extraction, Quantitation, and Electrophoresis

    NASA Astrophysics Data System (ADS)

    Smith, Denise

    Electrophoresis can be used to separate and visualize proteins. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins are separated based on size. When protein samples are applied to such gels, it is usually necessary to know the protein content of the sample. This makes it possible to apply a volume of sample to the gel such that samples have a comparable amount of total protein. While it is possible to use an official method of protein analysis (e.g., Kjeldahl, N combustion) for such an application, it often is convenient to use a rapid spectroscopic protein analysis that requires only a small amount of sample. The bicinchoninic acid (BCA) assay method will be used for this purpose.

  17. A new approach to electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1990-01-01

    Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  18. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  19. Electrokinetic Flow and Dispersion in Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2006-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis (which has evolved from its predecessor, slab-gel electrophoresis), the sample migrates through a single microcapillary instead of through the network of pores in a gel. A fundamental design problem is to minimize dispersion in the separation direction. Molecular diffusion is inevitable and sets a theoretical limit on the best separation that can be achieved. But in practice, there are a number of effects arising out of the interplay between fluid flow, chemistry, thermal effects, and electric fields that result in enhanced dispersion. This paper reviews the subject of fluid flow in such capillary microchannels and examines the various causes of enhanced dispersion that limit the efficiency of separation.

  20. A method and apparatus for continuous electrophoresis

    SciTech Connect

    Watson, J.S.

    1990-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least on of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  1. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  2. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  3. Method and apparatus for continuous electrophoresis

    DOEpatents

    Watson, Jack S.

    1992-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  4. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  5. Portable electrophoresis apparatus using minimum electrolyte

    NASA Technical Reports Server (NTRS)

    Stevens, M. R.; Vickers, J. M. (Inventor)

    1976-01-01

    An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.

  6. Development of stable low-electroosmotic mobility coatings. [for use in electrophoresis systems in space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1979-01-01

    Long-time rinsings of the Z6040-methlycellulose coating used successfully on the ASTP MA=011 experiment indicate the permanency of this coating is inadequate for continuous flowing systems. Two approaches are described for developing coatings which are stable under continuous fluid movement and which exhibit finite and predictable electroosmotic mobility values while being effective on different types of surfaces, such as glass, plastics, and ceramic alumina, such as is currently used as the electrophoresis channel in the GE-SPAR-CPE apparatus. The surface charge modification of polystyrene latex, especially by protein absorption, to be used as model materials for ground-based electrophoresis experiments, and the preliminary work directed towards the seeded polymerization of large-particle-size monodisperse latexes in a microgravity environment are discussed.

  7. Continuity of Quantum Channel Capacities

    NASA Astrophysics Data System (ADS)

    Leung, Debbie; Smith, Graeme

    2009-11-01

    We prove that a broad array of capacities of a quantum channel are continuous. That is, two channels that are close with respect to the diamond norm have correspondingly similar communication capabilities. We first show that the classical capacity, quantum capacity, and private classical capacity are continuous, with the variation on arguments {\\varepsilon} apart bounded by a simple function of {\\varepsilon} and the channel’s output dimension. Our main tool is an upper bound of the variation of output entropies of many copies of two nearby channels given the same initial state; the bound is linear in the number of copies. Our second proof is concerned with the quantum capacities in the presence of free backward or two-way public classical communication. These capacities are proved continuous on the interior of the set of non-zero capacity channels by considering mutual simulation between similar channels.

  8. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  9. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Royal, G. C., III

    1981-04-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  10. DNA migration mechanism analyses for applications in capillary and microchip electrophoresis

    PubMed Central

    Forster, Ryan E.; Hert, Daniel G.; Chiesl, Thomas N.; Fredlake, Christopher P.; Barron, Annelise E.

    2009-01-01

    In 2009, electrophoretically driven DNA separations in slab gels and capillaries have the sepia tones of an old-fashioned technology in the eyes of many, even while they remain ubiquitously used, fill a unique niche, and arguably have yet to reach their full potential. For comic relief, what is old becomes new again: agarose slab gel separations are used to prepare DNA samples for “next-gen” sequencing platforms (e.g., the Illumina and 454 machines)—dsDNA molecules within a certain size range are “cut out” of a gel and recovered for subsequent “massively parallel” pyrosequencing. In this review, we give a Barron lab perspective on how our comprehension of DNA migration mechanisms in electrophoresis has evolved, since the first reports of DNA separations by CE (∼1989) until now, 20 years later. Fused silica capillaries, and borosilicate glass and plastic microchips, quietly offer increasing capacities for fast (and even “ultra-fast”), efficient DNA separations. While the channel-by-channel scaling of both old and new electrophoresis platforms provides key flexibility, it requires each unique DNA sample to be prepared in its own micro- or nanovolume. This Achille's heel of electrophoresis technologies left an opening through which pooled-sample, next-gen DNA sequencing technologies rushed. We shall see, over time, whether sharpening understanding of transitions in DNA migration modes in crosslinked gels, nanogel solutions, and uncrosslinked polymer solutions will allow electrophoretic DNA analysis technologies to flower again. Microchannel electrophoresis, after a quiet period of metamorphosis, may emerge sleeker and more powerful, to claim its own important niche applications. PMID:19582705

  11. Analysis of methylene blue in human urine by capillary electrophoresis.

    PubMed

    Borwitzky, Holger; Haefeli, Walter E; Burhenne, Jürgen

    2005-11-05

    A capillary electrophoresis method for the determination of the dye methylene blue (tetramethylthionine, MB) in human urine depending on liquid/liquid-extraction and diode array detection has been developed, validated, and applied to samples of healthy individuals, who had been dosed with methylene blue within clinical studies. After extraction with dichloromethane and sodium hexanesulfonate, sample extracts were measured on an extended light path capillary. The dye was detected simultaneously at 292 and 592 nm using methylene violet 3 RAX as internal standard. The limit of quantification was 1.0 microg/ml. The accuracy of the method varied between -15.2 and +0.8% and the precision ranged from 2.0 to 12.0%. The method was linear at least within 1.0 and 60 microg/ml. In contrast to earlier indirect determinations no leuco methylene blue (LMB) was directly detected in urine, whereas in aqueous test solutions containing surplus amounts of ascorbic acid leuco methylene blue was well separated from MB in a single run.

  12. Detection of moniliformin in maize using capillary zone electrophoresis.

    PubMed

    Maragos, C M

    2004-08-01

    Moniliformin is a mycotoxin produced by certain fungi pathogenic to maize. It is capable of causing disease in domestic animals, possibly through inhibition of pyruvate dehydrogenase. Testing for MON commonly involves extraction of maize, isolation of moniliformin using solid-phase extraction columns and detection with high-performance liquid chromatography (HPLC) or gas chromatography. A capillary zone electrophoresis-diode array detection (CZE-DAD) method for determination of moniliformin in maize is reported. The extraction and isolation procedures are similar to those of a commonly used HPLC method, while the detection step requires only 10 min. Sixty-three samples of maize were tested by an established HPLC method using absorbance at 229 nm (HPLC-ultraviolet light) and by the CZE-DAD method. The limit of detection of the CZE-DAD method was 0.1 microg MON g(-1) maize compared with 0.05 microg g(-1) for the HPLC-ultraviolet light method. The CZE-DAD method gave good agreement with the HPLC-ultraviolet light method for samples tested at levels up to 1500 microg g(-1), with a linear regression of r(2) = 0.996.

  13. Zone electrophoresis in an inner-cooling wide-bore electrophoresis system with UV detection.

    PubMed

    Guo, Yugao; Liu, Danning; Wang, Huaifeng; Yuan, Ruijuan; Bao, James Jianmin

    2008-08-01

    A novel, high-performance wide-bore electrophoresis (WE) system with inner-cooling has been developed. By introducing the mode of a shell and tube heat exchanger into this system to remove Joule heat generated during electrophoresis, it is feasible to extend electrophoresis from the conventional capillary (i.d. <100 microm) to a wide-bore tube (i.d. >1000 microm). The wide tube allows the loading of over 1.0 microL of the sample with an LOD of 3.0 x 10(-4) mg/mL (signal-to-noise ratio, 3:1). Satisfactory separations of model compounds have been achieved on the WE system.

  14. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  15. Global Arrays

    SciTech Connect

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  16. Station characteristics of the Singapore Infrasound Array

    NASA Astrophysics Data System (ADS)

    Perttu, Anna; Taisne, Benoit; Caudron, Corentin; Garces, Milton; Avila Encillo, Jeffrey; Ildefonso, Sorvigenaleon

    2016-04-01

    Singapore, located in Southeast Asia, presents an ideal location for an additional regional infrasound array, with diverse persistent natural and anthropogenic regional infrasound sources, including ~750 active or potentially active volcanoes within 4,000 kilometers. Previous studies have focused on theoretical and calculated regional signal detection capability improvement with the addition of a Singapore array. The Earth Observatory of Singapore installed a five element infrasound array in northcentral Singapore in late 2014, and this station began consistent real-time data transmission mid-2015. The Singapore array uses MB2005s microbarometers and Nanometrics Taurus digitizers. Automated array processing is carried out with the INFrasonic EneRgy Nth Octave (INFERNO) energy estimation suite, and PMCC (Progressive MultiChannel Correlation). The addition of the Singapore infrasound array to the existing International Monitoring System (IMS) infrasound stations in the region has increased regional infrasound detection capability, which is illustrated with the preliminary work on three observed meteor events of various sizes in late 2015. A meteor observed in Bangkok, Thailand in early September, 2015 was picked up by the CTBTO, however, another meteor observed in Bangkok in November was only recorded on the Singapore array. Additionally, another meteor observed over Sumatra was only recorded by one IMS station and the Singapore array. This study uses array processing and Power Spectral Density results for both the Singapore and publicly available regional IMS stations to examine station characteristics and detection capability of the Singapore array in the context of the regional IMS network.

  17. Low-cost and high-throughput multichannel capillary electrophoresis (MCCE) system for DNA analysis

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan D.; Liu, Ming-Sun

    2002-06-01

    In this paper we present the innovative use of an inexpensive Multi-Channel Capillary-based Electrophoresis (MCCE) system in combination with disposable separation cartridge for routine analysis of DNA fragments. The proposed multi-channel system s base don a novel multiplexed fluorescence detection technology, which provides a rapid and unique solution for DNA analysis. Presently the Capillary Electrophoresis (CE) based technology used for DNA analysis, rely on gas discharge UV-visible lamps or lasers as light sources that are bulky, expensive, and difficult to couple one's light output into optical fibers, for miniaturization of the optical detection system. The light sources hinder the development of small sized, high- throughput and cost-effective genomics instrument. Whereas, the proposed instrument with solid-state light sources and non-moving detection micro-optics, and re-usable cartridge containing multiple separation channels, provide a cost- effective solution for a robust CE instrument. Furthermore, the simplified operation of the MCCE instrument will drastically reduce the cost of DNA analysis, and possibly will be the instrument of choice for forensic DNA and molecular diagnostics applications in the near future.

  18. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2015-03-17

    A PDMS-based microfluidic linear hydrogel array is developed for multiplexed single nucleotide polymorphism (SNP) detection. A sequence of three-dimensional (3D) hydrogel plugs containing the desired DNA probes is prepared by UV polymerization within a PDMS microchannel system. The fluorescently labeled target DNA is then electrophoresed through the sequence of hydrogel plugs for hybridization. Continued electrophoresis provides an electrophoretic wash that removes nonspecific binders. The capture gel array is imaged after washing at various temperatures (temperature gradient electrophoresis) to further distinguish perfect matches from mismatches. The ability of this microdevice to perform multiplex SNP genotyping is demonstrated by analyzing a mixture of model E. coli bacterial targets. This microfluidic hydrogel array is ∼1000 times more sensitive than planar microarrays due to the 3D gel capture, the hybridization time is much shorter due to electrophoretic control of the transport properties, and the stringent wash with temperature gradient electrophoresis enables analysis of single nucleotide mismatches with high specificity.

  19. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.

    PubMed

    Belder, Detlev; Deege, Alfred; Kohler, Frank; Ludwig, Martin

    2002-10-01

    The channels of microfluidic glass chips have been coated with poly(vinyl alcohol) (PVA). Applied for microchip electrophoresis, the coated devices exhibited a suppressed electroosmotic flow and improved separation performance. The superior performance of PVA-coated channels could be demonstrated by electrophoretic separations of labeled amines and by video microscopy. While a distorted sample zone is injected using uncoated channels the application of PVA-coated channels results in an improved shape of the sample zone with less band broadening. Applying PVA-coated microchips for the separation of amines labeled with Alexa Fluor 350 even sub-second separations, utilizing a separation length of only 650 microm, could be obtained, while this was not possible using uncoated devices. By using PVA-coated devices rather than an uncoated chip a threefold increase in separation efficiencies could be observed. As the electroosmotic flow (EOF) was suppressed, the anionic compounds were detected at the anode whereas the dominant EOF in uncoated devices resulted in an effective mobility to the cathode. Besides improved separation performance another important feature of the PVA-coated channels was the suppressed adsorption of fluorescent compounds in repetitive runs which results in an improved robustness and detection sensitivity. Applying PVA-coated channels, rinsing or etching steps could be omitted while this was necessary for a reliable operation of uncoated devices.

  20. Microfluidic free-flow electrophoresis for the discovery and characterisation of calmodulin binding partners

    NASA Astrophysics Data System (ADS)

    Herling, Therese; Linse, Sara; Knowles, Tuomas

    2015-03-01

    Non-covalent and transient protein-ligand interactions are integral to cellular function and malfunction. Key steps in signalling and regulatory pathways rely on reversible non-covalent protein-protein binding or ion chelation. Here we present a microfluidic free-flow electrophoresis method for detecting and characterising protein-ligand interactions in solution. We apply this method to probe the binding equilibria of calmodulin, a central protein to calcium signalling pathways. In this study we characterise the specific binding of calmodulin to phosphorylase kinase, a known target, and creatine kinase, which we identify as a putative binding partner through a protein array screen and surface plasmon resonance experiments. We verify the interaction between calmodulin and creatine kinase in solution using free-flow electrophoresis and investigate the effect of calcium and sodium chloride on the calmodulin-ligand binding affinity in free solution without the presence of a potentially interfering surface. Our results demonstrate the general applicability of quantitative microfluidic electrophoresis to characterise binding equilibria between biomolecules in solution.

  1. Accurate quantification of DNA methylation of DRD4 applying capillary gel electrophoresis with LIF detection.

    PubMed

    Goedecke, Simon; Schlosser, Sabrina; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2009-04-01

    Aberrant DNA methylation of gene promoters may be investigated by an array of different technologies. Besides DNA sequencing techniques following bisulfite treatment and determination of overall methylation by quantification of 5-methylcytosine/cytosine ratio following DNA hydrolysis, most approaches rely on PCR amplification of a defined template and subsequent analysis by conventional gel electrophoresis. As an additional analytical tool, a capillary gel electrophoresis method has been developed to quantify the methylation in combined bisulfite restriction analysis products of the gene dopamine receptor D4 (DRD4). Analyses were carried out in a bare fused-silica capillary dynamically coated with a 1% w/w solution of PVA (M(r)=72,000). A buffer (pH 7.3) containing 3% w/w 2-hydroxyethylcellulose (M(nu) approximately 90,000 g/mol) was used as sieving matrix. With 1/x weighted regression the accuracy (bias) of the method is within +/-10% and the precision (expressed as RSD) also meets the common acceptance criteria of 15% (20% near lower LOQ). It overcomes the limitations of standard gel electrophoresis, which allows only one single run per analysis and requires large amounts of DNA. Therefore, the method represents a valuable tool for routine quantitative analysis of the methylation status of DRD4 and other target genes.

  2. Capillary electrophoresis with indirect amperometric detection.

    PubMed

    Olefirowicz, T M; Ewing, A G

    1990-01-19

    The use of indirect amperometric detection with capillary electrophoresis is demonstrated. The system consists of a porous glass coupler which allows amperometric detection at a carbon fiber electrode placed in the end of the capillary. 3,4-Dihydroxybenzylamine is added to the buffer system as a continuously eluting electrophore. Indirect amperometric detection in 9-mumol I.D. capillaries provides detection limits as low as 380 attomole for the amino acid arginine. Finally, both direct and indirect amperometric detection can be accomplished simultaneously.

  3. Capillary electrophoresis-mass spectrometry of carbohydrates

    PubMed Central

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  4. DNA electrophoresis on a flat surface.

    PubMed

    Pernodet, N; Samuilov, V; Shin, K; Sokolov, J; Rafailovich, M H; Gersappe, D; Chu, B

    2000-12-25

    We report a new approach for performing DNA electrophoresis. Using experimental studies and molecular dynamics simulations, we show that a perfectly flat silicon wafer, without any surface features, can be used to fractionate DNA in free solution. We determine that the ability of a flat surface to separate DNA molecules results from the local friction between the surface and the adsorbed DNA segments. We control this friction by coating the Si surface with silane monolayer films and show that it is possible to systematically change the size range of DNA that can be separated.

  5. Capillary electrophoresis-mass spectrometry of carbohydrates.

    PubMed

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  6. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  7. Recent advances in amino acid analysis by capillary electrophoresis.

    PubMed

    Poinsot, Véréna; Carpéné, Marie-Anne; Bouajila, Jalloul; Gavard, Pierre; Feurer, Bernard; Couderc, François

    2012-01-01

    This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.

  8. A 3T Sodium and Proton Composite Array Breast Coil

    PubMed Central

    Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.

    2013-01-01

    Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740

  9. A multichannel gel electrophoresis and continuous fraction collection apparatus for high-throughput protein separation and characterization.

    PubMed

    Choi, Megan; Nordmeyer, Robert A; Cornell, Earl; Dong, Ming; Biggin, Mark D; Jin, Jian

    2010-01-01

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A "Counter Free-Flow" elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of approximately 10-150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 microL/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 microg per channel and reduced resolution.

  10. Thermal lens detector system for capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Seidel, Bernd S.; Faubel, Werner N.; Ache, Hans-Joachim

    1997-07-01

    The characteristics and the performance of a thermal lens detector, which uses a double-beam absorption scheme, were studied in a capillary electrophoresis system with various types of toxic pollutants, e.g., pesticides. The setup of the detector system was miniaturized using the smallest diverging path lengths between the cell and the pinhole (4 mm). The probe laser beam (He:Ne laser, 633 nm) and the excitation beam (Ar+ ion laser, 364, 457, 488, and 514 nm) with a crossed setup were directed by mirrors into two microscope objectives that focused the beam to a 5-micrometers waist inside the capillary. The detection volume was on the order of 75 nl when a 75-micrometers capillary was employed. The change in intensity of the probe beam was detected by a photodiode behind a pinhole, which was protected with different band-pass interference filters. The excitation laser can be used in the multiline order. Micellar electrokinetic methods are used for pesticide separation. The performance of the detector in capillary electrophoresis was assessed with various types of capillaries and compared with a conventional absorption detector. The limit of detection is at least one order of magnitude better than it is with the absorption detector.

  11. Micro-injector for capillary electrophoresis.

    PubMed

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  12. Fractionation of mineral species by electrophoresis

    NASA Technical Reports Server (NTRS)

    Dunning, J. D.; Herren, B. J.; Tipps, R. W.; Snyder, R. S.

    1982-01-01

    The fractionation of fine-grained aggregates into their major components is a problem in many scientific areas including earth and planetary science. Electrophoresis, the transport of electrically charged particles, immersed in a suspension medium, by a direct current field (Bier, 1959), was employed in this study as a means of separating simulated lunar soil into its constituent minerals. In these tests, conducted in a static analytical cylindrical microelectrophoresis apparatus, samples of simulated lunar soil and samples of pure mineral constituents were placed in the chamber; the electrophoretic mobilities of the lunar soil and the individual mineral constituents were measured. In most of the suspension buffers employed separability was indicated, on the basis of differences in mobility, for all the constituent mineral species except ilmenite and pyroxene, which were not efficiently separable in any of the buffers. Although only a few suspension media were employed, the success of this initial study suggests that electrophoresis may be an important mineral fractionation option in fine-grained aggregate processing.

  13. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; ...

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  14. Higher sensitivity of capillary electrophoresis in detecting hemoglobin A2'compared to traditional gel electrophoresis.

    PubMed

    Oleske, Deanna Alicia; Huang, Richard Sheng Poe; Dasgupta, Amitava; Nguyen, Andy; Wahed, Amer

    2014-01-01

    HbA2' (also called Hb B2) is the most common delta-globin chain defect and is reported to occur in 1-2% of the African American population. The major clinical significance of HbA2' is that the failure to detect it might lead to an underestimation of the total HbA2, leading to failure to diagnose β-thalassemia minor. In order to diagnose β-thalassemia minor, both HbA2 and HbA2' levels must be combined.Hb A2' accounts for a small percentage (1-2%) of the total hemoglobin in heterozygotes. It is difficult to detect this small amount by traditional gel electrophoresis. Using HPLC Hb A2' is easily detected as it produces a minor peak in the S window. Other conditions which might interfere with detection of HbA2' by HPLC include Hb S trait or Hb SS disease (Hb A2' hidden in the S peak), transfused Hb SS (Hb S peak may be very small), Hb C trait or Hb CC disease (glycosylated Hb C elutes in the S window), and Hb G (Hb G2 elutes in the S window). All of the above conditions, including Hb A2', occur most commonly in the same ethnic group (African American). We reviewed 654 consecutive cases over a period of three months for the presence of Hb A2' in our laboratory where capillary electrophoresis is used as the primary diagnostic tool. We detected seven cases (1.07 %) of HbA2'. In contrast, we did not detect any HbA2' using conventional gel electrophoresis in the last one year (2,580 cases). Although in none of the seven cases the sum of Hb A2 and Hb A2' exceeded 3.5%, we believe that capillary electrophoresis allows for a better detection of Hb A2' than gel electrophoresis and HPLC.

  15. Evolutionary Technique for Designing Optimized Arrays

    NASA Astrophysics Data System (ADS)

    Villazón, J.; Ibañez, A.

    2011-06-01

    Many ultrasonic inspection applications in the industry could benefit from the use of phased array distributions specifically designed for them. Some common design requirements are: to adapt the shape of the array to that of the part to be inspected, to use large apertures for increasing lateral resolution, to find a layout of elements that avoids artifacts produced by lateral and/or grating lobes, to maintain the total number of independent elements (and the number of control channels) as low as possible to reduce complexity and cost of the inspection system. Recent advances in transducer technology have made possible to design and build arrays whit non-regular layout of elements. In this paper we propose to use Evolutionary Algorithms to find layouts of ultrasonic arrays (whether 1D or 2D array) that approach a set of specified beampattern characteristics using a low number of elements.

  16. Inductively coupled wireless RF coil arrays.

    PubMed

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking.

  17. Theory of multi-species electrophoresis in the presence of surface conduction.

    PubMed

    Bahga, Supreet Singh; Moza, Romir; Khichar, Mayank

    2016-02-01

    Electrophoresis techniques are characterized by concentration disturbances (or waves) propagating under the effect of an electric field. These techniques are usually performed in microchannels where surface conduction through the electric double layer (EDL) at channel walls is negligible compared with bulk conduction. However, when electrophoresis techniques are integrated in nanochannels, shallow microchannels or charged porous media, surface conduction can alter bulk electrophoretic transport. The existing mathematical models for electrophoretic transport in multi-species electrolytes do not account for the competing effects of surface and bulk conduction. We present a mathematical model of multi-species electrophoretic transport incorporating the effects of surface conduction on bulk ion-transport and provide a methodology to derive analytical solutions using the method of characteristics. Based on the analytical solutions, we elucidate the propagation of nonlinear concentration waves, such as shock and rarefaction waves, and provide the necessary and sufficient conditions for their existence. Our results show that the presence of surface conduction alters the propagation speed of nonlinear concentration waves and the composition of various zones. Importantly, we highlight the role of surface conduction in formation of additional shock and rarefaction waves which are otherwise not present in conventional electrophoresis.

  18. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  19. Mechanosensitive Channels

    NASA Astrophysics Data System (ADS)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  20. Hydrodynamic injection on electrophoresis microchips using an electronic micropipette.

    PubMed

    Gabriel, Ellen F M; Dos Santos, Rodrigo A; Lobo-Júnior, Eulício O; Rezende, Kariolanda C A; Coltro, Wendell K T

    2017-01-01

    Here we report for the first time the use of an electronic micropipette as hydrodynamic (HD) injector for microchip electrophoresis (ME) devices. The micropipette was directly coupled to a PDMS device, which had been fabricated in a simple cross format with two auxiliary channels for sample volume splitting. Sample flow during the injection procedure was controlled in automatic dispenser mode using a volume of 0.6µL. Channel width and device configuration were optimized and the best results were achieved using a simple cross layout containing two auxiliary channels with 300µm width for sample splitting. The performance of the HD injector was evaluated using a model mixture of high-mobility cationic species. The results obtained were compared to the data obtained via electrokinetic (EK) injection. Overall, the HD provided better analytical performance in terms of resolution and injection-to-injection repeatability. The relative standard deviation (RSD) values for peak intensities were lower than 5% (n=10) when the micropipette was employed. In comparison with EK injection, the use of the proposed HD injector revealed an unbiased profile for a mixture containing K(+) and Li(+)(300 µmol L(-1) each) over various buffer concentrations. For EK injection, the peak areas decreased from 2.92 ± 0.20-0.72 ± 0.14Vs for K(+) and from 1.30 ± 0.10-0.38 ± 0.10Vs for Li(+) when the running buffer increased from 20 to 50mmolL(-1). For HD injection, the peak areas for K(+) and Li(+) exhibited average values of 2.48±0.07 and 2.10±0.06Vs, respectively. The limits of detection (LDs) for K(+), Na(+) and Li(+) ranged from 18 to 23µmolL(-1). HD injection through an electronic micropipette allows to automatically dispense a bias-free amount of sample inside microchannels with acceptable repeatability. The proposed approach also exhibited instrumental simplicity, portability and minimal microfabrication requirements.

  1. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  2. Chip electrophoresis of gelatin-based nanoparticles.

    PubMed

    Weiss, Victor U; Lehner, Angela; Grombe, Ringo; Marchetti-Deschmann, Martina; Allmaier, Günter

    2013-08-01

    Recently, biodegradable nanoparticles received increasing attention for pharmaceutical applications as well as applications in the food industry. With the current investigation we demonstrate chip electrophoresis of fluorescently (FL) labeled gelatin nanoparticles (gelatin NPs) on a commercially available instrument. FL labeling included a step for the removal of low molecular mass material (especially excess dye molecules). Nevertheless, for the investigated gelatin NP preparation two analyte peaks, one very homogeneous with an electrophoretic net mobility of μ = -24.6 ± 0.3 × 10(-9) m(2) /Vs at the peak apex (n = 17) and another more heterogeneous peak with μ between approximately -27.2 ± 0.2 × 10(-9) m(2) /Vs and -36.6 ± 0.2 × 10(-9) m(2) /Vs at the peak beginning and end point (n = 11, respectively) were recorded. Filtration allowed enrichment of particles in the size range of approximately 35 nm (pore size employed for concentration of gelatin NPs) to 200 nm (pore size employed during FL labeling). This corresponded to the very homogeneous peak linking it to gelatin NPs, whereas the more heterogeneous peak probably corresponds to gelatin not cross-linked to such a high degree (NP building blocks). Several further gelatin NP preparations were analyzed according to the same protocol yielding peaks with electrophoretic net mobilities between -23.3 ± 0.3 × 10(-9) m(2) /Vs and -28.9 ± 0.2 × 10(-9) m(2) /Vs at peak apexes (n = 15 and 6). Chip electrophoresis allows analyte separation in less than two minutes (including electrophoretic sample injection). Together with the high sensitivity of the FL detection - the LOD as derived for the first main peak of the applied dye from the threefold standard deviation of the background noise values 80 pM for determined separation conditions - this leads to a very promising high throughput separation technique especially for the analysis of bionanoparticles. For gelatin NP preparations, chip electrophoresis

  3. Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device.

    PubMed

    Price, Alexander K; Anderson, Kristen M; Culbertson, Christopher T

    2009-07-21

    The construction of microfluidic devices from siloxane-based polymers is widely reported in the current literature. While the use of these materials is primarily due to their rapid and facile fabrication, low cost and robustness, they also have the ability to function as smart materials. This feature, however, has not been commonly exploited in conjunction with their fluid-handling capabilities. Siloxanes are considered smart materials because their shapes can be modified in the presence of an electric field. The energy in the electric field can be transduced into mechanical energy and directly coupled with a microfabricated channel network in order to affect or initiate the movement of fluids. Here, we present a novel microfluidic device into which an electroactive polymer (EAP) actuation unit is integrated. The EAP actuation unit features a microfluidic channel placed above a patterned electrode. The patterned electrode is insulated from the channel by an EAP layer that is composed of PDMS. When a potential is applied across the EAP layer, it changes shape, which also changes the volume of the microfluidic channel above it. With this proof-of-concept device we demonstrated the ability to inject plugs of sample on a standard electrophoresis cross chip solely by changing the magnitude of the electric field between the channel and the electrode. Using an EAP actuation unit, the size of the injection plugs can be varied as a function of the electric field, the active area of the EAP actuation unit and the softness of the EAP.

  4. Characterization of novel Hamamatsu Multi Pixel Photon Counter (MPPC) arrays for the GlueX experiment

    SciTech Connect

    Soto, Orlando; Rojas, Rimsky; Kuleshov, Sergey V.; Hakobyan, Hayk; Toro, Alam; Brooks, William K.

    2013-12-01

    The novel Hamamatsu Multi Pixel Photon Counter Array S12045(X) is an array of 16 individual MPPCs (3x3 mm{sup 2}) (further in the paper MPPC array channel) each with 3600 G-APD (Geiger-mode Avalanche Photodiodes) pixels (50x50 [{micro}m{sup 2}]). Each MPPC in the array works with its individual reverse bias voltage mode (around 70 V). The paper summarizes the characterization process of MPPC arrays used in GlueX experiment (Hall D, Jefferson Lab). We studied the main features of each MPPC array channel for 2800 MPPC arrays at different temperatures. Two measurement stations were built to extract gain, breakdown voltage, photo detection efficiency (PDE), optical crosstalk and dark rate for each MPPC array channel. The hardware and the data analysis are described, which includes new analytical expressions to obtain the mean number of photo-electrons and optical crosstalk. The dynamical behavior of characterization parameters is presented as well.

  5. Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry.

    PubMed

    Martin, R S; Gawron, A J; Fogarty, B A; Regan, F B; Dempsey, E; Lunte, S M

    2001-03-01

    The first reported use of a carbon paste electrochemical detector for microchip capillary electrophoresis (CE) is described. Poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to a separate PDMS layer that contained carbon paste working electrodes. End-channel amperometric detection with a single electrode was used to detect amino acids derivatized with naphthalene dicarboxaldehyde. Two electrodes were placed in series for dual electrode detection. This approach was demonstrated for the detection of copper(II) peptide complexes. A major advantage of carbon paste is that catalysts can be easily incorporated into the electrode. Carbon paste that was chemically modified with cobalt phthalocyanine was used for the detection of thiols following a CE separation. These devices illustrate the potential for an easily constructed microchip CE system with a carbon-based detector that exhibits adjustable selectivity.

  6. PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation.

    PubMed

    Köhler, Stefan; Weilbeer, Claudia; Howitz, Steffen; Becker, Holger; Beushausen, Volker; Belder, Detlev

    2011-01-21

    In this work, a microfluidic free-flow electrophoresis device with a novel approach for preventing gas bubbles from entering the separation area is presented. This is achieved by integrating partitioning bars to reduce the channel depth between electrode channels and separation chamber in order to obtain electrical contact and simultaneously prevent bubbles from entering the separation area. The three-layer sandwich chip features a reusable carrier plate with integrated ports for fluidic connection combined with a softlithographically cast microfluidic PDMS layer and a sealing glass slide. This design allows for a straightforward and rapid chip prototyping process. The performance of the device is demonstrated by free-flow zone electrophoretic separations of fluorescent dye mixtures as well as by the separation of labeled amines and amino acids with separation voltages up to 297 V.

  7. Birefringence compensated arrayed waveguide grating

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Xia, Xiang; Lang, Tingting; He, Jian-Jun

    2014-10-01

    In this paper we review our work on birefringence compensated arrayed waveguide grating. We elaborate on a birefringence compensation technique based on angled star couplers in arrayed waveguide grating (AWG) and discuss several demonstrations both in low-index-contrast and high-index-contrast material systems. A 16-channel AWG with 100GHz channel spacing for DWDM application is designed and fabricated in silica-based low-index-contrast waveguide. The experimental results confirm that the polarization-dependent wavelength shift (PDλ) can be tuned by varying the incident/diffraction angle at the star couplers and a birefringence-free property can be achieved without additional fabrication process as compared to conventional AWG. A further validation of this technique is demonstrated in high-index-contrast silicon-on-insulator waveguide, in combination with different diffraction orders for TE and TM polarizations. A birefringence compensated silicon nanowire AWG for CWDM optical interconnects is designed and fabricated. The theoretical and experimental results show that the PDλ can be reduced from 380-420nm to 0.5-3.5 nm, below 25% of the 3 dB bandwidth of the channel response in the wavelength range of 1500 to 1600nm.

  8. Retina projection using curved lens arrays

    NASA Astrophysics Data System (ADS)

    Yen, Hao-Ren; Su, Guo-Dung J.

    2016-09-01

    In this paper, we propose a multi-channel imaging system which combines the principles of an insect's compound eye and optical cluster eye. The system consists of two curved structure lens arrays with different pitches. Both of them have the same curvature and the radiuses of the lenses in the arrays are optimized to focus rays on the retina. The optical axes of different channels are tilted to each other in order to reduce the optical system volume and transmit a wide field of view. Each channel of an array of multiple optical system transfers only a part of the field of view. Each partial image passes through each channel and stitches together on the retina to reconstruct a complete image. In order to simulate the image stitching, we also build an eye model. The thickness from the panel to the last surface of lens group is less than 25mm. The panel size is designed to be 4 inch which is the scale of eyeglass. The system can provide a large field of view about 150 degrees which is much wider than the commercial products. By using the 3D printer, we can make a model of lens array to achieve our design.

  9. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  10. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  11. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Olivares, J.A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  12. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    PubMed

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.

  13. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  14. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  15. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.P.; Udseth, H.R.; Olivares, J.A.

    1989-12-05

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  16. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  17. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Olivares, Jose A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  18. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  19. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  20. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  1. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  2. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  3. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  4. Design and performance of a microchip electrophoresis instrument with sensitive variable-wavelength fluorescence detection.

    PubMed

    Belder, Detlev; Deege, Alfred; Maass, Martin; Ludwig, Martin

    2002-07-01

    A modular instrument for high-speed microchip electrophoresis (MCE) equipped with a sensitive variable-wavelength fluorescence detection system was developed and evaluated. The experimental setup consists mainly of a lamp-based epifluorescence microscope for variable-wavelength fluorescence detection and imaging and a programmable four-channel bipolar high-voltage source capable of delivering up to +/- 10 kV per channel. The optical unit was equipped with a high-sensitivity photomultiplier tube and an adjustable aperture. The system was applied to MCE separations of flurescein isothiocyanate (FITC)-labelled amines utilizing blue light (450-480 nm) for excitation as well as for the separation of rhodamines utilizing excitation light in the green spectral region (531-560 nm). At optimized conditions baseline separation of four FITC-labelled amines could be obtained in less than 50 s at a detection limit of 460 ppt (1 nM) with a signal-to-noise ratio of 3:1. Three rhodamines could be baseline-separated in less than 6 s at a detection limit of 240 ppt (500 pM). The relative standard deviations of absolute migration times determined in repetitive MCE separations of FITC-labelled amines were below 2.5% (n= 25). By the application of cyclodextrin-modified electrolytes, chiral separation of FITC-labelled amines could be performed in seconds demonstrating the potential of microchip electrophoresis for chiral high-throughput screening.

  5. Development and evaluation of a rotary cell for capillary electrophoresis-chemiluminescence detection.

    PubMed

    Wang, Junhua; Li, Linmei; Huang, Weihua; Cheng, Jieke

    2010-06-15

    Many efforts have been made toward the advancement of capillary electrophoresis chemiluminescence (CE-CL) detection and its applications through continuous development and improvement of interfaces. In this study, a novel rotary cell for CE-CL detection was fabricated and evaluated. A ring-shaped narrow channel with a quartz bottom is made in a cell body to hold CL reactants and act as the reaction chamber. The CE capillary is placed closely to the bottom of the reaction chamber where analyte is deposited into the CL reactants for reactions to occur. Detection is achieved with a photomultiplier tube below the reaction channel. An advantage of the rotary reaction cell is that it renews the reactants at the capillary end as it revolves at a preset speed during experiments. The rotary detection cell presents a new concept to the conventional coaxial-flow configuration by solving the problems of bubble formation and flow blockage that often interrupt the electrophoresis. Two standard proteins, horseradish peroxidase (HRP) and hemoglobin (Hb), were used to evaluate the interface's performance with luminol/H(2)O(2) CL system. Satisfactory sensitivities (LOD of 0.91 x 10(-9) M for HRP, and 4.37 x 10(-8) M for Hb at S/N = 3) were obtained in this proof-of-concept experiment. This novel design provides a straightforward and robust interface for CE-CL hyphenation.

  6. Separation and analysis of triazine herbcide residues by capillary electrophoresis.

    PubMed

    Elbashir, Abdalla A; Aboul-Enein, Hassan Y

    2015-06-01

    Triazines are widely used in agriculture around the world as selective pre- and post-emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized.

  7. DNA gel electrophoresis: the reptation model(s).

    PubMed

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  8. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  9. Sieving DNA molecules by length dependence in artificial nano-channel matrices

    NASA Astrophysics Data System (ADS)

    Wang, Chung-Hsuan; Hua Ho, Chia; Chou, Y. C.

    2013-01-01

    Nano-channel matrices are designed and fabricated for sieving DNA molecules by length. The length dependence is found to change with the size of the channels. Three regimes can be distinguished: (a) for the matrices with the size of the channels comparable to the persistence length (lp) of DNA molecules (45 nm), the mobility of DNA is found to decrease with the length of the molecules, similar to that found for the gel electrophoresis; (b) as the size of the nano-channel increases, the successful attacking frequency increases for the long molecules. The length-dependence of the mobility reverses; and (c) the Ogston mechanism holds for even larger channels. The short DNA molecules drift faster for the channels with diameter larger than 10 lp. Such a variety of the length dependence is observed for the first time in the electrophoresis in the artificial structures.

  10. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    PubMed

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  11. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    2005-11-01

    Contributors; 1. Monolithic phase-locked semiconductor laser arrays D. Botez; 2. High power coherent, semiconductor laser master oscillator power amplifiers and amplifier arrays D. F. Welch and D. G. Mehuys; 3. Microoptical components applied to incoherent and coherent laser arrays J. R. Leger; 4. Modeling of diode laser arrays G. R. Hadley; 5. Dynamics of coherent semiconductor laser arrays H. G. Winfuland and R. K. Defreez; 6. High average power semiconductor laser arrays and laser array packaging with an emphasis for pumping solid state lasers R. Solarz; 7. High power diode laser arrays and their reliability D. R. Scifres and H. H. Kung; 8. Strained layer quantum well heterostructure laser arrays J. J. Coleman; 9. Vertical cavity surface emitting laser arrays C. J. Chang-Hasnain; 10. Individually addressed arrays of diode lasers D. Carlin.

  12. TANGO Array.. 1. The instrument

    NASA Astrophysics Data System (ADS)

    Bauleo, P.; Bonifazi, C.; Filevich, A.; Reguera, A.

    2004-01-01

    TANGO Array is an air shower experiment which has been constructed in Buenos Aires, Argentina. It was commissioned during the year 2000 becoming fully operational in September, 2000. The array consists of four water Cherenkov detectors enclosing a geometrical area of ˜30,000 m2 and its design has been optimized for the observation of Extended Air Showers produced by cosmic rays near the "knee" energy region ˜4×10 15 eV. Three of the detectors have been constructed using 12,000-l stainless-steel tanks, and the fourth has been mounted in a smaller, 400-l plastic container. The detectors are connected by cables to the data acquisition room, where a very simple system, which takes advantage of the features of a four-channel digital oscilloscope, was set for data collection. This data collection setup allows a fully automatic experiment control which does not require operator intervention. It includes monitoring, data logging, and daily calibration of all detectors. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  13. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  14. Chemical delivery array with millisecond neurotransmitter release

    PubMed Central

    Jonsson, Amanda; Sjöström, Theresia Arbring; Tybrandt, Klas; Berggren, Magnus; Simon, Daniel T.

    2016-01-01

    Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses. PMID:27847873

  15. Comparison between agarose gel electrophoresis and capillary electrophoresis for variable numbers of tandem repeat typing of Mycobacterium tuberculosis.

    PubMed

    Yokoyama, Eiji; Kishida, Kazunori; Uchimura, Masako; Ichinohe, Sadato

    2006-06-01

    Variable numbers of tandem repeat (VNTR) typing of Mycobacterium tuberculosis was performed on 54 strains including 23 strains derived from 9 outbreaks. PCR amplicon sizes of 12 mycobacterial interspersed repetitive unit tandem repeat loci were measured using both agarose gel electrophoresis and capillary electrophoresis. Similarities using agarose gel electrophoresis of Euclidian distances among the 23 strains derived from the 9 outbreaks were significantly lower than that using capillary electrophoresis (Wilcoxon signed ranks test, P < 0.01). By clustering analysis using unweighted pair group method using arithmetic averages, all of the 23 strains derived from the 9 outbreaks were each clustered with more than 90% similarities based on the distance using capillary electrophoresis. In contrast, differential clusters with more than 90% similarity were observed with only 7 strains derived from 3 outbreaks when analyzed by agarose gel electrophoresis. These results indicated that measurement of PCR amplicon size of tandem repeat loci should be carried out using capillary electrophoresis and that agarose gel electrophoresis is not suitable for clustering analysis of M. tuberculosis VNTR typing.

  16. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  17. 3D Printed Micro Free-Flow Electrophoresis Device.

    PubMed

    Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T

    2016-08-02

    The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.

  18. Profiling the array of Ca(v)3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations.

    PubMed

    Emerick, Mark C; Stein, Rebecca; Kunze, Robin; McNulty, Megan M; Regan, Melissa R; Hanck, Dorothy A; Agnew, William S

    2006-08-01

    We describe the regulated transcriptome of CACNA1G, a human gene for T-type Ca(v)3.1 calcium channels that is subject to extensive alternative RNA splicing. Fifteen sites of transcript variation include 2 alternative 5'-UTR promoter sites, 2 alternative 3'-UTR polyadenylation sites, and 11 sites of alternative splicing within the open reading frame. A survey of 1580 fetal and adult human brain full-length complementary DNAs reveals a family of 30 distinct transcripts, including multiple functional forms that vary in expression with development. Statistical analyses of fetal and adult transcript populations reveal patterns of linkages among intramolecular splice site configurations that change dramatically with development. A shift from nearly independent, biased splicing in fetal transcripts to strongly concerted splicing in adult transcripts suggests progressive activation of multiple "programs" of splicing regulation that reorganize molecular structures in differentiating cells. Patch-clamp studies of nine selected variants help relate splicing regulation to permutations of the gating parameters most likely to modify T-channel physiology in expressing neurons. Gating behavior reflects combinatorial interactions between variable domains so that molecular phenotype depends on ensembles of coselected domains, consistent with the observed emergence of concerted splicing during development. We conclude that the structural gene and networks of splicing regulatory factors define an integrated system for the phenotypic variation of Ca(v)3.1 biophysics during nervous system development.

  19. Prototyping disposable electrophoresis microchips with electrochemical detection using rapid marker masking and laminar flow etching.

    PubMed

    Manica, Drew P; Ewing, Andrew G

    2002-11-01

    Two novel methods are described for the fabrication of components for microchip capillary electrophoresis with electrochemical detection (microchip CEEC) on glass substrates. First, rapid marker masking is introduced as a completely nonphotolithographic method of patterning and fabricating integrated thin-film metal electrodes onto a glass substrate. The process involves applying the pattern directly onto the metal layer with a permanent marker that masks the ensuing chemical etch. The method is characterized, and the performance of the resulting electrode is evaluated using catecholamines. The response compares well with photolithographically defined electrodes and exhibits detection limits of 648 nM and 1.02 microM for dopamine and catechol, respectively. Second, laminar flow etching is introduced as a partially nonphotolithographic method of replicating channel networks onto glass substrates. The replication process involves applying a poly(dimethylsiloxane) (PDMS) mold of the channel network onto a slide coated with a sacrificial metal layer and then pulling solutions of metal etchants through the channels to transfer the pattern onto the sacrificial layer. The method is tested, and prototype channel networks are shown. These methods serve to overcome the time and cost involved in fabricating glass-based microchips, thereby making the goal of a disposable high performance lab-on-a-chip more attainable.

  20. An Improved Passive Phase Conjugation Array Communication Algorithm

    NASA Astrophysics Data System (ADS)

    Jia, Ning; Guo, Zhongyuan; Huang, Jianchun; Chen, Geng

    2010-09-01

    The time-varying, dispersive, multipath underwater acoustic channel is a challenging environment for reliable coherent communications. A method proposed recently to cope with intersymbol interference (ISI) is Passive-Phase-Conjugation (PPC) cascaded with Decision-Feedback Equalization (DFE). Based on the theory of signal propagation in a waveguide, PPC can mitigate channel fading and improve the signal-to-noise ratio (SNR) by using a receiver array. At the same time the residual ISI will be removed by DFE. This method will lead to explosive divergence when the channel is changed by a large amount, because PPC estimates channels inaccurately. An improved algorithm is introduced in this paper to estimate the channel during all the communication process; as a result, the change of the channel can be found in time and the PPC could use more accurate channel estimated. Using simulated and at-sea data, we demonstrate that this algorithm can improve the stability of original algorithm in changed channels.

  1. General Coupling Matrix Synthesis for Decoupling MRI RF Arrays.

    PubMed

    Connell, Ian R O; Menon, Ravi S

    2016-10-01

    Multi-channel radio-frequency (RF) arrays, composed of multiple resonant coils, provide significant benefits for MRI during both signal reception (receive) and excitation (transmit). Demonstration of increased signal-to-noise ratio (SNR) and acceleration factors during parallel acquisitions has lead to the development of receive arrays. Conversely, transmit arrays have demonstrated considerable potential for mitigating excitation inhomogeneity arising at ultra-high magnetic field strengths ( ≥ 7 T) , present due to wave-like interactions inside the sample. Due to geometric constraints, the design of both receive and transmit arrays requires the resonating coils to be closely spaced. Significant overlap in the near-field distributions from each coil results in coupling. Without an adequate decoupling strategy applied between individual elements in an RF array, the MRI performance of the array can be significantly degraded. This work presents a method to design decoupling networks for arbitrarily large RF arrays based on direct synthesis of a coupling matrix. Reflection coefficients are fitted to transfer polynomials with transmission coefficients simultaneously minimized through a nonlinear optimization. The method demonstrates the design of n(th)-order distributed filters and lumped element networks that compensate for all first-order and cross-coupling terms arising in an RF array suitable for MRI. The synthesis results are computed for 4-, 8-, and 32-channel RF arrays. Monte Carlo analyses and experimental results for two RF array constructions demonstrate the robustness of this approach.

  2. RNA conformational changes analyzed by comparative gel electrophoresis.

    PubMed

    Eschbach, Sébastien H; Lafontaine, Daniel A

    2014-01-01

    The study of biologically relevant native RNA structures is important to understand their cellular function(s). Native gel electrophoresis provides information about such native structures in solution as a function of experimental conditions. The application of native gel electrophoresis in a comparative manner allows to obtain precise information on relative angles subtended between given pair of stems in an RNA molecule. By adapting this approach, it is possible to obtain very specific structural information such as the amplitude of dihedral angles and helical rotation. As an example, we will describe how native gel electrophoresis can be used to study the folding of the S-adenosylmethionine (SAM) sensing riboswitch.

  3. Two-dimensional agarose gel electrophoresis of DNA topoisomers.

    PubMed

    Roca, Joaquim

    2009-01-01

    The electrophoretic velocity of a duplex DNA ring is mainly determined by its overall shape. Consequently, DNA topoisomers of opposite supercoiling handedness can have identical gel velocity, and topoisomers highly supercoiled cannot be separated beyond some point. These problems are overcome by two-dimensional agarose gel electrophoresis, which involves two successive electrophoresis steps in one gel slab. The first and second electrophoresis steps are conducted in orthogonal directions with different concentrations of DNA intercalating agents. These compounds alter the overall shape of the DNA and, thereby, change the relative mobility of individual DNA topoisomers.

  4. Nondenaturing electrophoresis of lipoproteins in agarose and polyacrylamide gradient gels

    SciTech Connect

    Shore, V.G.

    1989-12-19

    The plasma lipoproteins frequently are classified according to density and/or electrophoretic mobility. The lipoprotein classes differ characteristically also in particle size and apolipoprotein composition. Each class is heterogeneous in size and composition as well. Nondenaturing electrophoresis in agarose gels and polyacrylamide gradient gels are complementary analytical methods for classification of lipoproteins and determining distribution profiles of the major classes. In addition, gradient gel electrophoresis (GGE) has a high resolving capability for subfractionating each class according to particle size. Combination of gel electrophoresis with immunoblotting yields information on heterogeneity in apolipoprotein distribution. 14 refs., 6 figs., 3 tabs.

  5. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  6. Robotics in biomedical chromatography and electrophoresis.

    PubMed

    Fouda, H G

    1989-08-11

    The ideal laboratory robot can be viewed as "an indefatigable assistant capable of working continuously for 24 h a day with constant efficiency". The development of a system approaching that promise requires considerable skill and time commitment, a thorough understanding of the capabilities and limitations of the robot and its specialized modules and an intimate knowledge of the functions to be automated. The robot need not emulate every manual step. Effective substitutes for difficult steps must be devised. The future of laboratory robots depends not only on technological advances in other fields, but also on the skill and creativity of chromatographers and other scientists. The robot has been applied to automate numerous biomedical chromatography and electrophoresis methods. The quality of its data can approach, and in some cases exceed, that of manual methods. Maintaining high data quality during continuous operation requires frequent maintenance and validation. Well designed robotic systems can yield substantial increase in the laboratory productivity without a corresponding increase in manpower. They can free skilled personnel from mundane tasks and can enhance the safety of the laboratory environment. The integration of robotics, chromatography systems and laboratory information management systems permits full automation and affords opportunities for unattended method development and for future incorporation of artificial intelligence techniques and the evolution of expert systems. Finally, humanoid attributes aside, robotic utilization in the laboratory should not be an end in itself. The robot is a useful tool that should be utilized only when it is prudent and cost-effective to do so.

  7. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  8. Nitromethane as solvent in capillary electrophoresis.

    PubMed

    Subirats, Xavier; Porras, Simo P; Rosés, Martí; Kenndler, Ernst

    2005-06-24

    Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.

  9. Simulating Electrophoresis with Discrete Charge and Drag

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, Thomas A.

    A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.

  10. An update on conformation sensitive gel electrophoresis.

    PubMed

    Ganguly, Arupa

    2002-04-01

    Conformation-sensitive gel electrophoresis (CSGE) was developed as a method of heteroduplex analysis to screen large multi-exon genes for sequence variation. The novelty of the method was in the use of a non-proprietary acrylamide gel matrix that used 1,4-bis (acrolyl) piperazine (BAP) as a cross linker with ethylene glycol and formamide as mildly denaturing solvents. The denaturing environment enhances the conformation polymorphism present in DNA heteroduplexes containing variations as small as single nucleotide polymorphisms (SNPs). CSGE has also been adapted for use on a fluorescent platform (F-CSGE) that resulted in higher throughput and sensitivity. Variation in sensitivity of CSGE has been studied extensively. The results demonstrate that the nature of the mismatched base in a defined sequence context has the most profound effect on the conformation of the heteroduplex. Additionally, the size of the PCR product, as well as the location of the mismatch within the PCR product, are two important parameters that determine the resolution of the mismatch-containing heteroduplexes during CSGE. Like any other mutation scanning technique, CSGE can have limited resolution of two closely linked sequence variations. For specific genes, like BRCA1 and BRCA2 where multiple SNPs are present in the coding sequence, each CSGE shift has to be sequenced to define the exact nature of the sequence change. In conclusion, CSGE scanning provides a powerful, cost-efficient way to scan genes with high sensitivity and specificity.

  11. Improving the sensitivity in chiral capillary electrophoresis.

    PubMed

    Sánchez-López, Elena; Marina, María Luisa; Crego, Antonio L

    2016-01-01

    CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Sánchez-Hernández et al. [Electrophoresis 2014, 35, 12-27].

  12. Mini-electrochemical detector for microchip electrophoresis.

    PubMed

    Jiang, Lei; Lu, Yao; Dai, Zhongpeng; Xie, Minhao; Lin, Bingcheng

    2005-09-01

    This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.0 cm2, W x L) of the detector is compatible with the dimension of the microchip. The use of universal serial bus (USB) ports facilitates installation and use of the detector, miniaturizes the detector, and makes it ideal for lab-on-a-chip applications. A fixed 10 M ohm feedback resistance was chosen to convert current of the working electrode to voltage with second gain of 1, 2, 4, 8, 16, 32, 64 and 128 for small signal detection instead of adopting selectable feedback resistance. Special attention has been paid to the power support circuitry and printed circuit board (PCB) design in order to obtain good performance in such a miniature size. The working electrode potential could be varied over a range of +/-2.5 V with a resolution of 0.01 mV. The detection current ranges from -0.3 x 10(-7) A to 2.5 x 10(-7) A and the noise is lower than 1 pA. The analytical performance of the new system was demonstrated by the detection of epinephrine using an integrated PDMS/glass microchip with detection limit of 2.1 microM (S/N = 3).

  13. Analytical instrument qualification in capillary electrophoresis.

    PubMed

    Cianciulli, Claudia; Wätzig, Hermann

    2012-06-01

    Capillary electrophoresis (CE) is a well-established and frequently used technique in the pharmaceutical industry. Therefore an appropriate analytical instrument qualification (AIQ) is required for quality assurance. AIQ forms the basis of a quality management followed by analytical method validation, system suitability tests (SSTs) and quality control checks. Two parts of the AIQ, namely the operational qualification (OQ) and the performance qualification (PQ) are of particular interest in the daily routine of the laboratory. A new concept for OQ and PQ was developed to assure the correct function of a CE system. The significance of each parameter, possible test methods as well as acceptance criteria will be presented and discussed in detail. Especially temperature adjustment by the cooling system and the voltage supply must be tested for accurate and precise operation. The detector noise, wavelength accuracy and detector linearity have to be checked as well. Finally, the injection linearity, accuracy and precision need to be qualified. The proposed set of qualification procedures is easy to implement and was already tested on five CE instruments from three different manufacturers. A time- and cost-saving continuous PQ was derived, using results from method-specific SSTs and some additional experiments. This holistic concept continuously surveys the most relevant parameters, hence assuring the suitability of the used instruments and decreasing their downtimes.

  14. Electrophoresis of particles with Navier velocity slip.

    PubMed

    Park, Hung Mok

    2013-03-01

    In the present investigation, it is found that the electrophoretic mobility of hydrophobic particles is affected not only by the zeta potential but also by the velocity slip at the particle surface. From a physicochemical viewpoint, zeta potential represents the surface charge properties and the slip coefficient indicates the hydrophobicity of the particle surface. Thus, it is necessary to separate the contribution of zeta potential from that of slip coefficient to the particle mobility, since zeta potential can be changed by varying the bulk ionic concentration while the slip coefficient can be modified by adjusting surfactant concentration. In the present investigation, a method is devised that allows a simultaneous estimation of zeta potential and slip coefficient of micro and nanoparticles using measurements of electrophoretic mobility at various bulk ionic concentrations. Employing a nonlinear curve-fitting technique and an analytic solution of electrophoresis for a particle with velocity slip, the present technique predicts both zeta potential and slip coefficient simultaneously with reasonable accuracy using the measured values of electrophoretic mobility at various bulk ionic concentrations.

  15. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen R.

    2013-11-01

    We focus in this presentation on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchanges occur between the EDL which surrounders the particle and the bulk solution. In this situation, the velocity field, the electric potential and the ionic concentration at the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. These equations are classically considered in the limit of a weak applied field, which enables further analytical progress (Khair and Squires, Phys. Fluids, 2010). However, in the general case, the equation governing the electrophoretic motion of the particle must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, ionic concentration and velocity field in the bulk solution surrounding the particle. The numerical simulations use a pseudo-spectral which was used successfully by Chu and Bazant to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere (Physical Review E, 2006). Our numerical model also incorporates the steric model developed by Kilic et al. in 2007 to account for crowding effects in the electric double layer.

  16. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  17. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection.

    PubMed

    Cunha, Rafael R; Chaves, Sandro C; Ribeiro, Michelle M A C; Torres, Lívia M F C; Muñoz, Rodrigo A A; Dos Santos, Wallans T P; Richter, Eduardo M

    2015-05-01

    Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 μm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) β-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L(-1) by liquid chromatography and 39, 32, and 49 μmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods.

  18. Free zone electrophoresis simulation of static column electrophoresis in microgravity on shuttle flight STS-3

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    Experiments were designed to replicate, as closely as possible in 1-G, the conditions of the STS-3 red blood cell (RBC) experiments. Free zone electrophoresis was the method of choice, since it minimizes the role of gravity in cell migration. The physical conditions of the STS-3 experiments were used, and human and rabbit RBC's fixed by the same method were the test particles. The effects of cell concentration, electroosmotic mobility, and sample composition were tested in order to seek explanations for the STS-3 results and to provide data on cell concentration effects for future zero-G separation on the continuous-flow zero-G electrophoretics separator.

  19. Characterization of low viscosity polymer solutions for microchip electrophoresis of non-denatured proteins on plastic chips.

    PubMed

    Yasui, Takao; Reza Mohamadi, Mohamad; Kaji, Noritada; Okamoto, Yukihiro; Tokeshi, Manabu; Baba, Yoshinobu

    2011-12-01

    In this paper, we study characteristics of polymers (methylcellulose, hypromellose ((hydroxypropyl)methyl cellulose), poly(vinylpyrrolidone), and poly(vinyl alcohol)) with different chemical structures for microchip electrophoresis of non-denatured protein samples in a plastic microchip made of poly(methyl methacrylate) (PMMA). Coating efficiency of these polymers for controlling protein adsorption onto the channel surface of the plastic microchip, wettability of the PMMA surface, and electroosmotic flow in the PMMA microchannels in the presence of these polymers were compared. Also relative electrophoretic mobility of protein samples in solutions of these polymers was studied. We showed that when using low polymer concentrations (lower than the polymer entanglement point) where the sieving effect is substantially negligible, the interaction of the samples with the polymer affected the electrophoretic mobility of the samples. This effect can be used for achieving better resolution in microchip electrophoresis of protein samples.

  20. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  1. Pneumatic microvalve-based hydrodynamic sample injection for high-throughput, quantitative zone electrophoresis in capillaries.

    PubMed

    Kelly, Ryan T; Wang, Chenchen; Rausch, Sarah J; Lee, Cheng S; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages.

  2. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  3. Enrichment of low-abundance brain proteins by preparative electrophoresis.

    PubMed

    Fountoulakis, Michael; Juranville, Jean François

    2003-02-15

    Detection of low-copy-number gene products is essential for the development of novel drugs, however, it represents a major drawback of proteomics and simultaneously a scientific challenge. We studied the enrichment of rat brain cytosolic proteins by preparative electrophoresis using the PrepCell apparatus. The electrophoresis was performed in the presence of 0.1% lithium dodecyl sulfate. The proteins eluted from the gel were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption ionization mass specrometry. Lithium dodecyl sulfate was easily exchanged against agents compatible with isoelectric focusing. Low-abundance proteins, which had not been found before, including neuronal-specific and calcium-binding proteins, were detected. In particular, low-molecular-mass proteins, such as hippocalcin, visinin-like proteins, and 14-3-3 proteins were strongly enriched by preparative electrophoresis.

  4. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  5. A New Electrophoresis Technique to Seperate Microsatellite Alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional agarose and polyacrylamide gel electrophoresis have been used commonly for microsatellite (simple sequence repeats, SSRs) analysis, but they are labor- intensive and not always able to provide accurate sizes for different alleles. Capillary sequencers provide automated analysis and accur...

  6. Preparation of arrays of long carbon nanotubes using catalyst structure

    SciTech Connect

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  7. SEPARATION AND DETECTION OF THREE ARYLTINS BY CAPILLARY ELECTROPHORESIS-UV/VIS DIODE ARRAY

    EPA Science Inventory

    The trialkyltins and triphenyltins have widespread application as fungicides, antifouling coatings for porous surfaces, herbicides, insecticides, and generic biocides. Due to the varied toxicity of each species of organotins, it is important that methods address the speciation of...

  8. [Determination of chondroitin sulfate in food supplements by capillary zone electrophoresis].

    PubMed

    Arianova, E A; Bogachuk, M N; Perederiaev, O I

    2013-01-01

    Chondroitin sulfate is widely used as an ingredient in food supplements. A method of capillary zone electrophoresis for qualitative and quantitative analysis of chondroitin sulfate in food supplements has been developed. The system of capillary electrophoresis Agilent 3D CE (USA) with diode array detector (spectral range 190-400 nm, 192 nm was used to quantity), quartz capillary Agilent with effective length 56 cm (USA) (internal diameter 50 microm, temperature 25 degrees C, 30 kV, negative polarity) and 50 mM phosphate buffer (pH 3.5) has been used. Quantity limit of this method was 0.5 g/kg. It was used for determination of content of chondroitin sulfate in 14 food supplements. The chondroitin sulfate was detected in all test samples with deviation from the declared content (25-600 mg per capsule or tablet) at the level of 1 to 9%. The applicability of the elaborated method for assessing of food supplements quality has been shown.

  9. Affinity capillary electrophoresis: the theory of electromigration.

    PubMed

    Dubský, Pavel; Dvořák, Martin; Ansorge, Martin

    2016-12-01

    We focus on the state-of-the-art theory of electromigration under single and multiple complexation equilibrium. Only 1:1 complexation stoichiometry is discussed because of its unique status in the field of affinity capillary electrophoresis (ACE). First, we summarize the formulas for the effective mobility in various ACE systems as they appeared since the pioneering days in 1992 up to the most recent theories till 2015. Disturbing phenomena that do not alter the mobility of the analyte directly but cause an unexpected peak broadening have been studied only recently and are also discussed in this paper. Second, we turn our attention to the viscosity effects in ACE. Change in the background electrolyte viscosity is unavoidable in ACE but numerous observations scattered throughout the literature have not been reviewed previously. This leads to an uncritical employment of correction factors that may or may not be appropriate in practice. Finally, we consider the ionic strength effects in ACE, too. Limitations of the current theories are also discussed and the tasks identified where open problems still prevail. Graphical Abstract A weak base (A) undergoes an acidic-basic equilibria (in blue) and migrates with an electrophoretic mobility of [Formula: see text]. Simultaneously, it interacts with a selector (sel) while the analyte-selector complex migrates with an electrophoretic mobility of [Formula: see text]. The strength of the interaction (in orange) is governed by the binding constant, K A , and the concentration of the selector, c sel . This all gives the analyte an effective mobility of [Formula: see text] and moves it out of the zero position (EOF; right top insert). The interaction of the positively charged analyte with the neutral selector slows down the analyte with increasing selector concentration (right bottom insert).

  10. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, B.; Chan, W. H. R.; Moran, J. L.; Buie, C. R.

    2014-10-01

    We focus in this paper on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchange occurs between the electric double layer, which surrounds the particle, and the bulk solution. In addition, steric effects due to the finite size of ions drastically modify the electric potential distribution in the electric double layer. In this situation, the velocity field, the electric potential, and the ionic concentration in the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. In the general case, these equations must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, the ionic concentration, and the velocity field in the bulk solution surrounding the particle. The numerical simulations rely on a pseudo-spectral method which was used successfully by Chu and Bazant [J. Colloid Interface Sci. 315(1), 319-329 (2007)] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. Our numerical simulations also incorporate the steric model developed by Kilic et al. [Phys. Rev. E 75, 021502 (2007)] to account for crowding effects in the electric double layer, advective transport, and for the presence of a body force in the bulk electrolyte. The simulations demonstrate that surface conduction significantly decreases the electrophoretic mobility of polarizable particles at high zeta potential and at high applied electric field. Advective transport in the electric double layer and in the bulk solution is also shown to significantly impact surface conduction.

  11. Monitoring Insulin Aggregation via Capillary Electrophoresis

    PubMed Central

    Pryor, Elizabeth; Kotarek, Joseph A.; Moss, Melissa A.; Hestekin, Christa N.

    2011-01-01

    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation. PMID:22272138

  12. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  13. Pulsed-field gel electrophoresis of bacterial chromosomes.

    PubMed

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  14. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung.

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  15. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  16. Low viscous separation media for genomics and proteomics analysis on microchip electrophoresis system.

    PubMed

    Jabasini, Mohammad; Murakami, Yuji; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2006-04-01

    Microchip electrophoresis has widely grown during the past few years, and it has showed a significant result as a strong separation tool for genomic as well as proteomic researches. To enhance and expand the role of microchip electrophoresis, several studies have been proposed especially for the low viscous separation media, which is an important factor for the success of microchip with its narrow separation channels. In this paper we show an overview for the done researches in the field of low viscous media developed for the use in microchip electrophoresis. For genomic separation studies polyhydroxy additives have been used enhance the separation of DNA at low polymer concentration of HPMC (Hydroxypropylmethyl cellulose) which could keep the viscosity low. Mixtures of poly(ethylene oxide) as well as Hydroxyporpyl cellulose have been successfully introduced for chip separation. Furthermore high molecular mass polyacrylamides at low concentrations have been studied for DNA separation. A mixture of polymer nanoparticle with conventional polymers could show a better resolution for DNA at low concentration of the polymer. For the proteomic field isoelectric focusing on chip has been well overviewed since it is the most viscous separation media which is well used for the protein separation. The different types of isoelectric focusing such as the ampholyte-free type, the thermal type as well as the ampholyte-depended type have been introduced in this paper. Isoelectric focusing on chip with its combination with sodium dodecyl sulfate (SDS) page or free solution could give a better separation. Several application for this low viscous separation medias for either genomic or proteomic could clearly show the importance of this field.

  17. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    PubMed

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation.

  18. Bundled capillary electrophoresis using microstructured fibres.

    PubMed

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  19. Advances in Automation and Throughput of the Mars Organic Analyzer Microchip Capillary Electrophoresis System

    NASA Astrophysics Data System (ADS)

    Haldeman, B. J.; Skelley, A. M.; Scherer, J. R.; Jayarajah, C.; Mathies, R. A.

    2005-12-01

    We have previously demonstrated the design, construction and testing of a portable microchip capillary electrophoresis (CE) instrument called the Mars Organic Analyzer (MOA) for analysis of amino acids and amine containing organic molecules (1). This instrument is designed to accept organic compounds isolated from samples by sublimation or by subcritical water extraction, to label the amine groups with fluorescamine, and to perform high resolution electrophoretic analysis. The CE instrument has shown remarkable robustness during successful field tests last year in the Panoche Valley, CA (1) and more recently in the Atacama Desert, Chile (2). For successful operation on Mars, however, it is necessary to operate autonomously and to analyze large numbers of samples, blanks, and standards. Toward this end we present here two advances in the MOA system that test key aspects of an eventual flight prototype. First, we have developed an automated microfluidic system and method for the autonomous loading, running and cleaning of the CE chip on the single channel MOA instrument. The integration of microfabricated PDMS valves and pumps with all-glass separation channels in a multilayer design enabled creation of structures for complex fluidic routing. Twenty sequential analyses of an amino acid standard were performed with an automated cleaning procedure between runs. In addition, dilutions were performed on-chip, and blanks were run to demonstrate the elimination of carry-over from run to run. These results demonstrate an important advance of the technology readiness level of the MOA. Second, we have designed, constructed and successfully tested a lab version of the multichannel instrument we initially proposed for the MSL opportunity. The portable Multi-Channel Mars Organic Analyzer (McMOA, 25 by 30 by 15 cm), was designed to sequentially interrogate eight radially oriented CE separation channels on a single wafer. Since each channel can be used to analyze 20 or more

  20. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.